EnviroAtlas

www.epa.gov

Proximity to Parks in the Durham, NC EnviroAtlas Community Area

Alexandra Sears ${ }^{1}$, Laura Jackson ${ }^{2}$

Abstract

This poster shows the proximity of any location to the nearest park entrance within greater Durham, NC, an EnviroAtlas pilot community. Park entrances were derived based on available federal, state, county, and local data, as well as aerial photography. The distance to each park entrance was then calculated along walkable roads for up to 5
kilometers. Using the distance calculation proximity zones were interpolated across the kilometers. Using the distance calculation, proximity zones were interpolated across the
study area From these distance zones, the estimated residential population within easy walking distance (500 meters) of a park entrance was calculated for each Census block Theur phe of this layer is to identify areas that could group. The purpose of this layer is to identify areas that could benefit from additional park access. Shese data can be
assessed with other socio-conomic factors to refine areas assessed with other socio-economic factors to retine areas
of need. The study area examined in this analysis (Figure 1) of need. The study area examined in this analysis (Figure 1)
is defined as the EnviroAtlas Study Area for Durham, NC. is defined as the EnviroAltas Study Area for Durram, Ac.
The Area was derived using 2010 Census Urban Area Boundaries and 2010 Census Block Groups.

Methods - Data and Pre-Processing

- 2010 TIGERLINE Streets for Durham, Orange, Chatham, Wake Counties, NC - 2010 US Census Bureau Block Groups and Block Group-Level Population Data - 2010 EnviroAtlas Dasymetric Population Map
- Esri Business Analyst Parks Layer
- Park Data Layers and
- Park Data Layers and Information from the Parks and Recreation Departments of Chatham, and Wake Counties, NC; Duke University; and Stareugh; Durham, Orange, Chatham, and Wake Counties, NC; Duke University; and State of North Carolina. Pre-Processing:

1. Create a walkable roads layer from the TIGERLINE Streets layers for the four counties listed above. Walkable roads are defined as roads with 2 or fewer entrance/exit ramps and generally roads with a speed limit less than 55 mph . Roads are included/excluded at the discretion of the analyst (Figure 2).
Create a parks polygon layer using the sources listed above. This includes and Recreation websites without GIS
 layers.
Hand-digitize park entrances. Entrances are placed along the walkable roads using aerial photography and park maps
(where available). If a park is open to the street, like a park comprised of a the street, like a park comprised of a approximately at all road intersections approximately at all road intersections
bordering the park and never more than 1000m apart (Figure 3).

Methods - Pre-Processing (continued

4. Convert the walkable roads into a 10 m
raster.
Use the Cost Distance tool to calculate the distance along each rasterized entrance. (Figure 4)
Reclassify into 9 distance breaks (listed in Figure 4 legend).

* Note, the highest distance break, over 5000 m , is considered an area of insufficient data in the final maps because only parks within 5000 m of the Durham, NC EnviroAtlas Study Are were analyzed.

Methods and Results - Block Group Summaries
Objective:
The objective of this analysis is to summarize residentia proximity to park by block group.
Processing.
. Convert the reclassified distance raster into polygons and intersect the polygons with the original walkable roads
2. Select the road sections that are within 500 m of a park entrance and buffer by 60 m .
Extract the pixels within the 60 m buffer from the EnviroAtlas Dasymetric Layer (Figure 5).
Calculate the sum of the extracted dasymetric pixels in each census block group using zonal statistics.
Calculate the population and percent of the block group population within and beyond walking distance of a park entrance. These layers are all available in EnviroAtlas (Figure 6).

Parks Proximity Block Group Summaries

Figure 5. Extracted Dasymetric Pixels occused on Northeast Durham, this image
includes Valley Springs Park and a portion of the Eno River State Park.

Methods and Results - Foundational Layer
The objective of this analysis is to develop a spatially explicit layer describing proximity to parks for easy interpretation at street-level.

1. Convert the raw cost distance raster into points.
2. Use Inverse Distance Weighted distance surface (Figure 7).
Reclassify the surface into distance breaks and convert to polygons (Figure 8).

Proximity to Parks

Conclusions

These layers illustrate the population relative to park entrances. These layers can be used to identify neighborhoods that have ready access to parks and those that are used to identify neighborhoods that have ready access to parks and those that are
underserved and may benefit from additional parks or new park entrances to increase access. The summaries by census block group can be used to evaluate park access per capita. When overlaid with these maps, socio-economic layers within EnviroAtlas can highlight park proximity for specific age groups or other demographic groups for whom access could be especially beneficial.

I. 1 .

These data are estimates and are inherently imperfect. The locations of these parks were Wimated using available data and some parks may inadvertently have been overlooked. account for walking along greenways or other trails throughout a city unless those trails were included in the road dataset. There may be a shorter route to a park if such trails are available.

