
METHODS 98 STATUS OF STATIONARY SOURCE METHODS FOR AIR TOXICS

Larry D. Johnson National Exposure Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC 27711

COMMENTS AND SUGGESTIONS

The following information is included to give the user of this document perspective on the information contained therein and to aid in decisions regarding its use.

- 1. The status table contains a summary of the methods type and status for stack sampling and analysis of each of the 189 air toxics listed in the 1990 Clean Air Act Amendments. The table and its attachments have <u>no direct regulatory standing</u>, and therefore <u>do not</u> <u>constitute approval of the use of the methods to satisfy regulatory requirements</u>. Such approval <u>must always</u> be obtained from the regulatory agency or group involved in the individual project. Hopefully this compilation will aid both the regulator and the regulated community in making planning decisions for air toxics source testing.
- 2. Methods 98 is a May 1998 update and expansion of the 12/14/89 version of the status table, which was originally produced primarily from memory or opinion with the use of only a very few reference texts. An intermediate partial update was produced in 1994, but was not circulated widely. A large amount of field evaluation data has been produced by EPA and its contractors since 1989, and an attempt has been made to utilize all of it in Methods 98. The 1998 status table, therefore, is based much more on field and lab. test information than were its predecessors. No attempt has been made to perform a comprehensive literature survey and to include field test information from sources outside EPA. It is the author's opinion, however, that very little data from outside sources exists that would meet the criteria needed for useful inclusion in this table. The scope of Methods 98 has been expanded in order to give the user easy access to the papers and reports which contain the information behind the Status Table entries, and compilation tables are included which contain much of the field and lab. data. Foot notes for each column on the compilation tables lead the reader to a corresponding item on the Reference List. The reference list contains at least one source, usually a report and a paper, for all of the recently generated data and for some of the older studies. The information in the attached tables and the referenced papers is more compact, and is usually much easier to use than that in the reports. The reports provide much more detail. Some, but not all, of the Status Table entries include suggested references. Other references may be identified by scanning the Reference List for appropriate topics.
- 3. Methods such as 0010 (MM5), 0030 (VOST sampling), 5041/8260 (VOST analysis), and 8270 (GC/MS) are from the SW-846 Methods Manual used by OSW and the Regions for RCRA related work. Method 5, Method 15, and Method 106 are examples of Federal Register Methods historically related to OAQPS air programs. Some of the methods have been promulgated by both groups under different method numbers. Methods and other useful material can be obtained from sources given later in this document. The SW-846 methods listed are the most recent versions, for example 8270C and 5041A. In the future, later versions of the same method should function just as well, or better. In most cases, data obtained with earlier versions of the same method will also be sound, but new tests should always utilize the most recent rendering of the procedure. Methods such as XHCN and XACN are Office of Research and Development produced methods which have been cleared for publication, but which have not yet been promulgated by one of the program

offices. Copies of the "X" methods are included in the corresponding research reports listed in the references.

- 4 The sampling methods listed are generally intended for relatively low concentrations of materials in stack gases. Alternate methods may be necessary for process streams or flue gases with no control devices. Not all methods that might be effective are included on the table. The Tedlar bag version of M18 would probably be effective for the same compounds that 0040 sampled well, <u>provided</u> that the source did not emit sorptive particulate matter or condensable water vapor, and that sorption losses in the lines were minimal. The performance of the sorbent tube version of Method 18 would be less easy to predict, and would have little relation to 0040 performance.
- 5. Priority has been given in this table to methods such as 0010 (a.k.a Modified Method Five, a.k.a. SemiVOST) or Method 29/ Method 0060 (a.k.a. the Multiple Metals Train) which have the most potential for determination of many compounds or metals simultaneously. Alternate single pollutant methods are often given in the comments column. Exclusion of a method from the Status Table does not necessarily imply that it will not perform adequately.
- 6. Many of the compounds on this list are also on RCRA Appendix 8 but listed under a different name. In cases where common, alternate identities have been identified, these are given in the comments column. No attempt has been made to list <u>all</u> alternate chemical names. In some cases, two inconsistent chemical names or an inconsistent pairing of a name with a CAS number has been given on the CAAA list. Cases such as these have been noted in the Status Table, and the CAS number has been assumed to be the primary reference (*i.e.* the correct CAS number for the compound intended to be regulated). The author has no idea, whatever, what the legal ramifications are of such mistakes in the CAAA.
- 7. In general the compounds that have identical listings in the sampling column and in the analysis column can be determined simultaneously. Some of the analyses may require more than one GC or HPLC run to accomplish this end.
- 9. Unless otherwise stated, metals methods produce total Cr, total Pb, etc. Metals oxidation state or compound speciation is always difficult, often impossible, and requires special S&A.
- 10. Even though much less field data is available for Method 0031 than for Method 0030, the former should always perform at least as well as the latter, and often times better. The limited comparison data generally, but not always, supports this position. The author believes that 0031 can <u>always</u> be successfully substituted for M0030, and usually should be chosen for new projects.
- 11. The field and lab. recovery tables have not been included for all compounds or all methods on the Status Table, but there should be at least one reference in the Reference List to support each "f" or "l" listing in the table. The "m" and "s" listings are more conjectural, and may or may not have direct support in the references.

- 12. Only CAAA toxics are included on the Status Table, but data for a few additional compounds may be found on the results tables.
- 13. Poor performance of one of the basic methods such as M0010 is often a result of reactivity of the target compound. The relatively non-reactive compounds will consistently exhibit consistently show good recoveries, the highly reactive compounds will consistently exhibit very poor recoveries, but the marginally reactive compounds may show variability as a function of the reactivity of the stack gas matrix being sampled. Cloroprene, for example, yielded field test results of f2 and f4 along with 11 lab. recoveries. Caprolactam actually showed f1, f4, and 11 results. When sampling compounds with a history of mixed performance, it is probably a good idea to spike the sorbent resin (for sorbent methods) with an isotopically labeled recovery standard before sampling. Carbon or chlorine labels are the least likely to exchange to another compound. Method 23 uses a form of this technique, as does M0040.
- 14. Laboratory recoveries are not usually shown on the Summary Table unless field results were poor, or the lab. results are at odds with the field results. The code does not indicate how many field results of a given category were obtained, see the compilation tables or the reference documents for that type of information.
- 15. A number of the CAAA compounds were eliminated from further testing with Methods 0030 and 0010 when they failed initial laboratory studies. This was usually an analytical problem rather than a sampling deficiency. In the major studies which produced the data in the compilation tables, no effort was made to utilize alternate analysis methods. In some cases, potential alternates have been suggested in the Status Table. Method 0010 will collect any organic compound with a boiling point above 100°C. If the compound is not altered by chemical reaction during sampling, field recovery, transport or storage, then identification of a successful quantification scheme becomes a matter of finding effective extraction and determinative analytical methods. The researcher investigating a problem of this nature, should find References 32, 33, 42, 56, 57, and 58 especially helpful.

STATUS AND RECOVERY TABLE CODE DEFINITIONS

- R %Recovery of spiked standard.
- C Method 301 bias correction factor
- _ An underlined method is not recommended for the listed air toxic.
- ? Effectiveness of the method for the listed air toxic is questionable or showed mixed results.
- f1 Data are available from at least one Method 301 field test where $143\% \ge R \ge 76.9\%$ (equivalent to $0.70 \le C \le 1.30$) and the RSD of R was $\le 50\%$.
- f2 Data are available from at least one Method 301 field test where $150\% \ge R \ge 50\%$ (equivalent to $0.67 \le C \le 2.00$) and the RSD of R was $\le 50\%$.
- f3 Data are available from at least one field test not fully qualifying as Method 301 where $150\% \ge R \ge 50\%$ (equivalent to $0.67 \le C \le 2.00$) and the RSD of R was $\le 50\%$. Some of the recovery data may be better than the minimum shown, and the test may only have failed to meet minimum replicate criteria for full Method 301 statistical analysis.
- f4 Data are available from at least one Method 301 field test where $R \le 50\%$ or $R \ge 150\%$ or the RSD of R was $\ge 50\%$.
- f5 Data are available from at least one field test not fully qualifying as Method 301 where $R \le 50\%$ or $R \ge 150\%$ or the RSD of R was $\ge 50\%$.
- 11 Laboratory test data are available where full scale sampling equipment, dynamic spiking , and a stack simulator were utilized. The RSD of R was $\leq 50\%$, and $143\% \geq R \geq 76.9\%$ (equivalent to $0.70 \leq C \leq 1.30$). This is essentially a successful Method 301 test in the laboratory.
- 12 Laboratory test data are available where full scale sampling equipment, dynamic spiking , and a stack simulator were utilized. The RSD of R was $\leq 50\%$, and $150\% \geq R \geq 50\%$ (equivalent to $0.67 \leq C \leq 2.00$).
- 13 Laboratory test data are available where full scale sampling equipment, dynamic spiking , and a stack simulator were utilized. R \leq 50% or R \geq 150% or the RSD of R was \geq 50% or unknown.
- 14 Other laboratory test data are available, where $143\% \ge R \ge 76.9\%$ (equivalent to $0.70 \le C \le 1.30$) and the RSD of R \le 50\% or unknown. The data from tests in this category may be insufficient to yield a credible RSD.
- 15 Other laboratory test data are available, where $150\% \ge R \ge 50\%$ (equivalent to $0.67 \le C \le 2.00$) and the RSD of R \le 50\% or unknown. The data from tests in this category

may be insufficient to yield a credible RSD.

- 16 Other laboratory test data are available, where $R \le 50\%$ or $R \ge 150\%$ or the RSD of R was $\ge 50\%$ or unknown. The data from tests in this category may be insufficient to yield a credible RSD.
- 17 Laboratory tests showed <u>no</u> response in VOST analytical system (5041A & 8260B). See References 5, 7, 11, and 16.
- 18 Laboratory tests showed <u>weak</u> response in VOST analytical system (5041A & 8260B). See References 5, 7, 11, and 16. Special attention or modification necessary for reliable operation.
- s Should work. For sampling methods, no confirmatory field or laboratory data has been identified, but the structure of the compound or its similarity to validated compounds makes the prognosis optimistic.
- m Might work. This designation usually implies that the technique given should work if the compound survives the sampling and analysis process, but that we have strong reservations about its ability to do so. This status is usually linked with reactivity/instability. Many compounds are stable enough to analyze, but will not tolerate prolonged exposure to water, NO₂, or other materials during sampling.
- n No known adequate method. This always means we know of no reliable method for this pollutant. We usually have identified a number of unreliable methods for the pollutant. If negative data are available, the sampling method will be underlined.
- sp Suspected problems. The suspected problem is given in the comments, and is often related to reactivity.
- kp Known problems. This is similar to the suspected problem except that our fears have been confirmed by data. If data indicate questionable or inconsistent performance, the sampling method will be followed by a question mark.

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
75-07-0	Acetaldehyde	0011	f1	8315A	Simultaneous aldehydes possible. Refs. 23, 40
60-35-5	Acetamide	0010	m,sp	8032	May be reactive
75-05-8	Acetonitrile	XACN	f1	8015B 8033	See Refs. 24 & 26.
98-86-2	Acetophenone	0010 0011	f1 f1	3542 8270C 8315A	See References 23 & 40 for 0011.
53-96-3	2-Acetylaminofluorene	0010?	f2f4l1	3542 8270C	
107-02-8	Acrolein	0011? PFBHA	f2, kp 14	8315A GC/MSorECD	Stability problems, even in DNPH See references 45 & 50 for PFBHA approach.
79-06-1	Acrylamide	0010	m, sp	GC/MS or 8316	Polar, water soluble. Poor GC, needs work.
79-10-7	Acrylic Acid	0010 sorbent	m,sp 14	8316 GC/FID	Suspect polymerization may be problem Ref 50&54, prototype needs to be isokinetic.
107-13-1	Acrylonitrile	XACN 0030 0031	s s 18	8015B 8033 5041A 8260B	See Refs. 24 & 26. Purges poorly, needs special attention.
107-05-1	Allyl Chloride	<u>0030</u> kp <u>0031</u> kp 0040	f4 11 f4 f1	5041A 8260B 5041A 8260B 8260B	0030 recoveries good in lab., 30% from field test (suspect reactivity)
92-67-1	4-Aminobiphenyl	0010 acid liquid	m, sp s	GC/MS HPLC/PDA	Ref 50&51.
62-53-3	Aniline	0010? kp acid liquid	f2f4l2 14	3542 8270C HPLC/PDA	Extraction and reactivity problems. Ref 50&51, prototype needs to be isokinetic.
90-04-0	o-Anisidine	<u>0010</u> kp acid liquid	f4 12 s	3542 8270C HPLC/PDA	Ref 50&51, prototype needs to be isokinetic.
1332-21-4	Asbestos	-	-	microscopy	Separate S&A
71-43-2	Benzene	0030 0040	f1 f1	5041A 8260B 8260B	Make sure that the Tenax is clean.
92-87-5	Benzidine	0010? kp acid liquid	f2f4l3 s	3542 8270C HPLC/PDA	May react during sampling. Ref 50&51, prototype needs to be isokinetic.
98-07-7	Benzotrichloride	0010	f2	3542 8270C	
100-44-7	Benzyl Chloride	0010	f1 f2	3542 8270C	
92-52-4	Biphenyl	0010	f1	3542 8270C	
117-81-7	Bis(2-ethylhexyl)phthalate	0010	f2f4l1	3542 8270C	a.k.a. DEHP
542-88-1	Bis(chloromethyl)ether	n, kp <u>0010</u> kp <u>0030</u>	f4 11 17	3542 8270C	Reacts quickly with water
75-25-2	Bromoform	0010	f1 f2	3542 8270C	
106-99-0	1,3-Butadiene	0040? kp	f4	8260B	Reactive, borderline results.
156-62-7	Calcium cyanamide	0010 M5	s	?	Should be able to collect salt as particulate. Analysis is problematic, low solubility without decomposition.
105-60-2	Caprolactam	0010?	f1f4l1	3542 8270C	Mixed results, suspect hydrolysis.
133-06-2	Captan	0010	m	3542 8270C HPLC	Can be reactive.
63-25-2	Carbaryl	0010?	f1f4l1	3542 8270C	Mixed results.

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
75-15-0	Carbon Disulfide	0030?	f2f4l2	5041A 8260B	Mixed results.
463-58-1	Carbon Tetrachloride	0030/0031	f1	5041A 8260B	
463-58-1	Carbonyl Sulfide	M15 0040	s	GC/FPD CG/FPD	
120-80-9	Catechol	0010	m	3542 8270C	Careful pH control during extraction mandatory. Recovery may be difficult.
133-90-4	Chloramben	acid liquid	14	HPLC/PDA	Ref 50&51, prototype needs to be isokinetic
57-74-9	Chlordane	0010	f1	3542 8270C	
7782-50-5	Chlorine	M26/26A 0050 0051	f1	9056 9057	Halogens & halo-acids can be done simultaneously
79-11-8	Chloroacetic Acid	n, sp	n	HPLC	
532-27-4	2-Chloroacetophenone	0010	f1 f2	3542 8270C	
108-90-7	Chlorobenzene	0010 0030? 0031?	f1 f2 f1 f1	3542 8270C 5041A 8260B 5041B 8260B	Above recommended bp limit for 0030/0031, and for 0040.
510-15-6	Chlorobenzilate	0010	f1f3f4	3542 8270C	
67-66-3	Chloroform	0030 0031 0040	f1 f1 s	5041A 8260B 5041A 8260B 8260B	
107-30-2	Chloromethyl Methyl Ether	n kp <u>0030</u>	17	<u>5041A 8260B</u>	May decompose during s&a
126-99-8	Chloroprene	0030? 0031	f2f4l1 f1	5041A 8260B 5041A 8260B	Recoveries good in lab., mixed in field. Suspect reactivity.
1319-77-3	Cresols/Cresylic Acid	-	-	-	Determine as individual cresols by methods following.
95-48-7	o-Cresol	0010 NaOH	f1 f2 f1	3542 8270C HPLC	NaOH impinger collection for emissions in the 20-100 ppm range. Refs. 46, 64, & 65.
108-39-4	m-Cresol	0010 NaOH	f2 f1	3542 8270C HPLC	NaOH impinger collection for emissions in the 20-100 ppm range. Refs. 46, 64, & 65.
106-44-5	p-Cresol	0010 NaOH	f2 f1	3542 8270C HPLC	NaOH impinger collection for emissions in the 20-100 ppm range. Refs. 46, 64, & 65.
98-82-8	Cumene	0010	f1	3542 8270C	
94-75-7	2,4-d	0010	s	8151A, 8321A	
3547-04-4	DDE	0010	f1	3542 8270C	CAS #3547-04-4 is on CAAA, The large volume pesticide is 72-55-9. The two are similar (<u>almost</u> congeners) and should behave comparably.
334-88-3	Diazomethane	n, kp	-	-	Very reactive. Derivative method should be developed.
132-64-9	Dibenzofurans	0010	f1	3542 8270C	For PCDF, use Method 0023A or Method 23
84-74-2	1,2-Dibromo-3-Chloro- propane	0010	f1 f4	3542 8270C	
84-74-2	Dibutylphthalate	0010	f1 f4	3542 8270C	Common contaminant
106-46-7	1,4-Dichlorobenzene(p)	0010	f1 f2	3542 8270C	
91-94-1	3,3-Dichlorobenzidene	<u>0010</u> acid liquid	f4 f5 s	3542 8270C HPLC/PDA	Reactive, no good with 0010. Ref 50&51, prototype needs to be isokinetic.

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
111-44-4	Dichloroethyl Ether	0010	f1 f2	3542 8270C	Same as bis(2-chloroethyl)ether
542-75-6	1,3-Dichloropropene	0030/0031 0010	f1 f2 f1 f2	5041A 8260B 3542 8270C	Mixed results. May be source sensitive.
62-73-7	Dichlorvos	0010	f1 f2	3542 8270C	
111-42-2	Diethanolamine	n, kp acid liquid	- S	8270 HPLC should	The method of Ref. 50&51 should collect OK if made isokinetic. No benzene ring, so alternate detector may be needed
91-66-7	N,N-Diethyl aniline	0010 acid liquid	f1 f2 s	3542 8270C HPLC/PDA	Compound confused with Dimethylaniline on CAAA, wrong CAS number listed. Ref. 50&51, prototype needs to be isokinetic.
64-67-5	Diethyl Sulfate	n, kp	-	-	Probably special S&A. a.k.a. sulfuric acid, diethyl ester
119-90-4	3-3-Dimethoxybenzidine	kp <u>0010</u> acid liquid	f413 s	3542 8270C HPLC/PDA	Likely reactive. Ref 50&51, prototype needs to be isokinetic.
60-11-7	Dimethyl Aminoazobenzene	0010? acid liquid	f4 11 s	3542 8270C HPLC/PDA	Suspect reactivity. Ref 50&51, prototype needs to be isokinetic.
121-69-7	N,N-dimethylaniline	0010 acid liquid	f2 11 14	3542 8270C HPLC/PDA	Incorrectly called diethylaniline on CAAA Ref 50&51, prototype needs to be isokinetic
119-93-7	3,3-Dimethyl Benzidine	0010? kp acid liquid	f1f4l3 l4	3542 8270C HPLC/PDA	Mixed results probably due to reactivity. Ref 50&51, prototype needs to be isokinetic
79-44-7	Dimethyl Carbamoyl Chloride	0010	m, sp	8321A	
68-12-2	Dimethyl Formamide	0010	m, sp	8260B, 8141A	
57-14-7	1,1-Dimethyl Hydrazine	0030?	kp l7		Stability problems. Probably needs derivatization method.
131-11-3	Dimethyl Phthalate	0010	f1	3542 8270C	Common contaminant
77-78-1	Dimethyl Sulfate	special	s	special	
534-52-1	4,6-Dinitro-o-Cresol, and salts	0010	f1f2l3	3542 8270C	Bad lab results are puzzling. This test was for the cresol only, not salts.
51-28-5	2,4-Dinitrophenol	0010?	f1f4l3	3542 8270C	Mixed results, very good to very bad.
121-14-2	2,4-Dinitrotoluene	0010	f1	3542 8270C	
123-39-11	1,4-Dioxane	0010 0030	f1 17	3542 8270C	a.k.a. 1,4-Diethyleneoxide. Easily lost during extraction and concentration. Labeled lab. recovery standard is mandatory.
122-66-7	1,2-Diphenylhydrazine	0010 acid liquid	m s	GC/MS HPLC/PDA	Reactive. Ref 50&51, prototype needs to be isokinetic.
106-89-8	Epichlorohydrin	<u>0010</u> kp <u>0030</u> kp	f2f4l3 17	3542 8270C	Mostly poor with 0010, worse with 0030. New method needed.
106-88-7	1,2-Epoxybutane	0030	m,sp	5040,(GCMS)	Suspect reactivity problems
140-88-5	Ethyl Acrylate	kp 0030? 0010 sorbent	18 m,sp 14	GC/MS GC/FID	Polymerizes easily Ref 50&54.
100-41-4	Ethyl Benzene	0010	f1	3542 8270C	
51-79-6	Ethyl Carbamate	0010?	f1f4l2	3542 8270C	a.k.a. urethane

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments		
75-00-3	Ethyl Chloride (Chloroethane)	0030?kp 0031?kp	f2f4l1 f4	5041A 8260B 5041A 8260B	Low bp, 0031 should have done better.		
106-93-4	Ethylene Dibromide	0010 0030? 0031?	f1 f2 f1f411 f1	3542 8270C 5041A 8260B 5041A 8260B	a.k.a. dibromoethane. Above recommended bp for 0030/0031.		
107-06-2	Ethylene Dichloride	0030 0031	f1 f2 f1	5041A 8260B 5041A 8260B	a.k.a. 1,2 dichloroethane		
107-21-1	Ethylene Glycol	0010	s	8015B, 8430			
151-56-4	Ethylene Imine (Aziridine)	n kp <u>0030</u>	17		Water soluble & polymerizes		
75-21-8	Ethylene Oxide	tedlar bag CARB 431	f3	GC/MS GC/FID	Reactivity can cause problems in some matrices		
96-45-7	Ethylene Thiourea	0010	m	HPLC/UV 8325	Reactive and water soluble. See Ref. 56 & 57 for HPLC/UV.		
75-34-3	1,1 dichloroethane (misnamed Ethylidene Dichloride on CAAA)	0030 0031 0040	f1 f2 f1 f1	5041A 8260B 5041A 8260B 8260B	75-34-3 is really 1,1 dichloroethane. Ethylidene dichloride is 75-35-4		
50-00-0	Formaldehyde	0011	f1	8315A	Simultaneous aldehydes possible, ref. 23&40		
76-44-8	Heptachlor	0010	f1f4l1	3542 8270C			
118-74-1	Hexachlorobenzene	0010	f1 f2 f4	3542 8270C	Recovery increased greatly with each field test. Last one was 82.6%		
87-68-3	Hexachlorobutadiene	0010	f1 f2	3542 8270C			
77-47-4	Hexachlorocyclopentadiene	0010	f2 f4	3542 8270C	Good to mediocre field tests, poor in the lab.		
67-72-1	Hexachloroethane	0010	f1	3542 8270C			
822-06-0	Hexamethylene-1,6- diisocyanate	M207-1	f1	M207-2	Reactive, a.k.a. 1,6 diisocyanatohexane a.k.a. HDI		
680-31-9	Hexamethylphosphoramide	<u>0010</u>	f4 13	3542 8270C	Suspect reactivity		
110-54-3	Hexane	0030 0040	f1 f1	5041A 8260B 8260B			
302-01-2	Hydrazine	0010	kp	GC/MS	Water soluble & unstable, probably requires special S&A		
7647-01-0	Hydrochloric Acid	M26/26A 0050 0051	f1	9056 9057	Halogens & halo-acids can be done simultaneously		
7664-39-3	Hydrogen Fluoride	M26/26A	14	9057	Methods 13A,13B,14 for total fluoride		
123-31-9	Hydroquinone	0010	m,sp	GC/MS	Reactive, solubility problems.		
78-59-1	Isophorone	0010 0011	f1 f1	3542 8270C 8315A			
58-89-9	Lindane (all isomers)	0010	f1	3542 8270C	a.k.a. hexachlorocyclohexane		
108-31-6	Maleic Anhydride	0010	s,kp	HPLC	Reacts with water, must quantitate the acid & report as parent compound		
67-56-1	Methanol	0030? M308 MST	m,sp f1 f1	5041A 8260B GC/FID GC/FID	Highly water soluble, may purge poorly See References 59, 60, & 61 for evaluation of M308 and MST.		
72-43-5	Methoxychlor	0010	f2	3542 8270C			

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
74-83-9	Methyl Bromide	0030?kp 0031?kp 0040?kp	f2 f4 f4	5041A 8260B 5041A 8260B 8260B	a.k.a. bromomethane. 0030 barely met f2, 0031 should be better, but was worse. Low bp. 0040 results high.
74-87-3	Methyl Chloride (Chloromethane)	<u>0030</u> kp <u>0031</u> kp 0040	f4 f4 f1	5041A 8260B 5041B 8260B 8260B	Artifact problems with Tenax.
71-55-6	Methyl Chloroform	0030/0031 0040	f1 f1	5041A 8260B 8260B	a.k.a. 1,1,1-trichloroethane
78-93-3	Methyl Ethyl Ketone (2-Butanone)	<u>0011</u> 0030? PFHBA	f4 18 14	8315A 5041A 8260B GC/MSorECD	Water solubility causes problems with 5041A purge. See References 45 & 50 for PFBHA approach.
60-34-4	Methyl Hydrazine	0030	kp	5040	Reactive, probably requires special S&A
74-88-4	Methyl iodide	0030/0031	f1	5041A 8260B	a.k.a. Iodomethane
108-10-1	Methyl Isobutyl Ketone (Hexone)	0010 <u>0011</u> PFBHA kp 0030?	f1 f4 14 18	3542 8270C 8315A GC/MSorECD	See references 45 & 50 for PFBHA approach, 23 & 40 for DNPH (0011).
624-83-9	Methyl Isocyanate	M 207-1	f1	M207-2	a.k.a. isocyanic acid, methyl ester, a.k.a. MI. See Ref. 18.
80-61-6	Methyl Methacrylate	0010 kp 0030? sorbent	m,sp 18 14	5040,(GC/MS) GC/FID	May polymerize Ref 50&54.
1634-04-4	Methyl Tert Butyl Ether	kp 0030?	18		a.k.a. tert. butyl methyl ether
101-14-4	4,4-Methylene Bis(2-chloroaniline)	0010 acid liquid	m,sp s	GC/MS HPLC/PDA	Suspect reactivity problems during sampling. Ref 50&51, prototype needs to be isokinetic.
75-09-2	Methylene Chloride (dichloromethane)	0030/0031 0040	f1 f1	5041A 8260B 8260B	a.k.a. dichloromethane
101-68-8	Methylene Diphenyl Diisocyanate	M207-1	f1	M207-2	Reactive, See Ref. 18. a.k.a. MDI,a.k.a. 4,4'-Bis(carbonylamino)diphenylmethane.
101-77-9	4,4-Methylenedianiline	0010 acid liquid	m, sp s	GC/MS HPLC/PDA	Reactive? Ref 50&51, prototype needs to be isokinetic.
91-20-3	Naphthalene	0010	f1	3542 8270C	
98-95-3	Nitrobenzene	0010	f1	3542 8270C	
92-93-3	4-Nitrobiphenyl	0010	f1	3542 8270C	
100-02-7	4-Nitrophenol	0010	f1f2l3	3542 8270C	Bad lab results are puzzling.
79-46-9	2-Nitropropane	0010,0030	S	GC/MS	
684-93-5	N-Nitroso-N-Methylurea	0010	m,sp	HPLC	Unstable
62-75-9	N-Nitrosodimethylamine	0010	f1	3542 8270C	
59-89-2	N-Nitrosomorpholine	0010	f1	3542 8270C	
56-38-2	Parathion	0010	f1 f2	3542 8270C	
82-68-8	Pentachloronitrobenzene	0010	f1f3f4	GC/MS	
87-86-5	Pentachlorophenol	0010	f1f3f4	3542 8270C	
108-95-2	Phenol	0010 NaOH	f1 f2 f1	3542 8270C HPLC	NaOH impinger collection for emissions in the 20-100 ppm range. Refs. 46, 64, & 65.

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
106-50-3	p-Phenylenediamine	0010 acid liquid	m,sp s	GC/MS HPLC/PDA	Reactive, polar, water soluble. Ref 50&51, prototype needs to be isokinetic.
75-44-5	Phosgene	XPHS	11	GC/MS	Reactive, must be derivatized as collected. See Refs. 52 & 53.
7803-51-2	Phosphine	M29 0060	S	6010 6020 7000	Yields total P value
7723-14-0	Phosphorus	M29 0060	S	6010 6020 7000	Yelds total P value
85-44-9	Phthalic anhydride	0010 <u>0010</u> kp	s f4 13	HPLC 3542 8270C	Reacts with water, must quantitate the acid & report as parent compound
1336-36-3	Polychlorinated Biphenyls (Aroclors)	0010 CARB 428	S	3542 GC/MS CARB 428	Combustion destroys Aroclor patterns. Determine isomer groups or individuals.
1120-71-4	1,3-Propane Sultone	0010	m	GC/MS	Polar and reactive.
57-57-8	Beta-Propiolactone	0010	m,sp	GC/MS	May be too reactive
123-38-6	Propionaldehyde	0011	f1	8315A	Simultaneous aldehydes possible. Ref.23&40
114-26-1	Propoxur	0010	f1f2	3542 8270C	a.k.a. Baygon
78-87-5	Propylene Dichloride	0030 0031	f1 f2 f1	5041A 8260B 5041A 8260B	a.k.a. 1,2 dichloropropane
75-56-9	Propylene Oxide	kp <u>0030</u> 0040	17 m, sp		Reactive, water soluble, a.k.a. 1,2 propylene oxide
75-55-8	1,2-Propylenimine	n kp <u>0030</u>	17		May be reactive
91-25-5	Quinoline	0010 acid liquid	f1 14	3542 8270C HPLC/PDA	Ref 50&51, prototype needs to be isokinetic
106-51-4	Quinone	<u>0010</u> 0011?	f4l3kp f2,kp	3542 8270C 8315A	May be reactive,a.k.a. 1,4-benzoquinone,a.k.a. p-benzoquinone
100-42-5	Styrene	0010?	f1f4l1	3542 8270C	Low f4 results puzzling. Reactivity?
96-09-3	Styrene Oxide	<u>0010</u> kp	f4 13	3542 8270C	Reactive. a.k.a. 1,2 epoxyethylbenzene
1746-01-6	2,3,7,8-Tetrachlorodibenzo-p -Dioxin	M23 0023A	f1	M23 8290	Special care needed during recovery and analysis.
79-34-5	1,1,2,2-Tetrachloroethane	0010	f1	3542 8270C	
127-18-4	Tetrachloroethylene	0010 0030/0031	f2 f1 f2	3542 8270C 5041A 8260B	a.k.a. tetrachloroethene,.a.k.a perchloroethylene
7550-45-0	Titanium Tetrachloride	M29 0060	S	6010 6020 7000	For total titanium
108-88-3	Toluene	0010 0030 0040	fi f2 f1 f1	3542 8270C 5041A 8260B 8260B	
95-80-7	2,4-Toluene Diamine	0010 acid liquid	m,sp 14	GC/MS HPLC/PDA	Reactive Ref 50&51, prototype needs to be isokinetic.
584-84-9	2,4-Toluene Diisocyanate	M207-1	f1	M207-2	Reacts with water,a.k.a. TDI
95-53-4	o-Toluidine	0010? acid liquid	f2f4l1 l4	3542 8270C HPLC/PDA	Mixed results, may be reactive. Ref 50&51, prototype needs to be isokinetic.
8001-35-2	Toxaphene (Chlorinated Camphene)	0010	S	GC/MS,8250	

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
120-82-1	1,2,4-Trichlorobenzene	0010	f1 f2	3542 8270C	
79-00-5	1,1,2-Trichloroethane	0010 0030/0031 0040	f1 f2 f1 f1	3542 8270C 5041A 8260B 8260B	
79-01-6	Trichloroethylene	0030/0031	f1	5041A 8260B	a.k.a. trichloroethene
95-95-4	2,4,5-Trichlorophenol	0010	f1	3542 8270C	
88-06-2	2,4,6-Trichlorophenol	0010	f1 f2	3542 8270C	
121-44-8	Triethylamine	n kp <u>0030</u> acid liquid	17 s	HPLC should	a.k.a. N,N-diethylethanimine. Suspect reactivity. The method of Ref. 50&51 should collect OK. No benzene ring, so alternate detector may be needed
1582-09-8	Trifluralin	0010 acid liquid	f4l2kp m, kp	3542 8270C HPLC/PDA	Suspect reactivity, a.k.a. Treflan Ref 50&51, prototype needs to be isokinetic. Analysis method needs modification.
540-84-1	2,2,4-Trimethylpentane	0030 0040	f2 f1	5041A 8260B 8260B	a.k.a. isooctane
108-05-4	Vinyl Acetate	kp 0030? sorbent	18 14	GC/FID	Ref 50&54.
593-60-2	Vinyl Bromide	0030?kp 0031?kp 0040 M106	f2f4l1 f4 f1	5041A 8260B 5041A 8260B 8260B GC/MS	
75-01-4	Vinyl Chloride	<u>0030</u> kp 0031? kp 0040 M106	f1f4l1 f4 l1 f1 l5	5041A 8260B 5041A 8260B 8260B GC/MS	Mixed results, 0030 is questionable. Poor field results for 0031 are puzzling, may be due to reactivity.
75-35-4	Vinylidene Chloride	0030/0031 0040 M106	f1/f1 f1 15	5041A 8260B 8260B GC/MS	a.k.a. 1,1 dichloroethene. a.k.a. 1,1 dichloroethylene
1330-20-7	Xylenes(mixture)	0010	f1	3542 8270C	Determine individual xylenes, not total.
95-47-6	o-Xylene	0010	f1	3542 8270C	
108-38-3	m-Xylene	0010	f1	3542 8270C	
106-42-3	p-Xylene	0010	f1	3542 8270C	
-	Antimony Compounds	M29 0060	f1	6010 6020 7000	
-	Arsenic Compounds	M29 0060	f1	6010 6020 7000	Also Method 108 & 108A
-	Beryllium Compounds	M29 0060	f1	6010 6020 7000	Also Method 103 & 104
-	Cadmium Compounds	M29 0060	f1	6010 6020 7000	
-	Chromium Compounds	M29 0060	f1	6010 6020 7000	M29 or 0060 for total chromium, 0061 for hexavalent Cr.
-	Cobalt Compounds	M29 0060	S	6010 6020 7000	
-	Coke Oven Emissions	Method 109	-	-	

CAS No.	Chemical Name	Sampling Method	S. Code	Analysis Method	Comments
-	Cyanide Compounds	XHCN	11	XHCN	XHCN for HCN, CARB426 for total cyanide.
-	Glycol Ethers	n 0010	- S	- 8430, 8015B	Category too general, however a method is possible for individual compounds. Should be isokinetic, probably 0010.
-	Lead Compounds	M29 0060	f1	6010 6020 7000	Also Method 12
-	Manganese Compounds	M29 0060	f1	6010 6020 7000	
-	Mercury Compounds	M29 0060	f1	7470	Also Methods 101,101A,102. For speciation research see references 50 & 55.
-	Mineral Fibers				
-	Nickel Compounds	M29 0060	f1	6010 6020 7000	
-	Polycyclic Organic Matter	0010 CARB 429	f3	3542 8270C CARB 429	Individual compounds are determined, not total POM, more or less synonymous with pna, pah, pac.
-	Radionuclides (including radon)	M111 M114 M115			
-	Selenium Compounds	M29 0060	f1	6010 7000	

Results for Method 0010	halogenated comp	oounds laboratory stu	dy and five field tests.

	First I Te			Second Field Test ^b		Third Field Test ^c		Laboratory Test ^d		Margeson, <i>et al.</i> Two Field Tests ^e	
Compound	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	
bis(chloromethyl)ether	0.0	0.0	0.0	0.0	36.4	44.9	80.7	23.2			
Epichlorohydrin	6.0	128.1	13.4	44.2	58.5	39.7	187.0	11.7			
cis-1,3-Dichloropropene	49.1	37.5	50.3	48.3	73.8	25.1	51.9	12.9			
trans-1,3-Dichloropropene	52.0	35.2	79.8	63.4	79.4	21.9	29.3	13.1			
1,1,2-Trichloroethane	56.4	37.7	60.3	38.2	79.8	17.6	84.4	13.5			
1,2-Dibromoethane	58.9	36.9	62.5	40.4	85.3	19.4	83.9	12.7			
Tetrachloroethene	53.2	37.2	49.4	52.5	73.8	30.7	78.7	17.6			
Chlorobenzene	62.3	43.2	65.1	40.7	76.4	18.2	86.2	11.9	86/86	22/14	
Bromoform	59.8	37.6	69.3	35.7	87.0	17.3	123.0	14.2			
1,1,2,2-Tetrachloroethane	64.0	35.3	73.9	34.5	81.7	18.5	79.7	10.5	81.5	32.9	
Dichloroethyl ether	60.9	34.7	77.0	34.3	80.3	17.4	82.5	10.5			
1,4-Dichlorobenzene	56.2	35.2	73.5	35.7	84.2	15.9	78.7	12.5			
Benzyl chloride	67.4	33.4	73.9	34.9	82.1	20.9	77.9	11.7			
Hexachloroethane	74.0	36.9	70.9	35.6	83.6	15.5	84.6	13.3			
1,2-Dibromo-3-chloropropane	44.8	36.0	73.8	35.7	84.3	16.8	69.8	11.4			
1,2,4-Trichlorobenzene	59.5	35.7	76.1	34.5	86.8	14.2	67.7	13.3			
Hexachlorobutadiene	65.4	43.1	77.1	34.3	84.7	16.6	68.1	14.0			
Benzotrichloride	60.1	36.5	72.4	38.0	75.2	20.5	85.7	16.8			
2-Chloroacetophenone	56.0	40.7	79.5	32.7	66.1	44.6	89.1	11.7			
Hexachlorocyclopentadiene	42.3	61.8	59.6	37.7	68.5	35.1	975.5	24.8			
2,4,6-Trichlorophenol	49.8	47.0	75.4	35.2	77.1	15.8	72.8	26.2			
2,4,5-Trichlorophenol	62.7	35.3	76.6	34.5	80.7	16.1	76.1	23.8			
Hexachlorobenzene	44.6	33.9	56.5	31.0	82.6	12.7	73.3	10.0			
Pentachlorophenol	42.4	41.5	60.3	25.6	64.3	49.2	57.5	60.3	124	46.3	
Pentachloronitrobenzene	43.4	37.9	58.5	28.9	87.5	15.8	79.2	10.1			
Chlorobenzilate	40.7	50.6	61.8	33.1	78.0	17.0	131.6	32.0			
3,3'-Dichlorobenzidine	4.4	164.9	0.6	264.6	10.0	78.8	1352.4	43.4			

a - Mean of 12 replicate quad train runs. Coal fired power plant. From references 8 & 9.

b - Mean of 4 replicate quad train runs. Organic chemical manufacturing facility. From references 9, 10 & 30.

c - Mean of 10 replicate quad train runs. Organic agricultural chemical manufacturing facility. From references 10 & 17.

d - Mean of 7 replicate quad train runs. Full scale sampling train, dynamic spike, stack simulator. From reference 9. e - Mean of 13-39 replicate quad train runs, with dynamic spiking. Two hazardous waste incinerators. From reference 4.

	First l Te			Second Field Test ^b		Laboratory Test ^c		Margeson, <i>et al.</i> Two Field Tests ^d	
Compound	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	
di- <u>n</u> -butyl phthalate	46	54	107	14	118	10			
bis(2-ethylhexyl) phthalate	48	23	65	93	110	32			
<u>m</u> -/ <u>p</u> -cresol	69	14	65	49	105	5			
dimethyl phthalate	82	17	123	7	105	9			
phenol	89	9	56	22	96	7	96	14	
<u>o</u> -cresol	90	15	71	34	100	5			
2,4-dinitrophenol	111	31	24	87	5	155			
4-nitrophenol	114	31	59	18	38	33			
4,6-dinitro- <u>o</u> -cresol	122	14	53	34	44	44			
quinone	2	438	not	tested	28	97			
hexamethylphosphoramide	14	118	not	tested	49	74			
trifluralin	27	41	not	tested	149	11			
dimethylaminoazo-benzene	31	51	17	67	106	16			
3,3'-dimethoxybenzidine	37	38	6	129	20	50			
o-anisidine	39	39	4	149	67	17			
<u>o</u> -toluidine	56	30	24	70	80	22			
benzidine	65	119	8	95	8	81			
N,N,-dimethylaniline	67	24	54	31	97	12			
aniline	70	24	35	45	67	11			
4,4'-methylene bis(2-chloroaniline)	89	36	25	49	75	27			
3,3'-dimethylbenzidine	92	44	6	129	28	51			
N,N,diethylaniline	95	19	54	31	104	16			
carbaryl	99	19	125	51	94	22			
ethyl carbamate	103	14	27	33	69	21			

Results for Method 0010 nonhalogenated organic compounds, laboratory study and four field tests.

	First I Tes		Secono Te		Laboratory Test ^c		Margeson, <i>et al.</i> Two Field Tests ^d	
Compound	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD
caprolactam	114	12	22	107	91	18		
N-nitrosomorpholine	116	12	81	26	85	23		
N-nitrosodimethylamine	117	13	81	27	96	9		
propoxur	123	12	75	61	97	20		
2-acetylaminofluorene	147	23	49	45	106	17		
styrene oxide	0.5	1481	not	tested	49	66		
phthalic anhydride	5	144	not	tested	2	136		
methoxychlor	73	19	75	51	73	30		
toluene	76	11	97	11	340	45	75/85	26/15
<u>m</u> -/ <u>p</u> -xylene	79	12	79	12	104	9		
quinoline	80	19	82	30	99	8		
styrene	84	10	39	81	104	8		
<u>o</u> -xylene	85	11	97	9	103	8	99	8
1,4-dioxane	87	11	79	21	92	8	86	17
cumene	88	11	95	9	102	9		
ethylbenzene	89	12	93	9	94	10		
parathion	89	28	76	28	96	11		
isophorone	93	12	96	13	106	13		
acetophenone	96	12	98	13	132	12		
naphthalene	96	11	94	10	107	8	106	16
dibenzofuran	100	12	103	12	110	11		
dichlorvos	101	18	57	27	68	30		
DDE	102	15	93	24	120	10		
4-nitrobiphenyl	102	14	104	10	104	12		

	First Field Test ^a		Second Field Test ^b		Laboratory Test ^c		Margeson, <i>et al.</i> Two Field Tests ^d	
Compound	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD
heptachlor	103	12	35	107	95	9		
biphenyl	103	12	105	12	106	9		
lindane	104	12	104	8	107	9		
nitrobenzene	109	12	100	10	97	9	117	17
2,4-dinitrotoluene	109	12	102	21	110	24		
methyl isobutyl ketone	112	11	101	11	103	9		
chlordane	142	16	85	25	93	14		
pyridine	not te	not tested not tested		not tested		82/71	24/18	

a - Mean of 10-20 replicate quad train runs, with dynamic spiking. Coal-fired power plant. From references 15 & 16.

b - Mean of 8-19 replicate quad train runs, with dynamic spiking. Chemical manufacturing facility waste burner. From references 13 & 14. c - Mean of 6-14 replicate quad train runs, with dynamic spiking. Source simulator. From references 11 & 16.

d - Mean of 13-39 replicate quad train runs, with dynamic spiking. Two hazardous waste incinerators. From reference 4.

	First Field Test ^a		Second Field Test ^b		Third Field Test ^c		Laboratory Studies ^d		Fuerst, <i>et al.</i> Field Test ^e	
Compound	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD
Methyl Chloride (Chloromethane)	937	53.8	243	62.8	255.3	58.1	101.2	8.10		
Ethylidene Dichloride (1,1-Dichloroethane)	75.7	13.7	82.2	23.3	86.0	13.2	108.8	3.97		
Chlorobenzene	88.2	22.0	81.2	22.1	84.8	27.9	94.2	14.56		
Vinyl Chloride	110.4	27.3	41.8	44.6	37.3	39.5	90.4	12.01		
Vinylidene Chloride (1,1-Dichloroethylene)	88.0	31.3	77.8	24.2	77.8	25.1	123.0	4.56		
Chloroform	81.8	14.8	91.3	24.6	95.3	14.3	117.4	4.92	127	12
Propylene Dichloride (1,2-Dichloropropane)	67.2	9.6	121	24.8	117.7	30.0	98.0	9.52		
Methyl Bromide (Bromomethane)	53.7	20.2	54.8	26.2	52.8	27.8	97.4	9.78		
Ethyl Chloride (Chloroethane)	50.3	28.7	33.7	36.9	31.4	37.6	95.8	11.2		
Methylene Chloride	77.7	27.1	89.9	14.3	90.8	11.7	101.6	2.84		
Methyl Chloroform (1,1,1-Trichloroethane)	110	43.5	91.1	31.1	96.8	19.4	103.4	12.28		
Carbon Tetrachloride	107	47.2	81.2	23.6	85.7	13.8	108.4	14.97	108	8
Ethylene Dichloride (1,2-Dichloroethane)	76.6	33.0	72.3	37.5	78.6	27.7	95.8	6.19		
Trichloroethylene	126	15.6	119	26.2	124.0	16.8	110.0	6.88		
cis-1,3-Dichloropropene	137	26.0	79.5	27.6	83.5	16.1	109.0	14.59		
trans-1,3-Dichloropropene	135	38.1	52.3	35.4	47.9	35.0	96.6	18.00		
1,1,2-Trichloroethane	98.0	22.1	79.7	27.2	81.4	14.4	106.4	13.71		
Tetrachloroethene	97.7	21.9	60.1	27.9	57.5	12.5	111.6	6.72	122	8
Methyl Iodide (Iodomethane)	72.8	37.6	79.5	63.1	77.8	20.4	108.4	5.28		
Allyl Chloride (3-Chloropropene)	29.9	19.5	35.6	33.3	36.4	29.6	127.2	5.43		
Ethylene Dibromide (1,2-Dibromoethane)	34.9	31.6	79.6	37.4	81.6	31.0	97.0	14.86		
Chloroprene	40.1	22.4	72.4	23.0	76.4	12.3	104.2	4.31		
Vinyl Bromide	60.7	34.3	29.8	29.7	28.4	30.9	110.8	9.30		
Trichlorofluoromethane (Freon 11)	no	ot tested	nc	t tested	no	t tested	no	t tested	93	10

Results for Method 0030 halogenated compounds laboratory study and four field tests.

a - Mean of six replicate quad train runs, with dynamic spiking. Coal fired power plant. From references 8 & 9.

b - Mean of eight replicate quad train runs, with dynamic spiking. Organic chemical manufacturing facility. From references 9 & 31.

c - Mean of six replicate quad train runs, with dynamic spiking. Organic chemical manufacturing facility. From references 9, 27, 28 & 29. d - Mean of five replicate quad train runs. Full scale sampling train, dynamic spike, stack simulator. From references 7 & 9.

e - Mean of 11-16 replicate quad train runs, with dynamic spiking. Hazardous Waste Combustor. From reference 25.

	First Field Testª		Second Field Test ^b		Laboratory Test ^c		Fuerst, <i>et al.</i> Field Test ^d	
Compound	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD	Percent Recovery	Percent RSD
2,2,4-trimethylpentane	63.1	18.3	75.9	27.7	69/83	13/11		
carbon disulfide	63.8	23.6	42.0	27.7	54/60	21/15		
n-hexane	79.2	22.6	92.9	23.5	88/105	13/8		
benzene	106.3	25.6	100.1	23.6	66/99	7/6	106	6
toluene	77.9	17.5	98.8	30.3	60/*	21/*		

Results for Method 0030 nonhalogenated organic compounds, laboratory study and three field tests.

a - Mean of 9 replicate quad train runs, with dynamic spiking. Coal-fired power plant. From references 16 & 34.

b - Mean of 11 replicate quad train runs, with dynamic spiking. Chemical manufacturing facility waste burner. From references 14 & 35.

c - Mean of 10 replicate quad train runs, with dynamic spiking at two concentration levels. Source simulator. From references 11 & 16.

d - Mean of 16 replicate quad train runs, with dynamic spiking. Hazardous waste combustor. From reference 25.

* - Invalid results due to laboratory contamination.

	Method (0031	Method 0040			
Compound	Mean Percent Recovery ^a	Percent RSD	Mean Percent Recovery ^b	Percent RSD		
Methyl Chloride (Chloromethane)	167.5	56.4	123	22.9		
1,1-Dichloroethane	96.2	12.6	93.7	21.8		
Chlorobenzene	91.6	13.0	not tested			
Vinyl chloride	44.2	24.2	109	25.3		
Vinylidene Chloride (1,1-Dichloroethene)	96.8	17.2	92.8	24.1		
Chloroform	98.4	20.4	not tested			
Propylene Dichloride (1,2-Dichloropropane)	149.4	14.0	not tested			
Methyl Bromide (Bromomethane)	45.7	46.7	168	31.6		
Ethyl Chloride (Chloroethane)	45.3	30.0	not tested			
Methylene chloride	120.7	10.9	93.4	25.8		
Methyl Chloroform (1,1,1-Trichloroethane)	87.1	12.1	92.9	23.9		
Carbon tetrachloride	89.3	12.5	101	21.6		
Ethylene Dichloride (1,2-Dichloroethane)	83.2	25.1	not tested			
Trichloroethene	148.7	3.4	not tested			
cis-1,3-Dichloropropene	118.4	21.0	not tested			
trans-1,3-Dichloropropene	75.2	32.6	not tested			
1,1,2-Trichloroethane	117.3	20.5	94.5	21.4		
Tetrachloroethene	61.8	8.0	not tested			
Methyl iodide (Iodomethane)	89.0	11.9	not tested			
Allyl Chloride (3-Chloropropene)	26.0 21.1		82.0	25.6		
Ethylene Dibromide (1,2-Dibromoethane)	108.5	23.2	not tested			
Chloroprene	85.8	15.3	not tested			
Vinyl Bromide	38.0	22.5	112	26.4		
Benzene	not tested	1	98	24.9		
1,3-Butadiene	not tested	1	52.9	56.9		
Dichlorodifluoromethane (Freon 12)	not tested	1	51.1	60.9		
n-Hexane	not tested	1	94.0	20.5		
Toluene	not tested	1	84.7	29.8		
2,2,4-Trimethylpentane	not tested	1	105	22.8		
Trichlorofluoromethane (Freon 11)	not tested	1	121	24.4		

Results for Method 0031 field test and Method 0040 field test.

a - Mean of six replicate quad train runs, with dynamic spiking. Organic chemical manufacturing facility. From references 9, 28 & 29.

b - Mean of eleven replicate quad train runs, with dynamic spiking. Coal fired power plant. From references 1 & 2.

SELECTED AIR TOXICS METHODS REFERENCES

- 1. McGaughey, J.F., Bursey, J.T., Merrill, R.G., *Field Evaluation of EPA Method 0040* (*Volatiles Using Bags*), EPA-600/R-98/030, PB98-133085, U.S. Environmental Protection Agency, Research Triangle Park, NC, January 1998.
- McGaughey, J.F., Bursey, J.T., Merrill, R.,G., Fuerst, R.G. and Jackson, M.D., "Field Evaluation of EPA Proposed Method 0040 (Sampling and Analysis of Volatile Compounds Using Tedlar Bags)," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, April 1997*, VIP-74, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 159-165.
- 3. Johnson, L.D., "Research and Evaluation of Organic Hazardous Air Pollutant Source Emission Test Methods," *J. Air & Waste Manage. Assoc.*, 46, pp.1135-1148, December 1996.
- 4. Margeson, J.H., Knoll, J.E., Midgett, M.R., Wagoner, D.E., Rice, J., and Homolya, J.B., "An Evaluation of The Semi-VOST Method for Determining Emissions from Hazardous Waste Incinerators," *J. Air Pollut. Control Assoc.*, 37:(9)1067 (1987).
- 5. Jackson, M.D., Knoll, J.E., Midgett, M.R., Bursey, J.T., McAllister R.A., Merrill, R.G, "Evaluation of VOST and SemiVOST Methods for Halogenated Compounds in the Clean Air Act Amendments Title III, Bench and Laboratory Studies," *Proceedings of the National A&WMA Meeting, Kansas City, June 1992*, Air & Waste Management Association, Pittsburgh, PA, 1992.
- Jackson, M.D., Knoll, J.E., Midgett, M.R., Bursey, J.T., McGaughey, J.F., Merrill, R.G. "Evaluation of VOST and Semi-VOST Methods for Halogenated Compounds in the Clean Air Act Amendments Title III, Validation Study at Fossil Fuel Plant," *Proceedings of the National A&WMA Meeting, Denver, CO, June 1993*, Air & Waste Management Association, Pittsburgh, PA, 1993.
- Bursey, J.T., Merrill, R.G., McAllister, R.A., McGaughey, J.F., Laboratory Validation of VOST and SemiVOST for Halogenated Hydrocarbons from the Clean Air Act Amendments List, Volumes 1 & 2, EPA-600/R-93/123a, EPA-600/R-93/123b, PB93-227163, PB93-227171, U.S. Environmental Protection Agency, Research Triangle Park, NC, July 1993.
- 8. McGaughey, J.F., Bursey, J.T., Merrill, R.G., *Field Test of a Generic Method for Halogenated Hydrocarbons*, EPA-600/R-93/101, PB93-212181AS, U.S. Environmental Protection Agency, Research Triangle Park, NC, September 1993.
- 9. McGaughey, J.F., Bursey, J.T., Merrill, R.G., Jackson, M.D., "Field Test of a Generic Method for The Sampling and Analysis of Halogenated Hydrocarbons Listed in Title III of The Clean Air Act Amendments of 1990," *Proceedings of the 13th Annual International Incineration Conference, Houston, TX, May 1994*, University of California, Irvine, CA, 1994.

- Jackson, M.D., Bursey, J.T., McGaughey, J.F., Merrill, R.G.," An Evaluation of the SemiVOST Method for Halogenated Compounds at a Chemical Manufacturing Facility," *Proceedings of the EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, May 1995*, VIP-50, Air & Waste Management Association, Pittsburgh, PA, 1995, pp 227-232.
- Jackson, M.D., Bursey, J.T., McGaughey, J.F., Merrill, R.G., "Application of VOST and SemiVOST to Nonhalogenated CAAA Compounds," *Proceedings of the EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, May 1995*, VIP-50, Air & Waste Management Association, Pittsburgh, PA, 1995, pp 233-238.
- Jackson, M.D., Johnson, L.D., McGaughey, J.F., Wagoner, D.E., Bursey, J.T., Merrill, R.G., "Improvements in Preparation of Samples Generated by SW-846 Method 0010," *Proceedings of the EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, Durham, NC, May 1994*, VIP-39, Air & Waste Management Association, Pittsburgh, PA, 1994, pp 331-338.
- Jackson, M.D., Bursey, J.T., McGaughey, J.F. and Merrill, R. G., "An Evaluation of the SemiVOST Method for non-Halogenated Compounds at a Agricultural Chemical Manufacturing Facility", *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, April* 1997, VIP-74, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 134-141.
- 14. Bursey, J.T.,McGaughey, J.F. and Merrill, R. G., *Field Evaluation at an Agricultural Manufacturing Facility of VOST and SemiVOST Methods for Selected CAAA Organic Compounds*, EPA/600-R-97/037, PB97-174585, U.S. Environmental Protection Agency, Research Triangle Park, NC, March 1997.
- 15. Jackson, M.D., McGaughey, J.F., Merrill, R. G., and Bursey, J.T., "Method Evaluation Study: The Application of Semi-VOST to the Nonhalogenated Semivolatile Organic Compounds from the Clean Air Act Amendments", *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, May 1996*, VIP-64, Air & Waste Management Association, Pittsburgh, PA, 1996 pp 620-625.
- Bursey, J.T.,McGaughey, J.F. and Merrill, R. G., *Field Evaluation (First) of VOST and Semi-VOST Methods for Selected CAAA Organic Compounds at a Coal Fired Plant*, EPA/600-R-97/076, PB97-196117, U.S. Environmental Protection Agency, Research Triangle Park, NC, February 1997.
- Bursey, J.T., McGaughey, J.F. and Merrill, R. G., *Field Test of a Generic Method for Halogenated Hydrocarbons: SemiVOST at an Agricultural Chemical Manufacturing Facility*, EPA/600-R-97/033, PB97-162499, U.S. Environmental Protection Agency, Research Triangle Park, NC, February 1997.
- McGaughey, J.F., Foster, S.C., Merrill, R.G., Laboratory Development and Field Evaluation of A Generic Method for Sampling and Analysis of Isocyanates, EPA-600/R-95/144, PB95-273801, U.S. Environmental Protection Agency, Research Triangle Park, NC, August 1995.

- Jackson, M.D.; Johnson, L.D.; McGaughey, J.F.; Wagoner, D.E.; Bursey, J.T.; Merrill, R.G., "Improvements in Preparation of Samples Generated by SW-846 Method 0010," *Proceedings of the EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, Durham, NC, May 1994*, VIP-39, Air & Waste Management Association, Pittsburgh, PA, 1994, pp 331-338.
- 20. Johnson, L.D., Fuerst, R.G., Foster, A.L. and Bursey, J.T., "Replacement of Charcoal Sorbent In The Sampling of Volatile Organics from Stationary Sources," *Intern. J. Environ. Anal. Chem.*, Vol 62, pp. 231-244, (1996).
- 21. Eaton, W.C.; Jaffe, L.B.; Rickman, E.E.; Jayanty, R.K.M., *Field Tests of Chloroform Collection/Analysis Methods*, EPA-600/R-94/082, PB94-176948, U.S. Environmental Protection Agency, Research Triangle Park, NC, July 1994.
- 22. Eaton, W.C.; Jaffe, L.B.; Rickman, E.E.; Jayanty, R.K.M.; Wilshire, F.W.; Knoll, J.E., "Validation of a Test Method for Collection and Analysis of Chloroform Emissions from Stationary Sources," *J. Air & Waste Manage. Assoc.*, 46, pp 66-71, 1996.
- 23. Steger, J.L., Knoll, J.E., "Dynamic Spiking Studies Using the DNPH Sampling Train," presented at EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, May 1996.
- 24. Steger, J.L., Bursey, J.T., and Epperson, D., *Acetonitrile Field Test*, EPA-600/R-97/140, PB98-133143, U.S. Environmental Protection Agency, Research Triangle Park, NC, October 1997.
- 25. R.G. Fuerst, T.J. Logan, M.R. Midgett and J. Prohaska, "Validation Studies of the Protocol for the Volatile Organic Sampling Train," *J. Air Pollut. Control Assoc.*, 37:(4)388 (1987).
- 26. Johnson, L.D., Fuerst, R.G., Steger, J.L., and Bursey, J.T., "Evaluation of a Sampling Method for Acetonitrile Emissions from Stationary Sources," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, April 1997, VIP-74*, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 149-158.
- McGaughey, J.F., Bursey, J.T., Merrill, R.G., Jackson, M.D., Johnson, L.D., Fuerst, R.G., "Comparison of a Modified VOST Sampling Method with SW-846 Method 0030 at a Chemical Manufacturing Facility," *Proceedings of the 13th Annual International Incineration Conference, Houston, TX, May 1994*, University of California, Irvine, CA, 1994.
- 28. Jackson, M.D., Johnson, L.D., Fuerst, R.G., McGaughey, J.F., Bursey, J.T., Merrill, R.G., "Field Evaluation of a Modified VOST Sampling Method," *Proceedings of the EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, Durham, NC, May 1994*, VIP-39, Air & Waste Management Association, Pittsburgh, PA, 1994, pp 354-360.
- 29. McGaughey, J.F., Bursey, J.T., Merrill, R.G., *Field Test of a Generic Method for Halogenated Hydrocarbons: A VOST Test at a Chemical Manufacturing Facility Using a Modified VOST Sampling Method*, EPA-600/R-94/130, PB95-142055, U.S.

Environmental Protection Agency, Research Triangle Park, NC, July 1994.

- McGaughey, J.F., Bursey, J.T., Merrill, R.G., Field Test of a Generic Method for Halogenated Hydrocarbons: SemiVOST Test at a Chemical Manufacturing Facility, EPA-600/R-96/133, PB97-115349, U.S. Environmental Protection Agency, Research Triangle Park, NC, November 1996.
- McGaughey, J.F., Bursey, J.T., Merrill, R.G., Field Test of a Generic Method for Halogenated Hydrocarbons: A VOST Test at a Chemical Manufacturing Facility, EPA-600/R-94/113, PB95-129144, U.S. Environmental Protection Agency, Research Triangle Park, NC, June 1994.
- Rice, J., McGaughey, J.F., Bursey, J.T., Merrill, R.G., Harvan, D., *Handbook of GC/MS Data and Information for Selected Clean Air Act Amendments Compounds*, EPA-600/R-94/021, PB94-155884, U.S. Environmental Protection Agency, Research Triangle Park, NC, January 1994.
- Wagoner, D.E., Merrill, R.G., McGaughey, J.F., Bursey, J.T., *Evaluation of CAAA Compounds: Approaches for Stationary Source Method Development*, EPA-600/R-96/091, PB96-193206, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1996.
- 34. Jackson, M.D., McGaughey, J.F., Merrill, R. G., and Bursey, J.T., "Method Evaluation Study: The Application of VOST to the Nonhalogenated Volatile Organic Compounds from the Clean Air Act Amendments", *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, May 1996*, VIP-64, Air & Waste Management Association, Pittsburgh, PA, 1996 pp 613-619.
- 35. Jackson, M.D., Bursey, J.T., McGaughey, J.F. and Merrill, R. G., "An Evaluation of the VOST Method for non-Halogenated Compounds at a Agricultural Chemical Manufacturing Facility", *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, April* 1997, VIP-74, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 129-133.
- Prohaska, J., T.J. Logan, R.G. Fuerst, M.R. Midgett, Validation of the Volatile Organic Sampling Train (VOST) Protocol, Volume 1, Laboratory Validation Phase, PB86-145547, U.S. Environmental Protection Agency, Research Triangle Park, NC, January 1986.
- Prohaska, J., T.J. Logan, R.G. Fuerst, M.R. Midgett, Validation of the Volatile Organic Sampling Train (VOST) Protocol, Volume 2, Field Validation Phase, PB86-145554, U.S. Environmental Protection Agency, Research Triangle Park, NC, January 1986.
- Wilshire, F.W., Knoll, J.E., Foster, S.C. and McGaughey, J.F., "Development and Validation of a Source Test Method for 2,4-Toluene Diisocyanate," in *Proceedings of the* 1993 EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, VIP-34, Air & Waste Management Association, Pittsburgh, PA, 1993, pp 399-407.

- 39. Wilshire, F.W., Knoll, J.E., Foster, S.C. and McGaughey, J.F., "Field Test and Validation of a Source Test Method for Methylene Diphenyl Diisocyanate," *Proceedings of the 87th Annual National A&WMA Meeting, Cincinnati, OH, June 1994*, Air & Waste Management Association, Pittsburgh, PA, 1994.
- 40. Steger, J.L. and Workman, G.S., *Field Validation of the DNPH Method for Aldehydes and Ketones*, EPA/600/R96/050, PB96-168398, U.S. Environmental Protection Agency, Research Triangle Park, NC, April 1996.
- 41. Jackson, M.D., Johnson, L.D., "Sampling and Analysis Information Aids for Stationary Source Personnel," *Proceedings of the EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, Durham, NC, May 1994, VIP-39*, Air & Waste Management Association, Pittsburgh, PA, 1994, pp 315-318.
- 42. Jackson, M.D., Johnson, L.D., *Stationary Source Sampling and Analysis Directory, Version 2.1*, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1995, EPA/600/R-97/028, PB98-120033 (Report/Manual) and PB-500598 (Database on floppy disk) February 1997.
- 43. Steger, J.L., Merrill, R.G., Parrish, C.R., and Johnson, L.D., *Development and Evaluation* of a Source Sampling and Analysis Method for Hydrogen Cyanide, EPA/600/R-98/xxx, PB98-xxxxxx, U.S. Environmental Protection Agency, Research Triangle Park, NC, February 1998.
- 44. Steger, J.L., Merrill, R.G., Fuerst, R.G., Johnson, L.D., Jackson, M.D. and Parrish, C.R., "Development and Evaluation of a Source Sampling and Analysis Method for Hydrogen Cyanide," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants*, Research Triangle Park, NC, April 1997, VIP-74, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 114-122.
- 45. Fan, Z., Peterson, M.R., Jayanty, R.K.M., "Development of a Test Method for Carbonyl Compounds from Stationary Source Emissions," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, April 1997*, VIP-74, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 92-97.
- 46. Bursey, J.T., McGaughey, J.F., Merrill, R. G., Knoll, J.E., Ward, T.E., and Jackson, M.D., "Field Testing to Complete Validation of a Manual Method for High Levels of Phenolic Compounds," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, April* 1997, VIP-74, Air & Waste Management Association, Pittsburgh, PA, 1997, pp 142-149.
- Pau, J.C., Romeu, A.A., Whitacre, M., and Coates, J.T., Validation of Emission Sampling and Analysis Test Method for PCDDs and PCDFs II, EPA-600/R3-90/047, PB90-235847/AS, U.S. Environmental Protection Agency, Research Triangle Park, NC, August 1990.
- 48. Cooke, M., DeRoos, F., Rising, B., Jackson, M.D., Johnson, L.D., and Merrill, R.G., "Dioxin Collection from Hot Stack Gas Using Source Assessment Sampling System and Modified Method 5 Trains - An Evaluation," presented at Ninth Annual Research

Symposium on Land Disposal, Incineration, and Treatment of Hazardous Waste, Ft. Mitchell, KY, May 1983.

- 49. Fan, Z., Peterson, M.R., Jayanty, R.K.M., Wilshire, F.W., "Measurement of Carbonyl Compounds from Stationary Source Emissions by a PFBHA-ECD Method," presented at the 91st Annual National Meeting of the Air & Waste Management Association, San Diego, CA, June 1998.
- 50. Peterson, M.R., Fan, Z., Jaffe, L.B., Albritton, J.R., Grohse, P.M., Jayanty, R.K.M., *Research, Development, and Evaluation of Stationary Source Emission Test Methods for Air Toxics*,Letter Report, Research Triangle Institute to U.S. Environmental Protection Agency, Research Triangle Park, NC, March 1998.
- 51. Peterson, M.R., Pate, B.A., Wright, R.S., Jayanty, R.K.M., Wilshire, F.W., "A Test Method for the Measurement of Arylamines in Stationary Source Emissions," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, May 1996*, VIP-64, Air & Waste Management Association, Pittsburgh, PA, 1996 pp 577-582.
- Steger, J.L., Coppedge, E.A. and Johnson, L.D., "Research and Development of A Source Method for Phosgene," *Proceedings of the EPA/A&WMA International Symposium: Measurement of Toxic and Related Air Pollutants*, Research Triangle Park, NC, May 1996, VIP-64, Air & Waste Management Association, Pittsburgh, PA, 1996, pp 285-289.
- 53. Steger, J.L., Bursey, J.T., Merrill, R.G., and Epperson, D., *Research and Development of a Field-Ready Protocol for Sampling of Phosgene from Stationary Source Emissions: Diethylamine Reagent Studies*, EPA/600/R-98/xxx, PB98-xxxxxx, U.S. Environmental Protection Agency, Research Triangle Park, NC, May 1998.
- 54. Peterson, M.R., Jaffe, L.B., Jayanty, R.K.M., Wilshire, F.W., "A Test Method for the Measurement of Acrylics in Stationary Source Emissions," presented at the 90th Annual National Meeting of the Air & Waste Management Association, Toronto, Ontario, Canada, June 1997.
- 55. Giglio, J.J., O'Rourke, J.J., Grohse, P.M., Wilshire, F.W., Ryan, J., Linak, W., The Development of a Method for the Speciation of Source Mercury Emissions," Presented at the International Conference on Incineration and Thermal Treatment Technologies, Salt Lake City, UT, May, 1998.
- 56. James, R.H., Adams, R.E., Finkel, J.M., Miller, H.C., and Johnson, L.D., "Evaluation of Analytical Methods for the Determination of POHC in Combustion Products," *J. Air Pollution Control Association*, 35, 959 (1985).
- 57. James, R.H., Adams, R.E., Finkel, J.M., Miller, H.C., POHC Analysis Methods for Hazardous Waste Incineration, Vol. 1, Parts 1 & 2, Vol. 2, EPA/600/8-87-037 a, b & c, PB87-227286/AS, PB87-227294/AS, PB87-227302/AS, U.S. Environmental Protection Agency, Research Triangle Park, NC, December 1987.
- 58. James, R.H., Adams, R.E., Farr, L.B., Miller, H.C., *PIC Analysis Methods*, EPA-600/9-87-011, PB87-208955/AS, U.S. Environmental Protection Agency, Research Triangle

Park, NC, June 1987.

- Pate, B.A., Peterson, M.R., Rickman, E.E., Jayanty, R.K.M., *Test Method for the Measurement of Methanol Emissions from Stationary Sources*, EPA-600/R-94/080, PB94-170297, U.S. Environmental Protection Agency, Research Triangle Park, NC, July 1994.
- 60. Pate, B.A., Peterson, M.R., Jayanty, R.K.M., Wilshire, F.W., Knoll, J.E., "Development of a Test Method for the Measurement of Gaseous Methanol Emissions from Stationary Sources," in *Proceedings of the 1993 EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants*, VIP-34, Air & Waste Management Association, Pittsburgh, PA, 1993, pp 393-398.
- 61. Peterson, M.R., Pate, B.A., Rickman, E.E., Jayanty, R.K.M., Wilshire, F.W., "Validation of a Test Method for the Measurement of Methanol Emissions from Stationary Sources," *J. Air & Waste Manage. Assoc.*, 45, pp. 3-11, 1995.
- 62. Eaton, W.C., Jaffe, L.B., Rickman, E.E., Jayanty, R.K.M., *Field Tests of Chloroform Collection/Analysis Methods*, EPA-600/R-94/082, PB94-176948, U.S. Environmental Protection Agency, Research Triangle Park, NC, July 1994.
- 63. Eaton, W.C., Jaffe, L.B., Rickman, E.E., Jayanty, R.K.M., Wilshire, F.W., Knoll, J.E., "Validation of a Test Method for Collection and Analysis of Chloroform Emissions from Stationary Sources," *J. Air & Waste Manage. Assoc.*, 46, pp 66-71, 1996.
- 64. Bursey, J.T., McGaughey, J.F., Steger, J.L., Merrill, R. G., *Field Testing to Complete Validation of a Manual Method for High Levels of Phenolic Compounds*, Draft Final Report, U.S. Environmental Protection Agency, Research Triangle Park, NC.
- 65. U.S. EPA Tentative Method 317, *Phenol, Manual Method*, U.S. Environmental Protection Agency, Research Triangle Park, NC.

SOURCES OF METHODS AND INFORMATION

For the person trying to obtain current information or to enter into the field of source measurements, there are several particularly helpful information sources available. The U.S. EPA methods are in two groups, those used by EPA's Office of Air Quality Planning and Standards (OAQPS), and those used by EPA's Office of Solid Waste (OSW).

The Emission Measurement Technical Information Center (EMTIC) at Research Triangle Park, NC is supported by EPA's Office of Air Quality Planning and Standards. Perhaps the most efficient of several available forms of assistance is the EMTIC Bulletin Board System (BBS). Test methods are included, along with announcements, utility programs, miscellaneous documents, and other information. The EMTIC/BBS may be reached through TTN 2000 on the Internet at http://www.epa.gov/ttn. An EMTIC representative can be reached by telephone at 919-541-0200. EMTIC sponsors workshops and training courses jointly with EPA's Air Pollution Training Institute. Training video tapes, a newsletter, and other mailings are also available from EMTIC.

An excellent source for information concerning OSW's SW-846 Methods is the Methods Information Communication Exchange (MICE). MICE can be reached on the Internet at mice@lan828.ehsg.saic.com. A telephone call to the MICE line, at 703-821-4690, will put the information seeker in touch with an automated information service or with a live representative. Although the function of MICE is to provide information, they will usually send copies of up to three methods. They will not provide copies of the entire SW-846 Methods Manual. The SW-846 Methods Manual, may be obtained on CD-ROM or hard copy from National Technical Information Service (NTIS). The NTIS order number for the CD-ROM which includes the third edition and updates 1-3 is PB97-501928INQ. NTIS has a web site at http://www.ntis.gov. and may also be reached by telephone at 703-487-4650. SW-846 may also be obtained from the Government Printing Office (GPO). Ordering information for GPO is--

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 Manual, 3rd ed. Document No. 955-001-000001. Available from Superintendent of Documents, U.S. Government Printing Office, Washington, DC, November 1986.

The full document is available from U. S. Government Printing Office, telephone 202-783-3238. GPO also has a website at http://www.access.gpo.gov.

For more information or copies of the California Environmental Protection Agency, Air Resources Board Methods (a.k.a. CARB Methods), contact

http://www.arb.ca.gov/testmeth/testmeth.htm or telephone Engineering and Laboratory Branch at 916-263-1630.

EPA reports may be ordered from NTIS at the web site or telephone number given above.