Appendices

Appendix A

Standard Operating Procedure for Unconsolidated (Non-Vegetated) River Bottom Assessment (reprinted from the HDA Work Plan)

Appendix A - Standard Operating Procedure for Unconsolidated (Non-Vegetated) River Bottom Assessment

I. Objective

The objective of this Standard Operating Procedure (SOP) is to set forth methods to measure the range of existing conditions of unconsolidated (non-vegetated) river bottom habitats within River Sections 1, 2, and 3 of the Upper Hudson River. The assessment activities that will be performed in the field are described generally in Section 2.2.2.1 of the *Habitat Delineation and Assessment Work Plan* (HDA Work Plan; Blasland, Bouck & Lee, Inc. [BBL], 2003) for the Upper Hudson River. This SOP provides a methodology for collecting information to document the range of conditions in the unconsolidated river bottom habitat as it currently exists.

Measurements described in this SOP are based on physical characteristics of habitat structure. Habitat structure is defined as the physical components and the organization or pattern of a habitat, community or ecosystem. Habitat structure and ecological functions are intrinsically linked, and in general, when there is suitable habitat structure, aquatic communities and associated ecosystem functions are present. This approach is consistent with the Record of Decision (ROD) for the Upper Hudson River (United States Environmental Protection Agency [USEPA], 2002) and previous studies that have shown that successful fluvial replacement and reconstruction projects depend mainly on the presence of suitable physical habitat (e.g., Gore, 1985).

The functions to be assessed for the unconsolidated river bottom habitats and the specific measurements to be taken in the field to quantify those functions, along with a brief rationale for each, are shown in Table A-1 (below). The measurements will be used to develop functional capacity indices (FCIs) for unconsolidated bottom functions, so as to allow for management decisions regarding reallocation of functions among the replaced and reconstructed habitats, if necessary. FCIs are values calculated from the field habitat measurements that provide a synthesis of information for evaluating habitat functions – in this case, the functions listed in Table A-1. FCIs provide a site-specific basis for describing the functional capacity of a habitat at a specific location, and for comparing functional capacity among locations. In developing these FCIs, pre-existing models such as Habitat Suitability Indices (HSIs) may be used (for specific representative indicator species) or project-specific FCI models may be developed. The conceptual foundations for the application of project-specific FCIs are discussed generally in Ainslie et al. (1999) and Smith and Wakeley (2001), and specifically for the Hudson River in Findlay et al. (2002). While the focus of these studies was on riverine wetlands, the overall approach to developing and using FCIs is applicable to and will be used for characterizing unconsolidated bottom habitats.

Table A-1. Unconsolidated River Bottom											
Function	Measured Variable	Rationale									
Potential to Support Macroinvertebrates	Total organic carbon Substrate and cover Embeddedness Percent fines	Food resources for BMI Protection from predation; attachment Availability of cobble, gravel for attachment Burrowing substrate; related to TOC									
Potential to Support Fish Populations	Substrate and cover Embeddeness Percent fines	Protection from predation; spawning substrate Availability of cobble, gravel for spawning substrate Related to embeddedness									

FCIs will be developed for each function listed in Table A-1 and each station sampled (as described in Section III below). These FCIs, together with the underlying data, associated maps (as necessary), and the specific protocols used to develop the FCIs, will be presented to USEPA in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

II. Necessary Materials and Equipment

- Small boat with standard water safety gear (e.g., personal flotation device [PFD]; first aid kit)
- Protective gear for working in water (e.g., hip waders, wetsuit, drysuit)
- Foul weather gear
- Rapid Bioassessment Protocols (RBP) guidance document
- Differential Global Positioning System (DGPS) unit
- Dive equipment (diving flag, SCUBA and/or snorkel)
- Camera
- Binoculars
- Field guide(s)
- Field log book

III. Sampling Design

As described in the HDA Work Plan, unconsolidated bottom habitats will be delineated and mapped based on the side-scan sonar output and substrate characterization data from the Sediment Sampling and Analysis Program (SSAP). That program will provide sonar coverage of the entire river bottom, along with approximately 6,000 surface sediment samples with total organic carbon measurements and sediment classification and 450 samples with quantitative analyses for grain size distribution. As part of habitat delineation activities, the information from side-scan sonar and sediment sampling programs will be integrated into a series of overlay habitat delineation maps. These maps will be used to identify a suite of sampling strata for the detailed habitat assessment activities. These strata will be based on one or more key parameters relevant to unconsolidated river bottom habitats, such as sediment type, three-dimensional structure, flow, overlying water depth, presence of organic macroparticles, and others as appropriate.

Unconsolidated bottom comprises a large proportion of in-river habitat in the Upper Hudson River. Based on existing information, it is estimated that approximately 2,700 acres (approximately 1100

hectares) of unconsolidated bottom habitat is present in River Sections 1, 2 and 3 (approximately 3900 acres of total river bottom in project area minus approximately 1,200 acres of vegetated river bottom habitat). The detailed habitat assessment activities will be conducted in a representative portion of that total habitat area, with the goal of conducting such activities in approximately 5% of the total area of unconsolidated bottom. Based on the assumption that a sampling station would cover, on average, approximately one acre, a total of 135 representative sampling stations will be selected for the detailed functional assessment. These stations will be selected, using the information from the habitat delineation maps, side-scan sonar output, and substrate characterization, together with available information on areas to be dredged, so as to meet the following criteria:

- 1. Adequately characterize all the habitat strata identified from the habitat delineation information, as described above;
- 2. Include a roughly equivalent number of target stations (in dredge areas) and reference stations (in non-dredge areas); and
- 3. Be allocated among River Sections in rough proportion to the relative areas of unconsolidated river bottom habitats to be dredged in each River Section.

At each sampling station, nine samples will be collected, for a total of 1,215 samples. The use of nine samples per station provides flexibility in the design so that multiple strata within each station can be sampled with replication. The specific sample points will be selected to best characterize the strata within the station. (Note that samples will be located within stations as appropriate to cover the strata present and based on the amount of dredging to be completed. Thus, an area of uniform bottom or where limited dredging is planned will receive fewer sample points than an area of heterogeneous bottom or where more extensive dredging is planned.)

IV. Methods

The protocols described in this SOP for assessing unconsolidated river bottom habitat are adapted from the USEPA Rapid Bioassessment Protocols (Barbour et al., 1999). Sampling will be conducted by trained, experienced personnel (per Barbour et al., 1999) using SCUBA, snorkeling gear, or wading. Sample locations will not be disturbed by sampling personnel prior to making habitat parameter estimates.

Habitat parameters will be determined in areas where unconsolidated bottom is present. Areas to be sampled within the unconsolidated habitat will be determined as described in Section III. Following the collection and review of side-scan sonar output and substrate characterization data from the SSAP, sampling will be conducted between June 1 and September 30 in accordance with the following steps:

- 1. Establish the nine sampling points at each station (as described in Section III). The sampling points will be located such that replicate measurements are taken randomly from within each stratum at the station. Record locations with DGPS. Also record weather conditions on and prior to the day of the survey, as well as watershed and in-stream features, in the field log book.
- 2. As described by Barbour et al. (1999), estimate and record percent composition of inorganic features of the substrate observed in the sampling area (approximately 2.0 m²), using Table A-2, by visual and/or tactile evaluation.

Table A-2. Inorganic Substrate Components										
Substrate Type	Diameter (millimeters [mm])	Percent Composition (0-100%)								
Bedrock										
Boulder	> 256 mm (10 inches)									
Cobble	64 – 256 mm (2.5 – 10 inches)									
Gravel	2 – 64 mm (0.1 – 2.5 inches)									
Sand	0.06 – 2 mm (gritty)									
Silt	0.004 – 0.06 mm									
Clay	<0.004 mm (slick)									

(Adapted from Barbour et al., 1999)

3. As described by Barbour et al. (1999), estimate and record percent composition of organic features of the substrate, using Table A-3, in the same area and by the same techniques as described in Step 2.

Table A-3. Organic Substrate Components									
Substrate TypeCharacteristicPercent Composition(0-100%)									
Detritus	Sticks, wood, course plant material (CPOM)								
Muck-Mud	Black, very fine organic (FPOM)								
Marl Grey, shell fragments									

(Adapted from Barbour et al., 1999)

4. As described by Barbour et al. (1999), estimate and record the presence and character of structural substrate/habitat cover, using Table A-4, in the same area and by the same techniques as described in Step 2.

Table A-4. Epifaunal Substrate / Available Cover								
Category	Stable Habitat (For Low Gradient Conditions)	Stable Habitat (For High Gradient Conditions)						
Optimal – mix of snags, submerged logs, cobble, or other stable habitat	> 50%	> 70%						
Suboptimal – mix of stable habitat well- suited for colonization and new fall	30 – 50%	40 – 70%						
Marginal – habitat availability less than desirable; substrate frequently disturbed or removed	10 – 30%	20 – 40%						
Poor – lack of habitat obvious; substrate unstable or lacking (Adapted from Barbour et al., 1999)	< 10%	< 20%						

(Adapted from Barbour et al., 1999)

5. As described by Barbour et al. (1999), estimate and record the level of embeddedness of largediameter material, using Table A-5, in the same area by the same techniques as described in Step 2. Do not complete this step if the substrate is greater than 75% sand, silt, or clay. Complete this step only for high gradient areas.

Table A-5. Embeddedness							
Category	Surrounded by Fine Sediment						
Optimal – gravel, cobble and boulder particles largely uncovered; layer of cobble provides diversity of niche space	0 – 25%						
Suboptimal – gravel, cobble and boulder particles partially covered	25 - 50%						
Marginal – gravel, cobble and boulder particles more than 50% covered	50 – 75%						
Poor – gravel, cobble and boulder particles mostly covered >75% and difficult to discern							

(Adapted from Barbour et al., 1999)

6. As described by Barbour et al. (1999), estimate and record the level of optimal pool substrate characteristics using Table A-6 in the same area by the same techniques as described in Step 2. Complete this step only for low gradient areas.

Table A-6. Pool Substrate Characterization							
Category	Stable Habitat ¹						
Optimal – mix of substrate materials, with gravel and firm sand prevalent; root mats and SAV common	> 80%						
Suboptimal – mix of soft sand, mud or clay; mud may be dominant; some root mats and SAV present	55 – 75%						
Marginal – all mud or clay or sand bottom; little or no root mat; no SAV	30 – 50%						
Poor – hard-pan clay or bedrock; no root mat or SAV < 25%							

(Adapted from Barbour et al., 1999)

1. Values of percent derived from scores associated with each category (Barbour et al, 1999)

7. As described by Barbour et al. (1999), estimate and record the channel flow status using Table A-7 in the same area by the same techniques as described in Step 2.

Table A-7. Channel Flow Status									
Category Percent Channel Filled with Water									
Optimal – water reaches base of both lower banks and minimal amount of channel substrate is exposed.	100%								
Suboptimal – water fills > 75% of available channel; or < 25% of channel substrate is exposed.	> 75%								
Marginal – water fills between 25-75% of channel and/or riffle substrates are mostly exposed.	25 – 75%								
Poor – very little water in channel and mostly standing pools.	< 25%								

(Adapted from Barbour et al., 1999)

- 8. Repeat the observations at one sampling point per station using different crew member and compare observations on percent composition. Stations where repeated observations deviate from original estimates by 20% or more will be reassessed.
- 9. When on station, qualified topside personnel shall survey the surrounding unconsolidated bottom to document the occurrence or signs of wildlife species that can be observed by these personnel (e.g., diving ducks). In addition, in-water personnel shall survey the area of unconsolidated bottom being sampled for the occurrence or signs of in-water wildlife species, such as mussels, snails, or vertebrates (e.g., turtles). Record observations, including a qualitative narrative synopsis, on Table E-1 provided in Attachment E to the HDA Work Plan.
- 10. Move to the next sampling point and repeat Steps 2 through 9.

As discussed in Section I, the specific habitat parameter results described above will be used to develop FCIs (which may include HSIs) for each function listed in Table A-1 (above) and each station sampled. The approach to be used in developing the FCIs will follow the same general approach used by Ainslie et al. (1999) and Findlay et al. (2002) and/or may use pre-existing HSI models. If HSIs are used, HSI information selected indicator for species will be obtained from http://www.nwrc.usgs.gov/wdb/pub/hsi/hsiindex.htm. Preliminary FCI models and the lists of species for which HSIs (if used) will be calculated will be provided in the Habitat Delineation Report. The specific methods used will be described, together with the underlying data and the FCI results, in the Habitat Assessment Reports referenced in the HDA Work Plan.

It should be re-emphasized that the steps described above are those modified from Barbour et al., (1999) for visually surveying stream and wadeable river habitats through a rapid bioassessment approach. Other components of the protocols by Barbour et al. (1999) (e.g. record of velocity/depth, pool variability, and sediment deposition) that are not described in this SOP would not be achievable for a visual survey of unconsolidated river bottoms in the mostly unwadeable habitats of the Upper Hudson River. Therefore, for these components, the data collected as part of the SSAP will be used to assign scores, as applicable.

V. References

Ainslie, W.B., R.D. Smith, B.A. Pruitt, T.H. Roberts, E.J. Sparks, L.West, G.L. Godshalk, and M.V. Miller. 1999. *A Regional Guidebook for Assessing the Functions of Low Gradient, River Wetlands in Western Kentucky*. Technical Report WRP-DE-17. USACE, Waterways Experiment Station, Vicksburg, MS. 109 pp.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. *Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish*, Second Edition. EPA 841-B-99-002. USEPA, Office of Water, Washington, DC.

BBL. 2003. *Habitat Delineation and Assessment Work Plan*. Hudson River PCBs Superfund Site. Prepared for General Electric Company, Albany, NY.

Findlay, S. E. G., E. Kiviat, W. C. Nieder, and E. A. Blair. 2002. Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquat. Sci. 64:107-117.

Gore, J. A. 1985. Mechanisms of colonization and habitat enhancement for benthic macro invertebrates in restored river channels, in J.A. Gore (ed.). *The Restoration of Rivers and Streams. Theories and Experience*. Butterworth, Stoneham, MA.

Smith, R. D. and J. S. Wakeley. 2001. *Hydrogeomorphic Approach to Assessing Wetland Functions: Guidelines for Developing Regional Guidebooks – Chapter 4, Developing Assessment Models.* ERDC/EL TR-01-30, US Army Engineer Research and Development Center, Vicksburg, MS.

USEPA. 2002. *Hudson River PCBs Site – Record of Decision and ROD Responsiveness Summary*. New York, NY.

Appendix B

Standard Operating Procedure for Aquatic Vegetation Bed Assessment (reprinted from the HDA Work Plan)

I. Objective

The objective of this Standard Operating Procedure (SOP) is to set forth methods to measure the range of existing conditions, including cover, shoot density, and above-ground biomass, within submerged aquatic vegetation (SAV) habitats in River Sections 1, 2, and 3 of the Upper Hudson River. The assessment activities that will be performed are described generally in Section 2.2.2.2 of the *Habitat Delineation and Assessment Work Plan* (HDA Work Plan; Blasland, Bouck & Lee, Inc. [BBL], 2003). This SOP provides further details on the procedures for collecting information to document the range of conditions in the aquatic bed habitats.

Measurements described in this SOP are based primarily on characteristics of habitat structure. Habitat structure is defined as the physical components and the organization or pattern of a habitat, community or ecosystem. Habitat structure and ecological functions are intrinsically linked, and in general, when suitable habitat structure exists, aquatic communities and associated ecosystem functions are present. The approach described in this SOP is consistent with the Record of Decision (ROD) for the Upper Hudson River (United States Environmental Protection Agency [USEPA], 2002) and previous studies that have shown that successful fluvial replacement and reconstruction projects depend mainly on the presence of suitable physical habitat (e.g., Gore, 1985).

The functions to be assessed for the aquatic bed habitats, the specific measurements to be taken in the field and laboratory to quantify those functions, and a brief rationale for their measurement are shown in Table B-1. The measurements will be used to develop functional capacity indices (FCIs) for the aquatic bed functions, so as to allow for management decisions regarding reallocation of functions among the replaced and reconstructed habitats, if necessary. FCIs are values calculated from the field habitat and laboratory measurements that provide a synthesis of information for evaluating habitat functions – in this case, the functions listed in Table B-1 (below). FCIs provide a site-specific basis for describing the functional capacity of a habitat at a specific location, and for comparing functional capacity among locations. For the functions related to providing habitat for fish, pre-existing Habitat Suitability Indices (HSIs) may be used for specific representative indicator species. Otherwise, project-specific FCI models will be developed. The conceptual foundations for the application of project-specific FCIs are discussed generally in Ainslie et al. (1999) and Smith and Wakeley (2001), and specifically for the Hudson River in Findlay et al. (2002). While the focus of these studies was on riverine wetlands, the overall approach to developing and using FCIs is generally applicable to and will be used for characterizing aquatic bed habitats.

	Table B-1.	Aquatic Bed
Function	Rationale	
Macrophyte Primary Productivity	Shoot biomass Percent cover	Represents productivity Areal extent of productivity for SAV bed
Support PMI/BMI Populations	Shoot biomass Shoot density Percent cover Plant species composition Light availability Water depth Current velocity	Represents available food resources for BMI/PMI Substrate for PMI settlement; dampens wave/ current energy Protection from predation Plant architecture related to number of PMI Growth productivity of SAV and epiphytes Correlated to light availability Settlement of PMI; scouring of BMI habitat
Provide Habitat for Fish Populations	Shoot biomass Shoot density Percent cover Plant species composition	Represents available food resources for BMI/PMI Related to ease of movement within SAV bed Protection from predation; access to open water Meadow versus canopy species offer differing levels of protection / access
Stabilization of Substrate	Shoot density Percent cover Percent fines Current velocity	Dampens wave/current energy Areal extent of dampening effect Related to potential for resuspension of sediment Higher current scours or resuspends more sediment
Water Quality Enhancement	Shoot density Percent fines	Shoots dampen wave/current energy allow particles to settle out of suspension Related to potential for resuspension of sediment
Nutrient Cycling	Shoot biomass Percent fines Sediment nutrient availability	Standing crop of organic material Related to anaerobic conditions (allows denitrifica- tion); related to organic material in sediment Indicates availability of nutrients cycled from organic matter

FCIs will be developed for each function listed in Table B-1 and each station sampled (as described in Section III below). These FCIs, together with the underlying data, associated maps (as necessary), and the specific protocols used to develop the FCIs, will be presented to USEPA in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

II. Necessary Materials and Equipment

- Small boat with standard water safety gear (e.g., personal flotation device; first aid kit)
- Differential Global Positioning System (DGPS) unit
- Protective gear for working in water (e.g., hip waders, wetsuit, drysuit)
- Dive equipment (e.g., diving flag, SCUBA and/or snorkel gear)
- Field log book
- Sampling quadrat (1 meter [m] x 1 m, polyvinyl chloride [PVC]) with permanent marks every 25 centimeters (cm) on each side
- Sampling subquadrat (25 cm x 25 cm, PVC)

- Tubes for collecting sediment cores (PVC or Lexan)
- Light meter (photoactive radiation sensor)
- Sounding line, calibrated in centimeters
- Water velocity meter
- Random number table
- Sealable storage bags, pre-labeled
- Cooler(s) with ice
- Range finder (optical)
- Camera
- Binoculars
- Field guide(s)
- Laboratory support equipment (e.g., jars, labels, etc.)

III. Sampling Design

As described in the HDA Work Plan, aquatic bed habitats will be delineated and mapped based on aerial photographs and in-field groundtruthing of that remotely sensed information, as well as the side-scan sonar output and substrate characterization data from the Sediment Sampling and Analysis Program (SSAP). That program will provide sonar coverage of the entire river bottom, along with approximately 6,000 surface sediment samples with total organic carbon measurements and sediment classification and 450 samples with quantitative analyses for grain size distribution. As part of habitat delineation activities, the information from the aerial photographs, groundtruthing, and SSAP will be integrated into a series of overlay habitat delineation maps. These maps will be used to identify a suite of sampling strata for the detailed habitat assessment activities. These strata will based on one or more key parameters relevant to aquatic bed habitats, such as bed size, species composition, plant cover, sediment type, flow, overlying water depth, and others as appropriate.

To assist in developing a sampling design for characterizing aquatic bed habitats, a limited preliminary field study was conducted in aquatic beds in the Upper Hudson River in August 2002. Based on the field team's experience in aquatic bed sampling and reconnaissance of beds in the river, seven stations were sampled in the 2002 study: six stations within River Section 1 and one station in River Section 2. At each station, three transects were placed perpendicular to shore, and three quadrats were randomly placed along a transect for a total of nine samples per station. The quadrats were used to define the area within which samples were collected (shoot density and biomass) and from which percent cover was recorded. A map showing the locations of those stations and a table summarizing the results are provided in Figure B-1 and Exhibit B-1 to this SOP.

After considering observations made during the August 2002 field investigation and the results of the investigation and data analysis, it was determined by professional judgment that a distribution of (on average) approximately two sampling stations (of nine samples each) per river mile of potentially impacted aquatic bed habitat, with a corresponding distribution of stations in unimpacted (reference) areas, would be appropriate for characterizing aquatic bed habitats. Based on our current knowledge about the distribution of aquatic bed habitat in the Upper Hudson River, aquatic bed habitat over an approximate 13-mile area may potentially be impacted by the proposed remedial activities. Data collected during the assessment of candidate Phase 1 areas will be used to further assess the variability between sampling locations and to evaluate whether any modification to the sampling design is warranted. The results of such further assessment will be provided to USEPA, along with any proposal to modify the sampling program arising out of the further assessment.

Based on the foregoing evaluation, 52 stations will be selected for the detailed functional assessment of aquatic bed habitat (26 in dredge areas and 26 in reference or non-dredge areas). These stations will be selected, using the information from the habitat delineation maps, side-scan sonar output and substrate characterization, together with available information on areas to be dredged, so as to best meet the following criteria:

- 1. Adequately characterize all aquatic bed habitat strata identified from the habitat delineation information, as described above;
- 2. Include an equal number of target stations (in dredge areas) and reference stations (in non-dredge areas), as also described above; and
- 3. Be allocated among River Sections in a rough proportion to the relative areas of aquatic bed habitat to be dredged (i.e., potentially affected aquatic bed habitat) in each River Section.

At each sampling station, nine samples will be collected, for a total of 468 samples. The use of nine samples per station provides flexibility in the design so that multiple strata within each station can be sampled with replication. The specific sample points will be selected to best characterize the strata within the station. The overall sample design combines judgmental and stratified random sampling (USEPA, 2000) into a comprehensive design for characterizing aquatic bed habitats.

For the purposes of the HDA Work Plan, data collected during the limited August 2002 field study (Exhibit B-1) were analyzed to determine the statistical resolution of the proposed sampling design. During the August 2002 study, each sampling station consisted of three transects, with three quadrats per transect (n=9), randomly located in SAV beds of various sizes.

Data were analyzed using non-parametric statistical comparisons (statistical program output below), visual comparisons (graphs below), and calculated relative width of confidence intervals (Exhibit B-2) to determine the resolution of the data. The relative width of confidence intervals is the width of the confidence interval expressed as a percentage of the mean. The confidence interval endpoints are the mean plus or minus this percentage of the mean. The confidence interval analyses indicate that reported mean values are within approximately ± 35 to 39% of actual values for the 95th percentile confidence interval, which is an acceptable resolution to meet the program objectives.

In making these comparisons, significant differences were observed between stations, indicating the sample size of 9 is sufficient to detect statistically significant differences in above-ground biomass, percent cover, and shoot density. The ability to detect meaningful differences between stations will provide useful information for the habitat replacement and reconstruction program (e.g., planting density).

Substrate measurements collected as part of the SSAP will also be used to characterize the aquatic bed habitat. These measurements include bulk density, water content, USCS classification, grain size distribution, Atterberg limits, specific gravity, and total organic carbon (see QEA, 2002). As described above, SSAP sample locations will be included on the habitat delineation maps to indicate where SSAP samples were collected in SAV habitat, and additional sediment samples will be collected as necessary to adequately characterize the SAV areas.

IV. Methods

The protocols described in this SOP address both field and laboratory methods. Field and laboratory analyses will be conducted by trained, experienced personnel.

A. Field

Following the collection of aerial photographs (anticipated to be July) and digitization, mapping and groundtruthing of the aquatic beds, sampling will be conducted during the peak of the SAV growing season, between July 15 and August 30. Shoot density, percent cover, and aboveground biomass will be quantified using 1-m square quadrats taken randomly from within the strata at the location.

Plant characteristics, sediment nutrient availability, light availability, current velocity data and wildlife observation data will be collected as distinct tasks using the following protocols.

Plant Characteristics

- 1. Using SCUBA or snorkeling equipment, collect samples from within sampling quadrats randomly placed within each stratum.
- 2. Record the center of each sampling quadrat using DGPS.
- 3. Visually estimate percent cover of the 1-m square quadrat and record in field book.
- 4. Randomly select two 25 cm x 25 cm subquadrats of the 1-m quadrat. Remove all aboveground material by clipping and store in a pre-labeled sealable bag.
- 5. Place sample in cooler for transport to the laboratory for processing for shoot density and aboveground biomass.
- 6. Repeat observations on percent cover at one sampling point per station using different crew member and compare observations. Stations where repeated observations deviate from original estimates by 20% or more will be reassessed.

Sediment Nutrient Availability

- 1. Using SCUBA or snorkeling equipment, collect surface sediment sample from the center of one randomly selected quadrat from each stratum used for collecting plant characteristic data using a PVC coring tube. Follow Steps 3-7. If the sediment depth is less than 5 cm or presence of large-diameter substrate prevents the collection of a sediment core, proceed to Step 2.
- 2. Lower a ponar grab from the boat and collect a sample from the center of the quadrat. Retrieve the grab and place on deck. Subsample the collected material to obtain sufficient quantity to fill a PVC tube. Place caps on ends of tube and proceed to Step 5.
- 3. Remove both end caps from a 2-inch diameter PVC tube, press tube into substrate approximately 12 cm. Place cap on top of tube and slowly extract core from substrate. If necessary, place a dive knife or small shovel under the PVC tube to prevent the sample from falling out as the tube is extracted.
- 4. Place cap on bottom of tube. Bring to surface and once above surface water, place in holder until any suspended material has settled, then decant excess water from top of tube. Wipe excess water from tube and seal both ends with tape.
- 5. Place label on tube indicating location, transect number, quadrat number, and date.
- 6. Place tube in sealable bag and store on ice in cooler.
- 7. Ship collected samples to the laboratory for processing (by methods provided in Barko et al., 1988).

Light Availability and Water Depth

- 1. Handheld equipment for measuring photosynthetically active radiation (e.g., Licor 1400 photometer) will be maintained and calibrated in accordance with the manufacturer's instructions. This equipment will be operated from the boat. The air (surface light) and underwater sensors will be attached to the data logger in accordance with the manufacturer's instructions. The underwater sensor will be attached to the sensor platform in accordance with the manufacturer's instructions.
- 2. Place air sensor on level surface in full sunlight.
- 3. Outside the deep edge of the bed, lower the sensor platform into the water to a depth of 0.5 m. Record air (surface) and underwater light readings.
- 4. Lower the calibrated sounding line to the bottom. Record water depth to the nearest centimeter.
- 5. Lower the sensor platform to a depth of 1 m. Record air (surface) and underwater light readings.
- 6. Move to the approximate center of the SAV bed, and repeat Steps 3 (at placement of the meter) and5.
- 7. Lower the calibrated sounding line to the bottom. Record water depth to the nearest centimeter.

Current Velocity

- 1. Collect velocity data from outside and within the SAV bed using an electromagnetic velocity meter. The instrument will be maintained and calibrated in accordance with the manufacturer's instructions. This equipment will be operated from the boat. The meter will be secured to a long metal or PVC pole to allow raising and lowering of the meter in the water. The pole will be marked at 10 cm and 1 m intervals from the bottom.
- 2. Orient the meter head directly parallel with the flow. Flagging or streamers (e.g., from cassette tape material) should be tied to the vertical rod to assist with orientation of the meter.
- 3. Outside the deep edge of the bed, place the meter 10 cm above the substrate. Record velocity.
- 4. Raise the meter to 1 m above the substrate. Record velocity.
- 5. Move to the approximate center of the SAV bed and repeat Steps 3 (at placement of the meter) and 4.

Wildlife Observations

- 1. When on station, qualified topside personnel shall survey the surrounding aquatic bed to document the occurrence or signs of wildlife species that can be observed (e.g., diving ducks).
- 2. In-water personnel shall survey the area of aquatic bed being sampled for the occurrence or signs of in-water wildlife species, such as mussels, snails, or vertebrates (e.g., turtles).
- 3. Record observations, including a qualitative narrative synopsis, on Table E-1 provided in Attachment E to the HDA Work Plan.

B. Laboratory

The following tasks will be performed by a contract laboratory.

Vallisneria americana (adapted from Biernacki and Lovett-Doust, 1997)

- 1. Rinse plants with tap water.
- 2. Carefully remove and discard invertebrates, algae, etc. from blades.
- 3. Sort out unattached blades or root mass material not part of an intact shoot.

- 4. Count the number of intact shoots, and record total number. This number will be used to calculate shoot density.
- 5. Remove trace belowground material if present.
- 6. Place all aboveground material (e.g., shoots, blades etc.) in pre-labeled tin foil bag.
- 7. Refrigerate at cool temperature until drying.
- 8. Clean and dry glass 1 liter (L) beakers to be used for drying the samples.
- 9. Determine and record the tare weight of each beaker using precision scale. Mass should be recorded to the nearest $1/100^{\text{th}}$ of a gram.
- 10. Use scale to record the initial mass of the sample in the beaker before beginning the drying procedure.
- 11. Place the samples in the laboratory oven for 24 hours at 85 (+/- 1) °C. Confirm that the oven is connected to ventilation system through use of flexible ductwork.
- 12. Remove samples at the end of 24-hours and place in the desiccator for approximately 45 minutes to confirm the complete removal of water from the samples and to allow for cooling of the sample to room temperature.
- 13. Record the mass of the samples immediately after removal from the desiccator.
- 14. Return the samples to the oven for 1 hour, place in desiccator and record the mass for constant mass reading (within 5% of the previous measurement).
- 15. Repeat Step 14 until constant mass is reached.
- 16. Place samples in sealed bags for archiving and store at room temperature.

Other Species (each species will be processed separately)

Follow the procedures described above for *Vallisneria americana*, with the following exception. In Step 4, count and record the number of primary stems for each species present.

Sediment Nutrient Analysis (Barko et al., 1988)

- 1. Remove end caps from tube and extrude 10 cm of material through the top of the tube into a clean glass container.
- 2. Thoroughly homogenize sample with Teflon coated mixing spoon (or similar).
- 3. For extractable P: Mix (by shaking) 2 grams of wet sediment with 25 milliliters (ml) of extractant containing 0.3 N NH₄F and 0.025 N HCl for 1 minute. Proceed to Step 6.
- 4. For exchangeable ammonium-N and K: Mix (by shaking) 5 grams of wet sediment with 50 ml of an extractant containing 1 M NaCl for 1 minute. Proceed to Step 6.
- 5. For moisture content: follow steps 5-12 in the *Vallisneria americana* procedures above, substituting 250 mL beakers for the 1 L beakers, and using approximately 2 grams of sediment as the sample.
- 6. Filter extract. Acidify with HCl to pH of 2.0.
- 7. Use flow-injection analysis procedure for Lachat Quik-Chem Auto-Analyzer (or similar autoanalysis technique) to determine concentrations of extracted nutrients.
- 8. Express nutrient concentrations on basis of sediment dry mass following correction for moisture content.

C. Development of FCIs

As discussed in Section I, the specific measurements described above will be used to develop FCIs for each function listed in Table B-1 (above) and each station sampled. The FCIs for the fish habitat function may include HSIs for representative indicator species. The approach to be used to develop the FCIs will follow the same general approach used by Ainslie et al. (1999), Smith and Wakeley (2001), and Findlay et al. (2002) and/or, for the fish habitat function, may use pre-existing HSI models. HSI

information for selected indicator species will be obtained from <u>http://www.nwrc.usgs.gov/wdb/pub/hsi/hsiindex.htm</u>. Preliminary FCI models and the lists of species for which HSIs will be calculated will be provided in the *Habitat Delineation Report*. The specific methods used will be described, together with the underlying data and the FCI results, in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

V. References

Ainslie, W.B., R.D. Smith, B.A. Pruitt, T.H. Roberts, E.J. Sparks, L.West, G.L. Godshalk, and M.V. Miller. 1999. *A Regional Guidebook for Assessing the Functions of Low Gradient, River Wetlands in Western Kentucky*. Technical Report WRP-DE-17. USACE, Waterways Experiment Station, Vicksburg, MS. 109 pp.

BBL. 2003. *Habitat Delineation and Assessment Work Plan*. Hudson River PCBs Superfund Site. Prepared for General Electric Company, Albany, NY.

Barko, J.W., R. Michael Smart, D.G. McFarland, and R. L. Chen. 1988. Interrelationships between the growth of Hydrilla verticillata (L.f.) and sediment nutrient availability. Aquat. Bot. 32:205-216.

Biernacki, M. and J. Lovett-Doust. 1997. *Vallisneria americana* (Hydrocharitaceae) as a biomonitor of aquatic ecosystems: comparison of cloned genotypes. Am. J. Bot. 84(12):1743-1751.

Findlay, S. E. G., E. Kiviat, W. C. Nieder, and E. A. Blair. 2002. Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquat. Sci. 64:107-117.

Gore, J. A. 1985. Mechanisms of colonization and habitat enhancement for benthic macro invertebrates in restored river channels, in J.A. Gore (ed.). *The Restoration of Rivers and Streams. Theories and Experience*. Butterworth, Stoneham, MA.

Smith, R. D. and J. S. Wakeley. 2001. *Hydrogeomorphic Approach to Assessing Wetland Functions: Guidelines for Developing Regional Guidebooks – Chapter 4, Developing Assessment Models*. ERDC/EL TR-01-30, US Army Engineer Research and Development Center, Vicksburg, MS.

USEPA. 2000. *Guidance for Choosing a Sampling Design for Environmental Data Collection*. EPA QA/G-5S (peer review draft).

USEPA. 2002. Hudson River PCBs Site – Record of Decision and ROD Responsiveness Summary. New York, NY.

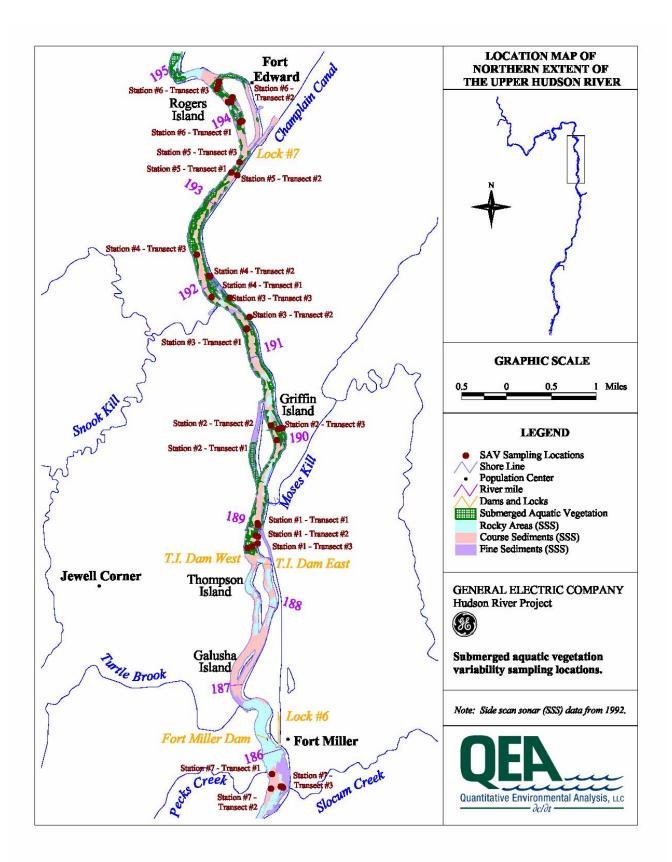


Exhibit B-1 Data Collected from Aquatic Beds in the Upper Hudson River (August 2002)

												Lig	ght		Cur	rent
					Final Dry					Distance from		M	0.	.5M		Bottom
Date	Station	Transect	Depth	Spp	Weight (g)	Comments	# of Shoots	Depth (m)	Cover (%)	Shore (m)	Air	Water	Air	Water	1M (ft/s)	(ft/s)
8/5/2002	1	1	Shallow	Va	0	No biomass collected	0	0.2	0	0						
8/5/2002	1	1	Middle	Va	5.33	х	18	0.99	95	0						
8/5/2002	1	1	Middle	Other	0.02	Х	3	0.99	95	0						
8/5/2002	1	1	Deep	Va	8.02	х	27	2.01	75	0		340		435	0.07	0.08
8/5/2002	1	2	Shallow	Va	5.62	х	14	0.65	50	0						
8/5/2002	1	2	Middle	Va	6.48	х	36	1.2	75	0						
8/5/2002	1	2	Deep	Va	9.35	х	10	2.4	50	0		932		1154	0.25	0.1
8/5/2002	1	3	Shallow	Va	5.59	East	14	1.75	80	0						
8/5/2002	1	3	Shallow	Va	15.48	West	41	1.45	100	0		270		950		
8/5/2002	1	3	Deep	Va	1.99	x	7	2.62	5	0		1605		1093	0.52	0.52
8/5/2002	2	1	Shallow	Va	2.44	x	17	0.25	40	1.35		613		750		
8/5/2002	2	1	Middle	Va	3.82	х	15	1.42	75	6.75						
8/6/2002	2	1	Middle	Other	0.11	х	8	1.42	75	6.75						
8/5/2002	2	1	Deep	Va	3.58	х	8	2.25	40	13.5						
8/5/2002	2	2	Shallow	Va	0.97	х	8	0.37	50	1.37				528		0.07
8/6/2002	2	2	Middle	Va	12.58	x	7	1.55	100	6.85						
8/6/2002	2	2	Middle	Other	1.98	x	10	1.55	100	6.85						
8/6/2002	2	2	Deep	Va	8.57	x	23	2.53	70	13.7					0.06	0.08
8/6/2002	2	3	Shallow	Va	27.43	х	59	2.3	95	52.2	1601	965	1625	1194	0.49	0.44
8/6/2002	2	3	Middle	Va	10.24	x	40	1.78	50	85.95						
8/6/2002	2	3	Deep	Va	7.33	х	45	1.78	60	131.67	501	253	914	415	0.26	0.35
8/5/2002	2	3	Deep	Other	0.78	x	5	1.78	60	131.67	501	253	914	415	0.26	0.35
8/6/2002	3	1	Shallow	Va	2.64	х	27	0.72	85	7						
8/6/2002	3	1	Shallow	Other	0.02	x	5	0.72	85	7						
8/6/2002	3	1	Middle	Va	0.27	x	5	1.8	80	30.17	1790	737	1767	1221	0.36	0.15
8/6/2002	3	1	Middle	Other	15.7	х	10	1.8	80	30.17	1790	737	1767	1221	0.36	0.15
8/6/2002	3	1	Deep	Va	6.98	x	47	2.3	70	42.06	811	25	2005	631	0.36	0.3
8/6/2002	3	2	Shallow	Va	2.36	x	11	0.28	40	5.4			1440	789		0
8/6/2002	3	2	Shallow	Other	0.48	x	3	0.28	40	5.4			1440	789		0
8/8/2002	3	2	Middle	Va	10.2	х	23	0.86	45	9.7						
8/6/2002	3	2	Middle	Other	0.17	Fragments contribute to biomass	1	0.86	45	9.7						
8/6/2002	3	2	Deep	Va	22.24	x	5	1.32	50	14.1						

Exhibit B-1 Data Collected from Aquatic Beds in the Upper Hudson River (August 2002)

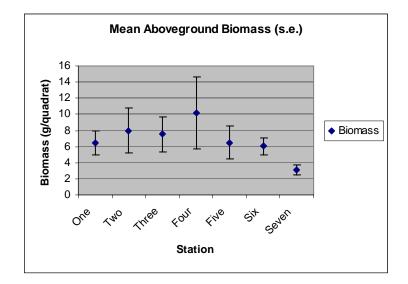
												Li	ght		Cur	rrent
												1 M	0.	.5M		Dettem
Date	Station	Transect	Depth	Spp	Final Dry Weight (g)	Comments	# of Shoots	Depth (m)	Cover (%)	Distance from Shore (m)	Air	Water	Air	Water	1M (ft/s)	Bottom (ft/s)
8/8/2002	3	3	Shallow	Va	10.69	West	38	0.85	100	7.1						
8/8/2002	3	3	Shallow	Other	0.07	West/Biomass are frags	0	0.85	100	7.1						1
8/8/2002	3	3	Shallow	Va	5.22	East	17	0.53	70	0.54						
8/8/2002	3	3	Middle	Va	2.93	X	14	1.42		24.69	1449	685	1545	1143	0 (out of bed)	0.19 (in bed)
8/8/2002	3	3	Middle	Other	0.4	X	10	1.42		24.69	1449	685	1545	1143	0 (out of bed)	0.19 (in bed)
8/8/2002	4	1	Shallow	Va	6.77	Х	33	0.49	70	7.9						
8/8/2002	4	1	Shallow	Other	0.32	Fragments contribute to biomass	1	0.49	70	7.9						'
8/8/2002	4	1	Middle	Va	2.35	Х	14	1.26	75	0						'
8/8/2002	4	1	Deep	Va	42.99	X	97	2.3	80	22.86	1781	680	1744	1213	0.89 (out of bed)	1.25 (out of bed)
8/8/2002	4	2	Shallow	Va	3.85	x	69	0.75	80	8.7						'
8/8/2002	4	2	Middle	Va	3.66	x	30	1.8	60	23.77	2027	738	2036	1149		'
8/8/2002	4	2	Deep	Va	18.71	X	95	1.63	100	56.69	2075	334	2027	846	0.22 (out of bed)	0.17 (out of bed)
8/8/2002	4	3	Shallow	Va	4.25	x	37	1.33	35	12.8						'
8/8/2002	4	3	Middle	Va	5.87	X	39	1.7	60	28.35						0 (out of bed)
8/8/2002	4	3	Deep	Va	17.83	X	69	1.82	85	36.58	1330	797	2026	1453	0 (out of bed)	0.14 (out of bed)
8/8/2002	4	3	Deep	Other	0.66	Biomass are frags	0	1.82	85	36.58	1330	797	2026	1453	0 (out of bed)	0.14 (out of bed)
8/8/2002	5	1	Shallow	Va	2.03	x	10	0.5	50	5.3						ļ
8/8/2002	5	1	Middle	Va	12.34	x	41	0.95	55	6.7	1790	125	1665	391		0
8/8/2002	5	1	Middle	Other	0.07	Biomass are frags	0	0.95	55	6.7	1790	125	1665	391		0
8/8/2002	5	1	Deep	Va	4.47	x	8	1.92		8.5						ļ
8/8/2002	5	2	Shallow	Va	0.28	X	5	0.009	5	1.9						
8/8/2002	5	2	Middle	Va	1.72	X	18	0.2	25	3.6						
8/8/2002	5	2	Middle	Other	0.31	X	1	0.2	25	3.6						
8/8/2002	5	2	Deep	Va	3.85	X	29	0.7	70	5.4	1841	460	2266	1320	0.14 (out of bed)	0.25 (out of bed)
8/8/2002	5	3	Shallow	Va	2.96	X	14	0.11	40	3.6						!
8/8/2002	5	3	Middle	Va	13.01	x	33	0.52	100	5.4						
8/8/2002	5	3	Deep	Va	3.62	X	27	1.8	70	7.7			700	332	0 (out of bed)	0.24
8/8/2002	6	1	Shallow	Va	3.98	West	15	1.72	95	40.23					0.24 (out of	0.14 (out of

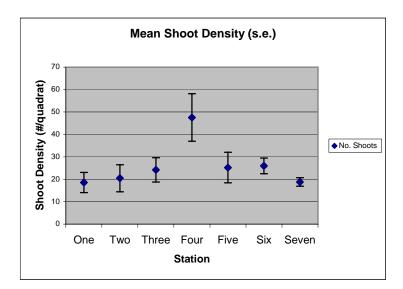
Exhibit B-1 Data Collected from Aquatic Beds in the Upper Hudson River (August 2002)

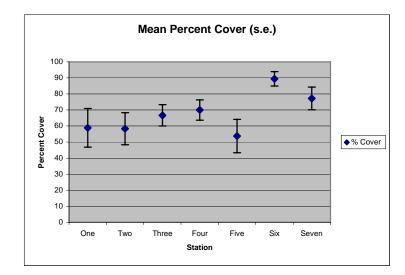
												Li	ght		Cur	rent
					Final Davi					Distance from	1	М	0.	.5M		Bottom
Date	Station	Transect	Depth	Spp	Final Dry Weight (g)	Comments	# of Shoots	Depth (m)	Cover (%)	Distance from Shore (m)	Air	Water	Air	Water	1M (ft/s)	(ft/s)
															bed)	bed)
8/8/2002	6	1	Middle	Va	7.99	x	22	1.7	100	61.26	1366	270	1345	1141		
8/8/2002	6	1	Shallow	Va	4.32	East	38	0.95		61.26	1445	978	1445	581	0.58 (out of bed)	0.72 (out of bed)
8/8/2002	6	2	Shallow	Va	6.66	East	17	0.86	100	8.3	1748	971	1760	1398		
8/8/2002	6	2	Shallow	Other	0.42	East/Biomass are frags	0	0.86	100	8.3	1748	971	1760	1398		
8/8/2002	6	2	Middle	Va	8.36	x	43	1.26	100	0					1.3 (out of bed)	1.4 (out of bed)
8/9/2002	6	2	Shallow	Va	12.76	West	29	1.05	100	138.07	1131	820	1751	1042	1.23 (out of bed) 0.7 (in bed)	1.04 (out of bed) 0.75 (in bed)
8/8/2002	6	3	Shallow	Va	3.44	West	12	0.65	75	11	1131	020	1818	921		0.3 (out of bed)
8/8/2002	6	3	Middle	Va	3.07	х	31	1.37	75	122.53	1764	813	1778	1204	1.5	2
8/8/2002	6	3	Middle	Other	0.81	x	5	1.37	75	122.53	1764	813	1778	1204	1.5	2
8/8/2002	6	3	Shallow	Va	1.67	East	20	0.6	75	64			1902	1528		1.41 (out of bed)
8/8/2002	6	3	Shallow	Other	1.82	East	6	0.6	75	64			1902	1528		1.41 (out of bed)
8/8/2002	7	1	Shallow	Va	4.69	Х	22	0.8	100	9.8						
8/8/2002	7	1	Middle	Va	5.18	Х	29	0.58	80	31.09						
8/8/2002	7	1	Deep	Va	2.8	x	17	1.95	100	37.49			1188	780	0.45 (out of bed) 0.25 (in bed)	0.8 (out of bed) 0.04 (in bed)
8/8/2002	7	2	Shallow	Va	2.55	x	18	0.12	85	6					,	
8/8/2002	7	2	Shallow	Other	0.7	х	7	0.12	85	6					_	
8/8/2002	7	2	Middle	Va	0.55	х	9	0.62	35	32.92			1444	736	0	0
8/8/2002	7	2	Deep	Va	3.47	Х	19	1.18	95	41.15						
8/8/2002	7	3	Shallow	Va	0.64	Х	13	0.12	65	4.2			1353	1092		0
8/8/2002	7	3	Middle	Va	6.3	X	22	1.08	60	36.58						
8/8/2002	7	3	Deep	Va	9.74	Х	31	0.25	70	61.26						

Exhibit B-2

SIGNIFICANCE TESTS FOR CORRELATIONS BETWEEN SAV AND STATION PARAMETERS


Spearman's rank correlations:


Biomass and Depth	
normal-z = 2.988, p-value = 0.0028	SIGNIFICANT RELATIONSHIP (p<0.05)
NoShoots and Biomass	
normal-z = 4.7324, p-value = 0.0	SIGNIFICANT RELATIONSHIP (p<0.05)
CoverPct and Biomass	
normal-z = 3.2799, p-value = 0.001	SIGNIFICANT RELATIONSHIP (p<0.05)
NoShoots and Depth	й , , , , , , , , , , , , , , , , , , ,
normal-z = 1.4699, p-value = 0.1416	NO SIGNIFICANT RELATIONSHIP (p>0.05)
CoverPct and Depth	ŭ <i>,</i>
normal-z = 1.4184, p-value = 0.1561	NO SIGNIFICANT RELATIONSHIP (p>0.05)
-	


EVALUATE DIFFERENCES BETWEEN STATIONS (See Graphs Below)

Kruskal-Wallis rank sum test

NoShoots and StationKruskal-Wallis chi-square = 12.3977, df = 6, p-value = 0.0537SIGNIFICANT DIFFERENCE (p<0.10)</td>CoverPct and StationSIGNIFICANT DIFFERENCE (p<0.10)</td>Kruskal-Wallis chi-square = 11.6572, df = 6, p-value = 0.0701SIGNIFICANT DIFFERENCE (p<0.10)</td>Biomass and StationKruskal-Wallis chi-square = 4.9662, df = 6, p-value = 0.5482NO SIGNIFICANT DIFFERENCE (p>0.10)

-		Width of Cor	nf.Limits
	90%	95%	99%
Dry Weight ^a			
Station1	35%	42%	58%
Station2	31%	37%	52%
Station3	37%	44%	62%
Station4	30%	36%	50%
Station5	38%	45%	63%
Station6	22%	26%	36%
Station7	35%	41%	57%
Shallow	18%	20%	27%
Middle	18%	21%	27%
Deep	20%	23%	29%
All Samples (n=63)	11%	12%	16%
Station Avg (n=9)	33%	39%	54%
No. of Shoots ^b			
Station1	38%	45%	63%
Station2	31%	37%	51%
Station3	29%	34%	48%
Station4	23%	27%	38%
Station5	26%	30%	42%
Station6	17%	20%	27%
Station7	14%	17%	23%
Shallow	23%	27%	35%
Middle	13%	15%	19%
Deep	16%	18%	23%
All Samples (n=63)	10%	11%	14%
Station Avg (n=9)	29%	35%	48%
Percent Cover ^c			
Station1	44%	52%	73%
Station2	24%	29%	40%
Station3	24%	29%	41%
Station4	19%	22%	31%
Station5	48%	57%	80%
Station6	33%	39%	54%
Station7	21%	26%	36%
Shallow	22%	25%	33%
Middle	15%	17%	23%
Deep	19%	22%	28%
All Samples (n=63)	10%	12%	15%
Station Avg (n=9)	31%	37%	51%

^a - In (Dry Weight +1) transform used
 ^b - sqrt (No. of Shoots) transform used
 ^c - asin(sqrt(Percent Cover/100)) transform used

Appendix C

Standard Operating Procedure for Natural Shoreline Assessment (reprinted from the HDA Work Plan)

I. Objective

The objective of this Standard Operating Procedure (SOP) is to set forth methods to measure the range of existing habitat conditions for natural shorelines within River Sections 1, 2, and 3 of the Upper Hudson River. The assessment activities that will be performed are described generally in Section 2.2.3.2 of the *Habitat Delineation and Assessment Work Plan* (HDA Work Plan; Blasland, Bouck & Lee, Inc. [BBL], 2003) for the Upper Hudson River. This SOP provides a methodology for collecting information to document the range of conditions in the natural shoreline habitats as they currently exists along the Upper Hudson River. (Note that this SOP does not address maintained shorelines, which will be addressed during remedial design.)

Measurements described in this SOP are based on characteristics of habitat structure. Habitat structure is defined as the physical components and the organization or pattern of a habitat, community or ecosystem. Habitat structure and ecological functions are intrinsically linked, and in general, when there is suitable habitat structure, aquatic communities and associated ecosystem functions are present. This approach is consistent with the Record of Decision (ROD) for the Upper Hudson River (United States Environmental Protection Agency [USEPA], 2002) and previous studies that have shown that successful fluvial replacement and reconstruction projects depend mainly on the presence of suitable physical habitat (e.g., Gore, 1985). Although the approach in the ROD (Responsiveness Summary, page 9-33) is specific to river bottoms, an adaptation of this approach is both applicable and relevant to shorelines.

The functions to be assessed for the natural shoreline habitats, the specific measurements to be taken in the field to quantify those functions, and a brief rationale for their measurement are shown in Table C-1. The measurements will be used to develop functional capacity indices (FCIs) for the natural shoreline habitats, so as to allow for management decisions regarding reallocation of functions among the replaced and reconstructed habitats, if necessary. FCIs are values calculated from the field measurements that provide a synthesis of information for evaluating habitat functions - in this case, the functions listed in Table C-1. FCIs provide a site-specific basis for describing the functional capacity of a habitat at a specific location, and for comparing functional capacity among locations. For the wildlife habitat function, pre-existing Habitat Suitability Indices (HSIs) for specific FCI models will be developed. The conceptual foundations for the application of project-specific FCIs are discussed generally in Ainslie et al. (1999) and Smith and Wakeley (2001), and specifically for the Hudson River in Findlay et al. (2002). While these studies address riverine wetlands, the overall approach to developing and using FCIs is applicable to and will be used for characterizing natural shoreline habitats.

Table C-1. Shoreline		
Function	Measured Variable	Rationale
Shoreline Stability	Downfall (trees/m2) Bank stability Bank vegetation protection	Large trees armor bank against scour Stable banks less likely to slump, fail Presence indicates longer term stability
Shade and Cover	Downfall (trees/m2) Bank vegetation protection Riparian edge cover	Provides in-water cover; organic food source Overstory provides shade, thermal cooling Cover for wildlife accessing shoreline
Wildlife Habitat (Habitat suitability)	Downfall (trees/m2) Bank stability Bank vegetation protection Riparian edge cover	Provides in-water cover; organic food source Less open areas; ease of access to water Shade and cover for access Protection from predation between access points

FCIs will be developed for each function listed in Table C-1 and each station sampled (as described in Section III below). These FCIs, together with the underlying data, associated maps (as necessary), and the specific protocols used to develop the FCIs, will be presented to USEPA in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

II. Necessary Materials and Equipment

- Small boat with standard water safety gear (e.g., personal flotation device [PFD]; first aid kit)
- Protective gear for working in water (e.g., hip waders, wetsuit, drysuit)
- Foul weather gear
- Rapid Bioassessment Protocols (RBP) guidance document
- Differential Global positioning system (DGPS) unit
- Soil auger
- Inclinometer
- Video camera
- Survey measuring tape (100-meter [m] length is recommended)
- Erasable slate with pens
- Binoculars
- Field guide(s)
- Field log book

III. Sampling Design

As described in the HDA Work Plan, natural shoreline habitats will be delineated and mapped based on aerial photographs (primarily oblique photography), field groundtruthing, and, as appropriate for adjacent shallow river bottoms, side-scan sonar output and substrate characterization data from the Sediment Sampling and Analysis Program (SSAP). As a component of habitat delineation activities, this information will be integrated into a series of overlay habitat delineation maps. These maps will be used to identify a suite of sampling strata for the detailed assessment of natural shoreline habitats. Strata will be based on one or more key parameters relevant to shoreline habitats, such as substrate type, dominant vegetation, bank slope, adjacent land use, and others as appropriate.

River Sections 1, 2, and 3 together comprise about 40 river miles (64 kilometers), or 80 bank miles (128 bank kilometers) from the former Fort Edward Dam to the Federal Dam at Troy. From oblique aerial photography and subsequent groundtruthing, the entire 80 miles of bank habitat will be delineated and classified into habitat strata. However, only a portion of that overall bank habitat will be affected by remedial activities. According to the USEPA ROD Responsiveness Summary (ROD Part 3; Book 1 of 3, at page 4-29 and at page 10-23, USEPA, 2002), it appears that a total of approximately 17 miles of shoreline may be subject to remediation impacts (including both natural and maintained shorelines). The detailed functional habitat assessment activities will be conducted at representative sampling stations in natural shoreline habitats, with the goal of conducting such activities at an average distribution of approximately two stations per mile of potentially impacted river bank habitat (based on professional judgment), with a corresponding number of reference stations along non-impacted river banks. To achieve this goal, a total of 68 stations will be selected for the detailed functional assessment of natural shorelines. These stations will be selected, using the information from the habitat delineation maps, together with available information on areas to be dredged, so as to meet the following criteria:

- 1. Adequately characterize all the natural shoreline habitat strata identified from the habitat delineation information, as described above;
- 2. Include a roughly equivalent number of target stations (in dredge areas) and reference stations (in non-dredge areas); and
- 3. Be allocated among River Sections in rough proportion to the relative areas of natural shoreline habitats likely to be affected in each River Section.

At each station, three transects will be established and sampled to assess habitat characteristics of the natural shorelines. Thus, the overall sampling design will involve the sampling of 204 transects, with 102 in target areas and 102 in reference areas. The specific transect locations to be sampled will be selected to best characterize the shoreline strata within the station and based on the amount of dredging to be completed. Thus, an area of uniform natural shoreline or where limited dredging is planned will receive fewer sample points than an area of heterogeneous natural shoreline or where more extensive dredging is planned.

IV. Methods

The protocols described in this SOP for assessing river bank habitat are adapted from the USEPA RBPs (Barbour et al., 1999). Sampling will be conducted by trained, experienced personnel (per Barbour et al., 1999). Sample locations will not be disturbed by sampling personnel prior to making habitat parameter estimates.

Five methods will be used to assess shoreline habitats: A) videotape monitoring; B) shoreline substrate assessment; C) river bank assessment; D) riparian edge vegetation assessment; and E) limited wildlife observations. Each method will be implemented along pre-established transects. Videotape documentation will provide descriptive information on shoreline habitats. Substrate assessment, river bank assessment, and riparian edge vegetation assessment will provide quantitative habitat characterization information. The specific procedures for each method are described below.

Following the collection of oblique photographs (anticipated to be in July) and digitization, mapping and groundtruthing of the shoreline habitat, sampling will be conducted between June 1 and September 30 so that riparian edge vegetation can be identified and percent cover estimates determined. As stated in Section 2.1.3, adjacent areas will be qualitatively categorized into different landscapes (e.g., agricultural land, grassland, floodplain, forested, emergent wetland, etc.) and the width of the riparian zone will be determined to the extent allowed by the photography.

A. Videotape Monitoring Protocol

- 1. Locate transect position as determined from station location distribution described in Section III. Start offshore, in shallow water, approximately 3.0 m from the shoreline (it may be necessary to locate this position from a boat in areas where the riverbed is steeply sloped). Record precise transect location with DGPS.
- 2. Have one person remain at the point recorded in Step 1. Direct second person to walk perpendicular to shore with zero end of surveyor's tape. Advance to the top of the river bank slope, or 2.0 meters from the water's edge (whichever is a shorter distance). Have second person record location with DGPS. Have first person record length.
- 3. Starting from shallow water, position videotape downstream. Write transect number, date, and "downstream" on erasable slate. Record information on slate, remove from camera view, and proceed along transect from shallow water to riparian edge. Keep camera view positioned downstream throughout transect. End recording.
- 4. Repeat Step 3 (replacing the term "downstream" with "upstream") for upstream recording.
- 5. End videotaping.

B. Shoreline Substrate Assessment Protocol

- 1. At each transect, establish position at shoreline (e.g., edge of water line) and record location in field notebook (distance from riparian edge DGPS location).
- 2. As described by Barbour et al. (1999), visually observe the river surface substrate in an area from approximately 3.0 m offshore (this distance may be less in areas where the riverbed is steeply sloped) to the river bank "slope," or where terrestrial vegetation begins to cover the substrate. Use Table C-2 to record the approximate percent composition of inorganic features of the shoreline substrate in the inspected area determined by visual/tactile observation.

Table C-2. Inorganic Shoreline Substrate Components		
Substrate Type	Diameter (millimeters [mm])	Percent Composition (0-100%)
Bedrock		
Boulder	> 256 mm (10 inches)	
Cobble	64 – 256 mm (2.5 – 10 inches)	
Gravel	2 – 64 mm (0.1 – 2.5 inches)	
Sand	0.06 – 2 mm (gritty)	
Silt	0.004-0.06 mm	
Clay	<0.004 mm (slick)	

(Adapted from Barbour et al., 1999)

3. As described by Barbour et al. (1999), use Table C-3 to record the percent composition of organic features of the shoreline substrate in the same visually inspected area as noted in Step 2.

Table C-3. Organic Shoreline Substrate Components		
Substrate Type	Characteristic	Percent Composition (0-100%)
Detritus	Sticks, wood, course plant material (CPOM)	
Muck-Mud	Black, very fine organic (FPOM)	
Marl	Grey, shell fragments	
Vegetated	Submerged or emergent vegetation present	

(Adapted from Barbour et al., 1999)

Note: Values are recorded visually and are therefore approximations

- 4. As modified from Barbour et al., (1999), record the estimated length and width of large woody debris formations in direct contact with the water surface within 50 meters on either side of the transect line. Individual limbs or logs are included if their diameter is 10 cm or greater. Multiply the length and width of the formations to obtain an estimate of downfall/m² (area sampled).
- 5. Repeat observations at one sampling point per station using different crew member and compare observations. Stations where repeated observations deviate from original estimates by 20% or more will be reassessed.

C. River Bank Assessment Protocol

- 1. At each transect, establish position in transect at base of river bank. Record location in field notebook (distance from riparian edge DGPS location). The river bank starts where a sharp rise in slope from the shoreline is obvious, or where terrestrial vegetation begins to cover the substrate.
- 2. Record relative slope of bank (using inclinometer or survey data if available).
- 3. As described by Barbour et al. (1999), estimate the percent of bank erosion by visual observation of freshly exposed substrate and unvegetated soils and sediments and use Table C-4 to determine and record estimated stability.

Table C-4. Bank Assessment Components		
Percent Bank Erosion		
< 5%		
5 - 30%		
30 - 60%		
60 – 100%		

(Adapted from Barbour et al., 1999)

4. As described by Barbour et al. (1999), visually estimate the amount of vegetative protection afforded to the river bank. Use Table C-5 to record the percent of the river bank covered by vegetation.

Table C-5. Bank Vegetative Components		
Vegetative Protection	Percent River Bank Covered by Vegetation	
Optimal – river bank surfaces and immediate riparian zones covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption minimal	> 90%	
Suboptimal – river bank surfaces covered by native vegetation but one class of plants not well-represented; disruption evident but not affecting full plant growth potential	70 – 90%	
Marginal – vegetative disruption evident; patches of bare soil or closely cropped vegetation common	50-70%	
Poor – vegetative disruption is very high; vegetation has been removed to 5 cm or less in average height (Adapted from Barbour et al., 1999)	< 50%	

(Adapted from Barbour et al., 1999)

5. Repeat observations at one sampling point per station using different crew member and compare observations. Stations where repeated observations deviate from original estimates by 20% or more will be reassessed.

D. Riparian Edge Vegetation Assessment Protocol

- 1. Establish position along each transect at riparian edge. The riparian edge is defined, for purposes of the Remedial Design Work Plan, the area at the top of the river bank or 2.0 meters from the water's edge (whichever is a shorter distance). Note this location has been recorded in DGPS (see part A, Videotape Monitoring) and the width of the riparian edge was determined from aerial photography. Qualitatively record the adjacent land use based on visual inspection.
- 2. Visually estimate percent cover for canopy, understory, and herbaceous layer at the riparian edge. Ground-truth riparian edge as defined by aerial photographs. Use Table C-6 to record percent cover and dominant species composition for each layer.
- 3. Repeat observations at one sampling point per station using different crew member and compare observations. Stations where repeated observations deviate from original estimates by 20% or more will be reassessed.

Table C-6. Riparian Edge – Cover Components		
Vegetation Biome	Percent Cover (0-100%)	Dominant Species Composition
Canopy		
Understory		
Herbaceous		

E. Wildlife Observations

- 1. When on station, qualified personnel shall survey the surrounding natural shoreline to document the occurrence or signs of wildlife species (e.g., small mammals, birds) on or along those shorelines.
- 2. Record observations, including a qualitative narrative synopsis, on Table E-1 provided in Attachment E to the HDA Work Plan.

F. Development of FCIs

As described in Section I, the specific habitat parameter results described above will be used to develop FCIs for each function listed in Table C-1 (above) and each station sampled. The FCIs for the wildlife habitat function may consist of HSIs for representative indicator species. The approach to be used to develop the FCIs will follow the same general approach used by Ainslie et al. (1999) and Findlay et al. (2002) and/or, for wildlife habitat, may use pre-existing HSI models. HSI information for selected indicator species will be obtained from http://www.nwrc.usgs.gov/wdb/pub/hsi/hsiindex.htm. Preliminary FCI models and the lists of species for which HSIs will be calculated will be provided in the *Habitat Delineation Report*. The specific methods used will be described, together with the underlying data and the FCI results, in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

V. References

Ainslie, W.B., R.D. Smith, B.A. Pruitt, T.H. Roberts, E.J. Sparks, L.West, G.L. Godshalk, and M.V. Miller. 1999. *A Regional Guidebook for Assessing the Functions of Low Gradient, River Wetlands in Western Kentucky*. Technical Report WRP-DE-17. USACE, Waterways Experiment Station, Vicksburg, MS. 109 pp.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. *Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish*, Second Edition. EPA 841-B-99-002. USEPA, Office of Water, Washington, DC.

BBL. 2003. *Habitat Delineation and Assessment Work Plan*. Hudson River PCBs Superfund Site. Prepared for General Electric Company, Albany, NY.

Findlay, S. E. G., E. Kiviat, W. C. Nieder, and E. A. Blair. 2002. Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquat. Sci. 64:107-117.

Gore, J. A. 1985. Mechanisms of colonization and habitat enhancement for benthic macro invertebrates in restored river channels, in J.A. Gore (ed.). *The Restoration of Rivers and Streams. Theories and Experience*. Butterworth, Stoneham, MA.

Smith, R. D. and J. S. Wakeley. 2001. *Hydrogeomorphic Approach to Assessing Wetland Functions: Guidelines for Developing Regional Guidebooks -- Chapter 4, Developing Assessment Models.* ERDC/EL TR-01-30, US Army Engineer Research and Development Center, Vicksburg, MS.

USEPA. 2002. Hudson River PCBs Site – Record of Decision and ROD Responsiveness Summary. New York, NY.

Appendix D

Standard Operating Procedure for Fringing Wetland Assessment (reprinted from the HDA Work Plan)

I. Objective

The objective of this Standard Operating Procedure (SOP) is to set forth methods to measure the range of existing conditions of fringing wetland habitats in River Sections 1, 2, and 3 of the Upper Hudson River. The assessment activities that will be performed are described generally in Section 2.2.4 of the *Habitat Delineation and Assessment Work Plan* (HDA Work Plan; Blasland, Bouck & Lee, Inc. [BBL], 2003). This SOP provides a methodology for collecting information to document the range of conditions in the fringing wetland habitats, using techniques that are adapted from, and combine elements of, the hydrogeomorphic (HGM) assessment methods (Ainslie et al., 1999; Smith and Wakely, 2001; Findlay et al., 2002) and biological measurement techniques (Stevenson and Hauer, 2002; United States Environmental Protection Agency [USEPA], 2002a).

The approach to conducting the wetland functional assessments is based on the understanding that wetland structure and function are intrinsically linked (Niedowski, 2000). In general, when suitable habitat structure exists, biological communities and associated ecosystem functions are present. Measurements described in this SOP are based on characteristics of habitat structure. The approach described in this SOP is consistent with the Record of Decision (ROD) (USEPA, 2002b) and previous studies that have shown that successful fluvial replacement and reconstruction projects depend mainly on the presence of suitable physical habitat (e.g., Gore, 1985). Although the approach in the ROD (Responsiveness Summary, page 9-33) is specific to river bottoms, an adaptation of this approach is both applicable and relevant to wetlands.

The functions to be assessed for the fringing wetlands habitats, the specific measurements to be taken in the field to quantify those functions, and a brief rationale for those measurements are shown in Table D-1. The measurements will be used to develop functional capacity indices (FCIs) for the fringing wetland functions, so as to allow for management decisions regarding reallocation of functions among the replaced and reconstructed habitats, if necessary. FCIs are values calculated from field habitat measurements that provide a synthesis of information for evaluating habitat functions—in this case, the functions listed in Table D-1. FCIs provide a site-specific basis for describing the functional capacity of a habitat at a specific location, and for comparing functional capacity among locations. Development and application of FCIs in riverine wetlands is discussed generally in Ainslie et al. (1999) and Smith and Wakely (2001). A specific application of FCIs for riverine wetlands in the Lower Hudson River is available in Findlay et al. (2002). The development and application of FCIs for fringing wetlands in the Upper Hudson River will be analogous to the approach of Findlay et al. (2002). However, for the wildlife habitat function, pre-existing Habitat Suitability Indices (HSIs) for specific representative indicator species may be used in addition to or in lieu of other FCIs.

	Table D-1. Wetlands					
Function	Measured Variable	Rationale				
Energy Dissipation	Wetland area Percent wetland edge altered Slope Stem density Stem thickness Stem length Above-ground biomass	Larger wetlands extend along longer shoreline Intact wetlands buffer wave/current energy better Low slope relates to less reflected energy Stems dampen wave/current energy Sturdier plants withstand stronger flows Taller plants protect during higher flows Standing stock (or bulk) of material baffling energy				
Surface-Water Exchange	Wetland area Presence/fluctuating water table	Indicates size of surface – water interface Indicates potential for infiltration to occur				
	Slope	Lower slope relates to longer residence time				
Primary Production	Wetland area Above-ground biomass	Areal extent of productivity Shoot biomass surrogate for productivity				
Nutrient Cycling	Above-ground biomass O Horizon - percent cover A Horizon - percent cover	Represents total mass of living organic matter available to enter nutrient cycle Recognizable dead organic matter and associated decomposers Unrecognizable dead organic matter entering nutrient cycle. Combined with "O" horizon, indicates nutrients are being recycled.				
Remove and Hold Elements/Compounds	Clay content Redoximorphic features O Horizon - percent cover A Horizon - percent cover	Clay particles have more binding sites for holding elements Indicates that denitrification has occurred Organic matter available for holding elements / compounds Combined with "O" horizon, indicates organic matter available for holding elements / compounds				
Export Organic Carbon	O Horizon - percent cover	Organic material in surface soil layer that can be readily exported				
Maintain Character Plant Community	Plant species composition Stem density Above-ground biomass	Diverse communities more "stable" Related to area open for colonization Indicates relative productivity				
Wildlife Habitat (Habitat suitability)	Wetland area Area of buffer Contiguous with other habitats (percent) Plant species composition Stem density Above-ground biomass	Larger areas support larger communities Allows greater isolation of wetland interior Connectivity; emigration; increased foraging opportunities Diverse plant communities can support higher diversity of wildlife Cover, protection from predation Related to primary productivity (food resources)				

FCIs will be developed for each function listed in Table D-1 and for each wetland sampled (as described in Section III below). These FCIs, together with the underlying data, associated maps (as necessary), and the specific protocols used to develop the FCIs, will be presented to USEPA in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

II. Necessary Field Materials and Equipment

- Small boat with standard water safety equipment (e.g., personal flotation device [PFD]; first aid kit)
- Foul weather gear
- Chest waders
- Differential Global Positioning System (DGPS) unit
- Soil probe/sharpshooter shovel
- Survey measuring tape
- Diameter tape or calipers for measuring tree diameter at breast height (dbh)
- Stakes and flagging
- Measuring tape (metric, 100 meter [m])
- Plant identification keys
- Munsell color book and hydric soil indicator list
- Sampling quadrats (0.25 square meter [m²])
- Random number table
- Sealable storage bags, prelabeled
- Laboratory support equipment (e.g., jars, labels, etc.)
- Field log book
- Camera
- Binoculars
- Field guide(s)

III. Sampling Design

As described in the HDA Work Plan, fringing wetland habitats (and backwater wetlands to the extent allowed by the aerial photography) will be identified and mapped based on aerial photographs (including oblique photography), groundtruthing, and existing documentation. Wetlands will be delineated in accordance with the U.S. Army Corps of Engineers *Wetland Delineation Manual* (USACE, 1987). As part of the habitat delineation activities, the information from the aerial photographs and other delineation activities will be integrated into a series of overlay habitat delineation maps. These maps will be used to identify a suite of sampling strata for the detailed fringing wetland assessment activities. These strata will be based on one or more key wetland parameters, such as dominant vegetation, wetland parcel size, and others as appropriate.

Detailed functional assessments will be conducted in representative fringing wetlands greater than 250 square meters (0.06 acre) in areas that are located such that they could be directly affected by remediation activities and in comparable reference wetlands. Sufficient wetlands will be assessed to adequately characterize the functional conditions within wetlands representing each stratum identified during delineation activities.

Findlay et al. (2002) provide a useful model on which to base a sampling design for functional assessment of Upper Hudson River fringing wetlands. In their study of Lower Hudson River wetlands, Findlay et al. assessed wetlands in one hydrogeomorphic class (riverine) and three subclasses (sheltered,

fringing, and enclosed). In each subclass, they assessed five wetlands (chosen to reflect the widest possible range of functions), for a total of 15 stations. At each station, they sampled three transects of five quadrats each.

For the Upper Hudson River, fringing wetlands (a single subclass in the riverine hydrogeomorphic class) are subject to direct potential impacts associated with remediation. Thus, by analogy to Findlay et al. (2002), five stations will be selected within this subclass, such that five fringing wetlands greater than 250 square meters in size in areas that will potentially be impacted by remedial activities will be assessed. These wetlands will be selected (from the fringing wetlands identified and delineated during habitat delineation activities) so as to reflect the broadest range of functions (within that hydrogeomorphic class of wetlands) and so as to adequately characterize the wetland habitat strata identified from the delineation information (as described above). In addition, five fringing wetlands of generally similar size and range of functions will be selected in areas that are not adjacent to potentially impacted areas (reference wetlands). In the event that other wetlands from other subclasses (e.g., sheltered) are identified as being directly impacted by the remediation activities, those wetlands will be evaluated consistent with the current sampling design for fringing wetlands.

Within each wetland, three transects will be established for appropriate measurements, and along each transect, three quadrats will be located for sampling of appropriate parameters. Three quadrats will be used, rather than five as used by Findlay et al. (2002), because: 1)fringing wetlands in the Upper Hudson are smaller than those in the Lower Hudson; and 2) the quadrats used by Findlay et al (2002) were $0.25m^2$, whereas the quadrats specified herein are $1.0m^2$ for most measurements.

Thus, the wetland sampling design includes 10 individual fringing wetlands (five from potential dredging impact areas and five from reference areas), to be characterized by sampling conducted along three transects each (as appropriate), with three quadrats sampled (for appropriate parameters) along each transect. The total number of transects sampled will be 30, and the total number of quadrats will be 90. Sampling stations will be allocated among River Sections in a rough proportion to the relative areas of wetland habitat adjacent to dredging locations in each River Section. This design is in keeping with the methods and findings of Findlay et al. (2002) for a generally similar investigation on the Lower Hudson River, with the design modified to fit the site-specific conditions of the Upper Hudson River assessment.

IV. Methods

The following procedures describe the steps for conducting functional assessments of fringing riverine wetlands along the Upper Hudson River. These procedures are modified from, and combine elements of, HGM assessment methods (Ainslie et al., 1999; Findlay et al., 2002) and biological measurement techniques for wetlands (Stevenson and Hauer, 2002; USEPA, 2002a). Data and observations for Items A-E will be obtained from the wetland as a whole. Data and observations for Items F and G will be obtained from transects within each wetland. Data and observations for Items H-N will be obtained from sampling quadrats randomly placed on each transect. Data and observations for Item O will be obtained from the wetland as a whole. DGPS will be used to record positions of transects and quadrats within sample stations of fringing wetlands. If it is determined that no sediment samples are to be collected from within the potentially impacted wetlands by the completion of the SSAP program, sediment samples will be collected from a subset of wetland sampling locations for determination of grain size, TOC, and nutrient content as necessary to adequately characterize the wetlands.

Following the collection of aerial photographs (anticipated to be in July) and digitization, mapping and groundtruthing, fringing wetland habitat will be evaluated during or after peak growing season (July 1 to

September 15). The procedures for evaluating the function of fringing wetlands consist of the following steps:

A. Wetland Parcel Size

Measure/Units:

The area of wetland.

Method:

- 1. Determine the area of the parcel using field reconnaissance, topographic maps, National Wetland Inventory maps (NWI), and/or aerial photography.
- 2. Report the size of the wetland tract in square meters.

B. Interior Core Area

Measure/Units:

The percent of the wetland parcel with a buffer zone greater than 100 m separating it from non-forested habitat.

Method:

- 1. Visually determine the area of the wetland tract within a buffer of at least 100 m (i.e., at least 100 m from wetland perimeter) using field reconnaissance, topographic maps, NWI maps, aerial photography, and/or other sources.
- 2. Report the size of the area within a 100-m buffer as a percentage of total parcel area.

C. Habitat Connections

Measure/Units:

The percent of the perimeter of the wetland parcel that is contiguous with other natural habitats.

Method:

- 1. Determine the total length of the wetland perimeter using field reconnaissance, topographic maps, and/or aerial photography.
- 2. Visually determine the length of the wetland perimeter that is contiguous with other natural (vs. maintained or anthropogenic) habitats including other wetlands (fringing and floodplain), wooded or forested riparian tracts, or other vegetated open space.
- 3. Report as a visual estimate, the percent of the perimeter of the wetland tract that is "connected" (i.e., contiguous to other natural habitats).

D. Soil Integrity

Measure/Units:

The percent of the fringing wetland with soils that appear to have been altered or disturbed by anthropogenic impacts.

Method:

1. Visually determine (from historical aerials and site reconnaissance) if any of the soils in the area being assessed appear to have been altered. In particular, look for alteration to a normal soil profile -- for example, absence of an "A" horizon (defined below), presence of fill material, or

BLASLAND, BOUCK & LEE, INC.

other types of impact that significantly alter soil integrity. Use soil probe or sharpshooter shovel, as appropriate, to obtain sample.

2. Report the percent of the wetland with altered or disturbed soils.

E. Surface Water Connections

Measure/Units:

The percent of the linear length of shoreward bank and riverward edge of the wetland parcel that has been altered to prevent exchange of surface water in or out of wetland.

Method:

- 1. Conduct a visual reconnaissance of the parcel and the adjacent shoreward bank and riverward edge. Estimate what percent of the length of each that is modified with levees, side cast materials, or other obstructions that reduce the exchange of surface water between the river channel, the wetland, and the floodplain/riparian corridor.
- 2. Report percent of the linear distance of the bank and riverward edge that has been altered.

F. Elevation

Measure/Units:

The elevation of the shoreward and riverward edges of the wetland parcel.

Method:

- 1. Randomly select three transect locations along the axis of the wetland parallel to the shoreline. Establish a transect line perpendicular to the long axis at each location.
- 2. At each transect, locate the shoreward edge of the fringing wetland. Use DGPS to record elevation and position.
- 3. At each transect, locate the riverward edge of the fringing wetland. Use DGPS to record elevation and position. Report the elevation in feet and inches. Report distance between shoreward and riverward positions.

G. Soil Clay Content

Measure/Units:

The clay content in the top 20 inches (50.8 cm) of the soil profile of the wetland.

Method:

- 1. Visually determine if the native soil along the transects has been covered with fill material, excavated and replaced, or subjected to any other types of impact that significantly change the clay content of the top 20 inches (50.8 cm) of the soil profile. Use soil probe or sharpshooter shovel, as necessary, to obtain a sample. If no such alterations have occurred, assign a value of 1.
- 2. If the soils along the transects have been altered in one of the ways described above, estimate the soil texture for each soil horizon in the upper 20 inches (50.8 cm) in representative portions of these areas from field texture determinations done by hand.
- 3. Based on the soil texture class determined in the previous step, the percentage of clay is determined from the soil texture triangle. The soil texture triangle contains soil texture classes and the corresponding percentages of sand, silt, and clay that comprise each class. Once the soil texture is determined by feel, the corresponding clay percentage is read from the left side of the soil texture triangle. The median value from the range of percent clay is used to calculate the

weighted average. For example, if the soil texture at the surface were a silty clay loam, the range of clay present in that texture class is 28–40%. A median value of 34% would be used for the clay percentage in that particular horizon.

- 4. Calculate a weighted average of the percent clay in the altered soil by averaging the percent clay from each of the soil horizons to a depth of 20 inches (50.8 cm). For example, if the "A" horizon occurs from a depth of 0–5 inches (0–12.7 cm) and has 30% clay, and the underlying soil from a depth of 6–20 inches (15.2–50.8 cm) has 50% clay, then the weighted average of the percent clay for the top 20 inches (50.8 cm) of the profile is: $[(5 \times 30) + (15 \times 50)]/20 = 45\%$.
- 5. Calculate the difference in percent clay between the natural soil (i.e., what existed prior to the impact obtained from soil survey or reference wetland data) and the altered soil using the following formula: percent difference = (|% clay after alteration % clay before alteration |) / % clay before alteration). For example, if the percent clay after alteration is 40%, and the percent clay before alteration is 70%, then | 40 70 | = 30, and (30 / 70) = 43%.
- 6. Average the results of the three transects.
- 7. Multiply the percent difference for the altered area (i.e., the value obtained in the previous step) by the percent of the wetland that the transect area represents (based on visual estimate).
- 8. Multiply the result by 100 to obtain the percent difference. Report the percent difference in the soil clay content in the area being assessed.
- 9. On one transect per station, repeat measurements and record separately for reference to measurement variability.

H. Redoximorphic Features and Fluctuating Water Table

Measure/Units:

The presence of absence of redoximorphic features in each sampling quadrat. The presence of a fluctuating water table.

Method:

- 1. Place 0.25 m² quadrats at three locations selected randomly along each transect (quadrats will be placed and sampled sequentially—all need not be placed simultaneously).
- 2. Visually inspect the top 20 inches (50.8 cm) of the soil profile and determine if redoximorphic features (Verpraskas, 1994), accumulation or organic matter, or other hydric soil indicators are present or absent.
- 3. Report redoximorphic features as present or absent.
- 4. To determine the presence of a fluctuating water table, visually inspect the top 20 inches (50.8 cm) of the soil profile for the presence redoximorphic features or a reduced soil matrix (e.g. presence of mottling, low chroma colors, change in chroma hue or color when exposed to air) (USDA, NRCS, 2002).
- 5. Report fluctuating water table as present or absent.

I. "O" Horizon Cover

Measure/Units:

Percent cover of the "O" horizon (defined as surface layer formed above the mineral layer and composed of fresh or partially decomposed organic material).

Method:

1. Visually estimate the percent of the ground surface that is covered by an "O" horizon (defined above) in each sampling quadrat.

BLASLAND, BOUCK & LEE, INC.

2. Average the results from the quadrats and report "O" horizon cover as a percent.

J. "A" Horizon Cover

Measure/Units:

Percent cover of the "A" horizon (defined as the upper mineral layer composed of organic material mixed with mineral matter, generally the darkest layer in a soil profile).

Method:

- 1. Estimate the percent of the mineral soil within the top 15 cm (6 inches) of the ground surface that qualifies as an "A" horizon (defined above) by making three soil observations in each sampling quadrat.
- 2. Average the results from the observations in the quadrat.
- 3. Report "A" horizon cover as a percent.

K. Plant Species Composition

Measure/Units:

Percent occurrence of dominant species in each relevant vegetative stratum.

Method:

- Identify the dominant species in the canopy, understory vegetation, emergent layer (the primary
 and often the only stratum present in the fringing wetlands of the Upper Hudson) and ground
 vegetation strata using the 50/20 rule (described below). Use tree basal area to determine
 abundance in the canopy strata, understory vegetation density to determine abundance in the
 understory strata, emergent vegetation density to determine abundance in the emergent layer,
 and ground vegetation cover to determine abundance in the ground vegetation strata. To apply
 the 50/20 rule, rank species from each stratum in descending order of abundance. Identify
 dominants by summing the normalized abundance measure beginning with the most abundant
 species in descending order until 50% is exceeded. Additional species with ≥ 20% normalized
 abundance are also considered dominants.
- 2. Report percent occurrence of dominant species in all vegetation strata.

L. Invasive Species

Measure/Units:

Percent occurrence of nonnative or invasive species in each relevant vegetative stratum.

Method:

- 1. Identify any invasive or nonnative species in the canopy, understory vegetation, emergent layer (the primary and often the only stratum present in the fringing wetlands of the Upper Hudson) and ground vegetation strata. Visually estimate the percent of quadrat covered by invasive/nonnative species.
- 2. Report percent occurrence of invasive/nonnative species in all vegetation strata.
- 3. For one quadrat per station, repeat measurements and record separately for evaluating measurement variability.

M. Emergent Plant Conformation and Stem Density

Measure/Units:

Stem conformation (length and thickness) and spatial density (stems per unit area) of emergent wetland vegetation.

Method:

- 1. In each quadrat on each transect, count all stems of dominant emergent macrovegetation. Record density of live and dead stems. In one quadrat per station, repeat count and record separately for reference to measurement variability.
- 2. From each quadrat, randomly select 10 stems of the dominant species. Measure the maximum total length of each stem to the nearest 0.1 cm. Measure diameter to the nearest 0.01 cm at the thickest part of the stem with calipers. In one quadrat per station, repeat measurements and record separately for reference to measurement variability.
- 3. Report live and dead stem density per unit area and minimum, maximum and average stem height, thickness, and thickness:height ratio (robustness).

N. Emergent Plant Biomass

Measure/Units:

Biomass per unit area of emergent wetland vegetation

Method:

- 1. From the same quadrats used in M (above), clip all standing vegetation from within each quadrat after conducting conformation and density measurements. Place in a large plastic bag for return to the processing laboratory.
- 2. At the processing laboratory, separate live from dead stems. Dry separately to constant weight and record weight. For one quadrat per station, repeat the drying and weighing process and record separately for reference to measurement variability. Drying procedure is as follows:
 - a. Clean and dry glass 1 liter (L) beakers to be used for drying the samples.
 - b. Determine and record the tare weight of each beaker using precision scale. Mass should be recorded to the nearest $1/100^{\text{th}}$ of a gram.
 - c. Use scale to record the initial mass of the sample in the beaker before beginning the drying procedure.
 - d. Place the samples in the laboratory oven for 24 hours at 85 (+/- 1) °C. Confirm that the oven is connected to ventilation system through use of flexible ductwork.
 - e. Remove samples at the end of 24 hours and place in the desiccator for approximately 45 minutes to confirm the complete removal of water from the samples and to allow for cooling of the sample to room temperature.
 - f. Record the mass of the samples immediately after removal from the desiccator.
 - g. Return the samples to the oven for 1 hour, place in desiccator and record the mass for constant mass reading (within 5% of the previous measurement).
 - h. Repeat Step G until constant mass is reached.
 - i. Place samples in sealed bags for archiving and store at room temperature.

O. Wildlife Observations

Measure/Units:

Presence of animal species in wetland habitat being assessed.

Method:

- 1. When on station, qualified personnel shall survey the wetland being assessed to document the occurrence and signs of wildlife species (e.g., wading birds, small mammals, amphibians, reptiles) using that wetland.
- 2. Record observations, including a qualitative narrative synopsis, on Table E-1 provided in Attachment E to the HDA Work Plan.

P. Development of FCIs

As discussed in Section I, the specific measurements described above will be used to develop FCIs for each function listed in Table D-1 (above) and each wetland sampled. The FCIs for the wildlife habitat function may include HSIs for representative indicator species. The methods to be used to develop the FCIs will follow the general approach used by Ainslie et al. (1999) and Findlay et al. (2002), with the possible additional use of pre-existing HSI models for the wildlife habitat function. HSI information for selected indicator species will be obtained from http://www.nwrc.usgs.gov/wdb/pub/hsi/hsiindex.htm. Preliminary FCI models and the lists of species for which HSIs will be calculated will be provided in the *Habitat Delineation Report*. The specific methods used will be described, together with the underlying data and the FCI results, in the *Habitat Assessment Reports* referenced in the HDA Work Plan.

V. References

Ainslie, W.B., R.D. Smith, B.A. Pruitt, T.H. Roberts, E.J. Sparks, L.West, G.L. Godshalk, and M.V. Miller. 1999. *A Regional Guidebook for Assessing the Functions of Low Gradient, River Wetlands in Western Kentucky*. Technical Report WRP-DE-17. USACE, Waterways Experiment Station, Vicksburg, MS. 109 pp.

BBL. 2003. *Habitat Delineation and Assessment Work Plan*. Hudson River PCBs Superfund Site. Prepared for General Electric Company, Albany, NY.

Findlay, S. E. G., E. Kiviat, W. C. Nieder, and E. A. Blair. 2002. Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquat. Sci. 64:107-117.

Gore, J. A. 1985. Mechanisms of colonization and habitat enhancement for benthic macro invertebrates in restored river channels, in J.A. Gore (ed.). *The Restoration of Rivers and Streams. Theories and Experience*. Butterworth, Stoneham, MA.

Niedowski, N. L. 2000. *New York State Salt Marsh Restoration and Monitoring Guidelines*. Prepared for NYS Department of State and NYS Department of Environmental Conservation, Albany, NY.

Smith, R. D. and J. S. Wakeley. 2001. *Hydrogeomorphic Approach to Assessing Wetland Functions: Guidelines for Developing Regional Guidebooks -- Chapter 4, Developing Assessment Models.* ERDC/EL TR-01-30, US Army Engineer Research and Development Center, Vicksburg, MS.

BLASLAND, BOUCK & LEE, INC.

Stevenson and Hauer. 2002. Integrating Hydrogeomorphic and Index and Biotic Integrity approaches for environmental assessment of wetlands. J. N. Am. Benthol. Soc. 21(3):502-513.

USACE. 1987. *Wetland Delineation Manual*. Technical Report Y-87-1. USACE, Environmental Laboratory, Vicksburg, MS. 92 pp.

USDA, NRCS. 2002. *Field Indicators of Hydric Soils in the United States, Version 5.0.* G. W. Hurt, P.M. Whited and R. F. Pringle (eds.) USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils, Fort Worth, TX.

USEPA. 2002a. Methods for Evaluating Wetland Conditions: Using Vegetation to Assess Environmental Conditions in Wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA-822-R-02-020.

USEPA. 2002b. Hudson River PCBs Site – Record of Decision and ROD Responsiveness Summary. New York, NY.

Verpraskas, M. J. 1994. *Redoximorphic Features for Identifying Aquatic Conditions*. Technical Bulletin 301, North Carolina Agricultural Research Service, North Carolina State University, Raleigh, NC.

BLASLAND, BOUCK & LEE, INC.

Appendix E

Fish and Wildlife Survey Form (reprinted from the HDA Work Plan)

Appendix E – Fish and Wildlife Survey Form

Fish and Wildlife Survey Form

Date (mm/dd/yyyy): ____/___/

Time: _____

Weather Conditions: ___

		•			
Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other:
	other:		

Narrative

Page ____ of ____

Appendix F

Geographic Coordinates and Species for Assessment Stations

Point ID	Northing	Easting	Species Observed
SAV-1-2003-Q1	1616361	733808	Wild Celery (Vallisneria americana)
			Redhead Grass (<i>Potamogeton perfoliatus</i>)
SAV-1-2003-Q2	1616494	734094	Wild Celery (Vallisneria americana)
			American Pondweed (Potamogeton nodosus)
SAV-1-2003-Q3	1616236	733613	Wild Celery (Vallisneria americana)
SAV-1-2003-Q4	1616195	733664	Wild Celery (Vallisneria americana)
			American Pondweed (Potamogeton nodosus)
SAV-1-2003-Q5	1616274	733688	Wild Celery (Vallisneria americana)
			Redhead Grass (Potamogeton perfoliatus)
			American Pondweed (Potamogeton nodosus)
SAV-1-2003-Q6	1616228	734053	Wild Celery (Vallisneria americana)
			American Pondweed (Potamogeton nodosus)
SAV-1-2003-Q7	1615757	734323	Wild Celery (Vallisneria americana)
SAV-1-2003-Q8	1615941	733890	Wild Celery (Vallisneria americana)
SAV-1-2003-Q9	1615919	734139	Wild Celery (Vallisneria americana)
SAV-2-2003-Q1	1614348	735177	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)
SAV-2-2003-Q2	1614236	735220	Wild Celery (Vallisneria americana)
SAV-2-2003-Q3	1614124	735244	Wild Celery (Vallisneria americana)
SAV-2-2003-Q4	1614645	734822	Wild Celery (Vallisneria americana)
SAV-2-2003-Q5	1614085	735056	Wild Celery (Vallisneria americana)
SAV-2-2003-Q6	1614534	735097	American Pondweed (Potamogeton nodosus)
			Wild Celery (Vallisneria americana)
SAV-2-2003-Q7	1613813	735082	Wild Celery (Vallisneria americana)
SAV-2-2003-Q8	1614532	735083	American Pondweed (Potamogeton nodosus)
			Wild Celery (Vallisneria americana)
SAV-2-2003-Q9	1613838	735163	Wild Celery (Vallisneria americana)
SAV-3-2003-Q1	1615264	736022	Wild Celery (Vallisneria americana)
SAV-3-2003-Q2	1615127	735916	Wild Celery (Vallisneria americana)
SAV-3-2003-Q3	1615240	736048	Wild Celery (Vallisneria americana)
SAV-3-2003-Q4	1613163	736091	Wild Celery (Vallisneria americana)
			American Pondweed (Potamogeton nodosus)
SAV-3-2003-Q5	1613095	736020	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)
SAV-3-2003-Q6	1612943	735881	Wild Celery (Vallisneria americana)
SAV-3-2003-Q7	1615067	736093	Wild Celery (Vallisneria americana)
SAV-3-2003-Q8	1615068	736083	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)
SAV-3-2003-Q9	1614940	736160	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)
SAV-4-2003-Q1	1610770	734241	Wild Celery (Vallisneria americana)
SAV-4-2003-Q2	1610806	734218	Wild Celery (Vallisneria americana)
SAV-4-2003-Q3	1610824	734266	Wild Celery (Vallisneria americana)
SAV-4-2003-Q4	1610642	734105	Wild Celery (Vallisneria americana)
SAV-4-2003-Q5	1610649	734096	Wild Celery (Vallisneria americana)
SAV-4-2003-Q6	1610140	733886	Wild Celery (Vallisneria americana)
SAV-4-2003-Q7	1610209	733885	Wild Celery (Vallisneria americana)
SAV-4-2003-Q8	1610303	733885	Wild Celery (Vallisneria americana)

Point ID	Northing	Easting	Species Observed
SAV-4-2003-Q9	1610366	733897	Wild Celery (Vallisneria americana)
SAV-4-2003-Q3	1010300	100001	American Pondweed (<i>Potamogeton nodosus</i>)
SAV-5-2003-Q1	1599771	736739	Wild Celery (Vallisneria americana)
SAV-5-2005-Q1	1599771	130139	Redhead Grass (<i>Potamogeton perfoliatus</i>)
SAV-5-2003-Q2	1599747	736753	Wild Celery (Vallisneria americana)
SAV-5-2003-Q2	1599747	/30/53	
SAV 5 2002 O2	4500004	70004.0	Redhead Grass (<i>Potamogeton perfoliatus</i>)
SAV-5-2003-Q3	1599664	736818	Wild Celery (Vallisneria americana)
SAV-5-2003-Q4	1599762	736682	Wild Celery (Vallisneria americana)
SAV-5-2003-Q5	1599767	736716	Wild Celery (Vallisneria americana)
SAV-5-2003-Q6	1599540	736854	Wild Celery (Vallisneria americana)
SAV-5-2003-Q7	1599474	736903	Wild Celery (Vallisneria americana)
SAV-5-2003-Q8	1599459	736969	Wild Celery (Vallisneria americana)
SAV-5-2003-Q9	1599585	736938	Wild Celery (Vallisneria americana)
SAV-6-2003-Q1	1596239	737794	Wild Celery (Vallisneria americana)
SAV-6-2003-Q2	1596221	737773	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)
SAV-6-2003-Q3	1596287	737779	Wild Celery (Vallisneria americana)
SAV-6-2003-Q4	1596004	737552	Common Waterweed (Elodea canadensis)
SAV-6-2003-Q5	1596037	737618	Wild Celery (Vallisneria americana)
SAV-6-2003-Q6	1596071	737600	Wild Celery (Vallisneria americana)
SAV-6-2003-Q7	1596125	737592	Wild Celery (Vallisneria americana)
SAV-6-2003-Q8	1596184	737564	Wild Celery (Vallisneria americana)
SAV-6-2003-Q9	1596268	737577	Wild Celery (Vallisneria americana)
			Common Waterweed (<i>Elodea canadensis</i>)
SAV-7-2003-Q1	1593754	736689	Wild Celery (Vallisneria americana)
			Grassy Pondweed (Potamogeton gramineus)
SAV-7-2003-Q2	1593629	736600	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)
SAV-7-2003-Q3	1593389	736487	Wild Celery (Vallisneria americana)
SAV-7-2003-Q4	1593287	736460	Wild Celery (Vallisneria americana)
SAV-7-2003-Q5	1593389	736498	Wild Celery (Vallisneria americana)
SAV-7-2003-Q6	1593316	736461	Wild Celery (Vallisneria americana)
SAV-7-2003-Q7	1593162	736411	Wild Celery (Vallisneria americana)
SAV-7-2003-Q8	1593137	736420	Wild Celery (Vallisneria americana)
SAV-7-2003-Q9	1593051	736397	Wild Celery (Vallisneria americana)
SAV-8-2003-Q1	1565515	735810	American Pondweed (Potamogeton nodosus)
SAV-8-2003-Q2	1565542	735825	Wild Celery (Vallisneria americana)
			American Pondweed (<i>Potamogeton nodosus</i>)
SAV-8-2003-Q3	1565597	735823	American Pondweed (<i>Potamogeton nodosus</i>)
SAV-8-2003-Q4	1565457	735829	Wild Celery (Vallisneria americana)
C/ W 0 2000 Q+	1000401	100020	Common Waterweed (<i>Elodea canadensis</i>)
SAV-8-2003-Q5	1565486	735836	Wild Celery (Vallisneria americana)
	1000400	, 00000	Common Waterweed (<i>Elodea canadensis</i>)
SAV-8-2003-Q6	1565525	735852	Wild Celery (Vallisneria americana)
SAV-8-2003-Q6 SAV-8-2003-Q7	1565825	736277	Wild Celery (Valisheria americana) Wild Celery (Valisheria americana)
0AV-0-2003-Q/	1000020	130211	
	4505007	720000	Common Waterweed (<i>Elodea canadensis</i>)
SAV-8-2003-Q8	1565807	736263	Wild Celery (Vallisneria americana)
SAV-8-2003-Q9	1565703	736327	Wild Celery (Vallisneria americana)
			Common Waterweed (Elodea canadensis)

Point ID	Northing	Easting	Species Observed
SAV-9-2003-Q1	1566674	734874	Wild Celery (Vallisneria americana)
SAV-9-2003-Q2	1566693	734912	Wild Celery (Vallisneria americana)
SAV-9-2003-Q3	1566717	734905	Wild Celery (Vallisneria americana)
SAV-9-2003-Q4	1567020	735316	Wild Celery (Vallisneria americana)
SAV-9-2003-Q5	1566986	735383	Wild Celery (Vallisneria americana)
SAV-9-2003-Q6	1566783	735441	Wild Celery (Vallisneria americana)
SAV-9-2003-Q7	1567828	735272	Wild Celery (Vallisneria americana)
SAV-9-2003-Q8	1567854	735239	Wild Celery (Vallisneria americana)
SAV-9-2003-Q9	1567918	735218	Wild Celery (Vallisneria americana)
WET-01-2003-DN	1589661	736293	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-IN1	1589974	736367	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-IN2	1589800	736331	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-OFF1	1589976	736337	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-OFF2	1589807	736308	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q1	1589948	736352	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)

Point ID	Northing	Easting	Species Observed
WET-01-2003-Q2	1589942	736347	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q3	1589880	736333	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q4	1589824	736317	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q5	1589887	736334	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Wild Rice (<i>Zizania aquatica</i>)
			Walter Millet (Echinochola walteri)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q6	1589767	736316	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Sessile Fruited Arrowhead (Sagittaria rigida)
			Wild Rice (Zizania aquatica)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q7	1589742	736313	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Wild Rice (Zizania aquatica)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)

Point ID	Northing	Easting	Species Observed
WET-01-2003-Q8	1589708	736304	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Wild Rice (Zizania aquatica)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-Q9	1589686	736298	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Wild Rice (Zizania aquatica)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-01-2003-UP	1590087	736360	Common Arrowhead (Sagittaria latifolia)
			Pickerel Weed (Pontederia cordata)
			Rice Cut Grass (Leersia oryzoides)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Great Bur Reed (Sparganium eurycarpum)
WET-02-2003-DN	1603051	734767	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-IN1	1602839	734919	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-IN2	1602924	734856	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-OFF1	1602855	734944	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)

Point ID	Northing	Easting	Species Observed
WET-02-2003-OFF2	1602942	734880	Wild Rice (<i>Zizania aquatica</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (<i>Echinochola walteri</i>)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q1	1602810	734954	Wild Rice (<i>Zizania aquatica</i>)
WE1-02-2003-Q1	1002010	734334	Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Pickerel Weed (<i>Pontederia cordata</i>)
			Walter Millet (<i>Echinochola walteri</i>)
	4000704	704077	Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q2	1602781	734977	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Pickerel Weed (Pontederia cordata)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q3	1602769	734987	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Pickerel Weed (Pontederia cordata)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q4	1602793	734958	Wild Rice (<i>Zizania aquatica</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Reed Canary Grass (Phalaris arundinacea)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q5	1602824	734941	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Reed Canary Grass (Phalaris arundinacea)
			Purple Loosestrife (Lythrum salicaria)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q6	1602869	734904	Wild Rice (<i>Zizania aquatica</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Reed Canary Grass (Phalaris arundinacea)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (<i>Echinochola walteri</i>)
			Sessile Fruited Arrowhead (Sagittaria rigida)
			Joessile Fluiteu Altowneau (Sayittalia liyiua)

Point ID	Northing	Easting	Species Observed
WET-02-2003-Q7	1602926	734867	Wild Rice (Zizania aquatica)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Pickerel Weed (Pontederia cordata)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q8	1602933	734863	Wild Rice (<i>Zizania aquatica</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-Q9	1602943	734855	Wild Rice (<i>Zizania aquatica</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (Sagittaria latifolia)
			Rice Cut Grass (Leersia oryzoides)
			Pickerel Weed (<i>Pontederia cordata</i>)
			Walter Millet (<i>Echinochola walteri</i>)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-02-2003-UP	1602746	734993	Wild Rice (<i>Zizania aquatica</i>)
	1002710	101000	Great Bur Reed (Sparganium eurycarpum)
			Common Arrowhead (<i>Sagittaria latifolia</i>)
			Rice Cut Grass (Leersia oryzoides)
			Walter Millet (<i>Echinochola walteri</i>)
			Sessile Fruited Arrowhead (Sagittaria rigida)
WET-03-2003-DN	1575224	736996	Rice Cut Grass (Leersia oryzoides)
	1010221	100000	Walter Millet (<i>Echinochola walteri</i>)
			Switchgrass (Panicum virgatum)
			Spike Rush (<i>Eleocharis rostellata</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (<i>Pontederia cordata</i>)
WET-03-2003-IN1	1575479	737060	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (<i>Echinochola walteri</i>)
			Switchgrass (Panicum virgatum)
			Spike Rush (<i>Eleocharis rostellata</i>)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (<i>Alisma plantago-aquatica</i>)
			Pickerel Weed (<i>Pontederia cordata</i>)
WET-03-2003-IN2	1575417	737043	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (<i>Echinochola walteri</i>)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (<i>Pontederia cordata</i>)
			i ionerel weeu (r unteuerla culuata)

Point ID	Northing	Easting	Species Observed
WET-03-2003-OFF1	1575468	737095	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (Pontederia cordata)
WET-03-2003-OFF2	1575411	737064	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (Pontederia cordata)
WET-03-2003-Q1	1575500	737078	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (Pontederia cordata)
WET-03-2003-Q2	1575475	737086	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (Pontederia cordata)
WET-03-2003-Q3	1575465	737067	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (Pontederia cordata)
WET-03-2003-UP	1575536	737089	Rice Cut Grass (Leersia oryzoides)
			Walter Millet (Echinochola walteri)
			Switchgrass (Panicum virgatum)
			Spike Rush (Eleocharis rostellata)
			Great Bur Reed (Sparganium eurycarpum)
			Small Water Plantain (Alisma plantago-aquatica)
			Pickerel Weed (Pontederia cordata)

Point ID	Northing	Easting	Species Observed
WET-04-2003-DN	1567012	735711	Cattail (Typha latifolia)
WE1 04 2000 BIT	1007012	700711	Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (<i>Pontederia cordata</i>)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (<i>Xanthium chinense</i>)
WET-04-2003-IN1	1567246	735621	Cattail (<i>Typha latifolia</i>)
WE1 04 2000 INT	1007240	700021	Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (<i>Pontederia cordata</i>)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (<i>Ajuga reptans</i>) Common Clot Bur (<i>Xanthium chinense</i>)
WET-04-2003-IN2	1567159	705004	
VVE1-04-2003-IN2	1567159	735694	Cattail (<i>Typha latifolia</i>)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (<i>Scirpus validus</i>)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
	4507005	705500	Common Clot Bur (<i>Xanthium chinense</i>)
WET-04-2003-OFF1	1567225	735590	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (Xanthium chinense)
WET-04-2003-OFF2	1567132	735674	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (Xanthium chinense)
WET-04-2003-Q1	1567032	735705	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (Xanthium chinense)

Point ID	Northing	Easting	Species Observed
WET-04-2003-Q2	1567036	735703	Cattail (Typha latifolia)
	1001000	100100	Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Wild Rice (<i>Zizania aquatica</i>)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (<i>Scirpus validus</i>)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (<i>Xanthium chinense</i>)
WET-04-2003-Q3	1567042	735703	Cattail (<i>Typha latifolia</i>)
	1007012	100100	Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (<i>Pontederia cordata</i>)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (<i>Ajuga reptans</i>)
			Common Clot Bur (Xanthium chinense)
WET-04-2003-Q4	1567153	735679	Cattail (<i>Typha latifolia</i>)
VIE1-04-2003-Q4	1507155	133019	Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum) Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (<i>Scirpus validus</i>)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (<i>Ajuga reptans</i>)
	4507405	705077	Common Clot Bur (Xanthium chinense)
WET-04-2003-Q5	1567165	735677	Cattail (<i>Typha latifolia</i>)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
	4507470	705070	Common Clot Bur (<i>Xanthium chinense</i>)
WET-04-2003-Q6	1567172	735670	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (<i>Ajuga reptans</i>)
			Common Clot Bur (Xanthium chinense)
WET-04-2003-Q7	1567172	735660	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (Xanthium chinense)

Point ID	Northing	Easting	Species Observed
WET-04-2003-Q8	1567153	735665	Cattail (<i>Typha latifolia</i>)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (<i>Sparganium eurycarpum</i>)
			Pickerel Weed (<i>Pontederia cordata</i>)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (<i>Ajuga reptans</i>)
			Common Clot Bur (<i>Xanthium chinense</i>)
WET-04-2003-Q9	1567147	735673	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (Xanthium chinense)
WET-04-2003-UP	1567265	735577	Cattail (Typha latifolia)
			Common Arrowhead (Sagittaria latifolia)
			Great Bur Reed (Sparganium eurycarpum)
			Pickerel Weed (Pontederia cordata)
			Soft Stemmed Bull Rush (Scirpus validus)
			Rice Cut Grass (Leersia oryzoides)
			BugleWeed (Ajuga reptans)
			Common Clot Bur (Xanthium chinense)
UCB-1-2003-01	1614710	735294	None
UCB-1-2003-02	1614673	735260	None
UCB-1-2003-03	1614662	735285	None
UCB-1-2003-04	1614550	735305	None
UCB-1-2003-05	1614563	735352	None
UCB-1-2003-06	1614484	735369	None
UCB-1-2003-07	1614463	735345	None
UCB-1-2003-08	1614541	735262	None
UCB-1-2003-09	1614513	735281	None
UCB-2-2003-01	1611303	734686	None
UCB-2-2003-02	1611243	734716	None
UCB-2-2003-03	1611225	734642	None
UCB-2-2003-04	1611192	734626	None
UCB-2-2003-05	1611167	734648	None
UCB-2-2003-06	1611156	734613	None
UCB-2-2003-07	1611117	734565	None
UCB-2-2003-08	1611061	734555	None
UCB-2-2003-09	1611073	734522	None
UCB-3-2003-01	1596821	737403	None
UCB-3-2003-02	1597014	737252	None
UCB-3-2003-03	1597012	737330	None
UCB-3-2003-04	1596958	737337	None
UCB-3-2003-05	1596924	737316	None
UCB-3-2003-06	1596922	737361	None
UCB-3-2003-07	1596868	737395	None

Point ID	Northing	Easting	Species Observed
UCB-3-2003-08	1596830	737300	None
UCB-3-2003-09	1596810	737369	None
UCB-4-2003-01	1594202	736996	None
UCB-4-2003-02	1594212	736988	None
UCB-4-2003-03	1594195	736953	None
UCB-4-2003-04	1594155	736965	None
UCB-4-2003-05	1594102	736915	None
UCB-4-2003-06	1594063	736894	None
UCB-4-2003-07	1594029	736891	None
UCB-4-2003-08	1594010	736905	None
UCB-4-2003-09	1593970	736872	None
UCB-5-2003-01	1567938	735123	None
UCB-5-2003-02	1567907	735103	None
UCB-5-2003-03	1567896	735138	None
UCB-5-2003-04	1567883	735155	None
UCB-5-2003-05	1567717	735203	None
UCB-5-2003-06	1567697	735139	None
UCB-5-2003-07	1567782	735134	None
UCB-5-2003-08	1567805	735195	None
UCB-5-2003-09	1567821	735174	None
UCB-6-2003-01	1614689	736081	None
UCB-6-2003-02	1614641	736084	None
UCB-6-2003-03	1614610	736073	None
UCB-6-2003-04	1614570	736088	None
UCB-6-2003-05	1614600	736116	None
UCB-6-2003-06	1614566	736135	None
UCB-6-2003-07	1614543	736129	None
UCB-6-2003-08	1614466	736109	None
UCB-6-2003-09	1614472	736105	None
SHO-01R-2003-01A	1616145	733665	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
SHO-01R-2003-01B	1616134	733659	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
SHO-01R-2003-02A	1615942	733848	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
SHO-01R-2003-02B	1615928	733828	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
SHO-01R-2003-03B	1615801	733989	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)

Point ID	Northing	Easting	Species Observed
SHO-01R-2003-03A	1615809	734007	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
SHO-02R-2003-01A	1598665	737296	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Dogwood spp. (Cornus spp.)
			White Pine (<i>Pinus strobus</i>)
			Black Willow (Salix nigra)
			Black Cherry (Prunis serotina)
SHO-02R-2003-01B	1598684	737310	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Dogwood spp. (Cornus spp.)
			White Pine (Pinus strobus)
			Black Willow (Salix nigra)
			Black Cherry (Prunis serotina)
SHO-02R-2003-02A	1598608	737325	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Virginia Creeper (Parthenocissus quinqefolia)
			Common Mullen (Verbascum thapsus)
			Black Cherry (Prunis serotina)
SHO-02R-2003-02B	1598603	737338	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Staghorn Sumac (<i>Rhus typhina</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Virginia Creeper (Parthenocissus quinqefolia)
			Common Mullen (Verbascum thapsus)
			Black Cherry (Prunis serotina)

Point ID	Northing	Easting	Species Observed
SHO-02R-2003-03A	1598470	737331	Tatarian Honeysuckle (Lonicera tatarica)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quingefolia)
			Black Cherry (Prunis serotina)
			Horsetail sp. (Equisetum spp.)
SHO-02R-2003-03B	1598458	737349	Tatarian Honeysuckle (Lonicera tatarica)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Fern sp.
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Black Cherry (Prunis serotina)
			Horsetail sp. (Equisetum spp.)
SHO-03R-2003-01A	1568430	734446	Speckled Alder (Alnus rugosa)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			New York Fern (Thelypteris noveboracensis)
			American Basswood (Tilia americana)
			Dogwood spp. (Cornus spp.)
			White Pine (Pinus strobus)
			Queen Anne's Lace (Daucus carota)
			Sugar Maple (Acer Saccharum)
			Black Cherry (Prunis serotina)
			Horsetail sp. (Equisetum spp.)
			Hemlock (Tsuga canadensis)
SHO-03R-2003-01B	1568433	734427	Speckled Alder (Alnus rugosa)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			New York Fern (Thelypteris noveboracensis)
			American Basswood (Tilia americana)
			Dogwood spp. (Cornus spp.)
			White Pine (<i>Pinus strobus</i>)
			Queen Anne's Lace (Daucus carota)
			Hemlock (Tsuga canadensis)
			Sugar Maple (<i>Acer Saccharum</i>) Black Cherry (<i>Prunis serotina</i>) Horsetail sp. (<i>Equisetum spp</i> .)

Point ID	Northing	Easting	Species Observed
SHO-03R-2003-02A	1568105	734448	Red Oak (Quercus rubra)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			American Basswood (Tilia americana)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			White Pine (Pinus strobus)
			Brown Gound Nut (Apios americana)
			Black Cherry (Prunis serotina)
			Hemlock (Tsuga canadensis)
SHO-03R-2003-02B	1568099	734426	Red Oak (Quercus rubra)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			American Basswood (Tilia americana)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			White Pine (<i>Pinus strobus</i>)
			Brown Gound Nut (Apios americana)
			Black Cherry (Prunis serotina)
			Hemlock (Tsuga canadensis)
SHO-03R-2003-03A	1567703	734495	Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			White Pine (<i>Pinus strobus</i>)
			Aster spp. (Aster spp.)
			Fern spp.
			Hemlock (<i>Tsuga canadensis</i>)
			Witch Hazel (Hammamelis virginiana)
SHO-03R-2003-03B	1567692	734475	Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			White Pine (<i>Pinus strobus</i>)
			Aster spp. (Aster spp.)
			Fern spp.
			Hemlock (<i>Tsuga canadensis</i>)
			Witch Hazel (Hammamelis virginiana)

Point ID	Northing	Easting	Species Observed
SHO-01I-2003-01A	1615051	734642	Wild Grape spp. (<i>Vitus spp.</i>)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Purple Loosestrife (Lythrum salicaria)
			Sensitive Fern (Onoclea sensibilis)
			Bittersweet spp. (Celastrus spp.)
			Eastern Cottonwood (Populus deltoides)
			Black Cherry (Prunis serotina)
SHO-01I-2003-01B	1615037	734627	Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Purple Loosestrife (Lythrum salicaria)
			Sensitive Fern (Onoclea sensibilis)
			Bittersweet spp. (Celastrus spp.)
			Eastern Cottonwood (Populus deltoides)
			Black Cherry (Prunis serotina)
SHO-01I-2003-02A	1614863	734712	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Queen Anne's Lace (Daucus carota)
			Bittersweet spp. (Celastrus spp.)
			Fern sp.
SHO-01I-2003-02B	1614866	734685	Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Queen Anne's Lace (Daucus carota)
			Bittersweet spp. (Celastrus spp.)
			Fern sp.
SHO-01I-2003-03A	1614559	734847	Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Purple Loosestrife (Lythrum salicaria)
			Sensitive Fern (Onoclea sensibilis)
			Bittersweet spp. (Celastrus spp.)
			Stiff Arrowhead (Sagittaria rigida)
SHO-01I-2003-03B	1614547	734838	Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Purple Loosestrife (Lythrum salicaria)
			Sensitive Fern (Onoclea sensibilis)
			Bittersweet spp. (Celastrus spp.)
			Stiff Arrowhead (Sagittaria rigida)

Point ID	Northing	Easting	Species Observed
SHO-02I-2003-01A	1614143		•
SHO-021-2003-01A	1014143	735466	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (<i>Impatiens spp.</i>)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Black Cherry (Prunis serotina)
SHO-02I-2003-01B	1614146	735485	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Black Cherry (<i>Prunis serotina</i>)
SHO-02I-2003-02A	1613930	735477	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Bittersweet spp. (Celastrus spp.)
SHO-02I-2003-02B	1613939	735486	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Bittersweet spp. (<i>Celastrus spp.</i>)
SHO-02I-2003-03A	1613689	735535	Silver Maple (Acer Saccharinum)
	1010000	100000	New York Fern (<i>Thelypteris noveboracensis</i>)
			Sensitive Fern (<i>Onoclea sensibilis</i>)
SHO-02I-2003-03B	1613707	735554	Silver Maple (Acer Saccharinum)
	1013/07	700004	New York Fern (<i>Thelypteris noveboracensis</i>)
			Sensitive Fern (Onoclea sensibilis)
SHO-03I-2003-01A	1614167	736349	Tatarian Honeysuckle (Lonicera tatarica)
SI 10-031-2003-01A	1014107	730349	Wild Grape spp. (<i>Vitus spp.</i>)
			Staghorn Sumac (<i>Rhus typhina</i>)
			White Ash (<i>Fraxinus americana</i>)
			Virginia Creeper (Parthenocissus quinqefolia)
			Eastern Cottonwood (<i>Populus deltoides</i>)
			Black Cherry (<i>Prunis serotina</i>)
	4044400	700070	Box Elder (Acer negundo)
SHO-03I-2003-01B	1614168	736370	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Staghorn Sumac (Rhus typhina)
			White Ash (Fraxinus americana)
			Virginia Creeper (Parthenocissus quinqefolia)
			Eastern Cottonwood (Populus deltoides)
			Black Cherry (Prunis serotina)
			Box Elder (Acer negundo)

Point ID	Northing	Easting	Species Observed
SHO-03I-2003-02A	1613851	736392	Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			American Basswood (Tilia americana)
			Virginia Creeper (Parthenocissus quinqefolia)
			Black Cherry (Prunis serotina)
SHO-03I-2003-02B	1613852	736412	Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			American Basswood (Tilia americana)
			Virginia Creeper (Parthenocissus quinqefolia)
			Black Cherry (Prunis serotina)
SHO-03I-2003-03A	1613612	736403	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			American Basswood (Tilia americana)
			Virginia Creeper (Parthenocissus quinqefolia)
			Common Buckthorn (Rhamnus cathartica)
			Box Elder (Acer negundo)
			Barberry spp. (Berberis spp.)
SHO-03I-2003-03B	1613616	736418	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			American Basswood (<i>Tilia americana</i>)
			Virginia Creeper (Parthenocissus quinqefolia)
			Common Buckthorn (<i>Rhamnus cathartica</i>)
			Box Elder (Acer negundo)
			Barberry spp. (Berberis spp.)
SHO-04I-2003-01A	1613391	736154	Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Golden Rod spp. (Solidago spp.)
			New York Fern (Thelypteris noveboracensis)
			Northern Catalpa (Catalpa speciosa)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quinqefolia)
			Eastern Cottonwood (Populus deltoides)
			ButtonBush (Cephalanthus occidentalis)

Point ID	Northing	Easting	Species Observed
SHO-04I-2003-01B	1613405	736135	Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Golden Rod spp. (Solidago spp.)
			New York Fern (Thelypteris noveboracensis)
			Northern Catalpa (Catalpa speciosa)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quingefolia)
			Eastern Cottonwood (Populus deltoides)
			ButtonBush (Cephalanthus occidentalis)
SHO-04I-2003-02A	1613148	736041	Black Willow (Salix nigra)
			Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quinqefolia)
			White Snakeroot (Eupatorium rugosum)
			Eastern Cottonwood (Populus deltoides)
			Common Elderberry (Sambucus canadensis)
SHO-04I-2003-02B	1613165	736026	Black Willow (Salix nigra)
			Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quinqefolia)
			White Snakeroot (Eupatorium rugosum)
			Eastern Cottonwood (Populus deltoides)
			Common Elderberry (Sambucus canadensis)
SHO-04I-2003-03A	1612980	735907	Yellow Sneezeweed (Helenium autumnale)
			Red Oak (Quercus rubra)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Golden Rod spp. (Solidago spp.)
			Joe Pye Weed spp. (<i>Eupatorium spp.</i>)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			ButtonBush (Cephalanthus occidentalis)

Point ID	Northing	Easting	Species Observed
SHO-04I-2003-03B	1612985	735890	Yellow Sneezeweed (Helenium autumnale)
	1012303	755650	Red Oak (Quercus rubra)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (<i>Rhus typhina</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Golden Rod spp. (Solidago spp.)
			Joe Pye Weed spp. (<i>Eupatorium spp.</i>)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (<i>Onoclea sensibilis</i>)
			ButtonBush (Cephalanthus occidentalis)
SHO-05I-2003-01A	1597876	736729	Tatarian Honeysuckle (Lonicera tatarica)
SH0-03I-2003-01A	1397070	130129	Wild Grape spp. (<i>Vitus spp.</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Black Locust (Robinia pseudoacacia)
			Northern Catalpa (Catalpa speciosa)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (<i>Onoclea sensibilis</i>)
			Virginia Creeper (Parthenocissus quinqefolia)
			Eastern Cottonwood (<i>Populus deltoides</i>)
			ButtonBush (Cephalanthus occidentalis)
			Bittersweet spp. (<i>Celastrus spp.</i>) Brown Gound Nut (<i>Apios americana</i>)
			Black Cherry (<i>Prunis serotina</i>)
SHO-05I-2003-01B	1597864	736714	Tatarian Honeysuckle (Lonicera tatarica)
SH0-03I-2003-01D	1397004	730714	Wild Grape spp. (<i>Vitus spp.</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Black Locust (Robinia pseudoacacia)
			Northern Catalpa (Catalpa speciosa)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quinqefolia)
			Eastern Cottonwood (Populus deltoides)
			ButtonBush (Cephalanthus occidentalis)
			Bittersweet spp. (<i>Celastrus spp.</i>)
			Brown Gound Nut (Apios americana)
SHO-05I-2003-02A	1507690	736746	Black Cherry (<i>Prunis serotina</i>)
300-031-2003-02A	1597680	130/40	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Eastern Cottonwood (Populus deltoides)

Point ID	Northing	Easting	Species Observed
SHO-05I-2003-02B	1597686	736730	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quingefolia)
			Eastern Cottonwood (Populus deltoides)
SHO-05I-2003-03A	1597518	736753	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			White Snakeroot (Eupatorium rugosum)
			Eastern Cottonwood (Populus deltoides)
			Aster spp. (Aster spp.)
			Sugar Maple (Acer Saccharum)
SHO-05I-2003-03B	1597523	736734	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ülmus spp.)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quingefolia)
			White Snakeroot (Eupatorium rugosum)
			Eastern Cottonwood (Populus deltoides)
			Aster spp. (Aster spp.)
			Sugar Maple (Acer Saccharum)
SHO-06I-2003-01A	1597304	737338	Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Black Locust (Robinia pseudoacacia)
SHO-06I-2003-01B	1597301	737355	Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (<i>Rhus typhina</i>)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Black Locust (<i>Robinia pseudoacacia</i>)

Point ID	Northing	Easting	Species Observed
SHO-06I-2003-02A	1597007	737434	Yellow Sneezeweed (Helenium autumnale)
	1337007	101404	Black Willow (Salix nigra)
1			Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (<i>Impatiens spp.</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Black Locust (Robinia pseudoacacia)
			· · · · · · · · · · · · · · · · · · ·
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
	4507044	707457	Turtle Head (Chelone glabra)
SHO-06I-2003-02B	1597011	737457	Yellow Sneezeweed (<i>Helenium autumnale</i>)
			Black Willow (Salix nigra)
			Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Black Locust (Robinia pseudoacacia)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Turtle Head (Chelone glabra)
SHO-06I-2003-03A	1596776	737513	Yellow Sneezeweed (Helenium autumnale)
			Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Turtle Head (Chelone glabra)
SHO-06I-2003-03B	1596788	737531	Yellow Sneezeweed (Helenium autumnale)
			Tatarian Honeysuckle (Lonicera tatarica)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Turtle Head (Chelone glabra)

Point ID	Northing	Easting	Species Observed
SHO-07I-2003-01A	1595002	736141	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			New York Fern (Thelypteris noveboracensis)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quingefolia)
			Horsetail sp. (Equisetum spp.)
SHO-07I-2003-01B	1594996	736156	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			New York Fern (Thelypteris noveboracensis)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Virginia Creeper (Parthenocissus quinqefolia)
			Horsetail sp. (Equisetum spp.)
SHO-07I-2003-02A	1594876	736126	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
SHO-07I-2003-02B	1594874	736141	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
SHO-07I-2003-03A	1594746	736110	Black Willow (Salix nigra)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			New York Fern (<i>Thelypteris noveboracensis</i>)
			Common Elderberry (Sambucus canadensis)

Point ID	Northing	Easting	Species Observed
SHO-07I-2003-03B	1594744	736140	Black Willow (Salix nigra)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			New York Fern (<i>Thelypteris noveboracensis</i>)
			Common Elderberry (Sambucus canadensis)
SHO-08I-2003-01A	1594975	737821	Black Willow (Salix nigra)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Golden Rod spp. (Solidago spp.)
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Queen Anne's Lace (Daucus carota)
			Common Elderberry (Sambucus canadensis)
SHO-08I-2003-01B	1594963	737838	Black Willow (Salix nigra)
		101000	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Golden Rod spp. (Solidago spp.)
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (<i>Parthenocissus quinqefolia</i>)
			Queen Anne's Lace (Daucus carota)
			Common Elderberry (Sambucus canadensis)
SHO-08I-2003-02A	1594792	737669	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (Impatiens spp.)
			Staghorn Sumac (<i>Rhus typhina</i>)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Golden Rod spp. (Solidago spp.)
			American Basswood (<i>Tilia americana</i>)
			Virginia Creeper (Parthenocissus quinqefolia)
		l	

Point ID	Northing	Easting	Species Observed
SHO-08I-2003-03A	1594669	737618	Yellow Sneezeweed (<i>Helenium autumnale</i>)
	1001000	101010	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (<i>Rhus typhina</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Turtle Head (Chelone glabra)
SHO-08I-2003-03B	1594676	737640	Yellow Sneezeweed (Helenium autumnale)
SI 10-081-2003-03B	1594070	737040	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Speckled Alder (Alnus rugosa)
			· · · · · · · · · · · · · · · · · · ·
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
	4507040	70 4000	Turtle Head (<i>Chelone glabra</i>)
SHO-09I-2003-01A	1567313	734603	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (Impatiens spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			American Basswood (Tilia americana)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			White Pine (<i>Pinus strobus</i>)
			Juniper sp.
SHO-09I-2003-01B	1567309	734584	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (Impatiens spp.)
			Staghorn Sumac (<i>Rhus typhina</i>)
			Silver Maple (Acer Saccharinum)
			American Basswood (<i>Tilia americana</i>)
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
			White Pine (<i>Pinus strobus</i>)
			Juniper sp.

Point ID	Northing	Easting	Species Observed
SHO-09I-2003-02A	1567052	734674	Black Willow (<i>Salix nigra</i>)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			American Basswood (Tilia americana)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quingefolia)
			White Pine (Pinus strobus)
			Common Buckthorn (Rhamnus cathartica)
SHO-09I-2003-02B	1567043	734676	Black Willow (Salix nigra)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			American Basswood (Tilia americana)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			White Pine (Pinus strobus)
			Common Buckthorn (Rhamnus cathartica)
SHO-09I-2003-03A	1566878	734741	Black Willow (Salix nigra)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (<i>Solidago spp.</i>)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
SHO-09I-2003-03B	1566874	734719	Black Willow (Salix nigra)
			Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (Ulmus spp.)
			Golden Rod spp. (Solidago spp.)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)

Point ID	Northing	Easting	Species Observed
SHO-10I-2003-01A	1594054	736832	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			White Snakeroot (Eupatorium rugosum)
			Black Cherry (Prunis serotina)
			Evening Primrose (Oenothera biennis)
SHO-10I-2003-01B	1594068	736814	Tatarian Honeysuckle (Lonicera tatarica)
			Wild Grape spp. (Vitus spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			White Snakeroot (<i>Eupatorium rugosum</i>)
			Black Cherry (<i>Prunis serotina</i>)
			Evening Primrose (<i>Oenothera biennis</i>)
SHO-10I-2003-02A	1593788	736686	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
	10007.00	100000	Jewel Weed spp. (<i>Impatiens spp.</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp</i> .)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Aster spp. (<i>Aster spp.</i>)
SHO-10I-2003-02B	1593801	736667	Tatarian Honeysuckle (<i>Lonicera tatarica</i>)
	1000001	100001	Jewel Weed spp. (<i>Impatiens spp.</i>)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			Aster spp. (<i>Aster spp.</i>)
SHO-10I-2003-03A	1593572	736553	Black Willow (Salix nigra)
0110 101 2003 057	1000012	100000	Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Elm spp. (<i>Ulmus spp.</i>)
			Purple Loosestrife (<i>Lythrum salicaria</i>)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (<i>Onoclea sensibilis</i>)
			· · · · · · · · · · · · · · · · · · ·
			ButtonBush (Cephalanthus occidentalis)

Point ID	Northing	Easting	Species Observed
SHO-10I-2003-03B	1593606	736521	Black Willow (Salix nigra)
	1000000	100021	Speckled Alder (Alnus rugosa)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Elm spp. (Ulmus spp.)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Sensitive Fern (Onoclea sensibilis)
			ButtonBush (Cephalanthus occidentalis)
SHO-11I-2003-01A	1565808	736307	Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Pickerel Weed (Pontederia cordata)
			Sensitive Fern (Onoclea sensibilis)
			Aster spp. (Bidens spp.)
SHO-11I-2003-01B	1565822	736327	Jewel Weed spp. (Impatiens spp.)
			Silver Maple (Acer Saccharinum)
			White Ash (Fraxinus americana)
			Pickerel Weed (Pontederia cordata)
			Sensitive Fern (Onoclea sensibilis)
			Aster spp. (<i>Bidens spp.</i>)
SHO-11I-2003-02A	1565660	736385	Black Willow (Salix nigra)
	1000000	100000	Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Northern Catalpa (Catalpa speciosa)
			Sensitive Fern (<i>Onoclea sensibilis</i>)
			Aster spp. (<i>Bidens spp.</i>)
SHO-11I-2003-02B	1565677	736386	Black Willow (Salix nigra)
SHO-11-2005-02B	1303077	730300	Silver Maple (Acer Saccharinum)
			White Ash (<i>Fraxinus americana</i>)
			Northern Catalpa (Catalpa speciosa)
			Sensitive Fern (Onoclea sensibilis)
SHO-11I-2003-03A	1565406	726499	Aster spp. (Bidens spp.)
SHO-111-2003-03A	1565406	736488	Wild Grape spp. (<i>Vitus spp.</i>)
			Jewel Weed spp. (Impatiens spp.)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (<i>Rhus typhina</i>)
			Silver Maple (Acer Saccharinum)
			Golden Rod spp. (Solidago spp.)
			Black Locust (Robinia pseudoacacia)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Queen Anne's Lace (Daucus carota)
			Eastern Cottonwood (Populus deltoides)
			Soft-stem Bullrush (Scirpus validus)
			Box Elder (Acer negundo)
			Common Clotbur (Xanthium chinense)
			Sedge spp. (Carex spp.)

Point ID	Northing	Easting	Species Observed
SHO-11I-2003-03B	1565405	736507	Wild Grape spp. (Vitus spp.)
			Jewel Weed spp. (Impatiens spp.)
			Speckled Alder (Alnus rugosa)
			Staghorn Sumac (Rhus typhina)
			Silver Maple (Acer Saccharinum)
			Golden Rod spp. (Solidago spp.)
			Black Locust (Robinia pseudoacacia)
			Purple Loosestrife (Lythrum salicaria)
			Dogwood spp. (Cornus spp.)
			Virginia Creeper (Parthenocissus quinqefolia)
			Queen Anne's Lace (Daucus carota)
			Eastern Cottonwood (Populus deltoides)
			Soft-stem Bullrush (Scirpus validus)
			Box Elder (Acer negundo)
			Common Clotbur (Xanthium chinense)
			Sedge spp. (Carex spp.)

Appendix G

Tables for Habitat Assessment Data

Appendix G - Habitat Assessment Data (UCB-Assessment Data) (Unconsolidated Bottom)

																unal Substrate/	Available Co	ver	Pool Substrate Characterization				
					Inorganio	Shoreline	Substrate	Compon	ents	-	Orgar	nic Substra	ate Comp	onents	pnu	(Low Grad				(Low Gra			
Station Number	River Section	Northing	Easting	Bedrock	Boulder	Cobble	Gravel	Sand	Silt	Clay	Detritus	Muck- Mud	Marl	Mussels	Optimal	Suboptimal	Marginal	Poor	Optimal	Suboptimal	Marginal	Poor	
UCB-1-2003-01	1	492164.581	224118.068				60	40			30		70			X	<u> </u>		X				
UCB-1-2003-02	1	492153.365	224107.621				60	40			20		80			Х			Х				
UCB-1-2003-03	1	492149.998	224115.166			10	50	40			20		80			Х			Х				
UCB-1-2003-04	1	492115.814	224121.507				60	40			20		80			Х			Х				
UCB-1-2003-05	1	492119.818	224135.861			10	50	40			20		80		Х				Х				
UCB-1-2003-06	1	492095.571	224140.889			10	50	40			Trace		100			Х			Х				
UCB-1-2003-07	1	492089.327	224133.650				60	40					100			Х			Х				
UCB-1-2003-08	1	492112.953	224108.269				50	50			20		80			Х			Х				
UCB-1-2003-09	1	492104.542	224114.089				50	50			10		90			Х			Х				
UCB-2-2003-01	1	491126.081	223932.869					60	40		Trace	90	10	1			Х			Х			
UCB-2-2003-02	1	491107.876	223941.788					80	20		40	60		2			X			Х			
UCB-2-2003-03	1	491102.365	223919.423					30	70		-	100		2	-		Х		-		Х		
UCB-2-2003-04	1	491092.193	223914.445					50	50		Trace	100		1			X				X		
UCB-2-2003-05 UCB-2-2003-06	1	491084.550 491081.230	223921.188 223910.626					70 60	30 40		30 10	70 70		1			X			<u> </u>	X X		
UCB-2-2003-06 UCB-2-2003-07	1	491081.230	223910.626					60 50	40 50	}	Trace	70 80	+	2	+		X	+		1	X	+	
UCB-2-2003-07	1	491052.432	223896.008					50 60			30	60		<u>۲</u>			X			+	X		
UCB-2-2003-08	1	491055.888	223892.649					60	40		Trace	80	-	1			X			1	X		
2022200000	· ·		220002.010						-70	1	11406		1	1	+		~	1		1	^	1	
UCB-3-2003-01	1	486712.023	224760.956		50	50					Trace		1	1	Х			1	Х	1			
UCB-3-2003-02	1	486770.807	224714.965		10	20	30	10	30		10	50		2		Х			~~~~~	Х			
UCB-3-2003-03	1	486770.285	224738.526		40	40	10	Trace	10		Trace	20		3	Х				Х				
UCB-3-2003-04	1	486753.700	224740.683		30	40	10	Trace	20		10	20		2	Х				Х				
UCB-3-2003-05	1	486743.501	224734.318				50	Trace	50	Trace	Trace	70	30	2			Х				Х		
UCB-3-2003-06	1	486742.860	224748.013		20	Trace	50	Trace	30		10	50		1			Х				Х		
UCB-3-2003-07	1	486726.482	224758.328			Trace	70	Trace	30		10	20	50	1			Х				Х		
UCB-3-2003-08	1	486714.655	224729.428		10	10	20	20	40		20	60	20	4		Х				Х			
UCB-3-2003-09	1	486708.617	224750.499			10	50	10	30		40	30	30	2			Х				Х		
					_																		
UCB-4-2003-01	1	485913.881	224636.946		Trace	20	60	10	20			30	50	3			X		-		Х		
UCB-4-2003-02	1	485916.900	224634.252					40	60	10	30	50		1		Y .	Х			×	Х		
UCB-4-2003-03 UCB-4-2003-04	1	485911.517	224623.860					30	60	10	10	90		2		Х	×			Х	×		
UCB-4-2003-04 UCB-4-2003-05	1	485899.359 485883.124	224627.508 224612.110					30 30	60 60	10 10	10 30	90 90		1			X				X X		
UCB-4-2003-06	1	485871.522	224605.703				10	30	50	10	20	90 80	Trace	2			X				X		
UCB-4-2003-07	1	485861.028	224604.972				10	30	60	10	30	70	TIACE	1			X				X		
UCB-4-2003-08	1	485855.183	224609.233					70	30	10	00	30	Trace				X				X		
UCB-4-2003-09	1	485842.974	224598.950					80	20		10	20					X				X		
											-	-											
UCB-5-2003-01	2	477908.435	224065.985		30	10	Trace		Trace		70	20		1	Х				Х				
UCB-5-2003-02	2	477899.120	224059.859				Trace	40	60		10			1			Х				Х		
UCB-5-2003-03	2	477895.640	224070.580					30	70		10	Trace		2			Х				Х		
UCB-5-2003-04	2	477891.781	224075.573					30	70		10	Trace		2			Х			ļ	Х		
UCB-5-2003-05	2	477841.171	224090.255					30	70		10	Trace		1			Х				Х		
UCB-5-2003-06	2	477835.139	224070.844					30	70		10	Trace	ļ	1	ļ		X		-		Х	ļ	
UCB-5-2003-07	2	477860.972	224069.252		-			30	70		10	Trace		2			Х			X			
UCB-5-2003-08	2	477867.999	224087.900		Trace			20	80	 	30	10	ł	1	 	X		+		X			
UCB-5-2003-09	2	477872.723	224081.491		Trace			30	70		30	10		2		Х				Х			
UCB-6-2003-01	1	492158.173	224357.932				Trace	70	30		10	10	10				Х			<u> </u>	Х		
UCB-6-2003-01	1	492158.173	224357.932				Trace	70	30		10	10	10				X	+			X		
UCB-6-2003-02	1	492143.007	224355.528				Trace	70	30		30	10	10				X				X		
UCB-6-2003-04	1	492133.985	224355.528				Trace	70	30		30	30	10				X			1	X		
UCB-6-2003-04	1	492131.112	224368.500				Trace	70	30		10	10	10				X	1		1	X		
UCB-6-2003-06	1	492120.721	224374.512				Trace	70	30	1	30	10	10				X	1		1	X	1	
UCB-6-2003-07	1	Missing data point	Missing data point				Trace	70	30		20	10	10				X			1	X		
UCB-6-2003-08	1	492090.109	224366.394				Trace	70	30	1	-	10	10					Х		1		Х	
UCB-6-2003-09	1	492092.174	224365.288				Trace	70	30			10	10					Х	1	1	T	Х	

Appendix G - Habitat Assessment Data (UCB-WQ) (Unconsolidated Bottom - WQ)

				Light Availability			consolidated Bottom -		Water	Quality Measu	rements		
	River					Height Above		- (10)		Dissolved			
Station Number	Section	Northing	Easting	Depth of Sensor (m)	Air / UW	Substrate (cm)	Current Velocity (ft/s)	Temp. (°C)	Conductivity	Oxygen	рН	lurbidity	ORP (mv)
UCB-1-2003-01	1	492164.581	224118.068	0.5	4070 / 040	10	0.04	47.40	0.440		7.40		
UCB-1-2003-02	1	492153.365	224107.621	0.5	1072 / 619	10	0.61	17.42	0.118	8.3	7.49	4.4	-60
UCB-1-2003-03	1	492149.998	224115.166	1.0	1089 / 329	100	0.91						<u> </u>
UCB-1-2003-04	1	492115.814	224121.507	<u> </u>									<u> </u>
UCB-1-2003-05	1	492119.818	224135.861										
UCB-1-2003-06	1	492095.571	224140.889										<u> </u>
UCB-1-2003-07	1	492089.327	224133.650										───
UCB-1-2003-08	1	492112.953	224108.269										<u> </u>
UCB-1-2003-09	1	492104.542	224114.089										
UCB-2-2003-01	1	491126.081	223932.869										'
UCB-2-2003-02	1	491107.876	223941.788										
UCB-2-2003-03	1	491102.365	223919.423										
UCB-2-2003-04	1	491092.193	223914.445	0.5	1788 / 932	10	0.17	17.64	0.121	7.66	7.51	12.4	-73
UCB-2-2003-05	1	491084.550	223921.188	1.0	1808 / 475	100	0.55						
UCB-2-2003-06	1	491081.230	223910.626										
UCB-2-2003-07	1	491069.376	223896.008										
UCB-2-2003-08	1	491052.432	223892.849										
UCB-2-2003-09	1	491055.888	223882.610										
UCB-3-2003-01	1	486712.023	224760.956										
UCB-3-2003-02	1	486770.807	224714.965										
UCB-3-2003-03	1	486770.285	224738.526										
UCB-3-2003-04	1	486753.700	224740.683	0.5	1431 / 591	10	0.30	17.35	0.127	6.89	7.23	7.9	-70
UCB-3-2003-05	1	486743.501	224734.318	1.0	1285 / 400	100	0.81						
UCB-3-2003-06	1	486742.860	224748.013										
UCB-3-2003-07	1	486726.482	224758.328										
UCB-3-2003-08	1	486714.655	224729.428										
UCB-3-2003-09	1	486708.617	224750.499										
UCB-4-2003-01	1	485913.881	224636.946										1
UCB-4-2003-02	1	485916.900	224634.252										
UCB-4-2003-03	1	485911.517	224623.860										1
UCB-4-2003-04	1	485899.359	224627.508	0.5	1510 / 731	10	0.57	17.47	0.132	7.94	7.3	10.2	-71
UCB-4-2003-05	1	485883.124	224612.110	1.0	1503 / 394	100	0.37					_	· · · · · ·
UCB-4-2003-06	1	485871.522	224605.703										1
UCB-4-2003-07	1	485861.028	224604.972								1		t
UCB-4-2003-08	1	485855.183	224609.233								1		1
UCB-4-2003-09	1	485842.974	224598.950								1		t
UCB-5-2003-01	2	477908.435	224065.985				I		1				
UCB-5-2003-02	2	477899.120	224059.859										
UCB-5-2003-03	2	477895.640	224070.580	1		1							<u>├</u>
UCB-5-2003-04	2	477891.781	224075.573	0.5	NA / NA	10	-0.12	17.04	0.132	7.72	7.5	7.2	-69
UCB-5-2003-04	2	477841.171	224070.275	1.0	NA / NA	100	-0.12	11.04	0.102	1.12	,	1.2	
UCB-5-2003-06	2	477835.139	224030.233	1.0	1 1/1 / 11/1	100	0.10		1				<u> </u>
UCB-5-2003-07	2	477860.972	224070.044										<u>├</u> ────
UCB-5-2003-07	2	477867.999	224089.252										<u> </u>
UCB-5-2003-09	2	477872.723	224081.491										L

Appendix G - Habitat Assessment Data (UCB-WQ) (Unconsolidated Bottom - WQ)

				Light Availability	Measurements	Current Veloc	ity Measurements		Water	Quality Measur	ements		
Station Number	River Section	Northing	Easting	Depth of Sensor (m)	Air / UW	Height Above Substrate (cm)	Current Velocity (ft/s)	Temp. (°C)	Conductivity	Dissolved Oxygen	рН	Turbidity	ORP (mv)
UCB-6-2003-01	1	492158.173	224357.932										
UCB-6-2003-02	1	492143.607	224358.969										
UCB-6-2003-03	1	492133.985	224355.528										
UCB-6-2003-04	1	492122.032	224360.062	0.5	1407 / 711.4	10	0.87	17.51	0.127	8.41	7.51	5	-76
UCB-6-2003-05	1	492131.112	224368.500	1.0	1461 / 479.1	100	1.11						
UCB-6-2003-06	1	492120.721	224374.512										
UCB-6-2003-07	1	Missing data point	Missing data point										
UCB-6-2003-08	1	492090.109	224366.394										
UCB-6-2003-09	1	492092.174	224365.288										

Notes:

General Description

UCB-1 - West side of Rogers Island; east side of smaller island in the West River Channel

UCB-2 - ~300 yards south of Lock 7; west side of channel

UCB-3 - Just south of north end of Griffin Island ~100 yards south, east side of channel

UCB-4 - South end of Griffin Island ~300 yards north of south tip, west side of channel

UCB-5 -~300 yards north of Northumberland Bridge; east side of channel

UCB-6 - East side of Roger's Island above POTW outfall

Appendix G - Habitat Assessment Data (UCB-SSAP Grain Size)

Unconsolida	ated Bottom	Samples				2002 -	- 2003 S	SSAP G	irain Siz	ze Analyse	es ³					
Station	1	- 1			3	Sampling	%	%	% Fine	% Medium			%	%	%	Distance to Station
Number	Northing'	Easting ¹	Core ID	Northing	Easting ²	Technique	Clay	Silt	Sand	Sand	Sand	Gravel	Fines	Sands	Coarse	(ft)
UCB-1-2003-01	492164.581	224118.068	RS1-9594-GP003	1614690.20	735370.00	GRAB	6.6	26.9	63.1	3.4	0.0	0.0	96.6	66.5	0.0	78.50
UCB-1-2003-03	492149.998	224115.166	RS1-9594-GP003	1614690.20	735370.00	GRAB	6.6	26.9	63.1	3.4	0.0	0.0	96.6	66.5	0.0	89.99
UCB-2-2003-02	491107.876	223941.788	RS1-9493-GP017	1611222.00	734618.00	GRAB	5.2	9.5	7.7	3.6	4.9	69.1	22.4	16.2	74.0	99.93
UCB-2-2003-03	491102.365	223919.423	RS1-9493-GP017	1611222.00	734618.00	GRAB	5.2	9.5	7.7	3.6	4.9	69.1	22.4	16.2	74.0	24.49
UCB-2-2003-04	491092.193	223914.445	RS1-9493-GP017	1611222.00	734618.00	GRAB	5.2	9.5	7.7	3.6	4.9	69.1	22.4	16.2	74.0	31.39
UCB-2-2003-05	491084.550	223921.188	RS1-9493-GP017	1611222.00	734618.00	GRAB	5.2	9.5	7.7	3.6	4.9	69.1	22.4	16.2	74.0	63.08
UCB-2-2003-06	491081.230	223910.626	RS1-9493-GP017	1611222.00	734618.00	GRAB	5.2	9.5	7.7	3.6	4.9	69.1	22.4	16.2	74.0	66.49
UCB-4-2003-07	485861.028	224604.972	RS1-9089-GP008	1593961.90	736905.40	CORE	1.1	18.4	2.4	15.1	40.2	22.7	21.9	57.7	62.9	68.58
UCB-4-2003-08	485855.183	224609.233	RS1-9089-GP008	1593961.90	736905.40	CORE	1.1	18.4	2.4	15.1	40.2	22.7	21.9	57.7	62.9	47.98
UCB-4-2003-09	485842.974	224598.950	RS1-9089-GP008	1593961.90	736905.40	CORE	1.1	18.4	2.4	15.1	40.2	22.7	21.9	57.7	62.9	34.60

Notes:

All SSAP is based on the February 3, 2004 version of QEA Export.

1. Station coordinates are in NAD83 NY State Plane East (meters).

2. SSAP coordinates are in NAD83 NY State Plane East (feet).

3. SSAP Grain Size Analysis samples >100 ft. from Station are not listed.

Fines = % clay + % silt + % fine sand

Sands = % fine sand + % medium sand + % coarse sand

Coarse = % coarse sand + % gravel

Appendix G - Habitat Assessment Data (UCB-SSAP Other)

Unconsolida	ated Bottom S	Samples	N	learest 2002 -	- 2003 SSAF	P Cores					Surface Data							Subsurface Data					
								Sample	Sample	•					Sample	Sample							
Station						Distance	Sampling	Start	End	Texture		Bulk Density	Moisture Content	тос	Start	End	Texture		Liquid	Plastic Plas	ticity Sno		USCS
Station Number	Northing ¹	Easting ¹	Core ID	Northing ²	Easting ²	to Station (ft)	Sampling Technique	Depth (in.)	Depth (in.)	Description ³	General Description	(q/cm ³)	(%)	(mg/kg)	Depth (in.)	Depth (in.)	Description ³	General Description	Liquid				Group Name
UCB-1-2003-01	492164.581	224118.068	RS1-9594-WS612	1614699.35	735258.89	36.71	CORE	0	2	CL/SI//GR	GRAY	1.1	26	8400	()	()	2000					, .	
UCB-1-2003-02	492153.365	224107.621	RS1-9594-WS612	1614699.35	735258.89	26.20	CORE	0	2	CL/SI//GR	GRAY	1.1	26	8400									
UCB-1-2003-03	492149.998	224115.166	RS1-9594-WS613	1614631.37	735297.96	33.56	CORE	0	2	CL//	GRAY	0.99	34	4200									
UCB-1-2003-04	492115.814	224121.507	RS1-9594-WS614	1614561.18	735259.12	47.53	CORE	0	2	MS/GR/OR/	SOME WOOD	0.77	36	27000								$ \rightarrow $	
UCB-1-2003-05	492119.818	224135.861	RS1-9594-WS170	1614628.42		71.18	CORE	0	2	CS/FS//SI	GREY-BROWN	1.4	17	1000									
UCB-1-2003-06 UCB-1-2003-07	492095.571 492089.327	224140.889 224133.650	RS1-9594-WS173 RS1-9594-WS173	1614492.75 1614492.75	735297.71 735297.71	71.78 55.96	CORE CORE	0	2	GR/CS/FS/SI GR/CS/FS/SI	GREY GREY	1.2 1.2	20 20	2100 2100			-						
UCB-1-2003-08	492089.327	224133.030	RS1-9594-WS614	1614561.18	735259.12	20.78	CORE	0	2	MS/GR/OR/	SOME WOOD	0.77	36	27000									
UCB-1-2003-09	492104.542	224114.089	RS1-9594-WS173	1614492.75	735297.71	26.26	CORE	0	2	GR/CS/FS/SI	GREY	1.2	20	21000									
UCB-2-2003-01	491126.081	223932.869	RS1-9493-WS138	1611307.32	734740.80	54.57	CORE	0	2	FS/OR//	BROWN; SOME WOOD	1.2	17	7800									
									_		DARK GREY BROWN. OR= WOOD CHIPS,												
UCB-2-2003-02	491107.876	223941.788	RS1-9493-WS714	1611228.64	734704.64	18.19	CORE	0	2	MS//FS/OR	WOOD PULP. SLIGHT ODOR DARK GRAY BROWN, ORGANICS/LEAVES	1.3	24										
UCB-2-2003-03	491102.365	223919.423	RS1-9493-WS655	1611235.39	734622.27	22.57	CORE	0	2	SI/FS/MS/OR	& VEGETATION	0.59	42	26000									
UCB-2-2003-04	491092.193	223914.445	RS1-9493-WS141	1611167.03	734661.15	42.93	CORE	0	2	FS/CS//GR	OLIVE BROWN	1.4	22	3100									
UCB-2-2003-05	491084.550	223921.188	RS1-9493-WS141	1611167.03	734661.15	13.06	CORE	0	2	FS/CS//GR	OLIVE BROWN	1.4	22	3100									
UCB-2-2003-06	491081.230	223910.626	RS1-9493-WS657	1611166.31	734584.44	30.90	CORE	0	2	OR///SI	GRAY BROWN, ORGANICS/SILT	0.10	83	320000									
UCB-2-2003-07 UCB-2-2003-08	491069.376 491052.432	223896.008 223892.849	RS1-9493-WS658 RS1-9493-WS658	1611098.13 1611098.13	734541.47 734541.47	30.41 39.38	CORE CORE	0	2	SI/FS// SI/FS//	BROWN BROWN	0.84	39 39	21000 21000									
UCB-2-2003-08	491052.432	223892.849	RS1-9493-WS658	1611098.13	734541.47	39.38	CORE	0	2	SI/FS//	BROWN	0.84	39	21000									
UCB-3-2003-01	486712.023	224760.956	RS1-9190-ET260	1596827.21	737419.44	17.34	CORE	0	2	SI/OR//	BROWN. OR= WEEDS, ROOTS	0.64	56	37000									
UCB-3-2003-02	486770.807	224714.965	RS1-9190-ET230	1597033.71	737140.58	113.51	CORE	0	2	FS/SI/CS/OR	GRAY-BROWN; SOME WOOD	1.2	27.8	12000									
UCB-3-2003-03	486770.285	224738.526	RS1-9190-ET232	1597036.85	737384.45	60.10	CORE	0	2	SI//FS/OR	OLIVEBROWN,ORG=VEG	0.52	58.9	43000									
UCB-3-2003-04	486753.700	224740.683	RS1-9190-ES248	1596893.70	737294.03	76.99	CORE	0	2	FS/SI/GR/CS	DARK BROWN	1.5	20.3	3000								\rightarrow	
UCB-3-2003-05 UCB-3-2003-06	486743.501 486742.860	224734.318 224748.013	RS1-9190-ES248 RS1-9190-ES248	1596893.70 1596893.70	737294.03 737294.03	37.58 72.57	CORE CORE	0	2	FS/SI/GR/CS FS/SI/GR/CS	DARK BROWN DARK BROWN	1.5 1.5	20.3 20.3	3000 3000									
UCB-3-2003-06	486726.482	224748.013	RS1-9190-E3246	1596893.70	737419.44	48.15	CORE	0	2	SI/OR//	BROWN. OR= WEEDS, ROOTS	0.64	20.3	37000									
UCB-3-2003-08	486714.655	224729.428	RS1-9190-ET259	1596824.83	737336.68	37.20	CORE	0	2	FS/GR/OR/	DARK GREY BROWN. OR= WOOD.	1.6	13	1300									
UCB-3-2003-09	486708.617	224750.499	RS1-9190-ET259	1596824.83	737336.68	35.56	CORE	0	2	FS/GR/OR/	DARK GREY BROWN. OR= WOOD.	1.6	13	1300									
UCB-4-2003-01	485913.881	224636.946	RS1-9089-WT125	1594188.75	736935.87	62.04	CORE	0	2	FS///OR	BROWN; OR-TRACE ROOTS	1	34	5400	2	24	FS//OR/	BROWN, OLIVE BROWN, & LIGHT BROWN; TIGHT MATERIAL; OR-LITTLE ROOTS	0	0	2	67 Sa	andy Silt
UCB-4-2003-02	485916.900	224634.252	RS1-9089-WT125	1594261.94		50.77	CORE	0	2	FS///SI	BROWN; TRACE TWIGS	1.3	28.6	21000	2	24	13//01(/		0	0	۷.	<u>, 5</u>	andy Silt
										, , ,													
									_									BROWN, OLIVE BROWN, & LIGHT BROWN;					
UCB-4-2003-03 UCB-4-2003-04	485911.517 485899.359	224623.860 224627.508	RS1-9089-WT125	1594188.75	736935.87	18.56 34.32	CORE CORE	0	2	FS///OR FS//SI/OR	BROWN; OR-TRACE ROOTS	1	34	5400 11000	2	24	FS//OR/	TIGHT MATERIAL; OR-LITTLE ROOTS	0	0	2.	67 Sa	andy Silt
UCB-4-2003-04	485883.124	224627.508	RS1-9089-CT130 RS1-9089-WT711	1594123.13 1594094.15	736978.61 736934.58	21.03	CORE	0	2	FS//	BROWN, OR= WOOD BROWN	1.1 1.3	35.2 24	4000									
UCB-4-2003-06	485871.522	224605.703	RS1-9089-WT137	1594058.28	736858.34	35.92	CORE	0	2	SI//	GRAY-BROWN	0.55	62.1	57000									
UCB-4-2003-07	485861.028	224604.972	RS1-9089-CT142	1593986.56	736899.50	43.25	CORE	0	2	FS///OR	LIGHT BROWN, OR-BARK	1	6.9	1200									
UCB-4-2003-08	485855.183	224609.233	RS1-9089-CT142	1593986.56	736899.50	24.07	CORE	0	2	FS///OR	LIGHT BROWN, OR-BARK	1	6.9	1200									
UCB-4-2003-09	485842.974	224598.950	RS1-9089-CT142	1593986.56	736899.50	32.43	CORE	0	2	FS///OR	LIGHT BROWN, OR-BARK	1	6.9	1200									
UCB-5-2003-01 UCB-5-2003-02	477908.435 477899.120	224065.985 224059.859	RS2-8584-ET129 RS2-8584-ET129	1567891.04 1567891.04	735137.05 735137.05	48.90 37.71	CORE CORE	0	2	SI/FS// SI/FS//	GRAY-BROWN GRAY-BROWN	0.99	38.6 38.6	13000 13000									
UCB-5-2003-02	477895.640	224039.839	RS2-8584-ET129	1567891.04		5.04	CORE	0	2	SI/FS//	GRAY-BROWN	0.99	38.6	13000									
UCB-5-2003-04			RS2-8584-ET129				CORE	0	2	SI/FS//	GRAY-BROWN	0.99	38.6	13000									
UCB-5-2003-05	477841.171	224090.255	RS2-8584-ET140	1567685.73	735176.83	40.82	CORE	0	2	SI///OR	GRAY BROWN, OR=VEG	0.52	57.1	42000	2	12	SI//FS/OR	GRAY BROWN, OR=VEG	43	0	2.	27 Sil	ilty Sand
UCB-5-2003-06	477835.139	224070.844	RS2-8584-ET140	1567685.73	735176.83	39.51	CORE	0	2	SI///OR	GRAY BROWN. OR=VEG	0.52	57.1	42000	2	12	SI//FS/OR	GRAY BROWN, OR=VEG	43	0	2	27 Sil	ilty Sand
UCB-5-2003-07	477860.972			1567754.14		28.44	CORE	0	2	SI/FS/GR/	BROWN	0.59	49.5	18000	-					Ť	2.		cana
UCB-5-2003-08	477867.999	224087.900	RS2-8584-ET138	1567760.60		51.06	CORE	0	2	SI/FS/OR/	GRAY-BROWN; SOME WOOD	0.76	48.8	21000			_						
UCB-5-2003-09	477872.723		RS2-8584-ET131	1567821.40		74.03	CORE	0	2	SI///OR	DARK OLIVEBROWN, ORG=VEG	0.49	59.1	29000									
UCB-6-2003-01	492158.173	224357.932		1614701.17		27.14	CORE	0	2	FS/CS//	BROWN	1.1	21	6800								\square	
UCB-6-2003-02	492143.607	224358.969	RS1-9493-WT002 RS1-9493-WT002	1614631.16	736100.17	18.68	CORE	0	2	CS/FS//OR	OLIVE BROWN, TRACE SLAG, ORG=VEG OLIVE BROWN, TRACE SLAG, ORG=VEG	1.1	27	3900					├			-+	
UCB-6-2003-03	492133.985	224355.528	1.01-9490-001002	1614631.16	736100.17	34.62	CORE	0	2	CS/FS//OR	OLIVE BROWN, TRACE SLAG, ORGEVEG	1.1	27	3900				DARK BROWN, TRACE SLAG, DARK				-+	
UCB-6-2003-04	492122.032	224360.062	RS1-9493-WT004	1614563.09	736060.13	28.78	CORE	0	2	OR//	BROWN WOOD CHIPS	0.20	82	190000	2	24	FS//CS/CL	BROWN CLAY LAYER 22-24in.	0	0	2.	36 Sil	ilty Sand
UCB-6-2003-05	492131.112		RS1-9493-WT002	1614631.16		34.65	CORE	0	2	CS/FS//OR	OLIVE BROWN, TRACE SLAG, ORG=VEG	1.1	27	3900									
UCB-6-2003-06	492120.721	224374.512	RS1-9493-WT701	1614566.54	736142.29	6.93	CORE	0	2	MS/FS//	DARK BROWN;TRACE SLAG	1.2	22	16000									

Appendix G - Habitat Assessment Data (UCB-SSAP Other)

Unconsolida	ted Bottom S	Samples	Ne	earest 2002 -	2003 SSAP	Cores					Surface Data							Subsurface Data					
								Sample	Sample						Sample	Sample							
						Distance		Start	End			Bulk	Moisture		Start	End							USCS
Station						to Station	Sampling	Depth	Depth	Texture		Density	Content	TOC	Depth	Depth	Texture		Liquid	Plastic	Plasticity	Specific	Group
Number	Northing ¹	Easting ¹	Core ID	Northing ²	Easting ²	(ft)	Technique	(in.)	(in.)	Description ³	General Description	(g/cm ³)	(%)	(mg/kg)	(in.)	(in.)	Description ³	General Description	Limit	Limit	Index	Gravity	Name
UCB-6-2003-08	492090.109	224366.394	RS1-9493-WT007	1614492.39	736099.96	28.16	CORE	0	2	SI/FS/GR/OR	GREY; O-WOOD	0.18	78	84000									
UCB-6-2003-09	492092.174	224365.288	RS1-9493-WT007	1614492.39	736099.96	20.64	CORE	0	2	SI/FS/GR/OR	GREY; O-WOOD	0.18	78	84000									

<u>Notes:</u> All SSAP is based on the February 3, 2004 version of QEA Export. 1. Station coordinates are in NAD83 NY State Plane East (meters).

Station coordinates are in NAD63 NY State Plane East (neets).
 CL = clay; SI = silt; FS = fine sand; MS = medium sand;

CS = coarse sand; GR = gravel; OR = organic

				Species		Total	Total Stem					
Habitat				Biomass	No. Stems	Biomass	Density	Percent				
Туре	Station	Quadrat	Species	(g/quad)	spp	(g/m²)	(stems/m2)	Cover	Depth (cm)	K (mg/l)	PO4 (mg/l)	NH4 (mg/l)
SAV	1	1	Va	69.69	229	562	1880	60	157			
SAV	1	1	Ppf	0.56	6				157			
SAV	1	2	Pn	3.71	26	315.92	888	50				
SAV	1	2	Va	35.78	85				85			
SAV	1	3	Va	11.21	36	89.68	288	50				
SAV	1	4	Pn	12.52	73	174.72	888	50				
SAV	1	4	Va	9.32	38				83			
SAV	1	5	Va	13.46	65	207.36	1536	70				
SAV	1	5	Pn	4.14	59				87			
SAV	1	5	Ppf	8.32	68				87			
SAV	1	6	Pn	5.83	53	85.2	552	30	140			
SAV	1	6	Va	4.82	16				140			
SAV	1	7	Va	9.13	37	73.04	296	10				
SAV	1	8	Va	16.69	51	133.52	408	60				
SAV	1	9	Va	14.93	50	119.44	400	20	157			
SAV	2	1	Ec	0.12	1	104.96	280	60	110			
SAV	2	1	Va	13	34	104	272	60	110			
SAV	2	2	Va	4.28	18	34.24	144	20	204			
SAV	2	3	Va	13.51	38	108.08	304	30	140			
SAV	2	4	Va	8.92	38	71.36	304	30	75.5			
SAV	2	5	Va	4.67	30	37.36	240	20	74	28.8		
SAV	2	6	Pn	1.7	16	64.64	400	20	74	32.1	35.9	8.83
SAV	2	6	Va	6.38	34				80			
SAV	2	7	Va	8.17	4	65.36	32	80				
SAV	2	8	Pn	1.38	13	148.8	512	80	79	34.7	27.8	8.12
SAV	2	8	Va	17.22	51				125			
SAV	2	9	Va	4.86	19	38.88	152	40	164			
SAV	3	1	Va	3.25	21	26	168	10	127			
SAV	3	2	Va	8.46	23	67.68	184	30				
SAV	3	3	Va	9.97	46	79.76	368	70	77			
SAV	3	4	Pn	1.18	10	64	344	70				
SAV	3	4	Va	6.82	33				127			
SAV	3	5	Ec	0.15	7	24.48	192	50				
SAV	3	5	Va	2.91	17				200			
SAV	3	6	Va	6.72	28	53.76	224	70	92			
SAV	3	7	Va	5.12	32	40.96	256	60	102			
SAV	3	8	Ec	0.52	9	67.84	360	60				
SAV	3	8	Va	7.96	36				191			
SAV	3	9	Ec	1.15	1	72.4	320	50	191			
SAV	3	9	Va	7.9	39				45			
SAV	4	1	Va	13.3	28	106.4	224	70	276	38.2		
SAV	4	2	Va	10.26	17	82.08	136	50	117	32.5	34.7	12.9

Habitat Type	Station	Quadrat	Species	Species Biomass (g/quad)	No. Stems spp	Total Biomass (g/m²)	Total Stem Density (stems/m2)	Percent Cover	Depth (cm)	K (ma/l)	PO4 (mg/l)	NH4 (mg/l)
SAV	4	3	Va	11.3	20	90.4	160	50	• • •		(····· (····g/·/
SAV	4	4	Va	8.37	28	66.96	224	50				
SAV	4	5	Va	6.11	19	48.88	152	20				
SAV	4	6	Va	10.34	26	82.72	208	50	237	18.7	14.6	7.96
SAV	4	7	Va	8.99	19	71.92	152	40				
SAV	4	8	Va	10.24	34	81.92	272	50				
SAV	4	9	Pn	0.73	12	143.36	544	50				
SAV	4	9	Va	17.19	56				144			
SAV	5	1	Ppf	2.74	11	39.52	152	80	144			
SAV	5	1	Va	2.2	8				73	18.2	9.13	5.1
SAV	5	2	Ppf	1.06	2	119.76	464	60				
SAV	5	2	Va	13.91	56				73			
SAV	5	3	Va	11.56	41	92.48	328	80	70			
SAV	5	4	Va	4.43	12	35.44	96	70	200	26.2	31.8	7.44
SAV	5	5	Va	18.22	52	145.76	416	90				
SAV	5	6	Va	13.23	45	105.84	360	60	209			
SAV	5	7	Va	4.21	27	33.68	216	80	235			
SAV	5	8	Va	3.94	20	31.52	160	50	190			
SAV	5	9	Va	6.8	15	54.4	120	40	80			
SAV	6	1	Va	23.96	39	191.68	312	100	107	48.3	133	4.39
SAV	6	2	Ec	0.13	1	181.2	256	100	107			
SAV	6	2	Va	22.52	31				164			
SAV	6	3	Va	6.84	28	54.72	224	60	110			
SAV	6	4	Ec	2.22	1	17.76	8	90	200	26.1	19.7	10.9
SAV	6	5	Va	6.1	21	48.8	168	80	193	25.7	19.5	9.43
SAV	6	6	Va	9.49	23	75.92	184	50	206			
SAV	6	7	Va	10.13	38	81.04	304	90	183			
SAV	6	8	Va	10.09	36	80.72	288	80	212			
SAV	6	9	Ec	0.43	7	56.24	288	60				
SAV	6	9	Va	6.6	29	52.8	232	60				
SAV	7	1	Pg	3.36	18	65.84	272	70	126	43.2	2 71.4	11.7
SAV	7	1	Va	4.87	16			70				
SAV	7	2	Ec	0.96	7	42.24	296	60		29.6	30.3	12
SAV	7	2	Va	4.32	30			60				
SAV	7	3	Va	13.93	30	111.44	240	90		23.5	27.5	5.92
SAV	7	4	Va	4.63	38	37.04	304	80				
SAV	7	5	Va	11.92	25	95.36	200	50				
SAV	7	6	Va	5.27	32	42.16	256	60				
SAV	7	7	Va	7.63	43	61.04	344	90				
SAV	7	8	Va	14.74	37	117.92	296	80	243			
SAV	7	9	Va	7.81	30	62.48	240	80				
SAV	8	1	Pn	7.6	27	60.8	216	80	52	27.4	28.2	9.05

Habitat Type	Station	Quadrat	Species	Species Biomass (g/quad)	No. Stems spp	Total Biomass (g/m²)	Total Stem Density (stems/m2)	Percent Cover	Depth (cm)	K (mg/l)	PO4 (mg/l)	NH4 (mg/l)
SAV	8	2	Pn	4.4	15	56.64	320	80				
SAV	8	2	Va	2.68	25				57			
SAV	8	3	Pn	2.57	21	20.56	168	50	36			
SAV	8	4	Ec	0.56	8	51.04	360	50	115			
SAV	8	4	Va	5.82	37				115			
SAV	8	5	Ec	0.34	7	66.96	416	60	117			
SAV	8	5	Va	8.03	45				117			
SAV	8	6	Va	8.89	37	71.12	296	60	171	37.7	26	12.8
SAV	8	7	Ec	3.7	26	67.52	408	60	171	28.6	43.3	7.85
SAV	8	7	Va	4.74	25				46			
SAV	8	8	Va	6.55	26	52.4	208	50	127			
SAV	8	9	Ec	0.21	1	118.88	224	90	61			
SAV	8	9	Va	14.65	27				61			
SAV	9	1	Va	7.04	37	56.32	296	90	45	59.2	29.4	33.1
SAV	9	2	Va	28.53	38	228.24	304	70	169	68.2	33.9	16.3
SAV	9	3	Va	8.94	57	71.52	456	40	174			
SAV	9	4	Va	24.2	57	193.6	456	70	87			
SAV	9	5	Va	10.72	46	85.76	368	30	137	15.8	12.2	2.38
SAV	9	6	Va	19.4	26	155.2	208	70	97			
SAV	9	7	Va	2.04	17	16.32	136	30	55	35.5	45.6	6.5
SAV	9	8	Va	2.27	17	18.16	136	40	150			
SAV	9	9	Va	6.97	21	55.76	168	30	150			

			Length	Length	Length	Length	Length			
Station	Quadrat	Species	(cm)	(cm)	(cm)	(cm)	(cm)	Min	Max	Mean
1	1	Va	153.2	167	176.1	165.4	156.5	153.2	176.1	163.64
1	1	Ppf	131.2	57.3	50.2	30.8	47.3	30.8	131.2	63.36
1	2	Va	160.1	170.3	164.6	202	146.4	146.4	202	168.68
1	2	Pn	135.8	153.6	151	157.1	88.8	88.8	157.1	137.26
1	3	Va	108.1	137.6	155.4	168.3	154.2	108.1	168.3	144.72
1	4	Va	133.9	153.7	108.1	136	141.1	108.1	153.7	134.56
1	4	Pn	119.9	108.8	147.2	112.3	137.4	108.8	147.2	125.12
1	5	Va	96.1	78.8	94.9	106.1	91.1	78.8	106.1	93.4
1	5	Pn	106.2	109.5	104.4	85.6	103.9	85.6	109.5	101.92
1	5	Ppf	76.2	90.2	81	101	90	76.2	101	87.68
1	6	Va	120.4	96	91.1	91.1	94.8	91.1	120.4	98.68
1	6	Pn	149.1	151.3	129.2	135.9	121.5	121.5	151.3	137.4
1	7	Va	81.9	92	97.8	81.2	78	78	97.8	86.18
1	8	Va	94.1	138.4	133.5	120.6	136.1	94.1	138.4	124.54
1	9	Va	129.8	124	138.1	107.9	137.5	107.9	138.1	127.46
2	1	Va	129.8	107.9	116.3	75	98.1	75	129.8	105.42
2	1	Ec	65					65	65	65
2	2	Va	146.1	109.4	70.9	87.9	80.1	70.9	146.1	98.88
2	3	Va	132.2	123.6	152	162.8	134	123.6	162.8	140.92
2	4	Va	86.8	68.4	71.5	83	80.5	68.4	86.8	78.04
2	5	Va	54	59.2	67.9	64.4	53.8	53.8	67.9	59.86
2	6	Va	68.2	66.4	58.2	46	48.6	46	68.2	57.48
2	6	Pn	61.4	75.8	71	48.1	71	48.1	75.8	65.46
2	7	Va	59.8	82.4	51.3	57.2	59.1	51.3	82.4	61.96
2	8	Va	124.2	107.9	117.5	88.3	111.1	88.3	124.2	109.8
2	8	Pn	21.3	70.1	98.9	84.1	73.1	21.3	98.9	69.5
2	9	Va	83.1	63.3	43.3	56.2	59.5	43.3	83.1	61.08
3	1	Va	106.7	110.1	105.7	88.4	89.6	88.4	110.1	100.1
3	2	Va	100.3	84.4	133.1	153.7	123.3	84.4	153.7	118.96
3	3	Va	74.8	84	70.4	40.6	57	40.6	84	65.36
3	4	Va	70.1	101.9	73.5	81.2	81.7	70.1	101.9	81.68

			Length	Length	Length	Length	Length			
Station	Quadrat	Species	(cm)	(cm)	(cm)	(cm)	(cm)	Min	Max	Mean
3	4	Pn	76.2	111.9	96.3	135.1	34.4	34.4	135.1	90.78
3	5	Va	110.8	99.4	80.5	50.9	51.3	50.9	110.8	78.58
3	5	Ec								
3	6	Va	74.1	71.9	67.7	58	73.6	58	74.1	69.06
3	7	Va	61.4	66.1	65.4	62.5	61.4	61.4	66.1	63.36
3	8	Va	108.4	59.5	67	62.1	95.9	59.5	108.4	78.58
3	8	Ec	66.2	27.5	22.2	23.5	19.5	19.5	66.2	31.78
3	9	Va	44.3	42.7	49.5	43.6	50.1	42.7	50.1	46.04
3	9	Ec								
4	1	Va	16.5	167.7	154	149.5	111.1	16.5	167.7	119.76
4	2	Va	107.2	83.1	55.3	55.4	68.2	55.3	107.2	73.84
4	3	Va	138.2	131.9	143.3	137.1	115.9	115.9	143.3	133.28
4	4	Va	139	93.2	107.8	107.4	98.3	93.2	139	109.14
4	5	Va	83.9	65.9	57.9	56.6	54.1	54.1	83.9	63.68
4	6	Va	83.5	115.3	97.4	84.2	77.4	77.4	115.3	91.56
4	7	Va	96	117.8	123.7	101	87.3	87.3	123.7	105.16
4	8	Va	109.9	92.9	89.5	80.2	52.4	52.4	109.9	84.98
4	9	Va	104.7	127.5	105.7	95.7	77.1	77.1	127.5	102.14
4	9	Pn	47.4	65	46.5	43.9	43.9	43.9	65	49.34
5	1	Va	64.5	44.8	73.7	63.8	47.1	44.8	73.7	58.78
5	1	Ppf	103.3	78.5	77	35.2	34.5	34.5	103.3	65.7
5	2	Va	79.1	76.1	62	65.2	63.4	62	79.1	69.16
5	2	Ppf	105.2	75.4				75.4	105.2	90.3
5	3	Va	76.2	79	73.1	53.4	67.3	53.4	79	69.8
5	4	Va	156.4	41	45.4	44	76.1	41	156.4	72.58
5	5	Va	103.8	108	102.5	91.2	97.8	91.2	108	100.66
5	6	Va	96.6	99	108.5	94.4	72.7	72.7	108.5	94.24
5	7	Va	90.4	59.6	73.9	32.3	59.1	32.3	90.4	63.06
5	8	Va	85.6	45.6	60.2	66.6	62	45.6	85.6	64
5	9	Va	62.5	71.2	58.9	49	54.4	49	71.2	59.2
6	1	Va	112.4	123.3	139.2	100.1	101	100.1	139.2	115.2

			Length	Length	Length	Length	Length			
Station	Quadrat	Species	(cm)	(cm)	(cm)	(cm)	(cm)	Min	Max	Mean
6	2	Va	205.3	177.3	183.1	212.7	181.4	177.3	212.7	191.96
6	3	Va	74.2	92.5	89.2	84.7	41	41	92.5	76.32
6	4	Ec								
6	5	Va	118.3	115.9	130.7	78.7	53	53	130.7	99.32
6	6	Va	101.2	125.3	124.7	104.6	73.9	73.9	125.3	105.94
6	7	Va	86.9	91.5	82	53.4	122.1	53.4	122.1	87.18
6	8	Va	99.1	78.9	68	86.1	85.2	68	99.1	83.46
6	9	Va	92.1	88.4	75.6	66.9	57.9	57.9	92.1	76.18
6	9	Ec	30.4	44	28.9	15	12.9	12.9	44	26.24
7	1	Va	44.4	40.3	67.2	49.8	29.6	29.6	67.2	46.26
7	1	Pg	81.3	78.7	108.1	66.5	97	66.5	108.1	86.32
7	2	Va	69	57.9	58	55	46.8	46.8	69	57.34
7	2	Ec	38.2	38.2	42.8	24	26.5	24	42.8	33.94
7	3	Va	156.2	138.7	120.8	116.9	109.1	109.1	156.2	128.34
7	4	Va	43.2	40.2	41.5	33	31.9	31.9	43.2	37.96
7	5	Va	122.4	82.1	107.2	78.2	83	78.2	122.4	94.58
7	6	Va	48.5	71.9	55.9	57.8	49.2	48.5	71.9	56.66
7	7	Va	51.8	40.2	54.2	46.6	34.1	34.1	54.2	45.38
7	8	Va	129.5	135.5	141.4	107.8	106.8	106.8	141.4	124.2
7	9	Va	84.5	95.9	87.3	84	85.2	84	95.9	87.38
8	1	Pn	69.1	80.3	62	65.5	63.4	62	80.3	68.06
8	2	Va	21	27	38.9	27.8	45.3	21	45.3	32
8	2	Pn	74.6	83.3	68.7	66.3	96.2	66.3	96.2	77.82
8	3	Pn	44.4	42.4	43.9	56.7	42.9	42.4	56.7	46.06
8	4	Va	58.8	40.6	37.2	34.7	51.4	34.7	58.8	44.54
8	4	Ec	40.7	22.5	18.9	26	26	18.9	40.7	26.82
8	5	Va	92.1	63.2	80.2	78.8	70.7	63.2	92.1	77
8	5	Ec	32.5	20.3	23.8	23.1	23.2	20.3	32.5	24.58
8	6	Va	86.2	109.3	98.4	59.4	71.3	59.4	109.3	84.92
8	7	Va	49.5	36.2	48.9	45.5	37	36.2	49.5	43.42
8	7	Ec	21.7	48.8	35.8	31.5	23.3	21.7	48.8	32.22

			Length	Length	Length	Length	Length			
Station	Quadrat	Species	(cm)	(cm)	(cm)	(cm)	(cm)	Min	Max	Mean
8	8	Va	75.5	65.8	58.8	55.7	66.1	55.7	75.5	64.38
8	9	Va	78	73.8	82.9	55.3	47.4	47.4	82.9	67.48
8	9	Ec	49.2					49.2	49.2	49.2
9	1	Va	48.9	40.8	45.7	37.4	33.5	33.5	48.9	41.26
9	2	Va	123.9	137.3	128.1	111.1	122.1	111.1	137.3	124.5
9	3	Va	83.8	97.7	120.8	75.1	88.5	75.1	120.8	93.18
9	4	Va	100.7	104.9	87.4	76.3	92.3	76.3	104.9	92.32
9	5	Va	64.4	69.7	54.5	54.9	53.9	53.9	69.7	59.48
9	6	Va	114.9	127.1	124.8	102.3	116.3	102.3	127.1	117.08
9	7	Va	31.8	41	28.4	41.4	30.5	28.4	41.4	34.62
9	8	Va	60.6	57.7	48.3	47.1	68.9	47.1	68.9	56.52
9	9	Va	81.3	72	87.4	56.8	80.5	56.8	87.4	75.6

Appendix G - Habitat Assessment Data (SAV WQ)

		Light A	vailability Measurements		Currer	nt Velocity Meas	surements						Wat	ter Quality Meas	surements						
							Outside Edge							Paramete	r						
						Center of Bed	•			Ce	nter of B	ed					Outside	Edge of	Bed		
					Height																Depth Below
	Depth of Sensor	f Water Depth	Center of Bed	Outside Edge of Bed	Above Substrate	Current	Current			Dissolved				Depth Below			Dissolved				Surface
Station		(cm)	(Air / UW)	(Air / UW)	(cm)		Velocity (ft/s)	Temp. (°C)			рН	Turbidity	ORP (mv)	Surface (cm)	Temp. (°C)			pН	Turbidity	ORP (mv)	
1	0.5	157	640 (top of canopy) / 393		10	0.21	N/A	21.1	0.104	6.82	7.15	BLD	21	30	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1	1	N/A	637 / 30 (in veg)	N/A / N/A *	100	1.12	N/A														
2	0.5	131	405 / 266	397 / 169	10	0.08	0.38	21.6	0.104	6.99	8.28	BDL	33	25	21.5	0.104	7.11	6.62	BDL	34	25
2	1	202	410 / 133	394 / 90	100	0.32	0.86														
3	0.5	143	1467 / 722 **	1492 / 715 **	10	-0.07	-0.3	20.32	0.129	6.99	7.25	70.8	-3	40	20.44	0.121	7.39	7.21	-2.7	-3	40
3	1	400+	1483 / 493 **	1510 / 494 **	100	0.02	0.66														
4	0.5	183	1327 / 635	1432 / 579	10	0.04	-0.03	20.47	0.13	7.39	7.3	-3	-52	30	20.48	0.131	7.43	7.25	-3.1	-6	30
4	1	264	1338 / 252 (in veg)	1571 / 403	100	0.01	0.3														
5	0.5	186	1170 / 710	949 / 409	10	-0.06	-0.12	19.5	0.14	7.09	7.3	-3.2	-10	25	19.3	0.137	6.77	7.27	-5.6	-13	25
5	1	375	1225 / 364	1105 / 218	100	0.5	0.14														
6	0.5	187	740 / 324	224 / 95	10	-0.07	0.02	19.64	0.136	7.53	6.23	-1.9	-6	25	19.47	0.135	7.46	6.4	-3.8	-1	50
6	1	215	708 / 209	209 / 56	100	0.02	0.31														
7	0.5	420	131 / 42	1290 / 714	10	0	0.06	19.54	0.137	6.83	7.18	-1.8	-31	40	19.27	0.131	7.069	7.32	-4.5	-39	25
7	1	192	124 / 124	1287 / 465	100	-0.02	0.1														
8	0.5	N/A / N/A ***	N/A / N/A ***	N/A / N/A ***	10	-0.02	0.21	18.26	0.178	7.3	7.53	20.8	-67	35	18.17	0.172	7.4	7.41	20.3	-68	25
8	1	N/A / N/A ***	N/A / N/A ***	N/A / N/A ***	100	0	0.43														
9	0.5	N/A / N/A ***	N/A / N/A ***	N/A / N/A ***	10	0.18	0.21	18.15	0.174	7.14	7.48	23.3	-81	25	18.17	0.172	7.4	7.41	20.3	-68	25
9	1	N/A / N/A ***	N/A / N/A ***	N/A / N/A ***	100	-0.04	0.43														

Notes:

* No outside edge of bed, vegetation all the way across the channel.

** 3 inches of rain fell on 9/23/03 causing highwater and turbid conditions.

*** Due to overcast, light rain and turbid conditions, light measurements were not taken.

Appendix G - Habitat Assessment Data (SAV-SSAP Other)

SA	V Samples		1	Nearest 200)2 - 2003 SS/	AP Cores					Surface Data							Subsurface Data					
	1							Sample	-			Bulk				Sample			1				
						Distance to Station	Sampling	Start Depth	End	Texture		Bulk Density	Moisture Content	тос	Start Depth	End Depth	Texture		Liquid	Plastic	Plasticity	Specific	USCS Group
Station Number	Latitude	Longitude	Core ID	Northing ¹	Easting	(ft)	Technique	(in.)	Depth (in.)	Description ²	General Description	(g/cm ³)	(%)	(mg/kg)	(in.)	(in.)	Description ²	General Description	Limit	Limit	Index	Gravity	Name
SAV-1-2003-Q1	43.26643	-73.59257	RS1-9594-WS057	1616434.00	6 733859.91	89.75	CORE	0	2	CS/GR//OR	MED BROWN, OR=VEGETATION	1.2	16	16000	()	()						,	
SAV-1-2003-Q2	43.26679	-73.59149	RS1-9594-WS051	1616572.54		78.96	CORE	0	2	FS/GR/SI/OR	DARK GRAY; FEW WEEDS	1.2	25	6000									
SAV-1-2003-Q3	43.26609	-73.59331	RS1-9594-WS061	1616293.47	7 733619.37	57.59	CORE	0	2	GR/SI/CS/FS	DARK GREY BROWN	1.3	20	4800									└─── ┘
SAV-1-2003-Q4 SAV-1-2003-Q5	43.26598 43.26619	-73.59312 -73.59302	RS1-9594-WS061 RS1-9594-WS061	1616293.47 1616293.47	7 733619.37 7 733619.37	107.72 71.53	CORE CORE	0	2	GR/SI/CS/FS GR/SI/CS/FS	DARK GREY BROWN DARK GREY BROWN	1.3 1.3	20 20	4800 4800									┝────┤
SAV-1-2003-Q6	43.26606	-73.59166	RS1-9594-WS069	1616158.47	7 734020.03	76.89	CORE	0	2	SI/FS/CS/OR	DARK GREY-BROWN; O-VEGETATION	1.1	30	6500									I
SAV-1-2003-Q7	43.26476	-73.59066	RS1-9594-WS083	1615737.25	5 734258.78	66.85	CORE	0	2	CS/FS/GR/OR	DARK BROWN	1.4	21	7200									
SAV-1-2003-Q8	43.26527	-73.59228	RS1-9594-WS072	1616014.08		125.34	CORE	0	2	SI//FS/OR	DARK BROWN;O-VEGETATION	0.83	42	9800									
SAV-1-2003-Q9 SAV-2-2003-Q1	43.26521 43.26087	-73.59135 -73.58751	RS1-9594-WS074 RS1-9594-WS616	1616013.62 1614355.46	2 734102.28	101.64 39.94	CORE CORE	0	2	FS/GR/SI/OR FS/SI/MS/	DARK GREY COARSE SAND	1.2	20	26000									├──── │
SAV-2-2003-Q1	43.26087	-73.58736	RS1-9594-WS016 RS1-9594-WS177	1614355.46	6 735137.89 1 735143.19	79.82	CORE	0	2	GR/CS/FS/SI	DARK GREY	0.96 1.3	38 21	26000 4800									├─── ┤
SAV-2-2003-Q3	43.26025	-73.58727	RS1-9493-WS029	1614079.83	3 735217.27	51.64	CORE	0	2	SI/GR/CS/FS	DARK GREY	1.3	16	2100									
SAV-2-2003-Q4	43.26169	-73.58883	RS1-9594-WS167	1614634.09	9 734898.86	77.88	CORE	0	2	GR///SI	BROWN ;VOID WITHIN CORE SAMPLE	0.93	21	8200									
SAV-2-2003-Q5	43.26015	-73.58798	RS1-9493-WS603	1614075.87	7 735138.56	83.13	CORE	0	2	GR/FS/OR/	AND TRACE OF WOOD	0.86	14	11000									└─── ┘
SAV-2-2003-Q6 SAV-2-2003-Q7	43.26138 43.25940	-73.58780 -73.58789	RS1-9594-WS708 RS1-9493-WS047	1614562.65 1613805.55	5 735070.91 5 735066.55	38.75 17.23	CORE CORE	0	2	OR/FS// SI/FS//OR	DARK BROWN OR WOOD BROWN:O-WOOD	0.35 0.80	67 37	24000									<u>├───</u> ┤
SAV-2-2003-Q7	43.25940	-73.58789	RS1-9594-WS708	1614562.65	5 735070.91	32.41	CORE	0	2	OR/FS//	DARK BROWN OR WOOD	0.80	67	24000									
SAV-2-2003-Q9	43.25947	-73.58758	RS1-9493-WS048	1613800.76	6 735223.75	70.92	CORE	0	2	SI/FS//CS	DARK GREY	1.1	37	8400									
SAV-3-2003-Q1	43.26335	-73.58430	RS1-9594-WT116	1615261.08	8 735980.03	41.85	CORE	0	2	CS/GR//	BROWN	1.1	23	5600									
SAV-3-2003-Q2	43.26298	-73.58471	RS1-9594-WT123	1615182.24	4 735939.09	60.25	CORE	0	2	CS/FS//	BROWN	1.3	24	990									┌────┘
SAV-3-2003-Q3 SAV-3-2003-Q4	43.26329 43.25759	-73.58420 -73.58413	RS1-9594-WT124 RS1-9493-WS613	1615186.11 1613179.21	1 736027.73 1 736061.03	57.37 34.55	CORE CORE	0	3	FS/CS/GR/ MS/FS//OR	DARK BROWN BROWN: O-ROOTS	1.3 1.1	26 31	11000 7400									├─── ┤
SAV-3-2003-Q4	43.25740	-73.58440	RS1-9493-WS616	1613107.97		12.89	CORE	0	2	FS/SI/OR/	DARK BROWN. OR= ROOTS	0.88	45	76000									
SAV-3-2003-Q6	43.25699	-73.58493	RS1-9493-WS097	1612827.73	3 735938.04	128.48	CORE	0	2	CS/GR/FS/SI	BROWN GREY	1.4	12	6100									
SAV-3-2003-Q7	43.26281	-73.58404	RS1-9594-WT137	1615047.44	4 736098.20	20.38	CORE	0	2	SI//	DARK BROWN	0.50	61	35000									
SAV-3-2003-Q8	43.26281	-73.58408	RS1-9594-WT137	1615047.44	4 736098.20	25.33	CORE	0	2	SI//	DARK BROWN	0.50	61	35000									µ]
SAV-3-2003-Q9 SAV-4-2003-Q1	43.26246 43.25108	-73.58380 -73.59117	RS1-9594-WT152 RS1-9493-WT163	1614908.76 1610747.59	6 736176.17 9 734259.78	35.29 29.49	CORE CORE	0	2	SI/FS// FS//SI/	DARK BROWN DARK GRAY	1.2 0.93	30 30	3200 13000									├─── ┤
SAV-4-2003-Q1	43.25118	-73.59126	RS1-9493-WT162	1610755.22		63.99	CORE	0	2	FS/SI/OR/	OLIVE BROWN, OR=VEG	0.93	36	14000									
SAV-4-2003-Q3	43.25122	-73.59108	RS1-9493-WT159	1610819.18	8 734298.42	32.66	CORE	0	2	SI///FS	DARK BROWN, TRACE WOOD CHIP	0.79	36	10000	2	24	FS/SI//CS	WOOD, AND CLAY	0	0		2.56	Silty Sand
SAV-4-2003-Q4	43.25073	-73.59169	RS1-9493-WT172	1610616.12	2 734180.97	80.50	CORE	0	2	OR//CS/	WOOD CHIPS AND BARK MULCH	0.50	66	37000	6	12	OR//	WOOD CHIPS AND BARK MULCH	0	0		2.1	Silty Sand
SAV-4-2003-Q5	43.25075	-73.59172	RS1-9493-WT172	1610616.12	2 734180.97	91.31	CORE	0	2	OR//CS/	WOOD CHIPS AND BARK MULCH	0.50	66	37000	6	12	OR//	WOOD CHIPS AND BARK MULCH	0	0		2.1	Silty Sand
SAV-4-2003-Q6 SAV-4-2003-Q7	43.24658 43.24955	-73.59253 -73.59253	RS1-9392-ET031 RS1-9493-WT200	1609371.90 1610197.98		271.06 27.53	CORE CORE	0	2	SI/FS// SI/GR/FS/OR	GRAY-BROWN DARK BROWN	0.92 1.2	34 28	9900 17000									┝────┦
SAV-4-2003-Q8	43.24981	-73.59253	RS1-9493-WT196	1610267.64	4 733897.30	37.57	CORE	0	2	FS/GR//	DARK BROWN	0.96	20	10000									I
SAV-4-2003-Q9	43.24998	-73.59248	RS1-9493-WT184	1610406.32	2 733902.40	40.29	CORE	0	2	SI//FS/	DARK BROWN	1	36	10000									
SAV-5-2003-Q1	43.22083	-73.58225	RS1-9190-ET057	1599804.58	8 736739.13	33.26	CORE	0	2	CS/GR/SI/	GRAY BROWN	1.4	23	4700									
SAV-5-2003-Q2	43.22076	-73.58220	RS1-9190-ET064	1599735.94	4 736780.16	28.89	CORE	0	2	MS/FS/CS/OR	DARK BROWN. TRACE GRAVEL. OR= ROOTS, VEGETATION	1.4	25	3500									
3AV-3-2003-Q2	43.22070	-73.36220	K31-9190-E1004	1599755.94	+ 730760.10	20.09	CORE	0	2	W3/F3/C3/OK	ROOTS, VEGETATION	1.4	25	3300				DARK GRAY/BROWN, OR-WOOD, VEG,					Silty Sand
SAV-5-2003-Q3	43.22053	-73.58196	RS1-9190-ET072	1599667.04	4 736820.67	3.76	CORE	0	2	MS/CS/OR/	BROWN, OR-VEG, CLAMS	1.1	26	3500	2	24	CS/GR/MS/OR	ODOR, TRACE CLAY	0	0		2.66	with Gravel
											BROWN; OR-SOME WOOD, WEEDS, &												
SAV-5-2003-Q4	43.22080	-73.58246	RS1-9190-ET063	1599736.41	1 736700.54	32.02	GRAB	0	0	FS/MS/CS/OR	BIOTA (CLAMS); TRACE GR BROWN; OR-SOME WOOD, WEEDS, &	1.1	24	4600									└──── ┤
SAV-5-2003-Q5	43.22082	-73.58234	RS1-9190-ET063	1599736.41	1 736700.54	33.80	GRAB	0	0	FS/MS/CS/OR	BIOTA (CLAMS); TRACE GR	1.1	24	4600									
SAV-5-2003-Q6			RS1-9190-ET087				CORE	0	2	MS/FS/CS/	DARK BROWN	1.5	22	4900									
0.01/ 5.0000 07	40.00001	70 50405		4500507	700000 00	F0 57	0040	<u> </u>			BROWN; OR-BIOTA (8 CLAMS, 1 SNAIL),		47	40000									
SAV-5-2003-Q7 SAV-5-2003-Q8	43.22001 43.21996	-73.58165 -73.58140	RS1-9190-ET088 RS1-9190-ES099	1599527.40 1599390.50		53.57 69.72	GRAB CORE	0	0	GR/OR//FS SI/FS//MS	SOME WEEDS DARK BROWN.	1.1 0.71	17 49	10000 16000									┌──── ┦
SAV-5-2003-Q8 SAV-5-2003-Q9	43.21996	-73.58140	RS1-9190-E5099 RS1-9190-ET080	1599390.50		13.04	CORE	0	2	51/F5//M5 FS//SI/OR	GREY BROWN. OR= WOOD.	0.71	49	16000					-				I
SAV-6-2003-Q1	43.21110	-73.57844	RS1-9190-ET342	1596204.20		36.42	CORE	0	2	SI/FS//	GRAY-BROWN; SLIGHT PCB-ODOR	0.46	64.7	53000									
SAV-6-2003-Q2	43.21106	-73.57852	RS1-9190-ET342	1596204.20		19.85	CORE	0	2	SI/FS//	GRAY-BROWN; SLIGHT PCB-ODOR	0.46	64.7	53000									
SAV-6-2003-Q3	43.21124	-73.57849	RS1-9190-ET342	1596204.20	0 737783.05	82.44	CORE	0	2	SI/FS//	GRAY-BROWN; SLIGHT PCB-ODOR	0.46	64.7	53000									└─── ┘
SAV-6-2003-Q4	43.21047	-73.57936	RS1-9190-ET369	1595998.50	0 737578.34	27.12	CORE	0	2	FS//SI/OR	DARK GRAY BROWN, ORGANICS/ROOTS & WOOD	0.99	39	11000									
C 0 2000 QT	10.21017						J J J	5	-	, , ., .,		0.00											Poorly
																		DARK BROWN, OR=WOOD PULP FS/-					Graded
SAV-6-2003-Q5	43.21056	-73 57011	RS1-9190-ET360	1506069 0	7 737600 77	31.04	CORE	0	2	SI//FS/OR	DARK BROWN	1.1	39.2	10000	2	24	FS//SI/OR	/SI/OR 2-9, GRAY BROWN FS/-/-/CS, GR, AND WOOD	0	0		2.72	Sand with Silt
341-0-2003-25	43.21030	-13.37911	101-9190-E1300	1090000.21	131020.11	31.04	CORE	U	2	51//F3/UK		1.1	JJ.Z	10000	4	∠4	1 3//3I/UK		U	U		2.12	Poorly
																		DARK BROWN, OR=WOOD PULP FS/-					Graded
	40.04005	70 5704-		4500000 00	7 707000	00.54	00055	c	0				20.0	40000		0.4		/SI/OR 2-9, GRAY BROWN FS/-/-/CS, GR,		<u> </u>		0.70	Sand with
SAV-6-2003-Q6	43.21065	-73.57917	RS1-9190-ET360	1596068.27	7 737620.77	20.54	CORE	0	2	SI//FS/OR	DARK BROWN BROWN: OR-PRIMARY WOOD PULP. SOME	1.1	39.2	10000	2	24	FS//SI/OR	AND WOOD	0	0		2.72	Silt
SAV-6-2003-Q7	43.21080	-73.57920	RS1-9190-ET348	1596136.56	6 737576.32	19.57	CORE	0	2	OR/SI//	WOOD	0.17	82	250000									1 1
0.0.4.0.0000								_			GRAY BROWN, ORGANICS/ROOTS &		_										
SAV-6-2003-Q8	43.21096	-73.57930	RS1-9190-ET339	1596199.85	5 737541.66	27.19	CORE	0	2	MS/FS/SI/OR	WOOD	1.3	28	19000					1				I

Appendix G - Habitat Assessment Data (SAV-SSAP Other)

SAV	Samples		1	Vearest 2002	2 - 2003 SSA	P Cores					Surface Data							Subsurface Data					
								Sample	Sample	•					Sample	Sample							
						Distance		Start	End			Bulk	Moisture		Start	End							USCS
						to Station	Sampling	Depth	Depth	Texture		Density	Content	тос	Depth	Depth	Texture		Liquid	Plastic	Plasticity	Specific	Group
Station Number	Latitude	Longitude	Core ID	Northing ¹	Easting ¹	(ft)	Technique	(in.)	(in.)	Description ²	General Description	(g/cm ³)	(%)	(mg/kg)	(in.)	(in.)	Description ²	General Description	Limit	Limit	Index	Gravity	Name
SAV-6-2003-Q9	43.21119	-73.57925	RS1-9190-ET330	1596270.29	737578.29	2.30	CORE	0	2	FS/CS/GR/OR	DARK BROWN	0.69	22	5100									1
SAV-7-2003-Q1	43.20432	-73.58268	RS1-9089-WT159	1593781.77	736696.93	29.20	CORE	0	2	FS/SI//	GRAY BROWN	1.1	32	8000									1
SAV-7-2003-Q2	43.20398	-73.58302	RS1-9089-WT172	1593644.40	736620.28	25.70	CORE	0	2	SI//FS/	BROWN. ODOR	0.97	39	13000									
SAV-7-2003-Q3	43.20333	-73.58346	RS1-9089-WS717	1593388.94	736511.23	23.84	CORE	0	2	FS/SI//	DARK GREY BROWN. SLIGHT ODOR	1.3	27	6500									
SAV-7-2003-Q4	43.20305	-73.58356	RS1-9089-WS203	1593290.75	736494.39	34.56	CORE	0	2	SI/FS//	GRAY-BROWN	1.1	31										
SAV-7-2003-Q5	43.20333	-73.58341	RS1-9089-WS717	1593388.94	736511.23	12.87	CORE	0	2	FS/SI//	DARK GREY BROWN. SLIGHT ODOR	1.3	27	6500									
SAV-7-2003-Q6	43.20313	-73.58356	RS1-9089-WS203	1593290.75	736494.39	41.69	CORE	0	2	SI/FS//	GRAY-BROWN	1.1	31										1
											BROWN. TRACE ORGANICS=												
SAV-7-2003-Q7	43.20270	-73.58375	RS1-9089-WS213	1593153.90	736421.14	12.41	CORE	0	2	SI/FS/CS/MS	VEGETATION, CLAM.	1	25	5400									
											BROWN. TRACE ORGANICS=												
	43.20264	-73.58372	RS1-9089-WS213	1593153.90		16.73	CORE	0	2	SI/FS/CS/MS	VEGETATION, CLAM.	1	25	5400									
	43.20240	-73.58381	RS1-9089-WT218	1593082.55	736381.42	34.94	CORE	0	2	FS/SI/MS/OR	DARK BROWN. OR= ROOTS.	0.80	40	27000									
	43.12687	-73.58714	RS2-8483-WT152	1565469.73	735817.93	45.97	CORE	0	2	FS/SI//OR	DARK BROWN; O-TWIGS, ROOTS	0.85	43.2	35000									
	43.12695	-73.58708	RS2-8483-WT152	1565469.73		72.23	CORE	0	2	FS/SI//OR	DARK BROWN; O-TWIGS, ROOTS	0.85	43.2	35000									
SAV-8-2003-Q3	43.12710	-73.58708	RS2-8483-CT141	1565676.32	735855.37	85.82	CORE	0	2	OR/SI//	BROWN; PRIMARILY WOOD & WOOD PULP	0.31	68.3	140000									
SAV-8-2003-Q4	43.12671	-73.58706	RS2-8483-WT152	1565469.73	735817.93	16.91	CORE	0	2	FS/SI//OR	DARK BROWN; O-TWIGS, ROOTS	0.85	43.2	35000									
SAV-8-2003-Q5	43.12679	-73.58704	RS2-8483-WT152	1565469.73	735817.93	24.50	CORE	0	2	FS/SI//OR	DARK BROWN; O-TWIGS, ROOTS	0.85	43.2	35000									
SAV-8-2003-Q6	43.12690	-73.58698	RS2-8483-WT152	1565469.73	735817.93	65.75	CORE	0	2	FS/SI//OR	DARK BROWN; O-TWIGS, ROOTS	0.85	43.2	35000									
																		GRAY-BROWN; SOME WOOD & WOOD					
SAV-8-2003-Q7	43.12771	-73.58537	RS2-8483-ET136	1565814.65	736257.76	22.48	CORE	0	2	SI//	GRAY-BROWN	0.55	56.8	57000	2	12	SI/FS/OR/	PULP; SLIGHT PCB-ODOR	45	0		2.46	Sandy Silt
								_	_						-			GRAY-BROWN; SOME WOOD & WOOD		_			
SAV-8-2003-Q8	43.12766	-73.58543	RS2-8483-ET136	1565814.65	736257.76	9.54	CORE	0	2	SI//	GRAY-BROWN	0.55	56.8	57000	2	12	SI/FS/OR/	PULP; SLIGHT PCB-ODOR	45	0		2.46	Sandy Silt
	10 10707	70 50540	D00 0400 FT444	4505070 40	700000 50	00.74	0005			50/01/05/	GRAY-BROWN; SOME WOOD; LITTLE			40000	0			GRAY-BROWN; LITTLE WOOD & WOOD		•		0.47	0.11
	43.12737	-73.58519	RS2-8483-ET144	1565672.40	736338.53	32.74	CORE	0	2	FS/SI/OR/	ROOTS	1	39	16000	2	24	FS/SI/OR/	PULP	0	0		2.47	Silty Sand
	43.13008	-73.59060	RS2-8483-WT076	1566648.93	734899.43	35.93	CORE	0	2	FS/SI//CL	BROWN; O-ROOTS	0.62	49	27000									
	43.13013	-73.59045	RS2-8483-WT076	1566648.93	734899.43	46.16	CORE	0	2	FS/SI//CL	BROWN; O-ROOTS	0.62	49	27000									<u> </u>
	43.13020	-73.59048	RS2-8483-WT076	1566648.93	734899.43	68.77	CORE	0	2	FS/SI//CL	BROWN; O-ROOTS	0.62	49	27000									<u> </u>
SAV-9-2003-Q4	43.13102	-73.58893	RS2-8483-ET046	1566996.80	735336.04	30.88	CORE	0	2	FS///SI	GRAY BROWN	1.2	19	6500									<u> </u>
																							Poorly
	40,40000	70 50000	DC0 0400 ET047	4500000.00	705 447 70	25.00	CORE	0	0	SI/FS/OR/		0.01	46.4	45000	0	<u> </u>	FS/OR//		0	0		0.00	Graded
SAV-9-2003-Q5	43.13092	-73.58868	RS2-8483-ET047	1566989.82	735417.79	35.26	CORE	0	2	51/F5/UR/	BROWN; SOME WOOD	0.91	46.4	15000	2	б	F5/UR//	BROWN; SOME WOOD	0	0		2.68	Sand
																							Poorly
																		GREY RBOWN, OR= WOOD , WOOD					Graded Sand with
SAV-9-2003-Q6	43.13036	-73.58847	RS2-8483-ET069	1566786.00	735456.65	16.23	CORE	0	2	FS/SI/MS/OR	BROWN. OR= TWIGS, CLAM	1.1	30	9200	30	36	MS/CS/FS/OR	PULP	0	0		2.72	Sand with Silt
	43.13324	-73.58906	RS2-8584-ET133	1567824.87		16.24	CORE	0	2	SI/OR//	OLIVE BROWN, OR=VEG, TRACE SHEEN	0.26	75.6	150000	50	50				0		2.12	
	43.13324	-73.58918	RS2-8584-ET133	1567824.87	735255.86	33.81	CORE	0	2	SI/OR//	OLIVE BROWN, OR=VEG, TRACE SHEEN	0.20	75.6	150000									+
5/10 3-2000-00	-3.13331	-13.30310	NG2-0304-L1133	1307024.07	100200.00	55.01	CONL	U	4	0,,01,,	CLIVE DROWN, ON-VEG, TRACE SHEEN	0.20	75.0	10000									Elastic Silt
SAV-9-2003-Q9	43.13348	-73.58926	RS2-8584-ET130	1567895.80	735221.50	22.05	CORE	0	2	SI//FS/	GRAY BROWN	0.62	52.8	34000	2	12	SI//FS/OR	GRAY BROWN. OR=WOOD AND VEG	52	43	9	2.31	with Sand

Appendix G - Habitat Assessment Data (SAV-SSAP Grain Size)

SA	V Samples						2002 - 20	03 SSAP	Grain Si	ze Analyse	s ²					
									%	%						
Station				N	1	Sampling	%	%	Fine	Medium	% Coarse	%	_%	%	%	Distance to
Number	Latitude	Longitude	Core ID	Northing ¹	Easting	Technique	Clay	Silt	Sand	Sand	Sand	Gravel	Fines	Sands	Coarse	Station (ft)
SAV-2-2003-Q5	43.26015	-73.58798	RS1-9493-GP001	1614073.70	735067.20	GRAB	9.0	29.5	51.8	3.4	0.9	5.3	90.3	56.1	6.2	15.72
SAV-3-2003-Q4	43.25759	-73.58413	RS1-9493-GP004	1613083.60	736122.00	GRAB	1.8	10.5	10.0	21.6	11.7	44.4	22.3	43.3	56.1	84.77
SAV-4-2003-Q1	43.25108	-73.59117	RS1-9493-GP020	1610792.40	734316.20	GRAB	7.2	5.7	85.0	2.0	0.1	0.0	97.9	87.1	0.1	78.36
SAV-4-2003-Q2	43.25118	-73.59126	RS1-9493-GP020	1610792.40	734316.20	GRAB	7.2	5.7	85.0	2.0	0.1	0.0	97.9	87.1	0.1	98.86
SAV-4-2003-Q3	43.25122	-73.59108	RS1-9493-GP020	1610792.40	734316.20	GRAB	7.2	5.7	85.0	2.0	0.1	0.0	97.9	87.1	0.1	59.16
SAV-4-2003-Q7	43.24955	-73.59253	RS1-9493-GP021	1610182.90	733916.00	CORE	1.6	3.6	11.2	11.1	12.6	60.1	16.4	34.9	72.7	40.71
SAV-5-2003-Q1	43.22083	-73.58225	RS1-9190-GP003	1599757.80	736651.20	GRAB	1.2	13.0	12.1	12.7	30.5	30.4	26.3	55.3	60.9	88.37
SAV-5-2003-Q4	43.22080	-73.58246	RS1-9190-GP003	1599757.80	736651.20	GRAB	1.2	13.0	12.1	12.7	30.5	30.4	26.3	55.3	60.9	30.74
SAV-5-2003-Q5	43.22082	-73.58234	RS1-9190-GP003	1599757.80	736651.20	GRAB	1.2	13.0	12.1	12.7	30.5	30.4	26.3	55.3	60.9	65.16
SAV-5-2003-Q6	43.22019	-73.58183	RS1-9190-GP004	1599464.40	736824.50	GRAB	0.6	22.9	0.5	0.3	1.1	74.6	24.0	1.9	75.7	80.66
SAV-5-2003-Q7	43.22001	-73.58165	RS1-9190-GP004	1599464.40	736824.50	GRAB	0.6	22.9	0.5	0.3	1.1	74.6	24.0	1.9	75.7	78.83
SAV-6-2003-Q7	43.21080	-73.57920	RS1-9190-GP016	1596157.30	737503.90	CORE	7.4	3.0	61.4	12.7	8.2	7.3	71.8	82.3	15.5	93.94
SAV-6-2003-Q8	43.21096	-73.57930	RS1-9190-GP016	1596157.30	737503.90	CORE	7.4	3.0	61.4	12.7	8.2	7.3	71.8	82.3	15.5	65.54
SAV-6-2003-Q9	43.21119	-73.57925	RS1-9190-GP015	1596313.40	737624.30	CORE	8.1	20.2	61.3	7.4	2.6	0.4	89.6	71.3	3.0	65.18
SAV-7-2003-Q1	43.20432	-73.58268	RS1-9089-GP010	1593701.00	736671.70	CORE	4.2	5.4	34.1	2.1	1.9	52.2	43.7	38.1	54.1	55.43
SAV-7-2003-Q7	43.20270	-73.58375	RS1-9089-GP016	1593098.90	736370.20	CORE	4.9	25.5	68.1	1.5	0.0	0.0	98.5	69.6	0.0	75.11
SAV-7-2003-Q8	43.20264	-73.58372	RS1-9089-GP016	1593098.90	736370.20	CORE	4.9	25.5	68.1	1.5	0.0	0.0	98.5	69.6	0.0	63.09
SAV-7-2003-Q9	43.20240	-73.58381	RS1-9089-GP016	1593098.90	736370.20	CORE	4.9	25.5	68.1	1.5	0.0	0.0	98.5	69.6	0.0	54.64
SAV-8-2003-Q1	43.12687	-73.58714	RS2-8483-GP007	1565582.00	735826.00	GRAB	5.2	2.6	81.3	10.8	0.1	0.0	89.1	92.2	0.1	68.90
SAV-8-2003-Q2	43.12695	-73.58708	RS2-8483-GP007	1565582.00	735826.00	GRAB	5.2	2.6	81.3	10.8	0.1	0.0	89.1	92.2	0.1	40.40
SAV-8-2003-Q3	43.12710	-73.58708	RS2-8483-GP007	1565582.00	735826.00	GRAB	5.2	2.6	81.3	10.8	0.1	0.0	89.1	92.2	0.1	14.95
SAV-8-2003-Q5	43.12679	-73.58704	RS2-8483-GP007	1565582.00	735826.00	GRAB	5.2	2.6	81.3	10.8	0.1	0.0	89.1	92.2	0.1	96.30
SAV-8-2003-Q6	43.12690	-73.58698	RS2-8483-GP007	1565582.00	735826.00	GRAB	5.2	2.6	81.3	10.8	0.1	0.0	89.1	92.2	0.1	61.78

Notes:

All SSAP is based on the February 3, 2004 version of QEA Export.

1. SSAP coordinates are in NAD83 NY State Plane East (feet).

2. SSAP Grain Size Analysis samples >100 ft. from Station are not listed.

Fines = % clay + % silt + % fine sand

Sands = % fine sand + % medium sand + % coarse sand

Coarse = % coarse sand + % gravel

Appendix G - Habitat Assessment Data (Shoreline-Assessment Data)

									lna	rachie She	ralina Cuk	otroto Con	menente	_					ata Componento		ank Acces	noment Com	nenento	Ba	nk Vegetetien	Component	_			Die	arian Edge Cover Cor	
	River		asting	Northing	Easting	Distance				rganic Sho			· 1						ate Components		Mod.	ssment Com Mod.			nk Vegetation			_			parian Edge - Cover Cor	
Station	Section	Offshore Of	fshore	Top of Bank	Top of Bank	A to B (m)) Slope %	Bedrock	Boulder	Cobble	Gravel	Sand	Silt	Clay	Detritus	Muck-Mud	l Marl	Vegetated	4 Woody Debris (ft.) 15x1, (2)20x1,	Stable	Stable	Unstabl	e Unstable	Optimal	Suboptimal	Marginal	Poor	Canopy	Understory	Herbaceou	Adjacent Landuse Forested, non-resident,	Dominant Species
SHO-01R-2003-01A, B	REF	492601.870 223	621.511	492598.532	223619.576	5.8	<10					60	40	Trace	20	80			10x1, 25x1, (6)6x1		90	10		100				40	20	100	non-commercial	Elm, Maple, Dogwood, Grasses, Ferns
SHO-01R-2003-02A, B	REF	492539.962 223	677.190	492535.825	223671.324	5.7	15			10	60	30	Trace		20	80			15x1, 30x1, 15x.5		90	10		100				60	20	80	Forested, non-resident, non-commercial	Cottonwood, Maple, Elm, Sycamore, Dogwood, Bittersweet
SHO-01R-2003-03A, B	REF	492499.558 223	725 762	492497.054	223720.307	5.3	22			20	50	30	Trace		10	90			10x1, 25x1		90	10		100				70	40	30	Forested, non-resident, non-commercial	Cottonwood, Birch, Dogwood, Ferns, Grasses
				102 107 100 1	220120.001	0.0				20	00		Hubb		10	00						10		100				10	10			Maple, Ash, Alder, Pine, Blk Cherry,
SHO-02R-2003-01A, B	1	487274.183 224	728.163	487279.750	224732.540	5.5	38				20	80	Trace		40	60		Trace	10x.5, 15x.5	90	10			90	10			10	20	80	Maintained land - Res	Honeysuckle, Grape, Dogwood, Elm, Jewelweed
SHO-02R-2003-02A, B		407050 700 004	707.000	107055 100	001711.010		45				-	100	-		60	40			15x1, (12)8x.25, 12x.5	90	10			100				70	50	80		Blk Cherry, Ash, Maple, Honeysuckle, Sumac, Va Creeper, Grape, Mullen, Grasses
SHO-02R-2003-02A, B	1	487256.720 224	737.038	487255.188	224741.210	3.5	45				Trace	100	Trace		60	40				90	10			100				70	50	80	Maintained land - Res	
SHO-02R-2003-03A, B	1	487214.498 224	738.974	487210.895	224744.306	5.0	23		Trace		Trace	80	20		20	80			10x2, 12x1, 15x.75, 15x.5	90	10			90	10			80	50	30	Maintained land - Res	Maple, Ash, Elm, Honeysuckle, Dogwood, Blk Cherry, Jewelweed, Horsetail, Fern, Grasses
																			15x1, 10x.5, 15x.5, 50x1,												Forested, non-resident,	Basswood, Pine, Elm, Alder, Maple, Ash, Dogwood, Goldenrod, Grasses, Smartweed,
SHO-03R-2003-01A, B	2	478058.528 223	859.528	478059.323	223853.851	5.0	28				20	50	10	20		Trace	100	Trace		_	20	80		60	20	20		10	30	60	non-commercial	Horsetail, Ferns
																																Pine, Maple, Ash, Oak, Hemlock, Dogwood,
SHO-03R-2003-02A, B	2	477959.213 223	860.287	477957.560	223853.391	5.0	24				Trace	20	40	40		Trace	100	Trace (Algae)	(3)20x3, 1x6, 25x8	20	80			100				50	70	70	Forested, non-resident, non-commercial	Alder, Elm, Blk Cherry, Basswood, Grasses, Va Creeper, Groundnut
																			(20)200. (40)455. (2)207. 40													Disa Masia Ash Userlash Ele Daeward
	_									_						_		_	(20)30x.8, (10)15x.5, (2)20x.7, 40 (4)10x.3.75, (6)15x6, (11)10x6,												Forested, non-resident,	Pine, Maple, Ash, Hemlock, Elm, Dogwood, Sumac,
SHO-03R-2003-03A, B	2	477836.864 223	874.374	477833.582	223868.475	5.0	30			Trace	10	50	10	20	20	Trace	80	Irace	30x1, 35x1.5	20	80			100				30	70	60	non-commercial	Grape, Witch Hazel, Fern, Grasses, Aster Cottonwood, Maple, Blk Cherry, Elm,
SHO-01I-2003-01A, B	1	492268.617 223	919.400	492264.185	223914.777	5.5	21					40	20	40	20	60		20	15X.5, 10X1, (3)20X.5, 40X1, 15X	(.5 90	10			100				40	20	80	Forested, non-resident, non-commercial	Bittersweet, Fern, Grape, Grasses, Loosestrife
SHO-01I-2003-02A, B	1	492211.283 223	940.725	492212.214	223932.503	5.5	16					20	40	40	10	80		10	12x1, 10x.5, 15x.5, (2)25x.5	90	10			100				30	Trace	90	Forested, non-resident, non-commercial	Elm, Maple, Bittersweet, Fern, Grape, Grasses, Queen Annes Lace, Goldenrod
SHO-011-2003-02A, D	1	492211.203 223	1340.723	432212.214	223932.303	5.5	10					20	40	40	10	80		10	1241, 104.5, 154.5, (2)254.5	30	10			100				30	Hade	30		
SHO-01I-2003-03A, B	1	492118.634 223	981.765	492115.011	223979.144	5.2	N/A					30	50	20	Trace	80		20	15x1, 4x1.5, 15x1.5, 10x1	80	20			100				Trace	10	90	Forested, non-resident, non-commercial	Elm, Sumac, Loosestrife, Goldenrod, Grape, Bittersweet, Grasses, Fern, Arrowhead
SHO-02I-2003-01A, B	1	491991.775 224	170 549	491992.575	224176.281	5.4	20					90	10		Trace	100			30x1, 15x1, 50x1	80	20			100				60	60	50	Forested, non-resident, non-commercial	Maple, Elm, Blk Cherry, Honeysuckle, Fern, Jewelweed, Grape
	1												10								20										Forested, non-resident,	Elm, Maple, Honeysuckle, Bittersweet, Grasses,
SHO-02I-2003-02A, B	1	491926.923 224	173.971	491929.551	224176.632	5.5	40					90	10		10	90			8x.5, 15x2	80	20			100				30	80	30	non-commercial Forested, non-resident,	Clover, Grape
SHO-02I-2003-03A, B	1	491853.244 224	191.464	491858.837	224197.351	5.8	11					80	20		Trace	100			None	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	Trace	10	non-commercial	Maple, Fern, Grasses
																															Forested, non-resident,	Box Elder, Blk Cherry, Ash, Cottonwood, Honeysuckle, Sumac, Va Creeper, Grape,
SHO-03I-2003-01A, B	1	491999.170 224	439.598	491999.376	224446.057	5.0	45					60	30	10	20	50		30	40x1, 25x.5, (3)15x.5		90	10		100				80	70	50	non-commercial	Rasberry, Grasses
SHO-03I-2003-02A, B	1	491902.793 224	452.726	491903.070	224458.947	5.0	50					60	30	10	30	60		10	30x1, 20x1, 50x1, (5)10x.5		90	10		100				60	20	80	Forested, non-resident, non-commercial	Ash, Maple, Basswood, Elm, Blk Cherry, Grape, Va Creeper, Grasses
																																Basswood, Ash, Box Elder, Maple, Honeysuckle,
SHO-03I-2003-03A, B	1	491830.033 224	456.180	491831.155	224460.562	5.0	50					80	10	10	20	80		Trace	10x2.5, 15x.5, 40x1		90	10		100				50	60	70	Forested, non-resident, non-commercial	Grape, Buckthorn, Barberry, Sumac, Jewelweed, False Solomons Seal, Va Creeper
																			,, .													Ash, Cottonwod, Catalpa, Maple, Buttonbush, Dogwood, Ferns, Va Creeper, Grasses,
SHO-04I-2003-01A, B	1	491762.442 224	380.052	491766.950	224374.306	5.5	21			Trace	10	90	Trace		10	90		Trace	30x1, (2)15x.5	_	70	30		100				70	80	90	Fill, Open Lot	Clearweed Elm, Maple, Willow, Cottonwood, Sumac,
SHO-04I-2003-02A, B		404000 070 004	0.45.075	101000 000	004044.000						10							-			90	40		100				20	40	90	ETH O LA LA	Elderberry, Grape, Va Creeper, Snakeroot,
SHO-041-2003-02A, B	1	491688.378 224	345.875	491693.633	224341.068	6.0	28				10	90			20	80		Irace	8x.5, 10x1		90	10		100				20	40	90	Fill, Open Lot	Fern, Grasses, Cottonwod Maple, Ash, Dogwood, Buttonbush, Sumac,
SHO-04I-2003-03A, B	1	491637.379 224	304.916	491638.687	224299.686	5.5	19				10	90			10	90		Trace	15x.5		70	30		100				30	10	100	Fill, Open Lot	Alder,Oak, Sneezeweed, Joe-pye Weed, Grasses, Fern, Goldenrod
																																Catalpa, Cottonwood, Blk Locust, Ash, Maple,
																	100								100							Honeysuckle, Bittersweet, Dogwood, Buttonbush, Grasses, Fern, Spirea, Grape, Va
SHO-05I-2003-01A, B	1	487033.503 224	1555.373	487029.908	224551.025	5.0	11			20	50	30					(Shale)		None	100		_	_		(Shale on bank)			70	90	80	Trails, Boat Launch	Creeper, Joe-pye Weed, Groundnut
SHO-05I-2003-02A, B	1	486973.702 224	560.616	486975.788	224555.643	5.0	16			20	50	30					100 (Shale)		None	100					100 (Shale on bank)			80	40	70	Trails	Maple, Cottonwood, Ash, Dogwood, Grape, Honeysuckle, Va Creeper, Grasses
																																Ash, Cottonwood, Maple, Elm, Honeysuckle,
SHO-05I-2003-03A, B	1	486924.515 224	562.692	486926.090	224557.079	5.0	26		Trace	20	50	30					100 (Shale)		None	100				20	80 (Shale on bank)			70	30	50	Trails, Road	Dogwood, Alder, Poison Ivy, Snakeroot, Aster, Grasses, Grape, Va Creeper
SHO-06I-2003-01A, B	4	486859.338 224		486858.450	224746.346	4.0	44		Trace	10	70	30			Trace	10	90 (Shale)	Trace	None	100				90	10			50	Trace	60	Res to Bank, Maintained	Blk Locust, Elm, Ash, Sumac, Grasses, Grape, Burdock, Mosses, Clover
SHO-001-2003-01A, B	1	480859.338 224	141.185	480838.430	224746.346	4.0	44		Trace	10	70	30			Trace	10	(Shale)	Trace	None	100				90	10			50	Trace	60	Res to Bank, Maintained	
																	20															Maple, Ash, Blk Locust, Willow, Elm, Dogwood, Honeysuckle, Sneezeweed, Jewelweed, Grape,
SHO-06I-2003-02A, B	1	486768.768 224	770.266	486770.077	224777.369	5.0	34			-	10	80	10		40	40	(Shale)		60x2.5, 20x.5, (4)8x.25	60	40	-	-	100				70	30	60	Res to Bank, Maintained	Loosestrife, Goldenrod, Turtlehead Elm, Ash, Maple, Dogwood, Alder, Honeysuckle,
SHO-06I-2003-03A, B	1	486698.187 224	794 277	486701.889	224799.922	5.0	N/A				10	90	Trace		20	70	10 (Shale)	Trace	(3)8x.5	100				100				80	40	70	Res to Bank, Maintained	Fern, Sneezeweed, Turtlehead, Grasses,
0.10 001 2000-00A, B		100000.107 224		100101.000	227133.322	5.0	11/75	1	1		10	50	11000		20	10	(Gridie)	nace	(0)00.0	100		1		100		1		55	+0	10	nos to Dank, Mantalleu	Maple, Elm, Honeysuckle, Dogwood, Ash,
SHO-07I-2003-01A, B	1	486157.492 224	376.332	486155.733	224380.885	5.0	25					Trace	100	Trace	10	60		30	(2)8x.5, (3)30x.5		30	70		100				80	70	40	Maintained Field, Airstrip	Grape, Ferns, Clover, Va Creeper, Horsetail, Clearweed, Grasses
																																Maple, Ash, Elm, Dogwood, Honeysuckle, Grape, Ferns, Clearweed, Jewelweed,
SHO-07I-2003-02A, B	1	486119.120 224	371.599	486118.716	224376.239	4.0	20					Trace	100	Trace	10	60		30	None		20	80		100				70	80	40	Maintained Field, Airstrip	
																																Honeysuckle, Elderberry, Alder, Grape,
SHO-07I-2003-03A, B	1	486079.510 224	366.639	486078.896	224376.061	4.0	14					Trace	100	Trace	10	60	ļ	30	(4)6x.2, 4x.5		30	70		100				80	90	50	Maintained Field, Airstrip	Grasses, Ferns, Clearweed, Jewelweed, False Solomon's Seal
																																Ash, Maple, Honeysuckle, Elderberry, Alder,
																															County Road/	Willow, Grape, Dogwood, Elm, Grasses, Goldenrod, Raspberry, Loosestrife, Jewelweed,
SHO-08I-2003-01A, B	1	486149.379 224	888.421	486145.776	224893.551	5.0	14		1	30	30	30	10		Trace	20	80	10	N/A (Maintained)	100				50	30	20		Trace	20	100	Residential Lots	Va Creeper, Queen Annes Lace

Appendix G - Habitat Assessment Data (Shoreline-Assessment Data)

									Inorganic Shoreline Substrate Components							nic Shoreli	ine Substra	te Components	В	ank Assess	sment Com	ponents	Ba	ank Vegetat	ion Componen	ts			Rip	Riparian Edge - Cover Components		
	River	Northing	Easting	Northing	Easting	Distance	Bank		ľ						T					Mod.	Mod.									T T		
Station	Section	Offshore	Offshore	Top of Bank	Easting Top of Bank	A to B (m)	Slope %	Bedrock I	Boulder	Cobble	Gravel	Sand	Silt Clay	Detritus	Muck-Muc	d Marl	Vegetated	Woody Debris (ft.)	Stable	Stable	Unstable	e Unstab	le Optimal	Suboptim	al Marginal	Poor	Canopy	Understory	Herbaceous	Adjacent Landuse	Dominant Species	
SHO-08I-2003-02A	1			No Point Taken		3.0	80			Trace	70	20	10			100		15x.5, (6)6x.25	80	10	10		100				30	40	70	County Road/ Residential Lots	Elm, Sumac, Ash, Basswood, Honeysuckle, Grape, Goldenrod, Grasses, Jewelweed, Clover, Moss, Lily, Va Creeper	
SHO-08I-2003-03A, B	1	486056.079	224826.354	486058.210	224833.199	5.0	30	20 (Shale)		10	60	10				100		20x2	90	10			60	40			10	60	60	County Road/ Residential Lots	Maple, Ash, Alder, Elm, Sumac, Dogwood, Honeysuckle, Grape, Sneezeweed, Loosestrife, Va Creeper, Turtlehead	
SHO-09I-2003-01A, B	2	477717.905	223907.296	477716.642	223901.765	5.0	40				10	50	10 30	40	10	50	Trace	(7)12x.5, (3)10x.5, 10x1	10	90			100				40	70	70	Forested, non-resident, non-commercial	Maple, Pine, Basswood, Sumac, Honeysuckle, Dogwood, Juniper, Grape, Grasses, Loosestrife, Jewelweed	
SHO-09I-2003-02A, B	2	477638.550	223929.154	477635.793	223929.708	5.0	26				10	50	10 30	10	10	80	Trace (Algae)	(2)10x.5, 50x1	60	40			100				80	50	20	Forested, non-resident, non-commercial	Maple, Ash, Basswood, Willow, Pine, Dogwood, Honeysuckle, Grape, Buckthorn, Loosestrife, Grasses, Va Creeper	
SHO-09I-2003-03A, B	2	477585.326	223949.416	477584.239	223942.666	5.0	25			Trace	30	40	Trace 30	10	10	80	Trace (Algae)	6x1, (2)10x.5, 10x.3	70	30			100				60	60	40	Forested, non-resident, non-commercial	Willow, Maple, Else Ash, Sumac, Honeysuckle, Dogwood, Grape, Grasses, Moss, Clover, Loosestrife, Ferns, Va Creeper, Goldenrod	
SHO-10I-2003-01A, B	1	485868.502	224586.979	485872.939	224581.369	5.0	20					80	20	10	Trace	90 (Sand)		25x2, 10x1, 8x1, (3)10x.5, (2)15x.5	20	50	30		100				80	20	60	Maintained land - Res	Maple, Ash, Grape, Honeysuckle, Blk Cherry, Elm, Dogwood, Fern, Snakeroot, Grasses, Evening Primrose	
SHO-10I-2003-02A, B	1	485787.619	224542.215	485791.370	224536.569	5.0	10					80	20	Trace	Trace	100 (100)		8x.5, (2)6x.3, (3)6x.1	40	40	20		100				70	30	60	Maintained land - Res	Maple, Ash, Elm, Dogwood, Honeysuckle, Ferns, Jewelweed, Grasses, Calico Aster	
SHO-10I-2003-03A, B	1	485721.785	224501.837	485732.170	224492.008	N/A	N/A					80	20	Trace	Trace	100 (100)		8x.5, (2)3x.2,	80	20			100				80	20	80	Maintained land - Res	Maple, Ash, Elm, Willow, Dogwood, Button Bush, Honeysuckle, Alder, Grasses, Ferns, Loosestrife	
SHO-11I-2003-01A, B	1	477259.175	224426.865	477263.373	224433.020	4.0	<10					20	50 30	20	20	60 (Clay/Silt)	Trace	10x.25, (3)10x.5	70	30			50	50			90	10	80	Forested, non-resident, Maintained - Comm.	Maple, Ash, Grasses, Clearweed, Ferns, Mosses, Jewelweed, Beggars Tick, Pickerel Weed	
SHO-11I-2003-02A, B	1	477214.027	224450.717	477219.350	224450.920	5.0	<10					20	50 30	20	20	50 (Clay/Silt)	10	(3)10x.5, 15x1, (2)6x.25	80	20			20	80			90	Trace	70	Forested, non-resident, Maintained - Comm.	Maple, Willow, Ash, Catalpa, Grasses, False Nettle, Ferns, Mosses, Beggars Tick	
SHO-11I-2003-03A, B	1	477136.668	224481.964	477136.333	224487.778	5.0	17					20	60 20	Trace	20	40	40	(2)20x1, 15x.7, 10x.8	90	10			100				60	50	90	Forested, non-resident, Maintained - Comm.	Maple, Cottonwood, Blk Locust, Mox Elder, Dogwood, Alder, Sumac, Goldenrod, Loosestrife, Queen Annes Lace, Grasses, Lurid Sedge, Bullrush, Clotspur, Va Creeper, Grape, Jewelweed	

Appendix G - Habitat Assessment Data (Wetland-Assessment Data)

							STEM LENGTHS											STEM DIAMETER										
Wetland								_			_		_	_										_				
Number	Quadrat	Species	Live/Dead		No. Stems	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10			
1	1	Se Se	D	12.71 228.99	38	139	41.8	34	158.6	140.8	119.1	96.5	137.4	105	143.5	2.01	1.79	1.59	1.98	2.09	2.75	2.08	2.68	1.84	2.55			
1	1	Za	L	44.92	43	143.5	147.2	162.4	142.4	103.9	138.2	114.0	158.8	114.1		0.52	0.90	0.44	0.50	0.44	0.57	0.30	0.59	0.36	0.31			
1	1	SI	L	13.75	10	56.30	32.80	49.80	35.00	50.30	53.20	35.00	49.00	27.90	44.80	0.86	0.83	0.62	0.38	0.31	0.43	0.30	0.37	0.35	0.35			
				07.4																					<u> </u>			
1	2	Se Se	D	27.4 286.59	48	124.4	139.1	151.8	144.8	161.0	128.8	133.5	101.8	86.2	148.0	2.43	2.69	1.83	1.87	2.05	1.69	2.30	0.75	1.25	1.61			
1	2	Za	L	200.39	40	124.4	181.0	177.4	99.2	107.6	120.0	91.2	116.4	147.4	140.0	0.34	0.45	0.38	0.24	0.21	0.45	0.20	0.75	0.44	0.40			
1	3	Se	D	9.71																								
1	3	Se	L	160.51	24	92.2	96.0	98.4	104.8	97.3	101.4	91.1	96.6	113.0		0.47	1.33	2.63	2.06	1.63	2.66	1.07	1.51	1.01	2.13			
1	3	Za	L	42.72	17	182.0	99.8	148.6	145.0	153.0	172.0	115.1	89.5	162.6	128.8	0.59	0.35	0.43	0.43	0.41	0.42	0.32	0.44	0.46	0.33			
1	4	Se	D	85.99																								
1	4	Se	L	417.5	59	121.1	153.3	160.0	167.3	147.6	129.8	142.8	128.8	125.4	124.5	1.62	2.48	2.26	1.79	2.08	1.99	1.99	2.66	1.67	1.97			
1	4	Lo	L	3.55	15	80.1	63.2	82.8	60.1	43.4	32.0	74.0	60.8	32.3	58.5	0.17	0.17	0.08	0.88	0.06	0.09	0.07	0.15	0.05	0.05			
1	5	Se	D	31.54 401.49	50	407.0	400.4	450.0	400.0	400.4	405.7	405.0	404.5	400.4	400.0	0.40	4 44	1.00	4.00	0.00	4 47	4.00	4.00	4.05	4.00			
1	5	Se Za	L	401.49 30.16	59 10	107.2 216.4	130.4 169.2	156.6 166.2	126.0 172.4	122.4 179.2	105.7 85.6	105.6 133.2	131.5 108.6	130.4 156.0	138.6 133.1	0.19 0.86	1.41 0.46	1.96 0.66	1.30 0.58	2.03 0.39	1.17 0.68	1.08 0.33	1.66 0.29	1.35 0.46	1.62 0.66			
1	5	Lo	L	1.21	4	67.2	49.8	34.2	78.2	175.2	05.0	133.2	100.0	130.0	155.1	0.06	0.40	0.06	0.02	0.39	0.00	0.55	0.29	0.40	0.00			
1	5	Ew	L	0.76	2	49.0	38.2									0.21	0.16											
1	6	Se	D	38.18	10	105.1						100.0		107.0	100.0				0.54	4.00		4.07			4 = 0			
1	6 6	Se Za	L	457.36 7.06	49 12	135.4 109.5	152.0 163.2	144.1 102.2	153.5 89.8	144.3 107.3	154.1 151.5	138.8 174.2	119.8 153.3	107.6 32.2	129.8 115.8	2.01 0.36	2.65	2.58 0.44	2.51 0.29	1.99 0.38	2.44 0.45	1.97 0.45	1.13 0.42	1.71 0.16	1.73 0.38			
1	6	Sr	L	0.37	12	109.5	163.2	102.2	89.8	107.3	151.5	174.2	153.3	32.2	115.8	0.36	0.38 0.52	0.44	0.29	0.38	0.45	0.45	0.42	0.16	0.38			
	0	0	-	0.07	2	10.2	10.2									0.20	0.02											
1	7	Se	D	12.12																								
1	7	Se	L	139.07	33	119.6	113.8	128.6	121.6	104.5	117.0	105.8	127.1	114.6	75.6	2.15	1.95	1.86	1.92	1.13	1.60	2.09	3.18	2.01	0.89			
1	7	Za	L	25.72	14	141.2	154.3	114.2	136.8	69.1	141.2	155.8	184.7	94.1	132.2	0.43	0.45	0.48	0.34	0.30	0.42	0.46	0.61	0.47	0.53			
1	7	Lo	L	0.75	8	74.1	23.2	50.6	34.0	53.4	30.5	25.4	17.5			0.02	0.04	0.10	0.14	0.13	0.15	0.07	0.11					
1	8	Se	D	22.61																								
1	8	Se	Ĺ	287.47	64	121.2	122.8	127.6	107.0	139.2	130.5	118.2	120.1	145.0	142.1	1.47	1.20	1.69	1.53	1.61	2.29	1.33	1.71	1.55	1.45			
1	8	Za	L	28.27	15	151.0	88.5	79.4	53.3	158.4	123.1	147.6	129.0	181.2	103.5	0.49	0.19	0.11	0.17	0.39	0.33	0.38	0.59	0.55	0.45			
				10.01																					<u> </u>			
1	9	Se Se	D	12.34 134.5	36	88.1	100.3	107.6	128.2	105.6	133.2	101.2	111.6	130.8	132.2	1.35	1.69	2.13	2.22	2.12	2.81	2.02	1.46	2.69	2.85			
1	9	Za	L	22.6	16	153.2	100.3	152.7	131.2	175.2	158.8	86.2	176.8	122.8	77.0	0.43	0.38	0.37	0.53	0.86	0.53	0.31	0.46	0.37	0.32			
1	9	SI	L	1.89	4	53.5	38.2	64.2	53.0							0.50	0.52	0.59	0.70									
2	1	SI	D	7.59	00.1	-7 ^	75.0	F7 0	0.1.5	50.0	00.0	74.0	50.0	50.0	77.0	0.40	4.05	0.04	0.00	0.00	0.00	0.70	0.01	4.04	0.50			
2	1	SI Pc	L D	226.32 28.16	384	57.0	75.6	57.2	64.5	59.2	62.2	71.8	52.2	52.6	77.8	0.43	1.25	0.64	0.62	0.60	0.60	0.79	0.64	1.01	0.56			
2	1	PC PC	L	163.54	128	56.2	76.4	67.6	90.2	66.0	72.1	55.1	81.9	65.1	73.2	1.11	1.42	1.10	0.87	1.32	1.08	0.72	0.94	1.12	1.04			
					.20			2.10		2.5.0		23.1	2110	23.1										=				
2	2	SI	D	9.92																								
2	2	SI	L	170.62	291	53.2	59.5	51.2	51.4	37.6	63.2	39.5	43.7	52.8	67.0	0.34	0.83	0.62	0.49	0.36	0.98	0.53	0.69	0.62	0.98			
2	2	Lo Pc	D	7.03 73.67	22	57.90	41.10	75.20	38.40	49.50	55.60	68.40	36.40	34.00	48.20	0.23	0.11	0.13	0.16	0.17	0.08	0.20	0.15	0.13	0.14			
2	2	PC PC	L	335.38	161	74.5	87.7	66.5	84.5	71.2	70.2	96.5	74.5	65.0	75.5	1.88	1.52	1.04	1.48	1.76	1.40	1.42	1.58	1.69	1.33			
				000.00	101	74.5	01.1	00.0	04.0	11.2	10.2	50.5	74.0	00.0	70.0													
2	3	SI	L	336.18	510	79.2	82.4	60.0	84.6	87.8	71.0	44.4	72.0			1.22	1.73	0.77	0.99	0.91	0.67	0.57	0.61	0.52	0.55			
2	3	Lo	L	4.84	16	29.80	46.00	41.20	53.20	50.10	36.60	30.20	19.20	33.50	41.00	0.14	0.24	0.12	0.17	0.07	0.02	0.09	0.02	0.09	0.14			
2	3	Pc	L	230.47	113	86.5	88.0	89.2	58.3	94.9	64.2	97.2	77.4	83.6	80.4	1.80	1.87	1.71	1.04	1.04	1.19	1.57	1.55	1.22	1.95			
2	4	Pa	L	783.38	135	106.3	196.7	152.2	114.5	170.2	172.0	86.2	151.4	182.5	155.2	0.60	0.55	0.50	0.58	0.53	0.45	0.23	0.43	0.43	0.56			
<u> </u>	-	īα		100.00	133	100.5	130.7	102.2	114.5	170.2	172.0	00.2	101.4	102.0	100.2	0.00	0.55	0.00	0.00	0.00	0.45	0.20	0.43	0.45	0.00			
2	5	Pa	L	392.17	110	157.9	141.3	127.2	125.0	126.4	134.3	84.5	151.2	136.1	158.0	0.60	0.49	0.47	0.65	0.52	0.60	0.16	0.64	0.56	0.72			
2	5	Ls	L	43.62	4	111.2	113.4	116.3	107.0							0.57	0.52	0.61	0.57									

Appendix G - Habitat Assessment Data (Wetland-Assessment Data)

										STEM L	ENGTHS									STEM		R			
Wetland Number	Quadrat	Species	Live/Dead	Biomass	No. Stems	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10
2	6	Pa	Live/Deau	521.04	124	108.2	127.4	105.0		127.4	130.3	164.2	132.2	121.0			0.58	0.41	0.37	0.54	0.52	0.64	0.62	0.64	0.50
	-	0		04.04																					
2	7	Se Se	DL	31.64 429.61	47	138.2	117.5	112.1	118.8	136.6	162.0	118.4	127.1	123.4	118.4	3.03	2.15	2.71	2.47	2.89	2.92	2.79	2.40	2.25	2.05
2	7	Pc	D	0.65												0.75	0.59	1.14	1.32						
2	7	Pc	L	11.88	4	37.2	34.0	55.8	88.0																
2	8	Se	D	39.13																					
2	8	Se SI	L D	748.41	76	167.4	155.6	153.0	157.4	156.4	139.8	143.4	151.9	181.8	171.1	1.38	1.77	1.75	2.04	1.96	1.88	1.49	1.88	2.37	2.38
2	8	SI	L	15.49	9	50.0	78.1	59.6	85.8	82.0	69.2	62.0	89.3	79.1		0.51	0.86	0.36	1.07	1.10	0.85	0.61	0.89	0.80	
2	9	Se Se	D	73.08 499.28	48	155.2	130.5	186.0	153.4	168.2	113.4	117.8	144.0	164.2	151.8	2.71	2.64	2.61	2.05	2.19	1.58	1.61	1.72	2.08	2.94
2	9	SI	L	0.71	1	52.2						111.0		10112	10110	0.87							2	2.00	2.01
2	9	Lo Pc	L D	1.34 5.71	6	61.0	44.1	56.2	30.5	49.1	20.2					0.60	0.10	0.11	0.03	0.02	0.05				
2	9	PC	L	22.92	20	90.5	66.7	82.3	45.8	98.2	68.9	56.1	54.0	40.0	86.1	0.89	1.01	0.98	1.76	0.86	0.85	0.86	0.93	0.39	1.90
				1.00																					
3	1	Pv	L	1.89 1.14	38																				
3	1	Se	L	5.36	9																				
3	1	Lo Lo	DL	9.39 102.43	888	42.1	38.2	58.0	55.3	55.3	79.2	41.2	34.8	42.3	48.0	0.08	0.06	0.09	0.01	0.05	0.07	0.04	0.08	0.04	0.04
3	1	Pc	L	0.35	2	72.1	50.2	50.0			13.2	41.2	54.0	42.5	40.0	0.00	0.00	0.03	0.01	0.05	0.07	0.04	0.00	0.04	0.04
3	1	Ew	L	66.19	73	89.0	43.2	96.1	89.4	104.3	110.7	96.2	96.4	141.3	128.7	0.41	0.31	0.28	0.33	0.33	0.34	0.27	0.39	0.61	0.50
3	1	Er Ap	L	0.13	22 5																				
3	2	Pv Lo	L D	5.6 5.6	14																				
3	2	Lo	L	265.37	1532	28.2	58.3	41.2	63.0	38.0	62.3	51.2	40.3	58.2	30.3	0.08	0.04	0.11	0.03	0.08	0.07	0.07	0.07	0.06	0.03
3	2	Pc Ew	L	0.65 70.94	4	00.0	400.0	05.0	80.1	110.4	75.4	65.0	05.0	77.0	445.0	0.40	0.40	0.49	0.44	0.70	0.00	0.40	0.41	0.04	0.50
3	2	Ap	L	0.07	1	96.3	106.3	85.0	80.1	110.4	/5.4	65.0	65.3	77.0	115.2	0.40	0.46	0.49	0.44	0.73	0.38	0.46	0.41	0.34	0.58
3	3	Pv Se	L	3.7 3.32	27																				
3	3	Lo	D	1.47	-																				
3	3	Lo Ew	L	79.75 32.13	754 59	41.0 103.2	35.0 49.8	32.2 65.0	32.2 82.8	39.2 50.3	32.4 42.3	52.2 74.1	49.0 75.3	48.0 35.0	32.9 78.3	0.06	0.05	0.08	0.04	0.06	0.11 0.22	0.12 0.46	0.09	0.05	0.05 0.19
5	5	LW	L	32.13	59	103.2	49.0	03.0	02.0	50.5	42.3	74.1	75.5	33.0	70.5	0.45	0.32	0.20	0.55	0.30	0.22	0.40	0.30	0.23	0.19
4	1	TI	L	323.84 4.72	19		158.2	147.2	184.2	194.5	184.5	176.2	176.3	118.4	162.8		2.03	2.87	3.57	3.03	2.85	2.22	2.50	1.94	2.55
4	1	Se	L	4.72	1	100.5										0.68									
4	2	Za	L	761.28	28	142.0	203.0	208.0	190.4	185.4	179.2	178.2	185.0	174.8	167.8	1.83	3.75	3.33	2.51	1.96	2.86	2.44	1.88	2.96	2.54
4	2	Se SI	L	2.65 0.93	2	54.5 30.5	70.8 25.8	23.1	15.2	20.1	18.0	14.9	19.1	16.2	18.9	1.51 0.21	1.16 0.23	0.36	0.15	0.13	0.12	0.21	0.23	0.15	0.21
4	3	TI Sv	L	464.27	11	169.0 73.2	173.0 112.0	188.2 172.5	215.2 127.9	216.3 156.2	201.6 174.5	190.8 103.6	201.7 71.8	179.4 111.3	170.3	2.62	2.58 0.40	3.23 0.77	4.52 0.36	4.69 0.58	2.48 0.59	3.39 0.44	2.93 0.65	3.43 0.31	1.49
4	3	Sv	D	45.39	9	13.2	112.0	172.3	121.9	100.2	174.5	103.0	/ 1.8	111.3		0.09	0.40	0.77	0.30	0.56	0.59	0.44	0.05	0.31	
4	3	Se	L	92.01	13		95.1	153.0	151.6	162.2	129.6	151.5	103.0	74.8	125.2		0.56	1.11	0.72	0.58	0.63	0.90	0.88	0.81	0.24
4	3	SI Pc	L	3.24 14.46	9 19	54.5 88.2	42.2 59.8	53.0 101.2	57.2 83.5	44.2 65.5	46.5 78.1	34.2 89.4	39.2 69.0	15.2 65.5	72.5	0.81	0.31	0.56	0.44	0.57	0.56	0.43	0.39	0.14	0.76
4 4	4	Se Lo	L	279.03 0.47	16	166.5 107.0	157.3	179.5	169.0	158.6	150.2	147.8	147.0	164.8	157.3	0.82	1.93	1.66	2.10	1.89	1.35	1.17	0.87	1.35	1.17
4		LU														0.15									
4	5	Ar	L	0.43	1	47.5										0.23									
4	5 5	Xc Se	L	0.4 433.03	1 41	41.2 193.6	181.1	186.2	166.4	150.4	174.0	173.8	169.2	149.6	172.3	0.42	2.02	1.52	1.19	1.82	2.77	1.25	1.31	1.02	1.45
4	5	SI	L	1.34	4	37.2	38.8	49.2	16.0			,				0.70	0.16	0.33	0.40	-					

Appendix G - Habitat Assessment Data (Wetland-Assessment Data)

										STEM LE	NGTHS					STEM DIAMETER											
Wetland Number	Quadrat	Species	Live/Dead	Biomass	No. Stems	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10		
4	5	Pc	L	0.46	3	56.6	70.0	55.8								0.57	0.67	0.72									
4	6	Se	L	391.69	53	157.7	171.1	144.2	151.0	159.5	193.4	169.8	153.3	155.6	158.9	1.08	2.61	1.05	1.44	1.49	1.48	1.20	1.56	1.06	1.81		
4	6	SI	L	0.58	5	58.6	22.0	14.0	17.5	15.6						0.45	0.05	0.04	0.16	0.12							
4	7	Se	L	30.85	10	126.2	95.2	95.0	105.2	100.6	95.3	113.8	84.0	123.4	93.0	1.14	0.74	0.54	0.77	1.08	0.61	0.78	0.72	0.91	0.71		
4	7	Pc	L	167.61	65	96.0	111.6	120.0	76.8	80.5	78.5	79.2	81.2	97.1	78.4	1.15	1.27	1.33	0.75	1.16	1.11	1.22	0.88	1.04	1.08		
4	8	Se	L	22.11	12	59.1	56.6	92.9	62.0	83.1	47.5	78.4	76.9	82.4	82.8	0.43	0.49	0.77	0.60	0.81	0.48	0.88	0.72	1.18	0.60		
4	8	Pc	L	162.45	90	93.8	97.5	86.9	93.2	80.0	54.2	86.8	115.0	82.0	64.2	1.27	1.37	1.70	1.56	1.08	1.04	1.44	1.76	0.75	0.97		
4	9	Se	L	12.37	3	127.1	98.8	69.0								0.72	0.95	0.75									
4	9	Pc	L	231.99	102	80.6	104.0	74.1	66.4	88.4	102.2	101.2	98.2	88.6	125.4	1.37	1.40	1.16	0.99	1.11	1.25	1.58	1.44	0.88	1.59		

Notes:

Great Bur Reed Se Wild Rice Za Common Arrowhead SI Rice Cut Grass Lo Sessile Fruited Arrowhead Sr Pickerel Weed Pc Walter Millet Ew Spike Rush Er Small Water Plantain Ap Switchgrass Ρv Cattail ТΙ Soft Stemmed Bull Rush Sv BugleWeed Ar Common Clot Bur Xc Reed Canary Grass Ра Purple Loosestrife Ls

G-3 of 3

Appendix H

Transformation of Field Data to Subindices

Field data were collected from unconsolidated river bottom, aquatic vegetation bed, shoreline, and riverine fringing wetland habitats in the candidate Phase 1 areas of the Upper Hudson River in accordance with the Standard Operating Procedures (SOPs) provided in the *Habitat Delineation and Assessment Work Plan* (HDA Work Plan) (Blasland, Bouck & Lee, Inc. [BBL], 2003) and reprinted as Appendices A through D to this *Habitat Assessment Report For Candidate Phase 1 Areas* (Phase 1 HA Report). These data were collected using different units and scales of measurement and were therefore transformed into comparable unitless measures ranging from 0.0 to 1.0 for integration into the functional capacity index (FCI) models (Smith and Wakeley, 2001). For the purposes of developing the FCI models for the candidate Phase 1 areas, all stations were considered "reference stations" since they represent current conditions prior to disturbance by remediation, and since the goal of the habitat replacement and reconstruction program is to replace the functions of the habitats of the Upper Hudson River to within the range of functions found in similar physical settings in the Upper Hudson River, not to improve those functions (BBL, 2003). As a result, all collected data are included in the development of the subindices.

The process of transforming field data to subindices for each of the four habitats is described below. In addition, graphs depicting the transformed data are attached. For each variable, a subindex value of 1.0 has been assigned to the measured value that represents the "optimal" condition among all stations. In some cases, this "optimal" value is the highest measured value (e.g., aboveground biomass), while in others it is the lowest value measured (e.g., percent nuisance species). Subindex values vary linearly from 0 to 1.0 for values greater than or less than the optimal value in accordance with the national and regional guidance documents (Ainslie et al., 1999; Smith and Wakeley, 2001). For some variables (e.g., percent cover of aquatic vegetation), the subindex score decreases from 1.0 as the measured value increases past the "optimal" measured value (equal to a subindex of 1.0).

Total organic carbon (TOC) and percent fines data from the Sediment Sampling and Analysis Program (SSAP) were used in the subindices and FCI models for unconsolidated river bottom and aquatic vegetation beds. Such data are available for a substantial number of stations for the 0- to 2-inch interval, but infrequently for other sediment intervals. Therefore, the 0- to 2-inch interval was selected to provide sediment characteristic information for the assessment stations. This interval is considered sufficient for characterizing the top portion of the substrate in these habitats. Wild celery (the dominant submerged aquatic vegetation [SAV] species in the Upper Hudson River) and other SAV species remove suspended particulate organic matter and sediments from the water column, facilitating deposition of these particles to the substrate within SAV beds. The trapped, decomposing organic matter occurs in the top portion of the substrate where detritivorous species of invertebrates (e.g., Diptera, Coleoptera, Trichoptera, and others) consume the material. The decomposing material also provides a nutrient source for wild celery and other SAV species. In unvegetated areas, the top portion of the substrate provides the initial material that benthic macroinvertebrates and/or fish contact during recruitment and spawning, respectively. Composition of the 0- to 2-inch interval also provides a relative indication of the site.

A. Unconsolidated River Bottom

SUBSTRATE, EPIFAUNAL AND POOL ($V_{subcover}$) – Input data are the classification of the epifaunal substrate/available cover and pool substrate characterization as optimal, suboptimal, marginal, or poor. These categories were converted to values to transform these categorical measurements into numerical values using the

upper end of the percentages from the Barbour et al. (1999) tables (see Appendix A) for epifaunal substrate and cover, and the lower end of the percentages for pool substrate. For example, poor epifaunal substrate (10%) was converted to 0.1; marginal epifaunal substrate (10% to 30%) was converted to 0.3, etc. The subindex values used are as follows:

- Optimal = 1;
- Suboptimal = 0.5;
- Marginal = 0.3; and
- Poor = 0.1.

The maximum station averages (0.578 for epifaunal and 1.0 for pool) have been assigned a value of 1.0 (which would also apply to any subsequently measured values greater than these), and each subindex is linear from 0 to 1 for values less than the maximum. The final substrate subindex ($V_{subcover}$) used in FCI calculations is the average of the epifaunal and pool subindex values.

TOC (V_{toc}) – Input data are the measured TOC, in milligrams per kilogram (mg/kg), from the SSAP data nearest the sampling station. When multiple SSAP data existed, the values were then averaged by station. V_{toc} is a one-sided index with no upper limit. V_{toc} has a value of 1 for TOC concentrations equal to (or above) the maximum station average (52,875 mg/kg) and is linear from 0 to 1 for values less than the maximum station average.

FINES (V_{fines}) – Input data are the percent fines from the SSAP data (from the top 2 inches of the core) nearest the sampling quadrats. V_{fines} is a one-sided index with no lower limit. V_{fines} has a value of 1 for percent fines equal to (or below) the minimum station average measured (14.7%) and is linear from 1 to 0 for values greater than the minimum station average. The subindex for percent fines was completed in this manner because finer sediments are less suitable as spawning substrates for fish (Stuber et al., 1982).

B. Aquatic Vegetation Bed

BIOMASS (V_{savbio}) – Aboveground biomass was measured for each species within each quadrat at each station. The biomass of each species within the quadrat was totaled and converted to grams per square meter (g/m²) (by multiplying by 8). Quadrat totals were then averaged by station. V_{savbio} is a one-sided index with no upper limit. V_{savbio} has a value of 1 for biomass values equal to (or greater than) the maximum station average (196 g/m²) and is linear from 0 to 1 for values less than the maximum station average.

K, NH4, PO4 (V_{snn}) – These three nutrients were measured in sediment collected for each vegetation strata (determined by dominant species) at those stations where push cores could be collected. Each nutrient-specific subindex has a value of 1 for station concentrations equal to (or greater than) the maximum station average measured (44.7 mg/kg for K, 14.6 mg/kg for NH4, and 48.0 mg/kg for PO4) and is linear from 0 to 1 for lower concentrations. The final subindex (V_{snn}) used in FCI calculations is the average of the three nutrient-specific subindex values.

LIGHT (V_{light}) – Input data are the average light attenuation coefficients (Kd) calculated for the aquatic bed. Kd was calculated according to the Lambert-Beer equation ($I_z = I_o e^{-kdz}$), where Iz = light measured at a water depth of 1.0 meter (m) and Io = light measured at a water depth of 0.5 m, based on light measurements taken at 0.5 m and 1.0 m below the water surface at the center and edge of the aquatic bed. When Kd values were available for the center and edge of the bed, the values were averaged to obtain a Kd value for the aquatic bed. Light was only measured at seven stations due to weather conditions (rain), which prevented taking measurements at the two remaining stations. Light data from the edge of the bed were not available for Station 1 because the aquatic bed extended bank to bank and upstream to the remnants of the Fort Edward Dam and downstream to the Reynolds Road Bridge. Additionally, at Station 1, Kd was calculated using the ambient light at the surface and the light available at 0.5 m because the 1.0 m reading was inaccurate due to plants covering the sensor. V_{light} is a one-sided index with no upper limit. V_{light} has a value of 1 for Kd measurements equal to (or greater than) the maximum station value (1.3 m⁻¹) and is linear from 0 to 1 for values less than that.

CURRENT ($V_{current}$) – Input data are the absolute current velocity in feet per second (fps) measured at the center of the bed at a representative depth. In 2003 sampling measurements were made 10 centimeters (cm) above the substrate. In 2004 sampling measurements were made at 20 and 80% of the water depth, then averaged. The subindex is 1 for velocities equal to the maximum measured velocity (1.11 fps). V_{current} is linear from 0 to 1 for current velocities less than the maximum station average, and decreases linearly from 1 to 0 for velocities greater than the maximum and less than 1.5 fps. V_{current} decreases for higher velocities because flow velocities greater than 1.5 fps can damage or uproot plants (Doyle, 1999). V_{current} decreases for lower velocities because stagnant conditions can create poor growing conditions for some species of aquatic vegetation.

DENSITY/NUMBER OF STEMS ($V_{savdense}$) – Input data are the number of stems by species per quadrat per station. These measurements were summed for all species within each quadrat, converted to stems/m² (by multiplying by 8), then averaged across quadrats to calculate an average shoot density measurement for each station. The subindex receives a value of 1 for shoot density values equal to (or greater than) the maximum station average (793 shoots/m²). $V_{savdense}$ is linear from 0 to 1 for densities less than the maximum station average.

PERCENT COVER ($V_{savcover}$) – Input data are the percent cover of aquatic vegetation measured for each quadrat at each station. Values were averaged across quadrats to obtain station averages. The subindex value is 1 for percent cover equal to the maximum station average (78.3%). $V_{savcover}$ is linear from 0 to 1 for percent cover less than the maximum station average, and linear from 1 to 0.7 for percentages between the maximum and 100%. The subindex decreases from 1 for percent cover values greater than the maximum station average because aquatic vegetation that is too dense can impede fish access and movement (Stuber et al., 1982). However, the subindex does not fall to 0 for higher percent cover values because there is still value associated with the presence of aquatic vegetation. The subindex falls to 0.7 for higher percent covers, equal to the subindex value for 55% cover.

WATER DEPTH (V_{depth}) – Input data are the water depths measured for each quadrat at each station. To standardize water depth measurements taken on different days and under different flow conditions, water depths were adjusted by multiplying the measured depth by the ratio of the annual mean stage height to daily stage height at Fort Edward Dam. Depth measurements were averaged across quadrats to obtain an average depth per station. The subindex value is 1 for depths equal to the maximum station average depth (196 cm). V_{depth} is linear from 0 to 1 for depths less than the maximum station average, and linear from 1 to 0 for depths between the maximum and 300 cm. The subindex remains at 0 for depths above 300 cm because submerged aquatic vegetation is not common at depths greater than 300 cm in the Upper Hudson River.

C. Shoreline

DOWNFALL/WOODY DEBRIS (V_{down}) – Input data are the number, diameter, and length of fallen trees. The total area of woody debris was calculated for each sample, and then averaged by station. V_{down} is a one-sided index with no upper limit. V_{down} has a value of 1 for downfall values equal to (or above) the maximum station average measured (239 m²). V_{down} is linear from 0 to 1 for downfall values less than the maximum station average.

BANK ASSESSMENT ($V_{bankstab}$) – Input data are the percent of the bank that is stable, moderately stable, moderately unstable, or unstable. Each category has an associated weight to enable a weighted sum to be

calculated for each sample. The following weights, derived from the percent of erosion present for each category from Barbour et al. (1999), were used:

- Stable = 0;
- Moderately stable=0.05;
- Moderately unstable = 0.3;
- Unstable = 0.6.

The weighted sum was subtracted from 1 so that higher values indicate more preferable conditions to be consistent with the other subindices. Using these values, an average value was calculated for each station. $V_{bankstab}$ is a one-sided index with no upper limit. $V_{bankstab}$ has a value of 1 for stability values equal to the maximum station average measured (100%) and is linear from 0 to 1 for values less than the 100%.

BANK VEGETATION ($V_{bankveg}$) – Input data recorded onsite is the percent of the bank that is covered by vegetation. Each category has an associated weight to enable a weighted sum to be calculated for each sample. The following weights were derived from the percent cover for each category from Barbour et al. (1999):

- Optimal = 1;
- Suboptimal = 0.9;
- Marginal = 0.7; and
- Poor = 0.5.

The weighted sum was calculated for each sample, and then averaged by station. $V_{bankveg}$ is a one-sided index with no upper limit. $V_{bankveg}$ has a value of 1 for bank vegetation values equal to (or greater than) the maximum station average measured (100%) and is linear from 0 to 1 for values less than the maximum station average.

RIPARIAN (V_{down}) – Input data are the percent cover of the riparian edge in the canopy, understory, and herbaceous layers. $V_{riparian}$ is a one-sided index with no upper limit. Each of the three cover-type subindices has a value of 1 for values equal to (or greater than) the maximum station average measured (80%, 80%, and 100%, respectively). Each subindex is linear from 0 to 1 for values less than the maximum station average value. The riparian subindex ($V_{riparian}$) value used in FCI calculations is the average of the three riparian subindex values for the canopy, understory, and herbaceous layers.

D. Wetlands

SLOPE $(V_{wetslope})$ – Input data are slope measurements along three transects in each of the four wetlands. Distance from shore and elevation was used to estimate the slope along each transect. The slopes from each transect were combined to obtain an average slope for each wetland. $V_{wetslope}$ is a one-sided index with no lower limit. $V_{wetslope}$ has a value of 1 for wetland slope averages from 0 (no slope) up to the minimum wetland average slope (0.022), and is linear from 1 to 0 for slope estimates from the minimum wetland average up to 0.25. This is based on the assumption that water elevation changes are too dynamic for the development of certain functions in wetlands with slopes greater than 0.25.

AREA/SIZE ($V_{wetarea}$) – Each wetland was measured in acres, with no replication. $V_{wetarea}$ is a one-sided index with no upper limit. $V_{wetarea}$ has a value of 1 for sizes equal to (or greater than) the maximum wetland size measured (0.27 acre) and is linear from 0 to 1 for values less than that.

CONTIGUOUS (V_{contig}) – Input data are the percent of each wetland edge that is contiguous with adjacent undisturbed habitat(s). V_{contig} has a value of 1 for contiguous values equal to (or greater than) the maximum measurement (100%) and is linear from 0 to 1 for values less than that.

WETLAND EDGE ($V_{wetedge}$) – Input data are the length of each wetland edge in feet. $V_{wetedge}$ has a value of 1 for edge lengths equal to (or greater than) the maximum measured wetland edge (437 ft) and is linear from 0 to 1 for values less than that.

E. Wetlands, By Strata

BIOMASS (V_{wetbio}) – Input data are the amount of live and dead aboveground biomass by species for each quadrat in each vegetation community strata in each wetland. Biomass was summed across all species to get total biomass by quadrat within each vegetation community strata in each wetland. V_{wetbio} has a value of 1 for quadrat biomass values equal to (or greater than) the maximum quadrat biomass measurement in the vegetation community strata and is linear from 0 to 1 for values less than that. A separate biomass subindex was calculated for each vegetation community strata present. The maximum vegetation community biomass values ranged from 244 g/m² for pickerelweed to 845 g/m² for great burreed. The final biomass subindex value used in FCI calculations is the average of the applicable vegetation community strata-specific subindices.

DENSITY/NUMBER OF STEMS ($V_{wetdense}$) – Input data are the number of live stems by species for each quadrat in each vegetation community strata of each wetland. The number of stems was averaged across species within each quadrat in each vegetation community strata of each wetland. $V_{wetdense}$ has a value of 1 for quadrat density values equal to (or greater than) the maximum quadrat density measurement and is linear from 0 to 1 for values less than that. A separate density subindex was calculated for each vegetation community strata present. The maximum vegetation community stem density ranged from 14.3 stems/m² for cattails to 433 stems/m² for rice cut grass/water millet. The final density subindex value used in FCI calculations is the average of the applicable vegetation community strata-specific subindices.

STEM LENGTH ($V_{wetlength}$) – Input data are the measured stem lengths for up to 11 replicates for each species in each quadrat in each vegetation community strata of each wetland. The replicates were averaged for each species within each quadrat of each wetland. $V_{wetlength}$ has a value of 1 for quadrat stem length values equal to (or greater than) the maximum quadrat measurement and is linear from 0 to 1 for values less than that. A separate stem length subindex was calculated for each vegetation community strata. The maximum quadrat average stem length ranged from 66.7 cm for pickerelweed/arrowhead to 149 cm for reed canary grass. The final stem length subindex value used in FCI calculations is the average of the applicable vegetation community strata-specific subindices.

STEM DIAMETER ($V_{wetthick}$) – Input data are the measured stem diameters for up to 11 replicates for each species in each quadrat in each vegetation community strata of each wetland. The replicates were averaged for each species within each quadrat of each wetland. $V_{wetthick}$ has a value of 1 for quadrat stem diameter values equal to (or greater than) the maximum quadrat measurement and is linear from 0 to 1 for values less than that. A separate stem diameter subindex was calculated for each vegetation community strata. The maximum quadrat average stem diameter ranged from 0.55 cm for reed canary grass to 2.6 cm for great burreed. The final stem diameter subindex value used in FCI calculations is the average of the applicable vegetation community strata-specific subindices.

% COMPOSITION OF DOMINANT SPECIES (V_{wetspp}) – Input data are the proportion of quadrat total biomass that is from the dominant species (determined by aboveground biomass) for each vegetation community strata. The ratio of dominant species to total quadrat biomass was calculated for each quadrat in each vegetation community strata of each wetland. Each strata subindex has a value of 1 for percentages equal to the minimum

quadrat average percentage, and is linear from 0 to 1 for values below that minimum and from 1 to 0.25 for values above that minimum. The subindex does not fall to 0 when the wetlands are dominated by one species because, although it is not as preferable as a diverse vegetation community, there is still value associated with the presence of vegetation. Minimum percent compositions ranged from 48% for rice cut grass/water millet to 99% for pickerelweed/arrowhead. The final percent composition subindex value used in FCI calculations is the average of the applicable vegetation community strata-specific subindices.

% NUISANCE SPECIES ($V_{wetnuisance}$) – Input data are the proportion of quadrat total biomass that is from nuisance species (determined by aboveground biomass) for each vegetation community strata. Nuisance species were purple loosestrife and reed canary grass. The ratio of nuisance species to total quadrat biomass was calculated for each quadrat in each vegetation community strata of each wetland. Each strata subindex has a value of 1 for percentages equal to the minimum quadrat average percentage and is linear from 1 down to 0 for percentages greater than the minimum. Percent nuisance species was 0% (subindex = 1) for all vegetation communities except reed canary grass, which was 100% (subindex = 0) nuisance species. The final percent composition subindex value used in FCI calculations is the average of the applicable vegetation community strata-specific subindices.

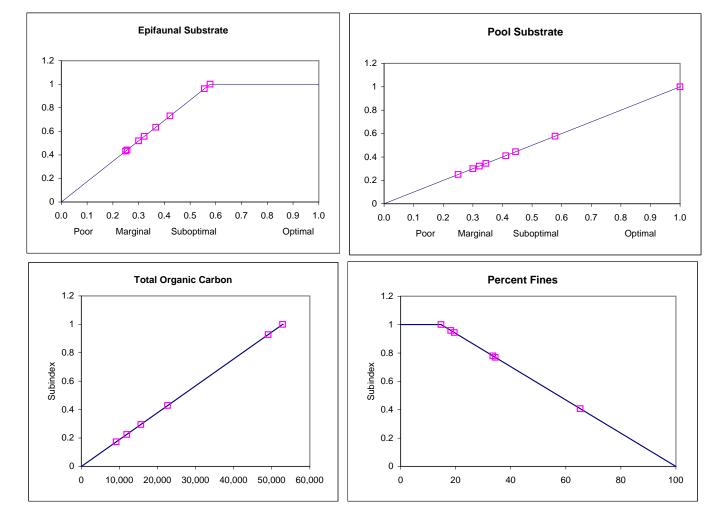
References

Ainslie, W.B., R.D. Smith, B.A. Pruitt, T.H. Roberts, E.J. Sparks, L.West, G.L. Godshalk, and M.V. Miller. 1999. *A Regional Guidebook for Assessing the Functions of Low Gradient, River Wetlands in Western Kentucky*. Technical Report WRP-DE-17, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. *Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish*, Second Edition. EPA 841-B-99-002. USEPA, Office of Water, Washington, DC.

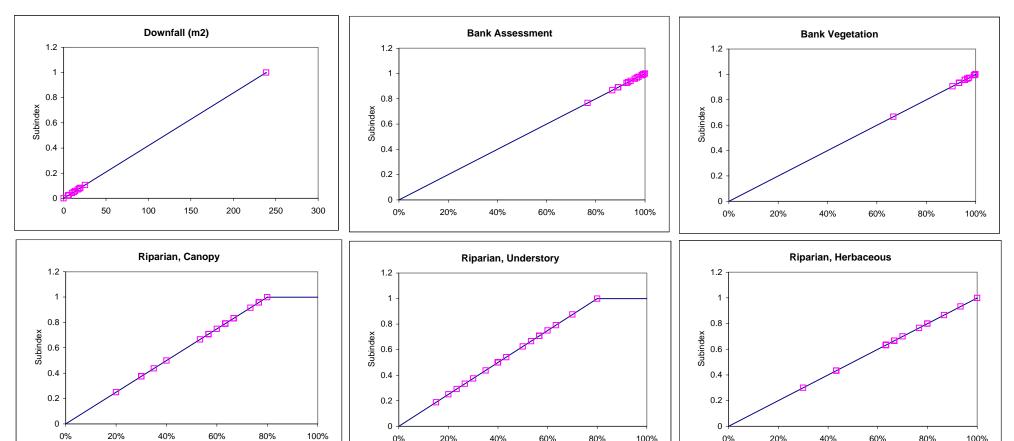
Blasland, Bouck & Lee, Inc. (BBL). 2003. *Habitat Delineation and Assessment Work Plan* (HDA Work Plan). Hudson River PCBs Superfund Site. Prepared for General Electric Company, Albany, NY.

Doyle, R.D. 1999. Effects of Waves on the Early Growth of *Vallisneria americana*. ENV Report 12, U.S. Army Waterways Experiment Station, Vicksburg, MS.


Smith, R.D. and J.S. Wakeley. 2001. Hydrogeomorphic Approach to Assessing Wetland Functions: Guidelines for Developing Regional Guidebooks. Chapter 4 - Developing Assessment Models. ERDC/EL TR-01-30. U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Stuber, R.J., G. Gebhart, and O.E. Maughan. 1982. *Habitat Suitability Index Models: Largemouth Bass.* FWS/OBS-82/10.16. U.S. Department of the Interior, U.S. Fish and Wildlife Service. Available at http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-016.pdf.

Appendix H - Transformation of Field Data to Subindices (Unconsolidated Bottom)


	Epifaunal	Pool	
Station	Substrate	Substrate	TOC
Min	0.25	0.25	9144.44444
Max	0.57777778	1	52875
Mean	0.38125	0.45625	26884.0278
StDev	0.127620245	0.242023318	19236.6616
Max+SD	0.705398022	1.242023318	72111.6616
Subindex			
0	0	0	0
1	0.57777778	1	52875
1	1	1	52875
1	inf	inf	inf
Initial Slope	1.730769231	1	1.8913E-05
Final Slope			

	Fines
	14.7
	65.26667
	30.93968
	18.7187
	83.98537
1	0
1	14.7
1	14.7
0	100
	-0.011723

Appendix H - Transformation of Field Data to Subindices (Shoreline)

Quality	Downfall	Bank	Bank	Riparian,	Riparian,	Riparian,
Station	(m2)	Assessment	Vegetation	Canopy	Understory	Herbaceous
Min	0	0.766666667	0.666666667	0.2	0.15	0.3
Max	238.7142585	1	1	0.8	0.8	1
Mean	28.01124989	0.943796296	0.958333333	0.562037037	0.446296296	0.677777778
StDev	61.01028477	0.060641466	0.078292647	0.179669773	0.180010489	0.174145908
Max+SD	299.7245433	1.060641466	1.078292647	0.979669773	0.980010489	1.174145908
SubIndex						
0	0	0	0	0	0	0
1	238.7142585	1	1	0.8	0.8	1
1	238.7142585	1	1	1	1	1
Initial Slope	0.0042	1.0000	1.0000	1.2500	1.2500	1.0000
Final Slope						

60%

80%

100%

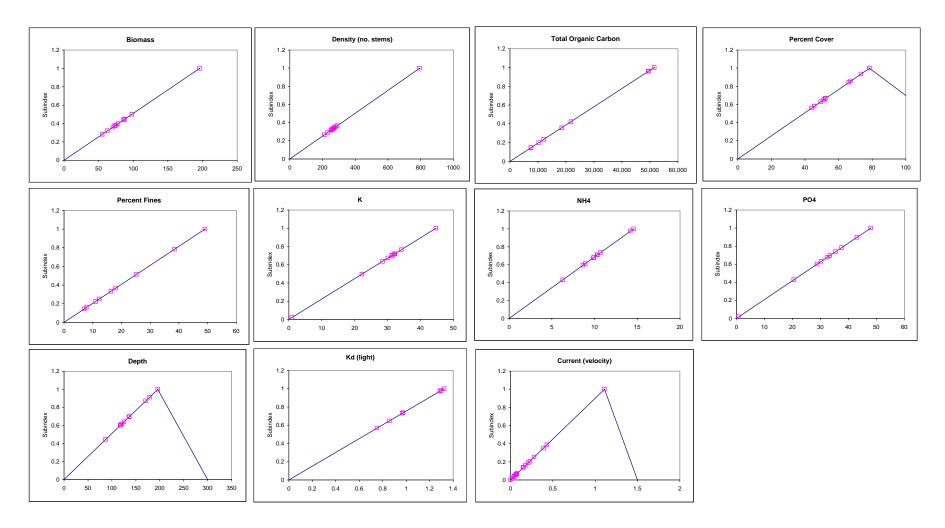
0%

20%

40%

60%

80%

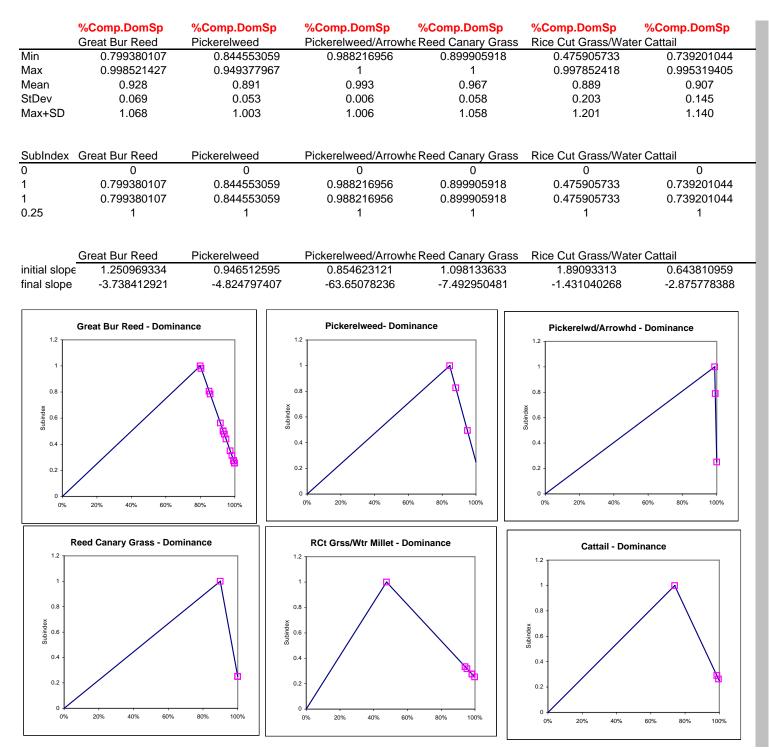

100%

40%

0%

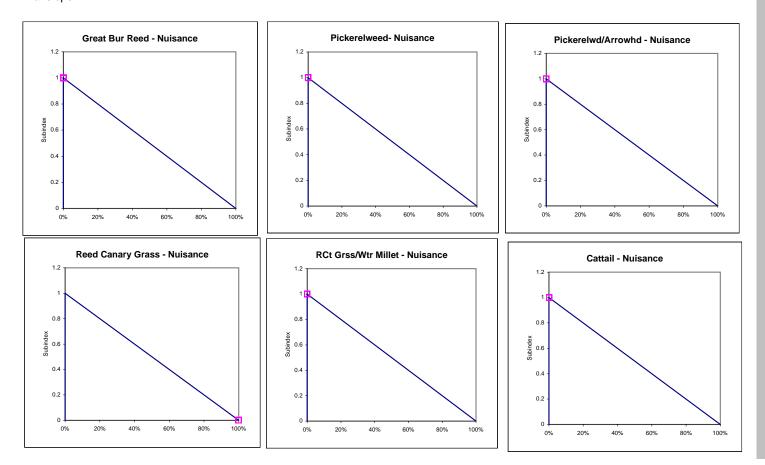
20%

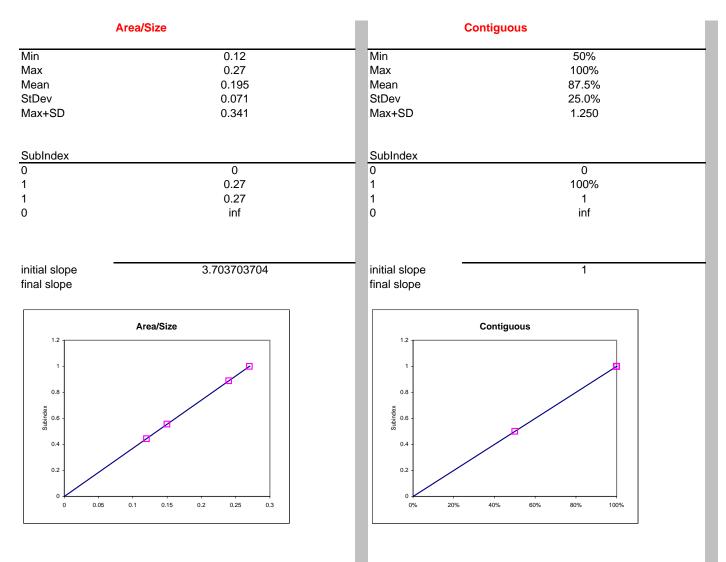
	Summary of Station Average Values										
		(density)								(Kd)	(current)
Station	Biomass(g/m3	No.Stems(/m3)	TOC	Adj.Depth	%Cover	%Fines	K	NH4	PO4	light	Velocity
Min	55.21	211.56	7533	86.89	43.89	7.1	0.94	6.27	0.82	0.751	0
Max	195.65	792.89	51567	195.78	78.33	49.1	44.68	14.57	47.98	1.323	1.11
Mean	88.20	311.78	25358	135.04	57.94	20.6	28.76	10.37	31.02	1.065	0.196
StDev	39.71	170.64	19204	33.19	12.21	14.5	11.25	2.47	13.04	0.234	0.261
Max+SD	235.36	963.53	70770	228.97	90.54	64	55.92	17.04	61.02	1.557	1.371
SubIndex											
0	0	0	0	0	0	0	0	0	0	0	0
1	195.653333	792.8888889	51566.66667	195.7778	78.33333	49.1	44.675	14.57	47.975	1.323236	1.11
1	195.653333	792.8888889	51566.66667	195.7778	78.33333	49.1	44.675	14.57	47.975	1.323236	1.11
0	inf	inf	inf	300		inf	inf	inf	inf	inf	1.5
0.7					100						
Initial Slope	0.00511108	0.001261211	1.93924E-05	0.005108	0.012766	0.020367	0.022384	0.068634	0.020844	0.755723	0.900901
Final Slope				-0.00959	-0.01385						-2.5641



	Biomass Great Bur Reed	Biomass Pickerelweed	Biomass Pickerelweed/Arrow	Biomass /he Reed Canary Grass	Biomass Rice Cut Grass/Wate	Biomass r Cattail
Min	171.33	184.56	425.61	435.79	28.43	328.56
Max	844.55	244.36	596.62	783.38	348.23	764.86
Mean	402.590	209.127	531.240	580.070	157.730	573.830
StDev	177.525	31.294	92.337	181.158	106.947	223.150
Max+SD	1022.075	275.654	688.957	964.538	455.177	988.010
MaxioD	1022.010	270.004	000.001	001.000		000.010
	Great Bur Reed	Pickerelweed		vhe Reed Canary Grass		
0	0	0	0	0	0	0
1	844.55	244.36	596.62	783.38	348.23	764.86
1	844.55	244.36	596.62	783.38	348.23	764.86
0	inf	inf	inf	inf	inf	inf
	Great Bur Reed	Pickerelweed	Pickerelweed/Arrow	vhe Reed Canary Grass	s Rice Cut Grass/Wate	r Cattail
initial slope final slope	0.001184063	0.00409232		0.00127652	0.002871665	0.001307429
			Distansional Di	_		
1.2	Great Bur Reed - Biom		Pickerelweed- Bi	lomass	Pickerelwd/Arrowh	d - Biomass
1 -			1 -		1 -	<mark>⊳</mark> ₽
0.8 -			0.8 -		0.8 -	
Subindex			Rubindex - 9.0		Subindex	
			Э о.4 -		0.4	
0.4 -						
0.2 -	<u>∕</u> ≊		0.2		0.2	
0	200 400 600	800 1,000	0 1 1 1 1 1 1 1 1 1 1	200 250 300	0 100 200 300	400 500 600 700
1.2	Reed Canary Grass - Bio	omass	RceCut Grss/Wtr Mille	et - Biomass	Cattail - Bio	mass
1-			1-		1.2	
0.8 -	/		0.8 -		0.8 -	
ntan Subindex	R		Subjudex		- 0.0 -	
0.4 -			0.4 -		0.4 -	
0.2 -			0.2		0.2 -	
0	200 400 600	800 1,000	0 100 200	300 400	0 200 400	600 800 1,000
					0 200 400	000 000 1,000

	Density/NoStems Great Bur Reed	Density/NoStems Pickerelweed	Density/NoStems Pickerelweed/Arrowh	Density/NoStems	Density/NoStems Rice Cut Grass/Wat	Density/NoStems er Cattail
Min Max Mean StDev Max+SD	8.5 42.5 24.600 10.137 52.637	37.5 52.5 47.000 8.261 60.761	158 256 209.000 49.122 305.122	57 135 105.333 42.218 177.218	148.1428571 432.66666667 298.557 109.037 541.704	10 14.33333333 12.178 2.167 16.500
	Great Bur Reed 0 42.5 42.5 inf	Pickerelweed 0 52.5 52.5 inf		ne Reed Canary Grass 0 135 135 inf	Rice Cut Grass/Wat 0 432.66666667 432.66666667 inf	
initial slope final slope		Pickerelweed 0.019047619	Pickerelweed/Arrowh 0.00390625	ne Reed Canary Grass 0.007407407	Rice Cut Grass/Wat 0.002311248	er Cattail 0.069767442
1.2 1.2 1. 0.8 - 38 - 39 0.6 - 0.2 - 0 0 0	Great Bur Reed - Dens	sity	Pickerelweed- De	R	Pickerelwd/Arrow	
1.2 1.2 1. 0.8 - 30 0.6 - 0.2 - 0 0	Reed Canary Grass - De	ensity population of the second se	0.4	t - Density	Cattail - D	ensity


	Stem Length Great Bur Reed	Stem Length Pickerelweed	Stem Length Pickerelweed/Arrow	Stem Length he Reed Canary Grass	Stem Length Rice Cut Grass/Wate	Stem Length er Cattail
Min	71.292	78.765	59.66333333	123.0825	9.9135	88.07
Max	134.05	96.551	66.695	148.72	74.485	133.225
Mean	102.668	90.307	63.418	131.651	45.713	111.107
StDev	19.262	10.007	3.540	14.782	24.867	22.592
Max+SD	153.312	106.558	70.235	163.502	99.352	155.817
SubIndex	Great Bur Reed	Pickerelweed	Pickerelweed/Arrowl	he Reed Canary Grass	Rice Cut Grass/Wate	er Cattail
0	0	0	0	0	0	0
1	134.05	96.551	66.695	148.72	74.485	133.225
1	134.05	96.551	66.695	148.72	74.485	133.225
0	inf	inf	inf	inf	inf	inf
initial slope final slope		Pickerelweed 0.01035722		he Reed Canary Grass 0.006724045	Rice Cut Grass/Wate 0.013425522	er Cattail 0.007506099
1.2	Great Bur Reed - Len	gth	Pickerelweed- Le	ength	Pickerelwd/Arrow	hd - Length
1 - 0.8 - ypu 0.6 - 0.4 - 0.2 - 0 0	50 10	20 150	1 0.8 0.6 0.4 0.2 0 0 0 20 40 60		1 0.8 0.6 0.4 0.2 0 0 0 20 40	60 80
1.2	Reed Canary Grass - L	ength	RceCut Grss/Wtr Mille	t - Length	Cattail - Le	ength
1 - 0.8 - 0.6 - 0.4 - 0.2 - 0 - 0 -	50 100	150 200	1 - 0.8 × 9 0.6 0.4 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	60 80	$ \begin{array}{c} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 20 \\ 40 \\ 60 \end{array} $	


	Stem Diameter Great Bur Reed	Stem Diameter Pickerelweed	Stem Diameter Pickerelweed/Arrow	Stem Diameter he Reed Canary Grass	Stem Diameter Rice Cut Grass/Wat	Stem Diameter er Cattail
Min Max Mean StDev	0.662966667 2.566 1.052 0.460	0.9495 1.041833333 0.995 0.046	0.768 0.893 0.827 0.063	0.486 0.55425 0.525 0.035	0.1885 1.795 0.791 0.666	1.1982 1.64 1.406 0.222
Max+SD	3.026	1.088	0.956	0.589	2.461	1.862
SubIndex	Great Bur Reed	Pickerelweed	Pickerelweed/Arrow	he Reed Canary Grass	Rice Cut Grass/Wat	er Cattail
0	0	0	0	0	0	0
1	2.566	1.041833333	0.893	0.55425	1.795	1.64
1	2.566	1.041833333	0.893	0.55425	1.795	1.64
0	inf	inf	inf	inf	inf	inf
	Great Bur Reed	Pickerelweed		he Reed Canary Grass	Rice Cut Grass/Wat	
initial slope final slope		0.959846425	1.119820829	1.804239964	0.557103064	0.609756098
1.2	Great Bur Reed - Diam	eter	Pickerelweed- Dia	ameter	Pickerelwd/Arrow	hd - Diameter
1 - 0.8 - xspuqns 0.6 - 0.2 - 0 0 0	0.5 1 1.5 2				1 0.8 0.6 0.4 0.2 0 0 0 0.2 0.4	0.6 0.8 1
1.2	Reed Canary Grass - Dia	imeter	RceCut Grss/Wtr Millet	t - Diameter	Cattail - Di	ameter
1 - 0.8 - ×epu q0.6 - 0.4 - 0.2 - 0 -	0.1 0.2 0.3 0	4 0.5 0.6		1.5 2	1 - 0.8 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	1 1.5 2

	%Nuisance Great Bur Reed	%Nuisance Pickerelweed	%Nuisance Pickerelweed/Arro	%Nuisance	%Nuisance Rice Cut Grass/Wa	%Nuisance ater Cattail
Min	0	0	0	1	0	0
Max	0	0	0	1	0	0
Mean	0	0	0	1	0	0
StDev	0	0	0	0	0	0
Max+SD	0.000	0.000	0.000	1.000	0.000	0.000
SubIndex	Great Bur Reed	Pickerelweed	Pickerelweed/Arro	owhe Reed Canary Grass	Rice Cut Grass/W	ater Cattail
0	0	0	0	0	0	0
1	0	0	0	0	0	0
1	0	0	0	0	0	0
0	1	1	1	1	1	1

	Great Bur Reed	Pickerelweed	Pickerelweed/Arrowhe	Reed Canary Grass	Rice Cut Grass/Water Cattail	
initial slope	9					
final slope	-1	-1	-1	-1	-1	-1

Appendix I

Habitat Suitability Index Models for Key Species

Parameters	Variables	Comments						
	Belted Kingfisher							
% of shoreline subject to severe wave action	V ₁	Not applicable to the Upper Hudson						
Average Water Transparency	V ₂							
% Water Obstruction	V ₃							
% Water Area <u><</u> 60 cm in Depth	V ₄							
% Riffles	V ₅	Not applicable to the Upper Hudson						
Average Number of Lentic Shoreline Containing one or more Perches	V ₆							
Distance to nearest suitable soil bank from 1-km sections of lentic shoreline or stream	V ₇							
SIW = Water Suitability Index	$(V_2 x V_4 x V_5)^{(1/3)} x V_3$							
SIC = Cover Suitability Index	(V ₆)							
SIR = Reproductive Suitability Index	(V ₇)							
	Lowest life requisite suitability index for either water (SIW),							
HSI =	cover (SIC), or reproductive cover (SIR).							
	Yellow Perch							
% of Littoral area	V ₁	Used in Lacustrine HSI model						
% Pool and Backwater Areas	V ₂							
% Cover in Pool and Backwater Areas	V ₃							
Temperature (°C)	V ₄							
Temperature - Embryo (°C)	V ₅							
Dissolved Oxygen	V ₆							
Degree Days - (4 to 10 °C)	V ₇							
pH	V ₈							
HSI =	Minimum Value of SI's V ₂ , V3, V4, V5, V6, V7, or V8							

Parameters	Variables	Comments
	Largemouth Bass	
% Pool, Backwater Area	V ₁	
% area <u><</u> 6m deep	V ₂	Used in Lacustrine HSI model
% Bottom Cover - Adult, Juvenile	V ₃	
% Bottom Cover - Fry	V ₄	
Total dissolved solids	V ₅	Used in Lacustrine HSI model
Dissolved O ₂ (mg/l)	V ₆	
pH Range	V ₇	
Average Temperature - Adult, Juvenile (°C)	V ₈	
Average Temperature - Embryo (°C)	V ₉	
Average Temperature - Fry (°C)	V ₁₀	
Maximum Turbidity - JTU	V ₁₁	
Maximum Salinity - Adult, Juvenile (ppt)	V ₁₂	
Maximum Salinity - Fry (ppt)	V ₁₃	
Maximum Salinity - Embryo (ppt)	V ₁₄	
Substrate Type - Embryo	V ₁₅	
Water Level Fluctuation - Adult, Juvenile	V ₁₆	
Water Level Fluctuation - Embryo (m)	V ₁₇	
Water Level Fluctuation - Fry (m)	V ₁₈	
Average current velocity at 0.6 depth during summer - Adult, Juvenile	V ₁₉	
Current Velocity - Embryo (cm/sec)	V ₂₀	
Average current velocity at 0.6 depth during summer - Fry	V ₂₁	
Stream Gradient (m/km)	V ₂₂	
C _F = Food	(V ₁ *((V ₃ +V ₄)/2))^(1/2)	
C _c = Cover	(V ₁ *((V ₃ +V ₄)/2)*((V ₁₆ +V ₁₈ /2))^(1/3)	
C _{WQ} = Water Quality	(2*V ₆ +V ₇ +2*V ₈ +V ₁₀ +V ₁₁)/7	
C _R = Reproduction	(V ₁ *V ₉ *V ₁₅ *V ₁₇ *V ₂₀)^(1/5)	
C _{OT} = Other	(V ₂₂) or (V ₁₉ +V ₂₁)/2	
		If the C_{WQ} or C_R is less than 0.4, then the HSI is the lowest of those measures or
HSI =	(C _F *C _C *C _{WQ} *C _R *C _{OT})^(1/5)	the equation provided.

Parameters	Variables	Comments
	Smallmouth Bass	
Subsstrate Type	V ₁	
% Pools	V ₂	
Average Depth of lake or reservoir during summer (m)	V ₃	Used in Lacustrine HSI model
Average Depth (m)	V ₄	
% Cover	V ₅	
рН	V ₆	
Average TDS levels during the gorwing season (May to October)	V ₇	Used in Lacustrine HSI model
Dissolved Oxygen (ppm)	V ₈	
Turbidity (JTU)	V ₉	
Temperature - Adult (°C)	V ₁₀	
Temperature - Embryo (°C)	V ₁₁	
Temperature - Fry (°C)	V ₁₂	
Temperature - Juvenile (°C)	V ₁₃	
Water Level Fluctuations (m)	V ₁₄	
Gradient (m/km)	V ₁₅	
C _F = Food	(V ₁ *V ₂ *V ₅)^(1/3)	
C _c = Cover	$(V_1+V_2+V_4+V_5)/4$	
C _{WQ} = Water Quality	((V ₆ +V ₈ +V ₉ +(2*(V ₁₀ *V ₁₂ *V ₁₃)^(1/3))))/5	
C _R = Reproduction	(V ₁₁ ^(2)*V ₁₄ *V ₁ *V ₅ *V ₈ *V ₉)^(1/7)	
C _{OT} = Other	(V ₁₅)	
		If the C_{WQ} or C_R is less than 0.6, then the HSI is the lowest of those measures or
HSI =	(C _F *C _C *C _{WQ} *C _R *C _{OT})^(1/5)	the equation provided.
	Common Shiner	
Temperature - Summer (°C)	V ₁	
pH	V ₂	
Turbidity (JTU)	V ₃	
Predominant Substrate Type	V ₄	
% Pools	V ₅	
Velocity - Pools (cm/s)	V ₆	
Pool Class	V ₇	
Temperature - Spawning (°C)	V ₈	
Velocity - Riffles (cm/sec)	V ₉	
% lake area vegetated	V ₁₀	Used in Lacustrine HSI model
C _{F-C} = Food-Cover	$(V_4 + V_5 + V_6 + V_7)/4$	
C _{WQ} = Water Quality	(V ₁ *V ₂ *V ₃)^(1/3)	
C _R = Reproduction	$(V_8^{\Lambda^{2*}}V_4^{*}V_9)^{(1/4)}$	
HSI =	(C _{F-C} *C _{WQ} *C _R)^(1/3)	If the value for any component is \leq 0.4, the HSI = the minimum component value. Otherwise HSI = equation provided.

Parameters	Variables	Comments								
	Muskrat									
% canopy cover of emergent herbaceous vegetation	V ₁	Used in Herbaceous wetland and Estuarine HSI models								
% of year with surface water present	V ₂									
% Stream gradient	V ₃									
% of riverine with surface water present during typical minimum flow	V ₄									
% riverine channel domminated by emergent herbaceous vegetation	V ₅									
% herbaceous canopy cover within 10 m of water's edge	V ₆									
% of emergent herbaceous vegetation consisting of persistent life form species	V ₇	Used in Estuarine HSI model								
% of emergent herbaceous vegetation consisting of Olney bulrush, common three-square bulrush, or cattail	V ₈	Used in Herbaceous wetland and Estuarine HSI models								
% of open water supporting submerged or floating aquatic vegetation	V ₉	Used in Estuarine HSI model								
C _c = Cover	$(V_2^*V_3^*V_4)^{(1/3)+V_5/2}$									
C _F = Food	$V_{6}+2(V_{5})^{*}/2$									
HSI =	Lowest life requisite value for either cover or food									
HSI = Lowest life requisite value for either cover of food Great Blue Heron										
Distance between potential nest sites and foraging area	V ₁									
Presence of a water body with suitable prey population and foraging substrate	V ₂									
A disturbance free zone up to 100 m around potential foraging area	V ₃									
Presence of treeland cover types within 250 m of a wetland	V ₄	V ₄ -V ₆ are habitat variables for forested wetlands, not								
Presence of 250 m (land) or 150 m (water) disturbance free zone around potential nest sites	V ₅	riverine but are required for the HSI								
Proximity of potential nest site to an active nest site	V ₆									
FI = Foraging index	$(V_1 * V_2 * V_3)$									
HSI =	$(V_1^*V_2^*V_3^*V_4^*V_5^*V_6)^{(1/2)}$									
	Mink	F								
% of year with surface water present	V ₁									
% tree canopy cover	V ₂	Used in palustrine forested (PFO) and palustrine shrub-scrub (PSS) HSI model								
% shrub canopy cover	V ₂ V ₃	Used in PFO and PSS HSI model								
% canopy cover of emergent vegetation	V ₄	Used in PFO, PSS and palustrine emergent marsh (PEM) HSI model								
% canopy cover of trees and shrubs within 100 m of the wetland's edge	V ₄ V ₅									
% shoreline cover within 1 m of water's edge	V ₅									
SIW = Water Suitability Index	V ₆ V ₁									
SIV = Water Suitability index SIRL = Cover index for riverine and lacustrine cover types	v_1 ($V_5^*V_6$)/(1/2)									
HSI =	Lowest life requisite value for either water or cover									

Parameters	Variables	Comments
	Wood Duck	
Number of potentially suitable tree cavities/0.4 ha	V ₁	
Number of nest boxes/0.4 ha that are predator proof and maintained	V ₂	
% of the water surface covered by potential brood cover	V ₄	
Density of Potential nest sites/0.4 ha	(0.18*V ₁)+(0.95*V ₂)	
Brood-rearing Index	V_4	
HSI =	Lowest life requisite value for either nesting or brood-rearing	
	Bluegill	
% Pool area during average summer flow	V ₁	
% Cover (Logs and other objects) within polls or littoral areas during summer	V ₂	
% Cover (Vegetation)	V ₃	
% littoral area during summer stratification	V ₄	Used in Lacustrine HSI model
Average TDS level during growing season	V ₅	Used in Lacustrine HSI model
Maximum monthly average turbidity during average summer flow	V ₆	
pH range during growing season	V ₇	
Minimum dissolved oxygen range during summer	V ₈	
Salinity	V ₉	
Temperature (Adult)	V ₁₀	
Temperature (Embryo)	V ₁₁	
Temperature (Fry)	V ₁₂	
Temperature (Juvenile)	V ₁₃	
Current Velocity (Adult)	V ₁₄	
Current Velocity (Embryo)	V ₁₅	
Current Velocity (Fry)	V ₁₆	
Current Velocity (Juvenile)	V ₁₇	
Stream Gradient	V ₁₈	
Reservoir drawdown during spawning (Embryo)	V ₁₉	Used in Lacustrine HSI model
Substrate Composition (Embryo)	V ₂₀	
C _F = Food	(V ₁ *V ₂ *V ₃)^(1/3)	
C _c = Cover	V ₂ +V ₃ /2	
C _{WQ} = Water Quality	(V ₆ +V ₇ +2V ₈ +V ₉ +2[(V ₁₀ *V ₁₂ *V ₁₃)^(1/3)])/7	
C _R = Reproduction	(V ₁₁ *V ₁₅ *V ₂₀)^(1/3)	
C _{OT} = Other	(V ₁₄ +V ₁₆ +V ₁₇ /3)+V ₁₈ /2	
HSI =	(C _F *C _C *(C _{WQ} ^(2))*C _R *C _{OT})^(1/6)	
If C_{WQ} or C_R are ≤ 0.4 , use lowest component rating as the species HSI		

Appendix I - Habitat Suitability Index Models for Key Species

Parameters	Variables	Comments								
Snapping Turtle										
Food										
Mean Water temperature at mid-depth during summer °C	V ₁									
Mean current velocity at mid-depth during summer (cm/s)	V ₂									
% Canopy cover of aquatic vegetation in the littoral zone	V ₃									
Winter Cover										
Maximum water depth greater than maximum ice depth	V ₄									
% silt in substrate	V ₅									
Reproduction										
Distance to small stream (km)	V ₆									
Interspersion										
Distance to permanent water (km)	V ₇									
SIF = Food Suitability Index	(V ₁ *V ₂ *V ₃)^(1/3)									
SIWC = Winter Cover Suitability Index	V ₄ *V ₅									
SIR = Reproduction Suitability Index	V ₆									
SII = Interspersion Suitability Index	V ₇									
HSI =	(SIF*SIWC*SIR)^(1/3)*SII									

References:

Allen, A. W. 1986. Habitat suitability index models: mink, revised. U.S. Fish Wildl. Serv. Biol. Rep. 82(10.127). 23 pp.

Allen, A. W., and R. D. Hoffman. 1984. Habitat suitability index models: Muskrat. U.S. Fish Wildl. Serv. FWS/OBS-82/10.46. 27 pp.

Edwards, E. A., G. Gebhart, and O.E. Maughan. 1983. Habitat suitability information: Smallmouth bass. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.36. 47 pp.

Graves, B. M., and S. H. Anderson. 1987. Habitat suitability index models: snapping turtle. U.S. Fish Wildl. Serv. Biol. Rep. 82(10.141). 18 pp.

Krieger, D. A., J. W. Terrell, and P. C. Nelson. 1983. Habitat suitability information: Yellow perch. U.S. Fish Wildl. Serv. FWS/OBS-83/10.55. 37 pp.

Prose, B. L. 1985. Habitat suitability index models: Belted kingfisher. U.S. Fish Wildl. Serv. Biol. Rep. 82(10.87). 22 pp.

Short, H. L., and R. J. Cooper. 1985. Habitat suitability index models: Great blue heron. U.S. Fish Wildl. Serv. Biol. Rep. 82(10.99). 23 pp.

Sousa, P. J., and A. H. Farmer. 1983. Habitat suitability index models: Wood duck. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.43. 27 pp.

Stuber, R. J., G. Gebhart, and O. E. Maughan. 1982. Habitat suitability index models: Bluegill. U.S.D.I. Fish and Wildlife Service. FWS/OBS-82/10.8. 26 pp.

Stuber, R. J., G. Gebhart, and O. E. Maughan. 1982. Habitat suitability index models: Largemouth bass. U.S. Dept. Int. Fish Wildl. Serv. FWS/OBS-82/10.16. 32 pp.

Trial, J. G., C. S. Wade, J. G. Stanley, and P. C. Nelson. 1983. Habitat suitability information: Common shiner. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.40. 22 pp.

Appendix J

Wetland Coring Logs

Hudson River PCBs Superfund Site Soil Analysis Data Form: Soil Clay Content in Disturbed Portions

Date: 9/12/03

Wetland Station #: 2

Transect #:_____

Transect Length:_____

Timer					
Time:	-				

Weather Conditions:

Samplers:

Has native soil been altered at any point along transect (yes/no): hO

If yes, how long is/are the disturbed section(s)?_____

Soil descriptions: complete only If disturbed soil area identified

		Horizon	Depth (cm)	Color	Texture	Other Descriptions
24	5	0	0-30	10R 4/1		most mat throuhout, organics w/ some silt.
XT	9					saturated of
2-1	$\langle $	NA	0-34	GISN	SAND	Depositional sediment some organise throughout
	4					not real "A" horner, schureted
	1		0-30	GI3/N.	SAND	depositional scliment, some anomics throughout
1-8	31		· · ·			not real "A" herizon, saturate
	4		30-45	2.54 4/1	Conser SA	ND less organics
				1		
		·				

Hudson River PCBs Superfund Site Soil Analysis Data Form: Soil Clay Content in Disturbed Portions

Date: 4/12/03

Wetland Station #:

Transect #:_____

Transect Length:

Time:

Weather Conditions:

Samplers: <u>GM JJ</u>

Has native soil been altered at any point along transect (yes/no): no

If yes, how long is/are the disturbed section(s)?______

Soil descriptions: complete only If disturbed soil area identified

	Horizon	Depth (cm)	Color	Texture	Other Descriptions
(NA	025	5-5-4/1	SAND	Depositional seliment, some organics disponel
2-37					through out, not a real "A" borrison, saturaled
. (KreAu	Lhit	e 25	<u>s</u> m	
2-65	NA.	0-30	Syr 4/1	SAND	Departional sediment, some organics thoughout
-03			1.1		not real "A" horizon, saturated
C	* re	fusal h	10;	SOCH	
.110					
plan) (NA	0-8	575 4/1	SANDL	Am same as above
ma Jrg (Aa	5-20	GISN	STLTY/C	LAY/LOAM salvated
	the ret	Isal hit	C 20	cn	

Hudson River PCBs Superfund Site Soil Analysis Data Form: Soil Clay Content in Disturbed Portions

Date: 9/12/ 10-

Wetland Station #:____3

Transect #:____

Transect Length:_____

Time:	

Weather Conditions:

Samplers: _

Has native soil been altered at any point along transect (yes/no): ho_____

If yes, how long is/are the disturbed section(s)?_

Soil descriptions: complete only if disturbed soil area identified

	Horizon	Depth (cm)	Color	Texture	Other Descriptions
176	NA	0-34	GIZN	SAND	deposition SAND & organic matrial w/ some silt
22					saturated
	-				
• •					
					· · · · · · · · · · · · · · · · · · ·
•••••					
·					
•					

Hudson River PCBs Superfund Site Soil Analysis Data Form: Soil Clay Content in Disturbed Portions

Date: 9/12/03

Wetland Station #: 4

Transect #:

Weather Conditions:_____

Samplers:

Time:

Transect Length:_____

Has native soil been altered at any point along transect (yes/no): <u>hO</u>

If yes, how long is/are the disturbed section(s)?__

Soil descriptions: ... complete only If disturbed soil area identified

	Horizon	Depth (cm)	Color	Texture	Other Descriptions
1	NA	0-20	10-1-4/1	silt loam	no oxidized not channely: sample under 3" water
143			1		e aganics_throughout
C	# neA	sal hit.	C 200	-	
	•				
	0	0-35	7.5 m 8/1		onanics w/some silt, saturated -
2-92					3
1-49	0	0-33	IOR S/1	-	high organics with some silt cabrated
1-70					8 0

Appendix K

Tables for Habitat Reassessment Data from 2004

Table 1 - Unconsolidated River Bottom Data - 2004

Station Location			Inorganic Shoreline Substrate Components							Organic Substrate Components				Epifaunal Substrate/Available Cover (Low Gradient)				Pool Substrate Characterization (Low Gradient)				
Station Number	Quadrat	Northing	Easting	Bedrock	Boulder	Cobble	Gravel	Sand	Silt	Clay	Detritus	Muck- Mud	Marl	Mussels	Optimal	Suboptimal	Marginal	Poor	Optimal	Suboptimal	Marginal	Poor
UCB-2	1	1611329	734691					70	30		Trace		20	1				Х			Х	
UCB-2	2	1611269	734713					80	20		70		10	0			Х			Х		
UCB-2	3	1611235	734647					80	20		60		10	0			Х				Х	
UCB-2	4	1611189	734670			20	30	40	10		10		80	1			Х					Х
UCB-2	5	1611204	734617					80	20		Trace		10	2			Х				Х	
UCB-2	6	1611108	734657					90	10		30	70	10	0			Х				Х	
UCB-2	7	1611129	734557					60	40		10	80	10	2				Х			Х	
UCB-2	8	1611076	734559					80	20		30	10		0			Х				Х	
UCB-2	9	1611008	734570					90	10		10	Trace	50	0			Х				Х	
UCB-3	1	1597023	737267		50	30	10	10			Trace	20		2		Х				Х		
UCB-3	2	1596964	737305		50	30	10	10			Trace	30		1		Х				Х		
UCB-3	3	1596915	737327		60	30	10	Trace			Trace	30		2		Х				Х		
UCB-3	4	1596837	737351		40	20	20	10	10		Trace	40		3		Х				Х		
UCB-3	5	1596794	737385			Trace	20	30	50			70	10	2			Х				Х	
UCB-3	6	1597018	737322		10	50	30	Trace	10			50	Trace	2		Х				Х		
UCB-3	7	1596899	737373		10	10	Trace	20	50	10	Trace	80	Trace	1			Х				Х	
UCB-3	8	1596872	737407					20	70	10	Trace	80	Trace	1				Х			Х	
UCB-3	9	1596836	737416					20	70	10	10	70		1				Х			Х	

					Curre	nt Measurement
Station Number	River Section	Northing	Easting	Water Depth (cm)	% Depth	Current Velocity (ft/s)
UCB-1	1	1614589	735351	283	20	1.57
					80	1.22
UCB-2	1	1611340	734680	220	20	0.43
					80	0.36
UCB-3	1	1597078	737345	255	20	0.48
					80	0.44
UCB-4	1	1594207	736997	300	20	0.84
					80	0.35
UCB-5	2	1567972	735156	257	20	0.38
					80	0.25
UCB-6	1	1614674	736040	363	20	0.83
					80	0.14

Table 2 - Unconsolidated River Bottom Current Velocity - 2004

Notes:

Depths at which velocities were recorded are 20% and 80% of the total water column depth.

UCB-1 - West side of Rogers Island; east side of smaller island in the West River Channel

UCB-2 - ~300 yards south of Lock 7; west side of channel

UCB-3 - Just south of north end of Griffin Island ~100 yards south, east side of channel

UCB-4 - South end of Griffin Island ~300 yards north of south tip, west side of channel

UCB-5 -~300 yards north of Northumberland Bridge; east side of channel

UCB-6 - East side of Roger's Island above POTW outfall

Table 3a - Aquatic Vegetation Bed Data - 2004

					Species	No. Otomo	Total Biomass	Total Stem Density	Demonst				
Station	Quadrat	Species	Northing	Easting	Biomass (g/quad)	No. Stems spp	(g/m ²) ¹	(stems/m2) ¹	Percent Cover	Depth (cm)	K (mg/kg)	PO4 (mg/kg)	NH4 (mg/kg)
SAV 4	1	Va	1610808	734250	10.64	15	85.12	120	30	216			
SAV 4	2	Va	1610804	734214	14.73	26	117.84	208	60	90			
SAV 4	3	Va	1610755	734210	15.94	28	127.52	224	60	215			
SAV 4	4	Va	1610646	734112	6.68	20	53.44	160	40	211			
SAV 4	5	Va	1610621	734093	4.87	13	38.96	152	30	108	0.94	14.2	0.82
SAV 4	5	Pg			0.53	6	4.24						
SAV 4	6	Va	1610352	733869	12.14	46	97.12	368	70	107			
SAV 4	7	Va	1610296	733850	4.87	15	38.96	120	50	180			
SAV 4	8	Va	1610200	733843	10.4	40	83.2	320	70	180			
SAV 4	9	Va	1610121	733884	7.05	29	56.4	232	60	228			

Notes:

1. Total biomass and Total Shoot Density are the sum of the quadrat values multiplied by 8 to convert to rf.

Table 3b - Aquatic Vegetation Shoot Length (centimeters)

Station	Quadrat	Species	Length									
SAV 4	1	Va	80.2	90.7	151.9	75.4	99.8	143.4	110.5	42.6	111.8	92.4
SAV 4	2	Va	65.1	93.3	77.1	89.4	114.4	92.6	68.3	77.1	79.1	53.1
SAV 4	3	Va	70.1	126.8	78.8	163.4	104.9	102	179.9	118.8	103.5	76.9
SAV 4	4	Va	117.1	164.2	178.5	143.7	90.7	41.9	121.7	51.5	83.2	98.9
SAV 4	5	Va	120.5	60.5	87.3	186.6	73.5	81.5	64.4	122.7	85	46.8
SAV 4	5	Pg	25.6	58.2	37.7	23.5	28.2	23.3				
SAV 4	6	Va	59.5	57.3	82.5	90.4	55.4	83.4	95.2	58.3	83.7	81.1
SAV 4	7	Va	124.6	16.5	42.7	40.4	82	31.7	109	24.4	83.4	29.5
SAV 4	8	Va	62.5	55.1	82.6	114.4	101.9	114.7	108	72.1	102.6	73
SAV 4	9	Va	144.1	26	57.6	81.7	34.2	148.7	161.6	96.3	63.4	146.2

Table 4 - Aquatic Vegetation Bed Current Velocity - 2004

		c	Current Velocity	Measurements		
		Center of L	Bed		side Edge of	Bed
Station	Water Depth (cm)	% Depth	Velocity (ft/s)	Water Depth (cm)	% Depth	Velocity (ft/s)
1	162	20	1.93	N/A*		N/A*
		80	0.29			N/A*
2	156	20	0.05	275	20	0.49
		80	0.04		80	0.21
3	134	20	0.25	258	20	0.2
		80	0.05		80	0.17
4	186	20	0.4	381	20	0.8
		80	0.16		80	0.39
5	112	20	0.42	199	20	0.65
		80	0.04		80	0.54
6	215	20	0.56	310	20	0.83
		80	0.22		80	0.07
7	201	20	0	233	20	0.25
		80	0		80	0.14
8	94	20	0.19	243	20	0.15
		80	0.12		80	0.22
9	123	20	0.85	250	20	0.5
		80	0.01		80	0.62

Notes:

* No outside edge of bed, vegetation all the way across the channel.

Depths at which velocities were recorded are 20% and 80% of the total water column depth.

Table 5 - Shoreline Station Data - 2004

					Inc	organic Sh	oreline Su	bstrate C	ompone	nts	Ban	k Assessm	nent Compo	onents	Ba	Ink Vegetation	Components		Riparian Edge - Cover Components			
0(River Section	No. of the loss of	Fasting	Destruction	Devilden	O	0	Ormal		0	Otable	Mod. Stable	Mod.	l la stable	Ontinual	Outrontinual	Manufact		Lin demoterne			Deminent Onesias
Station	Section	Northing	Easting	Bedrock	Boulder	Cobble	Gravel	Sand	Silt	Clay	Stable	Stable	Unstable	Unstable	Optimal	Suboptimal	Marginal Poo	r Canopy	Understory	Herbaceous	Adjacent Landuse	Dominant Species
SHO-IR.01	1	1616232	733577					60	30	10		90	10			100		20	Trace	100	Forested, non-resident, non-commercial	Silver maple, green ash, dogwood, sensitive fern, reed canary grass, joe pye weed
3HO-IK.01	I	1010232	133311					00	- 30	10		90	10			100		20	TIACE	100	non-commercial	Silver maple, green ash, dogwood, sensitive
																					Forested, non-resident,	fern, reed canary grass, joe pye weed,
SHO-IR.02	1	1616128	733659					60	30	10		100			100			50	10	100	non-commercial	dogbane
0110 110.02	•	1010120	100000					00	00	10		100		1	100				10	100		
																					Forested, non-resident.	Cottonwood, green ash, silver maple, dogwood,
SHO-IR.03	1	1616021	733789					60	30	10	100				100			20	30	100	non-commercial	bittersweet, sensitive fern, royal fern
																						Green ash, American elm, basswood,
																					Forested, non-resident,	American bladdernut, bittersweet, honeysuckle,
SHO-2I.01	1	1614042	735536					70	20	Trace		100			100			60	80	30	non-commercial	reed canary grass, wild grape, sensitive fern
																						Silver maple, green ash, American bladdernut,
																					Forested, non-resident,	alder, sensitive fern, white snakeroot, reed
SHO-2I.02	1	1613901	735492	2				70	20	Trace		100			100			60	50	90	non-commercial	canary grass
																					Forested, non-resident,	Silver maple, sumac, honeysuckle, buttonbush,
SHO-2I.03	1	1613638	735553					60	30	Trace	100					100		80	40	70	non-commercial	sensitive fern, reed canary grass
																						Blk Locust, American elm, silver maple, sugar
SHO-6I.01	1	1597303	737351		10	50	40				100					100		20	40	90	Res to Bank, Maintained	,
																						Silver maple, white ash, alder, black locust,
SHO-6I.02	1	1597082	737421				60	30	10			50	50			100		80	30	60	Res to Bank, Maintained	honeysuckle, poison ivy, grasses
																						Silver maple, white ash, alder, black locust,
		4500705	707507				100	T			400				100			00	50	00	Des la Deale Maintaine d	sugar maple, white oak, dogwood, elm, reed
SHO-6I.03	1	1596795	737507				100	Trace			100				100			90	50	90	Res to Bank, Maintained	canary grass, iris
	0	1567293	724600				10	10	10	70		50	50		100			50	70	00	Vegetated steep slope to mowed lawn	Sugar maple, white pine, dogwood, green ash, around nut, aster
SHO-9I.01	Z	1567293	734600	1			10	10	10	70		50	50		100		+	50	70	90	Forested, non-resident,	ground nut, aster Sugar maple, white pine, honeysuckle,
SHO-9I.02	2	1567070	734658				Trace	70	30	Trace		70	30			100		80	50	20	non-commercial	dogwood, misc. saplings
300-91.02	۷	1507070	1 34030	<u>'</u>			Trace	70	30	Hace		10	30			100	<u>├</u> ──	00	50	20		Sugar maple, black willow, American elm,
																					Forested. non-resident.	honeysuckle, sumac, wild grape, Virginia
SHO-91.03	2	1566869	734729			10		50	10	30		80	20			100		40	70	80	non-commercial	creeper, reed canary grass, grasses
300-91.03	2	1000009	134729	1	1	10		50	10	30		00	20			100		40	70	00	non-commercial	cicepei, ieeu callaly ylass, ylasses

<u>Notes:</u> 1. Due to elevated water level, offshore GPS points and slope measurements were not taken.

2. Due to elevated water level, Table C-3 Organic Shoreline Substrate Components was not completed.

Table 6 - Wetland Data - 2004

									STEM LENGTHS												STEM	I DIAMETE	R				
Wetland Number	Quadrat	Species	Northing	Easting	Live/Dead	Biomass	No. Stems	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10	Stem1	Stem2	Stem3	Stem4	Stem5	Stem6	Stem7	Stem8	Stem9	Stem10
3	1	Lo	1575751	737000	L	13.53	527	26.04	21.27	27.31	25.56	23.18	29.37	29.21	19.05	29.37	33.66	1	1.1	1.1	1.3	1	1.2	1.1	1	1.1	1.2
3	1	Sv			L	13.33	611	19.05	26.35	15.88	25.40	18.89	24.13	24.61	24.45	18.73	20.16	1.1	1.2	1.1	1.3	0.9	1.1	1.4	1.1	1	1.1
3	1	Er			L	1.57	160																				
3	2	Lo	1575800	736979	L	139.53	1978	73.34	42.23	62.55	46.36	56.52	48.58	40.80	33.66	51.75	53.98	1.1	0.8	1	1	0.9	0.8	0.7	0.8	1	0.8
3	2	Ew			L	2.82	9	51.12	29.53	38.74	52.07	41.59	41.43	33.50	31.12	49.05		3.7	2	2.6	3.5	3	2.8	2	2.5	2.2	
3	2	Sv			L	0.08	7																				
3	2	Pc			L	1.98	4																				1
3	2	Pp			L	0.57	2																				1
																											1
3	3	Lo	1575928	736958	L	115.84	821	7.59	7.92	5.98	4.35	6.06	5.21	5.06	4.32	3.09	7.09	1	1.1	1.1	1.1	0.9	1.7	1	1	1.1	0.5
3	3	Lp			L	0.25	6	1.16	13.5	23.2	13.4	18.1	15.6					1	1.5	1.6	1	1.5	1				1
3	3	Ew			L	0.32	2																				

<u>Notes:</u> Rice Cut Grass Lo Pickerel Weed Pc Ew Walter Millet Spike Rush Er Soft Stemmed Bull Rush Sv Water Smartweed Рр Water Purselane Lp

Appendix L

Completed Wildlife Observation Forms

WETLAND ASSESSMENT. WILDLIFE OBSERVATIONS Cart Services

Date (mm/dd/yyyy): 09	109103		·	STATI	on: Wetland 1	L	1 1
Time: Stort 1100 A. Stg	0:1230p		-	Weether	onditions: Suny,	10	Page _ [of _]
				weather C	onditions: <u>Owny</u>	15, no u	Jing
	and the second se		CARACTER IN				
Species Name	Number Obs.	Sight Code	Sign Code	Observer's	Habitat Type /	Location (an	provimato)
Green froe	25	RS	Code				
Woodpecket	1		DHB	120,J3	1 1 11 1 1 1	tominates	marsh
White tail deer	1	-		JS RCI	bend tree	in wett	and
Sunfish	6		500	PB.JS		Common 1	Oldens-welland
Sunfish Bluegill	4		sω	PBJS	along deep ed	pe of welle	in Val
					1		
1							
					1		
						1 1	-1
						14 A.	
		:					
		·					· · ·

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG FE RS CA FL S لک	Sight Codes: foraging feeding resting, perching calling flight other: SWIMMING	<u>Sc</u> scat SL slide DHB den, hut, burrow TR tracks DB day bed	CA call NE nest TR tracks FG browse other:
Narrative Fringing wettand along West eurocarpum dominant plant sedges intermixed w Zizania	side of Thom w/ Wirdvice, aquetic (wild v	Luduizia palustru Luduizia palustru ice) more commo	Spargannin 5, numerous m in deeper aneae

BLASLAND, BOUCK & LEE, INC. engineers & scientists

STATION: WETLAND 2 Weather Conditions: Sunny, 75°F No wind Date (mm/dd/yyyy): 09,09,03 Time: Start 145p; 5TOP:

Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
Smallmonth bass Minnows Spa	1 (many schools)	SW		200, JJ	muddy bottom inshore of SAV; water =12"
					a) welland case, wallet 3-6 day
		1			
		:			

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

50	Sight Codes:	Sign Codes:	
FG FE RS CA FL	foraging feeding resting, perching calling flight	SC scat SL slide DHB den, hut, burrow TR tracks DB day bed	CA call NE nest TR tracks FG browse other
SW	other: Swimming	DB day bed	other:

Narrative

Narrow Fringing wettend close to River Rd. Bare patches intermited with wetland veg. Purple lossesting common along transition zone from wetland to upland, along w/ Reed canary grass.

BLASLAND, BOUCK & LEE, INC. engineers & scientists

E-1

Page (of /

Date (mm/dd/yyyy): 09 / Time: 5/44 /:10; 5 top	10,03	Ó		STATIO	N: WETCAND 3 Page 1 of 1 onditions: <u>Surny low 70's, slight NW w</u>
Time: Start 1:10; stop	1:40		4	Weather C	onditions: Sunny low 70's, slight NW w
					,,
Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
Cargemonth bass	1	50		RCD, JS	Shallow water inshore Va bed.
Common egret Minnows sp.	1 school	FG SW		PRO PB	Shellow water Dedge of wetland
				Seat "	
			-		
		-			······································

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG FE RS CA FL SW	calling TR to	slide NE den, hut, burrow TR tracks FG	call nest tracks browse other:
Narrative Fringing wetland dominated & Ludivisis palastris varies fro water's edge of wetland. Egnet	y Millet and rice of m 10-50% Large bserved hunting for	schools of min y Minnows, but	Torrer of monst along not catching

BLASLAND, BOUCK & LEE, INC. engineers & scientists

15

elland &. T.I.P.

-83

11,03 Date (mm/dd/yyyy): Time: 2.42 m

Page __ of _____ Weather Conditions: ______

E-1

Species Number Sight Sight Sign Observer's Habitat Type / Location (approximate) MARCAN 6 FE PB FRINGFE WEILAND MONG TAIL WEASEL 1 FG TR PB FRINGFE WEILAND SMALL MOUTH BASS 3 FG TB INSHALLONS INSHALLONS BAUE GILL SOUFISH IO FE TB ILL IL BAUE GILL SOUFISH IO FE TB INN NIAD (ICE
HONG TAIL WEASEL 1 FG TR 13
LONG TAIL WEASEL FG TR B
SMALL MOUTH BASS 3 + FG PB IN SHALLONS MINNONDS FE TB II I BAUE GILL SONFISH 10 + FG PB ILL II JEOPAND FROGS 3 FL PB IN WILD RICE
BAUE GILL SONFISH 10 + FG PB . 12 11 LEOPADD FROGS 3 FL PB IN WILD RICE
JEOPAD FROGS 3 FL PB IN WILD AICE
LEOPAND FICOUS 3 FL YB IN WILD RICE

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG FE RS CA FL	feeding SL resting, perching DHB calling TR	slide N den, hut, burrow T tracks F day bed	CA call IE nest IR tracks G browse other:
Narrative this area fas. a sood area for n Corer for Prey s	Mary plad und + Wea fleier ASLAND BOLICK & LEE INC	tiege + n cel. of	fords

engineers & scientists

Table E-1 Fish and Wildlife Survey Form

Nelland #2

	Date (mm/dd/yyyy):	11,03				Page / of /
	Time: <u>4,10 PM</u>		 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -		Weather Co	page _ of _
				S LOZZ		
	Species Name	Number Obs.	Sight Code		Observer's Initials	Habitat Type / Location (approximate)
	Mr. Blackley	<u> </u>		TR	1.13	Flupp, Welland
	milstrato	2	1.1	TA	-PB-	а 8 11 на на 9
	grey lound	-TIL D		TR	1B	A AR AR
Long Ex		Thousand.	F		13	in shallows
-org ce	a - anna	0 /	-		PB	
			-			
				· _		
1						

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG FE RS CA FL	Sight Codes: foraging feeding resting, perching calling flight other:	<u>Sc scat</u> SL slide DHB den, hut, burrow TR tracks DB day bed	CA call NE nest TR tracks FG browse other:	
Narrative Muld flat	M Meit	Nevered		- n 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -

engineers & scientists

E-1

D

Netland # 3

Date (mm/dd/yyyy): <u>7</u>111 Time: <u>7.45</u>*PM* _03

Weather Conditions:

Species Number Sight Sign Observer's Name Habitat Type / Location (approximate) Code Obs. Code Initials MUSKNAT 3 F-6 MILLET WET STANI MOUSE DEEN FG :11 71 11 ATENFOW FG T FE TR 1 SAG 50L THOUSAND ΤK IN 5)) ows FE Ł PΒ NNON 1) 11

Instructions:

VHITE

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

		Sight Codes:	Sign Codes:		
	FG	foraging	SC scat	CA call	
	FE	feeding	SL slide	NE nest	
£	RS	resting, perching	DHB den, hut, burrow	TR tracks	
P	CA	calling	TR tracks	FG browse	
	FL	flight	DB day bed	other:	
		other:			
Narrative -	9	<i>"</i> Ω	0 0	TAD	_
-Ch	yarla.	ip well us	sol & Na	lerowe	
+ aqua	etic Att	te manna	h, Dongl	buchete	

•••

BLASLAND, BOUCK & LEE, INC. engineers & scientists Pakin

Page L of

Wo

Welland # 4

Table E-1 Fish and Wildlife Survey Form

	Date (mm/dd/yyyy):	11,03						Page / of	
	Time: 10.17 AM				Weather Co	onditions: SC	NNY +	Page 1 of 1	
		,						70 73.35	
	Species Name	Number Obs.	Sight Code		Observer's Initials		Type / Location		
	BELIED FISHEN /	2	FL	CA	PB	FRINGE	WETLAN	D, EAST SHI ATEN	NE
ASSONTED		100 + SiG	+T	TR	PB	IN SHI	thow n	ATER	
	POND SNAIL	516	HT		PB.	11	14		
	MINNOWS	THOUSAND.+	FE		0.0		11		
LD COTTING	PEAVER				PB				
	PHUSKICA		FE	DB	PB	PICKERE	LWEED	BED / EED	STATION
	150LL FILOG	. ,	FL		00	11		L/ D	
	HGEEN FROGS	4	FL		615	11	11	+1	
	GR. BLUE HERON	<i>l</i>	FE		TB_	11	11	11	
					.				
0									
					,				
								i	
L									

Instructions:

- Enter species common name in column 1 and number observed in column 2

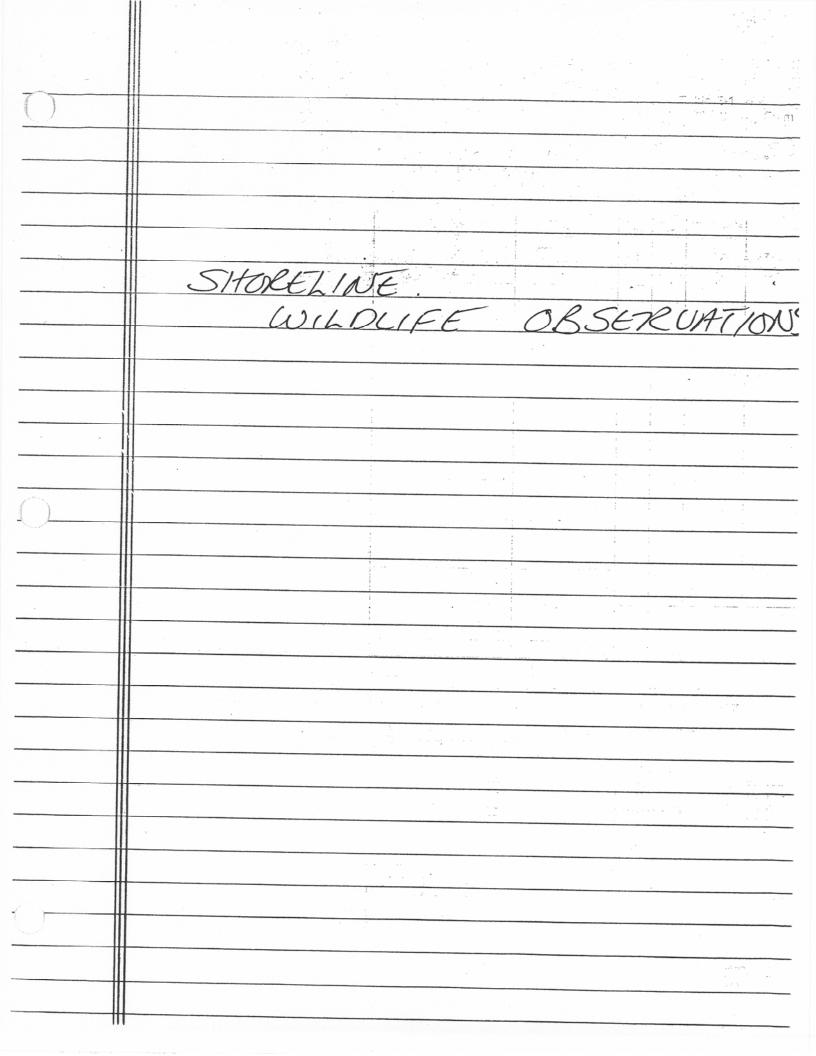
- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG		
FE		
RS		
CA		
FL		


Sight Codes: foraging feeding resting, perching calling flight other:

Sign Codes: SC scat SL slide DHB den, hut, burrow TR tracks DB day bed

CA call NE nest TR tracks FG browse other:

Narrative were taken a 2 lo,

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Date (mm/dd/yyyy): 09 / 09 / 03 Time: start : 10:244/stop:

STATION: SHO-1R Weather Conditions: Mostly sunny ; mid 70's; stight hrange

Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
Red breaster rabin	1	FL	CA	RCD	Canopy, ~ 50m into bant
Red breasted robin Muskrat	1	:	TR	SPT	Canopy, ~ 50m Toto bank Riverbank
		1.1			
1					
	·_ ·				
		· :			· · · · · · · · · · · · · · · · · · ·
		:			
					and the second

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes	:
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other:
	other:	22 day 200	Outer

Narrative Transect 1: 1024_1130_ Forested Floodplain adjacent Transect 2: 1135_1205-16 observations icks along shore to river A andon den

BLASLAND, BOUCK & LEE, INC. engineers & scientists

1 . 1 .

Page / of

Date (mm/dd/yyyy): 09 1 08 1 03

Time:				Weather Co	nditions: 70's Sinux ME Beare	
Lou	ATION St	0-1	T			
Species Name	Number Obs.	Sight Code		Observer's Initials	Habitat Type / Location (approximate)	NUMBER
Soumer	1	-	TR	ST	TRACKS OBS. ON MUNFERT/RIDERANK	TRAUS 2
Benner	/	_	OTH	SML	ENDEME OF WORK ON FALLEN THE	TRAWSZ
GREEN BACK HERON	1	-	TR	SJT	TRACKS IN MUD AT WATER'S EDGE	TRAUS 3
					т	
·						
						4
						1

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other:
	other:		

Narrative

fable. 1-1

1

Date (mm/dd/yyyy): 09 108 103

			1.1	1.		Page _/_ of _	
Time:		1		Weather Co	nditions: 70	S SUNNY NINE BLASSE	
	LOCATION	SH	0-2	Ξ			
Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat 1	Type / Location (approximate)	TRA-
Wood Duck	1	RS	-	-5M-	Reation	INCE IT- OUT	1

		0 -				
Wood Duck		RS	-	-Sm-	RESTING ON LOG & LOG PILE	l
KINGFORDER	1	CA-	CA	SJT	TOONTIACO BY CALL - SIGHT UNSERN	1.1
MALARD	2	5W	-	SM	Summing under Discharger Theos	2
GROW BLUE HERON	. 1	-	TR	STT	29 10 THE OWNER OWNER OWNER	2
					3" WATER ON MUNFRAT	4
<u>с</u> "м		-	TR	STT	10 m M	23
*						
· · · · · · · · · · · · · · · · · · ·						
		. 1	T	1997 - A.		

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

RS resting, perching DHB CA calling TR	slide den, hut, burrow	CA call NE nest TR tracks FG browse other:
---	---------------------------	--

Narrative

E-1

de

Species Name Number Obs. Sight Code Sight Code Sight Code Sight Code Sight Initials Habitat Type / Location (approximate) HPMUNK I - CA ST Unscen - above bunk - out of subt CATBIRS I - CA ST Unscen - above bunk - out of subt CATBIRS I - CA T (SAA) Crows Z - FL STT Overhead Cambridge Turkey Vulture Z - FL STT Overhead Cambridge Turkey Vulture I - FL STT Overhead Caroling Turkey Vulture I - FL STT Overhead Caroling Turkey Vulture I - FL ST Unscen Image: Stress minit Blue Day I - CA ST Unscen Image: Stress minit Ubblue I - RN TT Remaining arms: dumped Stress minit Image: Stress minit Woblapedeex	: <u>1145-1245</u>		I.		Weather Co	Inditions: 705 Surver	ŕ
CATBIRD I - CA II (SAA) Crows Z - FL SIT Overhead Confing Turkey Vultur Z FL SIT Overhead Confing Turkey Vultur I - FL II Flynt low, across nine Blue Day I - CA SIT Unseen						Habitat Type / Location (approximate)	TRA
CATBIRD 1 - CA II (SAA) Crows Z - FL SIT Overhead Confing Turkey Vulture Z FL SIT Orchead Cordig Turkey Vulture 1 - FL II Flynt low, across nine Blue Day 1 - CA SIT Unseen	HPMUNK		-	CA	STT	Unseen - above bend - out of sicht	
Crows 2 - FL SIT Overhead Conting Turkey Vulture 2 FE SIT Overhead Conting Turkey Vulture 1 - FL II Flyht low, across nice Blue Day 1 - CA SIT Unseen	CATBIRD	1		CA			1
Turkey Vulture C E SJT Orchead Curling Turkey Volture I - FL IJ Flynt low, across nine Blue Day I - CA SJT Unseen	Crows	2	-	FL		Overheat Curline	2
Turky Volture 1 - FL IJ Flyht low, across nine Blue Day 1 - CA SJT Unseen	Turkey Vulture	2	-	E			22
Khe Day 1 - CA STT Unseen	Turky Volture	1	-	FL		Flight low acres nine	
Chipmint I - RN II Running across dinged Budahier st Wobhpecker multi-hole - TR ST Holler in dall trac Tish (N.O.S.) / MBRT - Sac Deal-rothing in buck	Blue Day	1	-	CA		Unseen	3 _3
Wobl pecker multi-hde - TR ST Utiles in dael tree Tish (N.O.S.) / MBRT - Sare Deal-rothing in back	Chipmink	1	-	RN		Runnin across densel for lake store	3
Tish (n.o.s.) 1 MORT - Em Dead-rothing on park		multi-hole	~	TR	ST	Holer in dal trac	3
	Tish (N.O.S.)			-		Death rothing on part	3
Image: Sector of the sector							
			1				
			1				
			1				
						-	
						17	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	Sign Codes	:
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	
PN	other:	bb day bed	other:

Narrative

Table P-1

m

Date (mm/dd/yyyy): 09 / 09 / 03 Time: 0F50-09/0

Weather Conditions: _603 Sun Page _ of _ I

Species	Number	Sight		Observer's	Habitat Type / Location (approximate)	TRANSES
Name	Obs.	Code	Code	Initials	Habitat Type / Location (approximate)	TRANSES NUMBER
Wooduluck		-	OHB	SJT	Hole cut into bank, actives	1
WOODPECKER		-4	TR	SML	Hole in Elm tree	2
WOODCHUCK		-	DBH	STT	O WO mayture hole on bank - steep	2
BLUEJAT	2	B		SML	Top of Im perchel & calling	3
CHICKADES	3	1-21	CA	STT	Top of trees, porched	333
MALLACO	2	SW	-	STT	Swimming new Estore of Boges Id.	3
					· · ·	
					· · · · · · · · · · · · · · · · · · ·	
					······································	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	SW other: Sus hearing
	other:		

Narrative

BLASLAND, BOUCK & LEE, INC engineers & scientists

E-1

e:5:1005 E:	LOCATION: S	HO-	ЧI.	Weather Co	nditions: 70 Summy	
Species Name	Number Obs.	Sight		Observer's Initials	Habitat Type / Location (approximate)	TRANS
Kingfiler	1	-	CA	STT	Opposite bank	11
Chikadee	few	-	CA	IL	Ash tree	1
Phonete	1		CA	SML	Ash tree Grandand - lot	1
Chukadee	few	-	CA	STT		2
WOODPECKER	6 Hotes	-	TR	SMLIT	le hills in de beal tree.	2
Checkadeee	few	-	CA	71		3
Chukadeee Keyfisher		-	C#	TI		2
- 1					•	1 ~
		1				
		1				
						1
						1
]
	-					1
]

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes:		1.67
FG	foraging	SC scat	CA call	-
FE	feeding	SL slide	NE nest	
RS	resting, perching	DHB den, hut, burrow	TR tracks	· · · ·
CA	calling	TR tracks		
FL	flight	DB day bed	FG browse other:	
	other:		Sector.	

Narrative

2.3

e (mm/dd/yyyy): <u>9 1</u> 9 ne: <u>?: 1255</u>		•		Weather Co	nditions: 70's Summe	Page of
<i>с</i> :	ATION!	SHO-	5 <u>1</u>			
Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
HITE SUCKER	1	MORT		ALL	Belly up - Ploating	
BULL HOAD CATESH	1	MOLT		II	Carlass on bank	
Turkey	1	<u> </u>	TR	TE	Tracks in most of a	Thenew
Fox	1	-	TR	TI	b "	_ /
& Workedy		-	crt	IL	thes also seen	
Turkey Voltne	l	-	FL	Tit	Fig over	
						r
						•
		1				
		1				:
						-
					:	
	· · · · · · · · · · · · · · · · · · ·					

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

Sight Codes: Sign Codes: FG SC scat foraging CA call FE feeding SL slide NE nest RS resting, perching DHB den, hut, burrow TR tracks CA calling TR tracks FG browse FL flight DB day bed _ other: other:

Narrative

BLASLAND, BOUCK & LEE, INC. engineers & scientists (

193

Date (mm/dd/yyyy):	1 03				Page (_ of (_
Time: <u>\$: 1415</u>		·		Weather Co	onditions: 705 Sunay
	SH0-6I			Meanier Co	Multons, <u></u>
Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
Crownerge Woodchnik		-	DHB	Sin .	HOLE, ACTIVE ON BANK THESE FR
WENTE Bronston Norman	Ż	DS	CA	II	IN ELA TRE
Woodence	1	-	TR	557	Fresh Trx on back/flat
Kuressure	1	FL	-	SJT	
Spareas	. 1	-	CA	JI	
CICADA	1	CA	CA	FI	
CATBIRD	1		CA	ST.	an a
-					0
		1			
		.]			
					-
· · · · · · · · · · · · · · · · · · ·					

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes:	
FG FE RS CA FL	foraging feeding resting, perching calling flight other:	SC scat SL slide DHB den, hut, burrow TR tracks DB day bed	CA call NE nest TR tracks FG browse other:

Narrative

ate (mm/dd/yyyy):	19,10,03		" : (iii	den S.	Page of
me: 03:15	SHO-3R		· .e:	Weather Co	onditions: SUNM 70'S
				Tranti	11
Species Name	Number Obs.	Sight Code	Sign Code		Habitat Type / Location (approximate)
Deel	1		TR	SL	TRACKS IN MUD
RALDON			TR	SL.	TRACKSINAND
SQUERSL	l	-	TR	51	TRACICSINAJO
RACCOOM	(-	TR	Sr	11 11 11
GBH	1	-	TR	55	11 11 11 1
BLUESAM	1 1	-	CA	TI	2
/					
		1			
				· .	
		1			
		-			
		1			
					· · · · · · · · · · · · · · · · · · ·
		· ·	ļ		
		-			
		-			

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

Sight Codes:	Sign Codes	<u>s</u> :
foraging	SC scat	CA call
feeding	SL slide	NE nest
resting, perching	DHB den, hut, burrow	TR tracks
calling	TR tracks	FG browse
flight	DB day bed	other:
other:		
	foraging feeding resting, perching calling flight	foragingSCscatfeedingSLslideresting, perchingDHB den, hut, burrowcallingTRtracksflightDBday bed

Narrative

BLASLAND, BOUCK & LEE, INC. engineers & scientists

E-1

Date (mm/dd/yyyy):	10 103			- <u>1</u> -	Page of	
Time:		÷ .	í.	Weather Co	onditions: Survey	
	5H0-7I				Page _ of _ onditions:	
Species Name	Number Obs.	Sight Code		Observer's	Habitat Type / Location (approximate)	2
MALLARD	12	FE		Sur	Freding in wed bedy 1	
Cras	1	1	CA	I	Call head actors backnoter 1	
Blue Jay	1 1		CA	- ST	Nº n	
Reaction	1	-	TR	SPT	Trucky on und flat	
For	1	-	TR	TI	u t	
Saword	1	-	TR	II	ц 1	
Sacil	1	FG	+	TI	1	
RACCOON		-	TR		TRACKS ON MUDFLAT Z	
indu	i	-	CA	II	CALL HEARD 2	
squirrel	1	-	TR	SPT	TRACK ON MOFLAT 2	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other:
	other:		and the

đ

Spate in sting

Narrative

BLASLAND, BOUCK & LEE, INC. engineers & scientists

E-1

3-1

Date (mm/dd/yyyy):09 /_	10 103				Page _/_ of _/	
Time: \$:1255 E.			8I	Weather Co	Inditions: 70'S SINNY NNE BREEZE	
Lou	ATION: St	to - i	\$ 2 €¢	5AL		
Species Name	Number Obs.	Sight Code		Observer's Initials	Habitat Type / Location (approximate)	NUMBER
BULLIEAD CATESN	1	MORT	-	II	BELL UP FLOREFINE ADNE SHORE	11
Geese	2+	-	CA	T	IN TRANSIT TO TRANS 3 MEAKES CALL	Z
Geess	8	FL	-	I	FLYNN N	
	·	1				
					•	
					•	
				:		
	8					
					·····	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other:
	other:		- 1-1-1-1

Narrative

BLASLAND, BOUCK & LEE, INC. engineers & scientists

E-1

5-1

Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Lo	cation (approximate)
11.4	10110					
<u></u>	ABSECUA	100				
					2	
			•	1.04		: .
						1
						1
			1			

Instructions:

...

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other
	other:		

. ...

Narrative

Date (mm/dd/yyyy): 09 1 11 1 23

	Date (minidalyyyy).	<u> </u>	125-1			Page _ l of _ l	_
	Time: 8:0900 E:				Weather Co	anditions: Hos TO's Surry	
	5H0-10I						Sec. 19
	Species Name	Number Obs.	Sight		Observer's Initials	Habitat Type / Location (approximate)	TRAN
	GBH	the Can	- 1	TR	SPT	TRACKS IN MUD -	1
	small weared	few	-	TR	SAT	TRACES IN MUD	1.1
	GBH	FEW	-	TR	SPJ	TRACKS IN MUD	2
	MINK		- 1	TR	SPT	TRACKS IN MUD	2
	CHIPMINK	1	-	TR	SPT	TRACKS IN MUD	12
	Fox	1	-	TR	SPT	TRACKS IN MUD	2
	GRIA	2	FL	-	II	2 6BH'S FLYING E	3
	MUSKRAT	1	-	TR	SPT	TRACISIAMO	2
- 1			1 .				

SPT

SPÍ

TRACKSINMUD

TRACIS IN MUD

•

1

O Jun 2

· Turker Charmen

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

)

(

-

-

TR

TR

- Enter initials of Observer

CHIPMONK

FOX

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

Sight Codes: Si FG foraging SC scat FE feeding SL slide RS resting, perching DHB den, hut, CA calling TR tracks FL flight DB day bed	FG browse
--	-----------

	other.	
Narrative		
	BLASLAND, BOUCK & LEE, INC.	
	engineers & scientists	E-1

3

÷ 3

i ŧ

ł

- į

- 1 L

Time: 11.11		* ;:		Weather Co	Page 1 of onditions: Sunny, 70'S, lichr GASS2 (
ime: <u>U:1(</u> 5.4.0 - 11.2		r.				
Species Name	Number Obs.	Sight Code		Observer's Initials	Habitat Type / Location (approximate)	Tr
BEAJER	(-	TR	SPT	OLD SIGNS OF BEAJOR CHOPS + FRACKS	1
6BH	· · (-	TR	SPT	FRACKS IN MOO	1
GBH	1	-	(A	II	CALL HEARD TO THE NORTH	2
SMAR ROOTAF RURNESS	SWERCI	-	DHIS	SPT	SMALL VNIDEATIFIARLE BURRELY	2
N. LEOPANN FREG	10	RS	-	SPT	Hopingonsmore	7
Chipmonk HERON	í	F6	-	489	On shore	3
HERON	(-	Sc	SPJ	HERONSCAT ON SHORE	3
					1	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	_Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight	DB day bed	other:
	other:	,,	

Narrative

WETLAND ASSESSMENT WILDLIFE OBSERVATIONS

Date (mm/dd/yyyy): 09 / 09 / 03

STATION: Wetland 1

Page (of)

Time: Stort 1100 A: Stop: 12 30

Weather Conditions: Sunny, 75, no wind

Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)	
Green frog	25	RS		PCD, JS	Sparganium dominated marsh	-
Vood pecket	1		DHB	75	Dead tree in wetland	
thite tail deer	/		FG	JS RCD	browsing on common bidens-	we
Sunfish	6		500	PB.JS	along deep edge of welland in V	/al
3lueg//	4	_	SW	PB, JS	11 11 10 11	
0						
		_			· · · · · · · · · · · · · · · · · · ·	
					-	
		_				
	-					
		-				
					: 	
		· ·				
and the second					1 2	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG FE RS CA FL S ل	feeding S resting, perching DH calling TI	L slide NE IB den, hut, burrow TR R tracks FG	call nest- tracks browse other:
Narrative Fringing wettand along West eurocarpum dominant plant seages intermixed w/ Zizania	side of Thompson w/ Wirdnice, Cud aquetic (wild nice)	Island, Sp. ingia palustris, 1 more common 1	argannin rumerous in deeper areas

BLASLAND, BOUCK & LEE, INC. engineers & scientists 2.5 36

STATION : WETLAND 2 Date (mm/dd/yyyy): 09,09,03 Page (of / Weather Conditions: Sunny, 75°F No wind Time: Start 145p; 5TOP: Species Number Sign Observer's Sight Habitat Type / Location (approximate) Name Obs. Code Code Initials. SW allmost bass 200, 35 muddy bottom inshare of SAV; water 2/2 " of wetland edge; water 3-6" do SW Yinnows Spa 1(many schools ECD PB

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight · _	DB day bed	other:
<u>500</u>	other: Swimming		
Irrative	to River Rol. Baro	patches intermixed	with welland veg.

ĩ

i

Narvow fringing welland close to kiver Kd. Dare patches intermiked with welland veg. Purple 1005estinge common along transition zone from welland to upland, along w/ Reed canary grass.

BLASLAND, BOUCK & LEE, INC. engineers & scientists ŧ

STATION: WETLAND 3 Date (mm/dd/yyyy): 09,10,03 Time: Start 1:10; stop 1:40 Page __ of _ / Weather Conditions: <u>Sunny low 70's, slight NW wind</u> Sight Sign Observer's Number Habitat Type (Location (approximate)

BANA

Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
largemonth bass	1	56		RCD, JS	Shallow water inshore Va bed. Shallow water Dedge of welland Shallow water
Common egret Minnows Sp.	1	FG		2CD PB	Shallow water Dedge of welland
Minnows 50	1 school	500		REDJJ	Shalling water
P linister op				,	
	1				
					·
		:			
		;			
		0			
		1			
		:			
		1			

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	Sign Codes:	
FG	foraging	SC scat	CA call
FE	feeding	SL slide	NE nest
RS	resting, perching	DHB den, hut, burrow	TR tracks
CA	calling	TR tracks	FG browse
FL	flight • •	DB day bed	other:
SW	other: SW/MMIng		
)		A
Narrative Fringing wetland dominated Ludaugic palustris varies for water's edge of wetland. Ego	by Millet and run 10-50% et observed hum	rice caterass. G. Large schools of tim for Minnows,	minned cover of minness along but not catching
	DIACIAND POLICE & LE		

BLASLAND, BOUCK & LEE, INC. engineers & scientists

E-1

Nelland & T.I.P IPB

	Date (mm/dd/yyyy):/_ Time://_M	11,03		Weather Co	onditions: <u>lear</u>	Page of
	Species Name	Number Obs.	Sight Sign Code Code		Habitat Type / Loca	
LONG 7	Malland AI'L WEASEL NOUTH BASS	6 3 T	BE FG TR	I B I B	FRINGE WE	
BLUF 1	MINNONOS MINNONOS SILLSONFISH AD FROGS	$10 \pm$	FE FG	PR PR	IN SHALLOW	J
LEOPA	ND FROGS	10 t	FL	PB	INO WILD A.	ICÊ
					· · · · · · · · · · · · · · · · · · ·	
\bigcirc			· · · · ·	-		
	·					
					:	

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

		Sight Codes:	_Sign Codes	;	
	FG	foraging	SC scat	CA call	
	FE	feeding	SL slide	NE nest	in the loss
	RS	resting, perching	DHB den, hut, burrow	TR tracks	stor day het he
	CA	calling	TR tracks	FG browse	e + 2 (+ 1
	FL	flight	DB day bed	other:	and the second second
		other:			
a good	alla fi Jai Pre	or mink + V y spleier	versel.	affords	
		BLASLAND, BOUCK & LI	EE, INC.		1
		engineers & scier	ntists		E-1

.1.5

3

· · -5

E-1

i na

375

hibie €-1

Nelland #2

	Date (mm/dd/yyyy): _7/_ Time: _ <u>4, 10_P</u> M	11,03	-		Weather Co	Page <u> </u> of onditions: <u>Cleart Nam</u>	-6-
	Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)	
	Mr. Blacklein	1		TR	1213	Fringo Welland	-
	milshat	2		TA	PB	uð Il	
	erey-cound.	-it A		TR	PB	11 PAR	
Long Ear	minpula	Thousand.	ŧ		PB	in shallows	_
Long Cer	ea - cunper o				1. 1)		
							-
			· · ·				
							-
			-				1
()			-				-
\smile							
			-				-
						He mudd	
			-				-

Instructions:

3

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

	Sight Codes:	Sign Codes:		
FG	foraging	SC scat	CA call	
FE	feeding	SL slide	NE nest	
RS	resting, perching	DHB den, hut, burrow	TR tracks	
CA	calling	TR tracks	FG browse	
FL	flight	DB day bed	other:	
	other:		11	
Narrative Mulel flat	on meit	Rivered	2	
	BLASLAND, BOUCK & LEE,	INC.	ing internet an ere o	5.00

engineers & scientists

Netland # 3

Date (mm/dd/yyyy): <u>9 111 103</u> Time: <u>1.45 PM</u>

Weather Conditions:

UHITE TAIL

Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)
MUSTRAT	3.7	FG	TR	IB	MILLET STAND WEILAND
DEER MOUSE	/	FG.	TR	PB	11 12
MUSKNAT DEER MOUSE WATERFOWL	7	FG	TR	6B	
DEER	,	FE	TR	PB	SAGITTANA L'ATIFOLIA
MUSSELS	THOUSANDT	-	TR.		IN SHALLOWS
MUSSELS	11 11	FE		PB	11 1)
V					
- N					· · · · · · · · · · · · · · · · · · ·
		금격			
		1.1			
		1			
		:			
C					
	1				
		1			
		1			
			1.		

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

		Signi Codes.	Sign Coues.	
	FG	foraging	SC scat	CA call
	FE	feeding	SL slide	NE nest
£ .	RS	resting, perching	DHB den, hut, burrow	TR tracks
	CA	calling	TR tracks	FG browse
f i	FL	flight	DB day bed	other:
		other:		
Λ		0	0 0	π ρ
Narrative	in de la j	AD Mell 11	sell Na	lerlow
1 Jun	for the	A Store Cree	770-1	0 II H
Jacua	11, ATO	A manna	KI, Jones	un ele
1 Prove				
V				

BLASLAND, BOUCK & LEE, INC. engineers & scientists

....

Welland # 4

Table E-1 Fish and Wildlife Survey Form

	Date (mm/dd/yyyy):	11,03				Page / of	
	Time: 10.17 AN				Weather Co	onditions: SUNNY + WARM	
						MAL G.P.S. 43.07.870 73.35.	262
	Species Name	Number Obs.	Sight Code	Sign Code	Observer's Initials	Habitat Type / Location (approximate)	
	BELTED FISHEN /	2	FL	CA	PB	FRINGE WETKAND, EAST SHO IN SHALLON WATER	NE
ASSONTED	MUSSELS	100 + sig		TR	PB	IN SHALLON WATER	
	POND SNAIL MINNOWS	SIG THOUSAND.+			15	· · · · · · · · · · · · · · · · · · ·	
LD CUTTING	0-11-00	771000410111			PB		
	MUSERAT		FE	DB	PB	PICKEREL WEED BED FEED	STATION
	HGEEN FROGS	H	FL		2B	4L LI H	
	G.R. BLUE HERON	1	FE		PB.	II EL FL	
						· · ·	
	· · · · · · · · · · · · · · · · · · ·						
0							
U					· · · · ·		

Instructions:

- Enter species common name in column 1 and number observed in column 2

- Select appropriate "sight" or "sign" codes from below and enter into designated boxes

- Enter initials of Observer

- Enter habitat where species was observed and approximate location in river

- Note exotic species if observed

FG

FE

RS

CA

FL.

Sign Codes: SC scat SL slide DHB den, hut, burrow TR tracks DB day bed

CA call NE nest TR tracks FG browse

other: Narrative nere la Lo. 1

Sight Codes:

resting, perching

foraging

feeding

calling

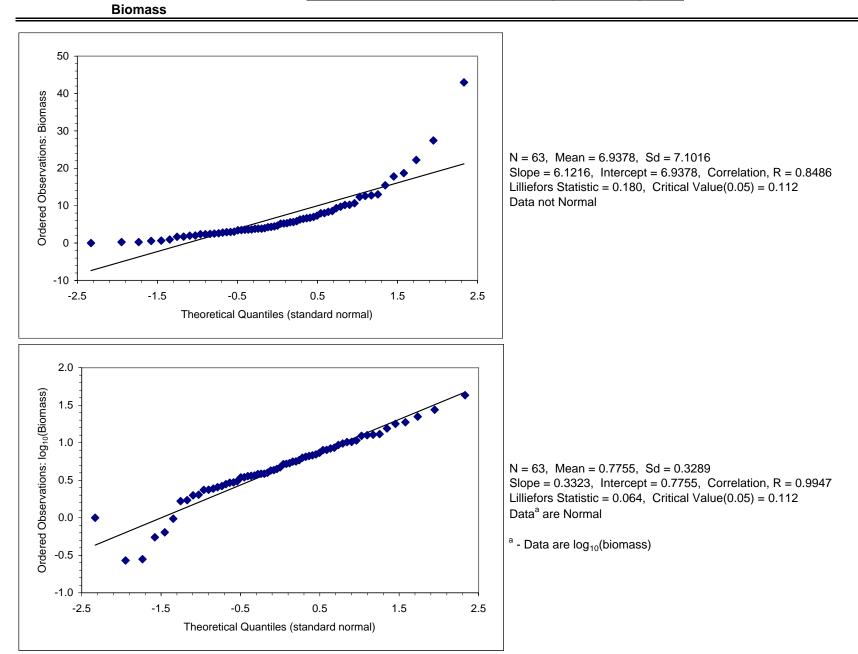
flight

BLASLAND, BOUCK & LEE, INC. engineers & scientists

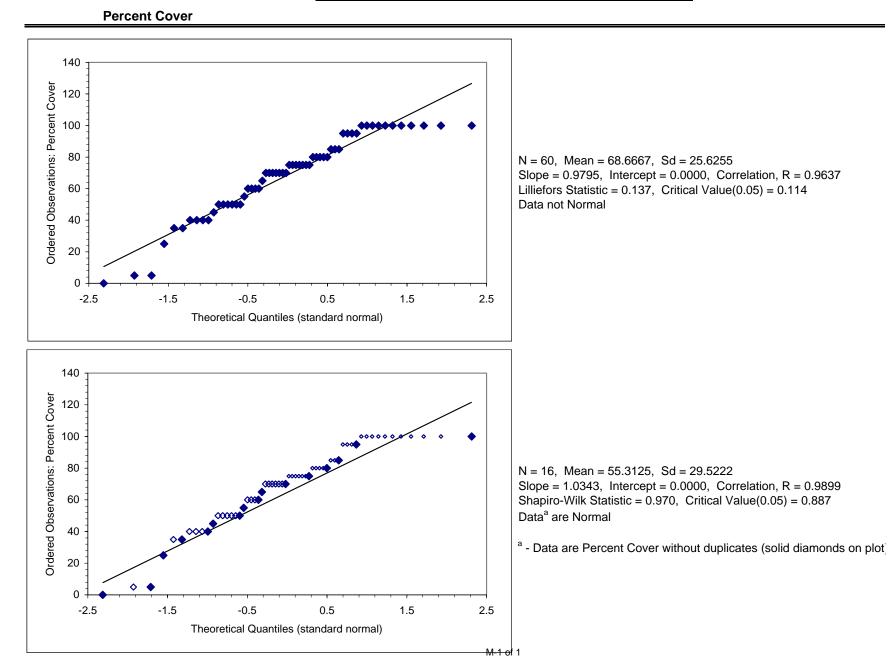
Appendix M

Statistical Analysis – Submerged Aquatic Vegetation

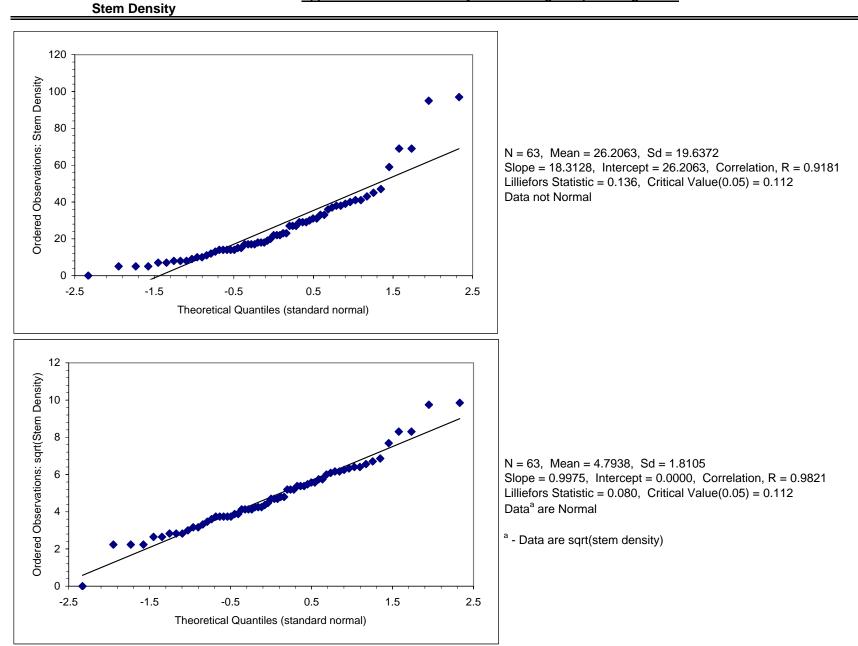
No. of	Variability			St	andard Err	or of Quad	Irat Averag	ges		
Quadrats	of Stations	Stn1	Stn2	Stn3	Stn4	Stn5	Stn6	Stn7	Stn8	Stn9
Biomass (log	10)									
	0.123									
3	56%	0.177	0.120	0.096	0.067	0.172	0.124	0.114	0.123	0.223
4	67%	0.161	0.108	0.088	0.058	0.151	0.108	0.104	0.111	0.199
5	67%	0.149	0.097	0.082	0.054	0.138	0.100	0.094	0.101	0.180
6	67%	0.136	0.090	0.075	0.050	0.128	0.093	0.086	0.094	0.166
7	78%	0.128	0.084	0.070	0.047	0.118	0.086	0.080	0.087	0.155
8	89%	0.120	0.078	0.066	0.044	0.111	0.081	0.075		0.145
9	89%	0.114	0.074	0.062	0.042	0.105		0.071		0.137


Appendix M - Statistical Analysis - Submerged Aquatic Vegetation

No. of	Variability		Standard Error of Quadrat Averages								
Quadrats	of Stations	Stn1 ^a	Stn2	Stn3	Stn4	Stn5	Stn6	Stn7	Stn8	Stn9	
No. of Stems	(sqrt)										
	0.760										
3	67%	1.50	0.772	0.457	0.529	0.938	0.338	0.379	0.366	0.745	
4	78%	1.37	0.687	0.415	0.476	0.840	0.300	0.347	0.335	0.666	
5	78%	1.31	0.637	0.375	0.449	0.769	0.273	0.319	0.304	0.602	
6	89%	1.20	0.597	0.342	0.414	0.701	0.251	0.292	0.280	0.551	
7	89%	1.14	0.557	0.320	0.382	0.651	0.232	0.277	0.259	0.514	
8	89%	1.11	0.533	0.300	0.365	0.610	0.217	0.262		0.481	
9	89%	1.05	0.505	0.284	0.348	0.575		0.247		0.455	


No. of	Variability	Standard Error of Quadrat Averages								
Quadrats	of Stations	Stn1	Stn2	Stn3	Stn4	Stn5	Stn6	Stn7	Stn8	Stn9
Percent Cover										
	11.7									
3	78%	11.7	12.1	11.0	8.54	8.46	9.29	7.56	9.72	12.3
4	100%	10.5	11.0	9.74	7.67	7.70	8.26	6.86	8.76	11.0
5	100%	9.57	9.93	8.90	7.45	6.90	7.38	6.17	7.85	10.1
6	100%	8.79	9.07	8.13	6.74	6.33	6.80	5.67	7.20	9.25
7	100%	8.13	8.44	7.74	6.30	5.89	6.33	5.32	6.70	8.59
8	100%	7.69	7.92	7.25	5.95	5.58	5.96	4.97		8.06
9	100%	7.26	7.47	6.87	5.64	5.27		4.71		7.60

^a - Stem density for one quadrat is 229 stems, whereas all other quadrats that range from 16 to 85. Variability estimates when excluding this quadrat fall below the station variability at 4 quadrats (0.739 standard error)


Appendix M - Statistical Analysis - Submerged Aquatic Vegetation

Appendix M - Statistical Analysis - Submerged Aquatic Vegetation

Appendix M - Statistical Analysis - Submerged Aquatic Vegetation

M-1 of 1