Upper-Air Meteorological Instruments: Cost, Installation, Maintenance, and Data Use Considerations

Clinton MacDonald, Levi Stanton, and Tim Dye Sonoma Technology, Inc. Petaluma, CA

for

National Ambient Air Monitoring Conference St. Louis, MO

August 8, 2016

Upper-Air PAMS Background

 Previous Photochemical Assessment Monitoring Stations (PAMS) program required one upper-air meteorological site per network.

Four wind and temperature soundings per day*

- Many agencies deployed radar wind profilers (RWPs); several still operate.
- While RWPs provide useful data, aging equipment and related costs are issues.

Upper-Air PAMS Background

- With the new ozone NAAQS, EPA proposed a change in the PAMS program to allow more flexibility
 - Will require 1-hr mixing height measurements
 - Will support measurements of other parameters (winds, temperature, etc.)
- PAMS monitoring at NCore sites will need to start by June 1, 2019

Today's Talk

Goal: To provide information on instruments that measure upper-air meteorology to help with future measurement decisions

- Upper-air meteorological basics
- Applications
- Instrument types
- Attributes and costs
- Logistics

Upper-Air Meteorology

It's a 4-dimensional process

http://www.met.reading.ac.uk/Research/boundary_layer/research/

Applications to Air Quality

- Model assimilation and verification
- Daily forecasting
- Data analysis for understanding and characterization
 - Transport
 - Dispersion
 - Fumigation

Photo by Don Blumenthal of STI on July 12, 1987

- Source contribution
- Exceptional event demonstrations

Instruments

Instrument	Wind Profiles	Temp. Profiles	Inversions	Mixing Heights	Moisture Profiles	Cloud Base Height
RWP	Х			Х		
RWP with RASS*	Х	Х	Х	Х		
Sodars	Х			/		
Doppler Lidars	Х			/		
Ceilometer				/		Х
Radiometer		Х	Х		Х	

X = all instruments

/ = some instruments have algorithms

* Radio Acoustic Sounding System

9

RWP with RASS

- Pluses
 - Measures key parameters (winds, temp, mixing height)
 - Excellent height coverage (100 to 3500 m agl)
 - Long life
 - Unattended operations
- Minuses
 - High acquisition and repair costs
 - Substantial infrastructure
 - RASS is noisy
 - Few manufacturers
 - Large footprint

Irvine RWP with RASS

Radar Wind Profiler with RASS

RWP – Mixing Heights

Sodars

- Pluses
 - Wind and mixing heights (on some)
 - Relatively low-cost
 - Can run on solar
 - High vertical resolution
 - Unattended operations
 - Several manufacturers
 - Smaller footprint
- Minuses

- Main product is wind; other data products on some sodars
- Limited height coverage (~200 to 800 m depending on model)
- Limited height coverage in high winds
- Noisy

Sodars

14

Doppler Lidar

• Pluses

- Measures winds
- Mixing heights (on some)
- Very high time and vertical resolution
- Unattended operations
- Several manufacturers
- Small footprint

Minuses

- Doesn't provide data in or above fog/clouds
- Expensive, but that is changing
- Height coverage can be limited

Photo from Leosphere WindCube lidar manufacturer's website: <u>http://www.leosphere.com/products/3d-scanning/windcube-100s200s400s</u>

Doppler Lidar

Ceilometer

- Pluses
 - Measures cloud base height
 - Measures mixing height (on some)
 - Excellent height coverage (10 to 10,000 m agl)
 - Unattended operations
 - High time and vertical resolution
 - Inexpensive to acquire and operate
 - Very small footprint
- Minuses
 - No winds or temperature

Ceilometer – Gulf of Mexico

Ceilometer

Backscatter and Boundary Layer Heights Seattle, WA

Microwave Radiometer

- Pluses
 - Measures temperature, relative humidity (RH), liquid water
 - Excellent height coverage (~10 to 10,000 m agl)
 - Unattended operations
 - High time and vertical resolution
 - Small footprint
- Minuses
 - No winds
 - Moderately high acquisition cost (~\$150K)
 - Indirect measure of parameters (can lead to non-detects of inversions, for example)
 - Few manufacturers

Microwave Radiometer – Gulf of Mexico

Microwave Radiometer

Chevron Oil Platform ST-52B over Gulf of Mexico near Louisiana coast

Operational Considerations

- Siting
 - Interference from other electronics or objects
 - Neighbors (noise disturbances)
 - Station power (solar if no line power)
 - Infrastructure (concrete pad, security fence, etc.)
- Data management
 - Data transfer methods (cellular, satellite, etc.)
 - Data volume and complexity
 - Quality control methods
 - Visualization

Closing Thoughts

- Day-to-day variability in air quality is mostly controlled by meteorology
- Several important meteorological parameters
- No silver bullet instrument
- Selection depends on your needs, applications, and resources
- Consider operation requirements
- Technology is improving and costs are coming down

Contact

Clinton MacDonald

Division Manager Meteorology, Measurements, and Outreach

clint@sonomatech.com 707.665.9900

Tim Dye

Senior Vice President

tim@sonomatech.com 707.665.9900

sonomatech.com @sonoma_tech