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Executive Summary
Perceived needs for extensive chemical-specific toxicological information have impeded efforts
to assess risks and evaluate likely public health protection benefits of possible standards for
hazardous air pollutants (HAPs). This paper explores two approaches that regulatory
toxicologists may use to analyze risks and associated uncertainties for noncancer effects of HAPs
with limited toxicological databases.

The first approach supplements available chemical-specific information by viewing specific
HAPs as random draws from reference sets of putatively analogous chemicals that have been
studied in the past, the “Straw Man” model. The variability among previously studied chemicals
is used to create distributions that represent each of the concerns that are addressed by traditional
“uncertainty factors” in the derivation of reference concentrations (RfCs) (Hattis and Lynch
2007; Hattis et al. 2002). The present paper adds to this previous work the capability to
incorporate the expected implications for risks of a user-specified incidence of effects from
interacting background processes, as recommended in a recent report by the National Research
Council (2008). We also review several sources of data that can provide estimates of basic toxic
potency (and associated uncertainties) in the light of chemical structural considerations and other
information for pollutants where results of even the most basic toxicological tests are not
available. The resulting uncertainty distributions for expected effects as a function of exposure
can be used together with HAP-specific exposure information to judge the likely value of
additional chemical-specific information for future regulatory decision-making.

Another path toward risk assessments for HAPs is a growing set of human biomarkers of early
effect that allow assessors to “move upstream” from ultimate endpoints of concern (Woodruff et
al. 2008). Using these biomarkers, projections of potential health risks are made in two steps:
(1) assess relationships between exposure to the chemical of interest and the intermediate
biomarker of effect using limited chemical-specific information, and (2) assess relationships
between the biomarker of effect and ultimate endpoints of concern from general epidemiological
data. Several candidate biomarkers are available for this approach, but on the basis of recent
epidemiological findings, one that appears particularly promising for ambient air pollutants is
fetal growth restriction that produces changes in distributions of birth weights. There is strong
evidence that incremental changes in birth weights, even within the normal range seen in the
general population, can indicate developmental impairments with implications for infant
mortality and a number of other long-term effects in later life. Estimates of relative potency for
fetal growth impairment for some HAPs may be possible on the basis of animal experiments.
Projected human effects might then be derived via comparisons with potencies of some criteria
pollutants that have been the subjects of relatively extensive human epidemiological
observations.
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1. Introduction
We believe that regulatory toxicologists can draw upon a much wider range of information
resources than has been customary in assessing public health hazards. Chemical-specific data can
be usefully supplemented both in assessments of individual chemical exposures, and also in
assessments of complex and variable mixtures that, on their surface, present mind-numbing
possibilities for complex combinations of individual toxicants (e.g., “disinfection byproducts,”
“diesel particulates,” “coke oven emissions,” “dioxins and other agonists of the Ah receptor,”
“inhibitors of thyroid uptake of iodide”). This supplementation is especially important in the case
of the approximately 188 HAPs1, which require evaluation but often lack sufficient
epidemiology or toxicology data.

As noted in a recent report by the National Research Council (NRC 2008), the traditional
analytical approach of RfCs and reference doses (RfDs) does not provide quantitative estimates
of risk that can be used in comparative analyses of risks and benefits for different policy options.
Based on some of our earlier work (Hattis et al. 2002; Hattis and Lynch 2007), we believe it is
possible to produce such estimates without significantly more chemical-specific information than
is now typically available for chemicals evaluated in the Integrated Risk Information System
(IRIS) system. In this “Straw Man” approach, each of the traditional “uncertainty factors” is
replaced with a distribution based on empirical observations of how large each of the factors
proved to be for a putatively analogous reference set of chemicals. Finite risks are projected from
an assumption that human thresholds for effects tend to be lognormally distributed2 in the
population (see Figure 1-1), although other or modified lognormal distributions could just as
easily be used where indicated. Section 2 provides an overview of this approach, associated
uncertainties, and prospects for improvement via incorporation of a user-specified background
interaction option as called for by NRC (2008). Incorporation of this adaptation essentially
merges the NRC’s conceptual models 1 and 2—individual threshold dose-response models with
and without an appreciable interaction with background pathological processes. The discussion
in Section 2 draws from our previous work and includes additional information from an
extensive database of potencies for traditional toxicological endpoints that was compiled by
Munro et al. (1996). This database focused primarily on oral exposures and thus the RfD.

Section 3 then reviews specific information resources that are available to help comparably
evaluate potencies and risks for some endpoints for inhaled toxicants in the list of “hazardous air
pollutants” defined in current Clean Air Act legislation. This discussion includes available
databases for RD50 (exposure concentration producing a 50 percent respiratory rate decrease) and

1 There are said to have been 188 original HAPs, published in 1996 (“This administrative regulation provides the list
of hazardous air pollutants pursuant to 42 U.S.C. 7412(b) as amended in the Federal Register, 61 FR 30823, June 18,
1996 and the list of source categories and subcategories, as published in the Federal Register, 57 FR 31591, July 16,
1992.”) from which three were delisted: hydrogen sulfide, methyl ethyl ketone, and caprolactam were removed from
Section 112(b) in 1991, 2005, and 1996 respectively. A recent “official list” of the HAPs retrieved from
http://www.epa.gov/ttn/atw/188polls.htm has 190 by our count. The discrepancy may be partly related to the listing
of three separate xylene isomers in addition to “xylenes (isomers and mixture) in the latter source.
2 That is, the logarithms of individual human thresholds for effect are expected to have a normal Gaussian
distribution. Such a distribution would be expected if there are many factors that cause humans to vary in their
individual thresholds, and these factors tend to exert their influences multiplicatively. Although this assumption has
considerable uncertainty as applied to individual cases, available data do not indicate that this assumption is
appreciably biased in general.
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LC50 (the concentration of a material in air that will kill 50 percent of the test subjects) endpoints
more relevant to the inhalation pathway. Preliminary databases are constructed and analyzed to
demonstrate the feasibility of using the information to evaluate HAPs in conjunction with the
Straw Man or alternative models.

Figure 1-1: Interpretation of Dose-Response Information for Quantal Effects in Terms of a
Lognormal Distribution of Individual Threshold Doses

In addition to these “uncertainty factor” (or, better, “adjustment factor”) distributions, there is
another important source of information that has become increasingly available in recent years
from ongoing work by epidemiologists, but has not yet been tapped for use in EPA risk analyses.
These human biomarkers of early effect, described in Section 4, allow assessors to “move
upstream” from ultimate endpoints of concern (Woodruff et al. 2008). These biomarkers can
allow assessors to project potential health risks in two steps:

(1) assess relationships between exposure to the chemical of interest and the intermediate
biomarker of effect using limited chemical-specific information, and

(2) assess relationships between the biomarker of effect and ultimate endpoints of
concern from general epidemiological data.

Generally, the biomarkers that are potentially useful for this two-step approach are continuous
parameters (e.g., birth weight, sperm counts, lung-function measurements). The effects of
ultimate concern are often quantal3 parameters that are more difficult to measure directly in

3 Quantal: A dichotomous classification where an individual or animal is placed in one of two categories, e.g., dead
or alive, with or without a particular type of tumor, or other effect at a specific level of severity (U.S. EPA 2007).
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relation to toxicant exposures in epidemiological studies. The continuous nature of the
biomarkers facilitates detection and quantification of the effects of different exposures. On the
other hand, the continuous, “upstream,” early-effect biomarkers often have reasonably strong
predictive relationships with the harder-to-measure quantal health effects of ultimate concern,
which are easier for economists to work with in valuation studies.

A key observation that arises from the biomarker/health effects literature is that biomarkers
typically do not need to exceed critical “thresholds” in order to have appreciable significance for
predictions of public health risks. Most often, as in the case of birth weights or blood pressures,4

risks rise in a more or less continuous fashion in relation to biomarker levels. Thus, the health
significance of biomarker changes is not usually confined to a small minority of people who are
pushed from one side to another of quantitative criteria levels that physicians have defined in
order to identify clinical disease states. The public health impacts generally extend through a
large fraction of the population of ordinary people who would not normally be categorized as
candidates for medical intervention, at least based on a single risk factor value by itself.

When epidemiological studies of early-effect biomarkers reach a critical mass so that
comparative potency evaluations are possible for many exposures, as now appears to be the case
for birth weight/fetal growth restriction effects of different air pollutants (Sram et al. 2005; Bell
et al. 2007), it is possible that wide-ranging comparisons of cost effectiveness will be possible
for policy options that could reduce population exposures to different toxicants. Some of these
possibilities are explored in Section 4.

Finally, Section Error! Reference source not found. offers a few conclusions about near-term
prospects for helpful risk evaluations using the tools and resources described in the previous
sections. Briefly, we believe it is possible to produce initial quantitative estimates of exposure
response relationships for major types of noncancer effects for the great bulk of the HAPs with a
reasonable level of effort over a few years. These estimates will typically have uncertainties that
span several orders of magnitude, and will depend on numerous assumptions and analogies.
However, as a group they will provide a consistent set of comparative evaluations that, together
with exposure information, can be used to set priorities for both initial efforts at exposure
reductions and efforts to obtain improved toxicity information for HAPs control based on the
greatest potential for both economic and health impacts.

4 See the birth weight example in Section 4; and also Kannel et al. (2003) for the graded increase in risks of
cardiovascular risk evaluations disease with increasing blood pressures.
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2. Assessing Risks for Traditional Toxic Effects for Chemicals With
Incomplete Data—A Generic Approach

The focus in this paper is on noncancer effects.5 The traditional system for assessing risks from
noncancer effects dates back to the foundational work of Lehman and Fitzhugh (1954).
Originally, these Food and Drug Administration scientists recommended a rule of thumb to
compensate for two sources of uncertainty in projecting “safe” levels for human daily intakes
from animal toxicological observations: Take the “no effect level” (NOEL) indicated in studies
of limited numbers of animals and divide it by 100 to arrive at an estimate of a dose that could be
expected to be safe for people. Later, the 100-fold factor was decomposed into two factors of
10—one to account for animal-to-human extrapolation, and one to account for human
interindividual variability.

Over time, three additional sources of uncertainty were added to these original two, each of
which was represented by a single-point factor of 10 (or sometimes 3) when the toxicological
database is deemed insufficient to resolve the issues in going from the Point of Departure (POD)
such as a NOEL without further adjustment:

 Projection from an observed “low effect level” (LOEL) to a NOEL (or, more recently, a “no
adverse effect level” (NOAEL)) when the principal toxicological study available does not
provide a NOEL (or a NOAEL).

 Projection from an available subchronic to a chronic study.

 Projection from an “incomplete database” (lacking the full complement of studies such as
chronic toxicity, reproductive, and developmental studies) to a database having all these
component investigations.

One basic concept that lies at the heart of this analysis has not changed from the time of Lehman
and Fitzhugh. This is the idea that many toxic effects result from placing a chemically induced
stress on an organism that exceeds some homeostatic buffering capacity and/or functional
reserve capacity.6 Where it is applicable, the basic homeostatic-system-overwhelming model
properly leads to an expectation that there should be individual thresholds for such effects. An
individual person will show a particular response (or a response at a specific level of severity)
only when his or her individual threshold exposure level for the chemical in question has been
exceeded. However, this expectation of individual thresholds for response does not mean that we
can necessarily specify a level of exposure that poses zero risk for a diverse population. In a
large group of exposed people with differing homeostatic buffering capacities and different pre-
existing pathologies, there may be people for whom a marginal perturbation of a key
physiological process is sufficient to make the difference between barely adequate and
inadequate function to avoid an adverse response, or even to sustain life. Such situations include:

 Some individuals in the diverse population are already suffering from various kinds of
pathological dysfunction in key parameters that may be marginally affected by different

5 A national analysis of exposures to HAPs in relation to cancer risks is currently in press (McCarthy et al. 2009).
6 Other types of mechanisms do exist, however, such as an irreversible accumulating damage model (e.g., for
chronic neurological degenerative conditions) or a risk factor model (e.g., for cardiovascular diseases) whereby
values of a continuous risk factor such as blood pressure or birth weight have strong quantitative relationships with
the rates of occurrence of adverse cardiovascular events or infant mortality—see Hattis (1998) and Section 4 for
further discussion.
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toxicants (e.g., a person undergoing a myocardial infarction may have a marginally expanded
area of heart muscle death if the oxygen-carrying capacity of his or her blood is reduced by a
marginal exposure to additional carbon monoxide).7

 Some individuals are presently engaged in a task (e.g., running a 100-yard dash or learning to
read) that taxes some physiological capabilities to their limit, and marginal exposures to a
toxicant marginally reduce those physiological capabilities.

In Section 2.1 and Section 2.2, we provide background on our previous efforts in constructing
the Straw Man model. In light of the considerations highlighted above, and the emphasis of the
recent NRC report on interactions with background processes, Section 2.3 describes an approach
for building in an assumption of a finite background incidence of effects that would otherwise
have a highly nonlinear dose-response relationship at very low doses. The background incidence
used for this assumption converts the population dose-response relationship to one that is linear
at low doses. The low-dose slope of this relationship is greatly influenced by the magnitude of
the interacting background. Section 2.4 discusses some uncertainties and sources of bias in the
model, and suggests ways which these could be improved upon in future work. Section 2.5
provides a discussion of important details necessary for applying the models to specific cases,
including cases where there are known genetic polymorphisms likely to have significant effects
and cases where there is not a chemical-specific primary chronic toxicity study that can be used
to assess potency.

2.1 Assessing Uncertainties by Making Analogies with Previously Studied Cases

The basic approach for deriving distributions to replace the traditional uncertainty factors is to
view each chemical as a random draw from the universe of other chemicals that might share the
same or similar types of toxic properties. We of course do not have information for the universe
of all chemicals. However, as our knowledge grows we can hope to accumulate more and more
substantial numbers of observations from that universe.

If we can make the provisional assumption that our accumulated data from previously studied
chemicals reasonably represent the universe of all chemicals that might be considered for similar
risk evaluation, then we can represent our uncertainty about the properties of a particular
chemical as approximately the same as the observable variability among previously studied
chemicals for each of the concerns represented by traditional safety/uncertainty factors.

As the database grows, it is possible to do better than a simple random draw from all the
chemicals with information relevant to a particular adjustment factor. We can do regression
analyses and mechanistic studies to identify specific properties of the chemicals for which we
have data that are strongly related to the size of the factor being modeled. For example, in our
analyses of human interindividual variability we have found that variability tends to be greater
for immune system endpoints than for other types of systemic toxicity; and smaller for the most
severe types of endpoints (e.g., death or serious irreversible injury) than for less severe endpoints
(e.g., headache, mild irritation) (Hattis and Lynch 2007). Using this information, the “random
draws” in our system for uncertainty in the extent of interindividual variability are made from
different subsets of the chemicals and toxicological responses whose measurements of variability
we have compiled, depending on the nature and severity of the response being assessed.

7 Recent epidemiological studies have detected a short term elevation of general and cardiovascular mortality rates
in relation to marginal increases in carbon monoxide exposure (Samoli et al. 2007).
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2.2 Developing Distributions to Represent Each of the Concerns Reflected in
Traditional Uncertainty Factors

As described previously, (Hattis et al. 2002; Hattis and Lynch 2007) the goal of the Straw Man
system is to predict risks or doses associated with a defined upper confidence limit on risk, rather
that levels of exposure postulated to pose either no risk or some level of “acceptable” risk.
Because of this, when the original experimental data are available, the Straw Man system uses as
its point of departure ED50s estimated from those data. Uncertainty distributions are then used in
the risk projections rather than the traditional uncertainty factors.

For illustrative purposes, the initial Straw Man publications have used a risk-specific dose that
would generate a 1/100,000 excess risk of adverse outcome in the general population or 1/1,000
in sensitive subpopulations and a confidence level of 95% for comparisons with existing RfDs.
Choosing a set of incidence and confidence levels for replacing existing RfDs is a risk
management decision that would have to be made by an appropriate governing body.

The Straw Man model estimates risk specific doses by drawing on information from other
chemicals that is relevant to each of the traditional uncertainty factors used in traditional
noncancer risk assessments. As with traditional single-point uncertainty factors, the uncertainty
distributions depend on the nature of the chemical-specific toxicity information available for the
chemical under study and therefore the data deficiencies that need to be offset by supplemental
information from other sources—e.g., subchronic/chronic, animal/human, incomplete/complete
data set for risk projection, and human interindividual variability for pharmacokinetic and
pharmacodynamic steps in the causal pathway to production of adverse effects.

The following subsections describe our previous efforts to assemble several databases that can be
used to replace the traditional point estimates used as uncertainty factors. The focus during the
construction of these databases was on the RfD and oral exposures. In Section 3 we describe
additional data sources that could be incorporated into the system to account for the inhalation
exposures more common to the HAPs.

2.2.1 Interspecies

Our previous work (Hattis et al. 2002), utilized a database generated by Price et al. (2008) to
conduct an empirical distributional analysis. This database consisted of observations of human
Maximum Tolerated Doses (MTDs) of anti-cancer agents that were compared to putatively
equivalent LD10s in mice, rats, and hamsters, and “TD Lo” values in dogs and monkeys. The
Price et al. database includes entries for 64 compounds, which is more than twice as many as
those of earlier efforts by Watanabe et al. (1992), and Travis and White (1998). We evaluated
these data for central tendency and a spread of the animal/human dose conversion factors for
varying types of interspecies information. Specifically, we evaluated how much equivalent dose
conversions might be different (a) when the “critical study” for calculating the RfD comes from
different specific animal species (e.g., rats versus dogs), and (b) when data are available for
multiple species (Hattis et al. 2002) This second aspect of the analysis allowed us to correct for
the extra “conservatism” in calculations based on the choice of the most sensitive of the tested
species as the basis for projection, when data for more than one species were available.
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The distributional animal to human equivalent dose projections were made by Hattis et al. (2002)
in three steps:

1. The doses for the critical effect were adjusted from mg/kg body weight to mg/(kg body
weight)0.75 since this measurement tends to scale with (body weight)0.75 (so as to reflect the
pharmacokinetic elimination dependence on the metabolic rate which tend to scale with
(body weight)0.75 (Mordenti et al. 1986; Travis et al. 1990; Ad Hoc Working Group on Risk
Assessment et al. 1992a). The standardized body weights used in this scaling were from the
Registry of Toxic Effects of Chemical Substances (Ad Hoc Working Group on Risk
Assessment et al. 1992b)

2. An additional adjustment factor was applied to “reflect the median human MTD expected
based on the identity and number of species that provided data that potentially could have
been used as the basis for the RfD” (Hattis et al. 2002).

3. The uncertainty in each type of animal-to-human potency projection was identified from the
variability, as lognormal distributions, in the ratios of the observed human potencies to the
animal-projected potencies for different chemicals.

2.2.2 Interindividual Variability

The variability in response expected for different individuals is treated by combining estimates
of interindividual variability in pharmacokinetic and pharmacodynamic parameters from a
database of human susceptibility to a variety of biological responses. In our previously
assembled database (Hattis and Lynch 2007), interindividual variability in pharmacokinetics
(absorption, distribution, metabolism, and excretion) is represented as a central estimate
log(GSD)8 of 0.202 with a lognormal uncertainty represented as a log[log(GSD)] of 0.092.

In our database, three components make up the pharmacodynamic variability: active site
availability, functional parameter change in relation to active site availability, and functional
reserve capacity in relation to functional parameter changes. In previous work the variability in
functional reserve capacity was found to be smaller for more severe effect endpoints (Hattis and
Lynch 2007). Summing the variances for each of the pharmacodynamic steps yields:

Overall central estimate of pharmacodynamic log(GSD)

= [(log(GSD) for active site availability)2 + (log(GSD for functional parameter change)2 +
log(GSD) for functional reserve capacity) 2]0.5

= [(0.0917)2 + (0.229)2 + (0)2]0.5 = 0.246

Similar calculations for moderate and mild log(GSD)s for overall pharmacodynamic
interindividual variability result in larger central estimates of log(GSD)s of 0.267 and 0.330,
respectively. In all cases the lognormal uncertainty in the estimates of the pharmacodynamic
interindividual variability is taken as a log[log(GSD)] of 0.161 (Hattis and Lynch 2007).

This database was updated from our previous work (Hattis et al. 2002). Briefly, the data sets
selected for analysis are primarily from the pharmaceutical literature, and provide individual data
on measurements for at least five reasonably healthy people for pharmacokinetic parameters, or
at least histogram-type dose-response data (e.g., the numbers of people who respond at two or

8 The log(GSD) is the logarithm of the Geometric Standard Deviation of the parameter being considered. All the
logarithms used in the system are common base 10 logarithms.
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more dose or exposure levels) for pharmacodynamic observations. The parameters measured
cover the human interindividual variability for various portions of the pathway from external
exposure to effect. The database is classified and analyzed to break down the component
variability into the following steps:

 Contact Rate (Breathing rates/body weight; fish consumption/body weight)

 Uptake or Absorption (mg/kg)/Intake or Contact Rate

 General Systemic Availability Net of First Pass Elimination

 Dilution via Distribution Volume

 Systemic Elimination/Clearance or Half Life

 Active Site Availability/General Systemic Availability

 Physiological Parameter Change/Active Site Availability

 Functional Reserve Capacity—Change in Baseline Physiological Parameter Needed to Pass a
Criterion of Abnormal Function

The current database (summarized in Excel spreadsheets, available on the website
http://www2.clarku.edu/faculty/dhattis) has a total of 447 data groups, each of which has been
analyzed to yield an estimate of interindividual variability expressed in lognormal form as a
log(GSD). Broadly, the parameters covered include:

 11 contact rate (2 for children)

 343 pharmacokinetic (71 include children)

 93 with pharmacodynamic (and often also pharmacokinetic) information (6 include children)

This database could be enlarged with further work. The literature on the topic is rapidly
expanding. Recently, a corrected estimator was developed (Lynch et al. 2007) which corrects for
the bias in including measures from studies which only publish summary statistics (our
previously constructed database was restricted to data sources that provided data for individual
subjects). Use of this estimator would allow several hundred additional pharmacokinetic
measures to be included, and this expansion could be focused on including additional data for
potentially susceptible populations such as children or genetically susceptible subgroups.

In the Monte Carlo simulations used to derive estimated risks (and uncertainties in those
estimates) human interindividual variability plays a key role. It provides the means for projection
from estimated human chronic ED50 values for adverse effects to much lower incidences of
effects expected at lower doses. As illustrated in Figure 1-1, the basic calculations assume that
individual thresholds for effect are lognormally distributed in the human population. Data from
pharmacokinetic and pharmacodynamic variability distributions are combined to arrive at an
overall standard deviation for human variability in log space. Uncertainties arising from this
assumption are discussed further below.

Animal ED50s are the preferred point of departure for projection of human ED50s because any
other choice is complicated by the differences between human and animal variability
distributions. The interindividual variability in susceptibility (and hence the breadth of the
distribution of individual thresholds) in experimental test animals is likely to be much smaller
than would be seen in human populations. This is because test animals are often relatively
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uniform genetically and are deliberately raised and exposed to toxicants under conditions that are
as uniform as possible with respect to nutrition, exposures to other compounds, and age at
exposure, among other factors.

2.2.3 Subchronic/Chronic

Data from Baird et al. (1996), Weil and McCollister (1963), and Nessel et al. (1995) are
applicable for this uncertainty factor and have been incorporated into our previous efforts. The
61 chemicals for which comparative data are available span a wide range of industrial chemicals,
include 50 assays in rats, and also include 11 sets of assays by inhalation (with the remainder via
oral dosing). The distribution of the subchronic/chronic ratios was found to be approximately
lognormal with a geometric mean of 2.01 and a geometric standard deviation of 2.17 (Hattis et
al. 2002).

2.2.4 Database Deficiency (Missing Either Full Chronic Study or a
Reproductive/Developmental Study)

NOAEL data for 35 pesticides with complete toxicological data that were gathered and analyzed
by Evans and Baird (1998). Each of these 35 pesticides’ toxicological database included chronic
toxicity studies in rats, dogs, mice as well as reproductive and development studies in rats. To
reduce the complications that are associated with multiple species, only rat data are taken into
consideration in developing the uncertainty factor distribution used in our previous work (Hattis
et al. 2002).

Analyzing these databases, we found that for about three-quarters of the pesticides (26 out of 35)
a missing reproductive/developmental study would have made no difference in the assessed
NOAEL because the chronic toxicity study yielded a lower estimate of the NOAEL. For the
remaining quarter (9 out of 35) of the cases, the needed dose multiplier to correspond to the
pesticide data was well described by the lowest quarter of a lognormal distribution with
approximately the following the distribution shown graphically in Figure 2-1 and numerically in
Table 2-1. In other words, in the Monte Carlo simulations, this distribution was used for 9/35 =
26 percent of cases; for the other 74 percent of cases a value of 1 was used:
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Figure 2-1: Lognormal plot of the ratio of the reduced NOAEL expected from the addition
of a rat reproductive/developmental study to a base of a rat chronic toxicity study, based on

Evans and Baird et al. data for 35 pesticides.
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Table 2-1: Distribution of Dose Multipliers Required to Estimate Uncertainty Associated
with Database Deficiency

%tile Dose multiplier for database deficiency

1 0.062

5 0.201

10 0.353

15 0.544

20 0.770

25+ 1

In other words, a dose reduction factor of 3 (multiplier of dose of 0.333) would correspond to
approximately the 9th percentile of the pesticide data—in the remaining 91 percent of cases, a
smaller reduction in dose would be indicated to compensate for the missing data. A similar
distributional correction factor was derived for cases with a missing chronic toxicity study. The
Evans and Baird database [13] indicates that addition of a satisfactory chronic toxicity study to
pre-existing repro-developmental data would not have lead to a lowering of the overall lowest
NOAEL in 20 of 35 cases (57%). Similar to the previous database incompleteness analysis, the
remaining 15 cases are reasonably described by a lognormal distribution with a geometric mean
of 0.98 and a geometric standard deviation of 4.47.
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2.2.5 “LOAEL/NOAEL”

This conversion is not generally needed in the Straw Man system. The goal of the Straw Man
system is to predict risks or doses associated with a defined upper confidence limit on risk, rather
that levels of exposure postulated to pose either no risk or some level of “acceptable” risk.
Because of this, when the original experimental data are available, the Straw Man system uses as
its point of departure ED50s estimated from those data. When the original animal data are not
available, animal ED50s and associated uncertainties are estimated from LOAELs (or if necessary
NOAELs) using assumptions about what incidences of effect are usually associated with these
traditional endpoints. LOAELs are preferred to NOAELs for this purpose because they require
smaller projections in dose to reach ED50 levels, likely with less uncertainty.

2.3 Incorporating an Assumption of Interacting Background Processes

Chapter 5 of the recent NRC report recommends a unified framework for dose-response analysis
that incorporates the possibility that marginal increments to toxic processes from chemicals will
interact with background processes to contribute to ongoing pathologies in the human
population. This will lead to a linearization of the incremental population incidence of adverse
effects that is expected to occur with incremental dose of the toxicant at low doses.

It is fairly straightforward to add a user-specified amount of background interaction to the
spreadsheets used for the Straw Man modeling. The key is to build in a calculation that translates
the population incidence of the interacting background that the user believes likely to be present
into an equivalent background dose of the toxicant being modeled. In the Straw Man model, this
background dose equivalent varies from trial to trial depending on all the values of the uncertain
parameters selected for that trial (e.g., chronic/subchronic factor; interspecies projection factor,
amounts of pharmacokinetic and pharmacokinetic variability). Risks are then calculated as
before for the combined “dose” of the chemical plus the equivalent dose from the background
interaction. Finally incremental risks attributable to the chemical under study over background
are calculated by subtracting out whatever background incidence of effect was incorporated
earlier. As mentioned above, this adaptation essentially merges the NRC’s Conceptual Models 1
and 2. These models, as described in NRC (2008) are detailed below.

Conceptual Model 1: Nonlinear individual response, low-dose linear population response
with background dependence.

Low-dose linearity can arise when the dose-response curves for individuals in the
population are nonlinear or even have thresholds but the exposure to the chemical in
question adds to prevalent background exposures that are contributing to current disease.
The dose-response relationship would be determined to a great extent by human
variability and background exposure.

Conceptual Model 2: Low-dose nonlinear individual and population response, low-dose
response independent of background.

This is the dose-response conceptual model currently in use for noncancer end
points. For these dose-response relationships, the fraction of the human
population responding drops to inconsequential levels at low doses. At very low
doses, the threshold dose for toxicity is not exceeded in individuals, or the risk is
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infinitesimal. The same is true for the population, with the shape of its dose-
response relationship determined by the variability in individuals’ thresholds.

Specifically, our analysis takes into account:

 Individual threshold dose-response models with and without an appreciable interaction with
background pathological processes.

 If essentially no background interaction is considered likely, the user can specify a
vanishingly small interacting background incidence of the effect, such as 10-40 used in the
numerical example below.

Table 2-2 through Table 2-4 show the results of implementing this approach for one of the 18
randomly selected RfD chemicals previously studied in Straw Man analyses—2,3,6-
Trinitrotoluene.9 The top lines of these tables show results assuming a vanishingly small
incidence of the effect of background causes of liver toxicity (10-40). Subsequent lines of the
tables show the effects of progressively increasing this interacting background. Columns 2-4 of
the tables show the incremental risks over background expected as one proceeds from daily dose
rates at 0.1 to 1 to 10 times the IRIS RfD. The last two columns show the change in incremental
risk per unit of chemical dose expressed in RfD units (that is, of 5 X 10-4 mg/kg-day). Each line
of each table (and the other tables) represents the arithmetic mean of three Monte Carlo
simulation runs of 5,000 trials each. Minor anomalies in the results may be attributable to
residual stochastic irregularities among the sets of random draws making up the simulation runs.

Table 2-2 displays the results for the single measure of effect that is most frequently needed for
economic benefit analyses—the arithmetic mean “expected value” for population risk. This is
simply the arithmetic mean over all of the individual trials representing different random draws
from the uncertainty distributions included in the model. It can be seen in the first few lines of
the table that this measure of effect is moderately nonlinear—there is approximately a 4.5 fold
difference (7.2/1.6 = 4.5) in the slope of the incremental harm/incremental dose ratio as we
proceed from the region between 0.1 and 1 times the RfD to the region between the RfD and 10
times the RfD. Proceeding down the table it can be seen that largest assumed amounts of
interacting background appreciably reduce the difference in slope between these two intervals.
Some apparent non-monotinicity of the results in Table 2-2 (apparent declines in calculated risks
with increasing amounts of interacting background in the first few lines of the table) may have
arisen from chance fluctuations in the simulations or from imperfections in the formula Excel
uses to estimate extreme values of normal/lognormal distributions. These can undoubtedly be
fixed by the use of greater numbers of Monte Carlo simulation trials or other software to better
estimate extreme values of lognormal distributions.

Table 2-3 shows similar results using 95th percentiles of the estimated risks. These are the 251st

highest values in each 5,000-trial uncertainty simulation run. This measure shows greater dose-
response nonlinearity than was seen for the arithmetic mean with low levels of interacting
background, which provides scope for a greater reduction in nonlinearity at the highest levels of
interacting background.

9 The IRIS RfD for this chemical of 5 X 10-4 mg/kg-day is based on a LOAEL of mild liver toxicity (hepatic
swelling and hepatocytomegaly) at 0.5 mg/kg-day in a dog study and a 1000-fold combined uncertainty factor from
LOAEL/NOAEL, interspecies, and human interindividual variability factors.
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Finally, Table 2-4 shows the results for median (50th percentile) estimates of risk—
corresponding to the 2,501st highest risk value in each set of 5,000 trials. This measure shows the
most nonlinearity with dose in the base (low background interaction) case. The reason why there
is more nonlinearity for this measure of the risk distribution with low levels of background
interaction is that higher percentiles cannot spread out on the high risk side as much because
risks are constrained to be no greater than 1. This tends to compress the high risk tail of the risk
uncertainty distributions for the mean and 95th percentile estimates of risks shown in Table 2-2
and Table 2-3. As we proceed to larger amounts of interacting background toward the bottom of
the table, the lower end of the risk distribution tends to be compressed upward. For all of the
interacting background explored in the tables, the effect of the highest levels of interacting
background is to increase the incremental effect of the toxicant. However, if the interacting
background levels were raised high enough, it is likely that the upper end constraint of a risk of 1
would start to compress the ratio of incremental risk to incremental dose of the toxicant.

Table 2-2: Results of “Straw Man” Monte Carlo Simulations on Estimates of Arithmetic
Mean “Expected Value” Risks of Mild Adverse Effects from 2,4,6-Trinitrotoluene for

Chronic Human Dosage in the Neighborhood of the Current IRIS RfD

Background
Risk

Risk Over
Bkgd at
.1*RfD

Risk Over
Bkgd at

RfD

Risk over
Bkgd at
10*RFD

Slope—Change in Risk
Per RfD Increment
from .1 to 1 RFD

Slope—Change in Risk
Per RfD Increment
from 1 to 10 RFD

1E-40 5.2E-06 1.5E-04 6.6E-03 1.6E-04 7.2E-04

1E-10 5.7E-06 1.4E-04 6.9E-03 1.5E-04 7.5E-04

1E-08 2.3E-06 1.1E-04 6.9E-03 1.2E-04 7.5E-04

1E-07 3.6E-06 1.4E-04 6.8E-03 1.5E-04 7.4E-04

1E-06 3.5E-06 1.4E-04 7.0E-03 1.5E-04 7.6E-04

1E-05 5.5E-06 1.7E-04 7.5E-03 1.9E-04 8.1E-04

1E-04 1.3E-05 2.4E-04 8.5E-03 2.5E-04 9.2E-04

1E-03 4.0E-05 5.3E-04 1.1E-02 5.4E-04 1.2E-03

Table 2-3: Results of “Straw Man” Monte Carlo Simulations on Estimates of 95th

Percentile Risks of Mild Adverse Effects from 2,4,6-Trinitrotoluene for Chronic Human
Dosage In the Neighborhood of the Current IRIS RfD

Background
Risk

Risk Over
Bkgd at
.1*RfD

Risk Over
Bkgd at

RfD

Risk over
Bkgd at
10*RFD

Slope—Change in Risk
Per RfD Increment
from .1 to 1 RFD

Slope—Change in Risk
Per RfD Increment
from 1 to 10 RFD

1E-40 3.6E-08 1.1E-04 3.1E-02 1.2E-04 3.5E-03

1E-10 7.8E-08 1.1E-04 3.2E-02 1.2E-04 3.6E-03

1E-08 2.7E-07 1.3E-04 3.2E-02 1.4E-04 3.5E-03

1E-07 6.5E-07 1.4E-04 3.1E-02 1.5E-04 3.4E-03

1E-06 2.3E-06 2.0E-04 3.4E-02 2.2E-04 3.8E-03

1E-05 8.3E-06 3.0E-04 3.3E-02 3.2E-04 3.7E-03

1E-04 3.4E-05 6.5E-04 3.9E-02 6.8E-04 4.3E-03

1E-03 1.4E-04 1.8E-03 5.2E-02 1.8E-03 5.6E-03
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Table 2-4: Results of “Straw Man” Monte Carlo Simulations on Estimates of Median (50th

Percentile) Risks of Mild Adverse Effects from 2,4,6-Trinitrotoluene for Chronic Human
Dosage In the Neighborhood of the Current IRIS RfD

Background
Risk

Risk Over
Bkgd at
.1*RfD

Risk Over
Bkgd at

RfD

Risk over
Bkgd at
10*RFD

Slope—Change in Risk
Per RfD Increment
from .1 to 1 RFD

Slope—Change in Risk
Per RfD Increment
from 1 to 10 RFD

1E-40 2.4E-21 3.1E-12 8.3E-06 3.5E-12 9.2E-07

1E-10 5.2E-11 2.5E-09 1.4E-05 2.8E-09 1.5E-06

1E-08 2.3E-09 4.9E-08 3.1E-05 5.2E-08 3.5E-06

1E-07 1.4E-08 2.2E-07 4.4E-05 2.2E-07 4.8E-06

1E-06 8.3E-08 1.1E-06 8.6E-05 1.1E-06 9.4E-06

1E-05 4.8E-07 5.6E-06 2.0E-04 5.7E-06 2.2E-05

1E-04 2.5E-06 2.8E-05 5.5E-04 2.8E-05 5.8E-05

1E-03 1.2E-05 1.3E-04 1.7E-03 1.3E-04 1.8E-04

2.4 Concerns from the Use of Empirically Derived Data-Distributions and Other
Aspects of the Estimation of Low-Dose Risks

In the following subsections, we discuss several concerns which should be considered when
using empirically derived data-distributions in risk estimates. These concerns are not meant to
discourage the use of such distributions, but to ensure that any uncertainty and bias in the
resulting estimates is understood, and to suggest some potential opportunities to estimate and
reduce the associated uncertainties through new research. The main concerns include:

 Representativeness of “convenience” samples

 Implicit inclusion of measurement errors in adjustment factor distributions

 Uncertainty in our categorization of a specific toxicant into a putatively predictive group

 Uncertainties in the assumption that human variability distributions for quantal effects are
lognormal at low doses

2.4.1 Concern: Representativeness of “Convenience Samples”

One concern with this approach is that the samples of chemicals and people studied for different
properties suitable to informing the different uncertainty factors are not stratified random
samples. They are, in terminology sometimes used in the trade, “convenience” or “haphazard”
rather than random samples. Such samples may well be biased in some known and some
unknown ways relative to the universe(s) they are intended to represent. Samples of people
studied for pharmacokinetic parameters in Phase I drug studies, for example, may tend to have
fewer children, elderly, and very sick people relative to the general population. This is not
usually accidental; including individuals who are thought likely to be particularly vulnerable to
adverse effects involves ethical concerns and additionally may complicate both regulatory
approval and eventual marketing of a drug if a member of a vulnerable group suffers an adverse
effects.
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Because of this, regulatory analysts who wish to analyze potential risks for a general unrestricted
population may want to place greater emphasis on a subset of variability data where the
populations studied are less restricted (e.g., those that include children, as in our recent analysis
of pharmacokinetic variability data—Hattis and Lynch 2007). Other things being equal, it is
likely that this kind of unrepresentative sampling problem produces a tendency for our estimates
to understate the real variability in human populations, but only experience and expanded data
sets will allow investigators to assess how much underestimation of variability in this way.

The “haphazard sample” problem however extends beyond the interindividual variability factor
to the general run of toxicological data bearing on the full array of different
“uncertainty”/adjustment factors. For example, for the data bearing on interspecies uncertainties,
etc. it will not generally be known how the choices of contributing investigators of what to study
(e.g., selected anticancer agents) may have distorted the available uncertainty factor information
in general. The only general cure for this problem is to authorize a series of new toxicological
experiments on stratified random samples of chemicals designed to gather representative data on
adjustment factor distributions for deliberately identified categories of chemicals.

2.4.2 Concern: Implicit Inclusion of Measurement Errors in Adjustment Factor
Distributions

There is of course no such thing as a perfectly accurate measurement. And unfortunately, our
estimates of the spread of “uncertainty”/adjustment factor distributions are not unbiased in the
presence of such measurement errors. Other things being equal, our estimates derived from
observations on the breadth of human interindividual variability distributions, distributions of
interspecies projection factors and other adjustment factors are undoubtedly spread out to a
greater extent than the underlying causal risk-determining mechanistic contributors. In contrast
to the consideration described in Section 2.4.1 above, this will tend to bias our estimates of
adjustment factor distributions to the high side relative to reality.

Imagine that there was a causal factor that contributed directly to some individual’s exposure and
risk—say, an individual’s breathing rate on a particular day when a chlorine cloud passed by
after being released from an overturned railroad tank car. Neglecting the effect of variations in
the chlorine concentration in parts of the cloud as it passed by the exposed subject, his or her real
chlorine intake can be thought of as a single true number determined by the inhalation rate times
the time he or she is in the cloud. Now let us suppose that we were observing this individual
during the passage of the cloud. A laser interferometer fairly precisely measured the expansion
and contraction of his or her chest from which it was possible to estimate the volume of chlorine-
contaminated air breathed in. Precise as the measurements might be, there would be some
measurement error. Our knowledge of the actual amount breathed can at best be expressed as a
number plus or minus some measurement error. Thus, a precise value determining exposure and
possible consequences is fuzzed into a distribution by this error. Still, whether the individual
lives or dies, or suffers more or less damage from the chlorine depends only on the fact of the
actual exposure, not our uncertainty in estimating it. The fact would not change regardless of
measurement method or its accuracy—for example, whether the measured distribution with error
was produced by a relatively accurate laser interferometer, or estimated by general background
experiments with people running at a similar velocity in a laboratory.

Extending this example what if we were not considering just a single individual in a single
environmental exposure situation, but a group of individuals, such as underground coal miners.
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As analyzed in some older work (Hattis and Silver 1993) in a favorable case we might have
triplicate measurements of individual miners that would allow us to estimate both the variability
in breathing rates among different miners and the short term variability + measurement error
seen in the variance among the three measurements for each miner. If each of these variances
was normally distributed, the overall observed variance of the measurements would be the sum
of the variances from within- and between-miner components. Therefore, if we wished to
estimate the long-term interindividual variation among miners that might be predictive of their
relative long-term exposures to coal dust, then we should really subtract the (measurement +
short term variability) variance from the total observed variance.

Suffice it to say this type of subtraction of measurement error/short term variability variance is
rarely if ever done; and has not yet been attempted for the observations that have gone into our
estimates of distributions of interindividual variability and other adjustment factors. However,
practically any source of observed data will be subject to this distorting bias relative to the real
risk-producing variability distribution for the factor in question. We have not yet attempted to
assess whether the net effect of this plus distortions described in earlier sections is to over-or
underestimate real risk-causal variation among people or among chemicals.

2.4.3 Concern: How do We Assess the Uncertainty in Our Categorization of a Specific
Toxicant Into a Putatively Predictive Group?

Ambrose Bierce’s sly reference to “the wrong
crime” in place of some notion of “innocence”
reminds us that however sophisticated we may
grow to be in predicting likely sites and modes
of action for untested and incompletely tested
chemicals, there will still be some chance we
will make a basically incorrect or seriously incomplete categorization. This will cause us to draw
our random samples for adjustment factor distributions from the wrong base sets. One possible
accommodation to this possibility is to make some fraction of the draws from a particular subset
of the data using the best estimates of the relevant categorization of the chemical, but to draw the
remaining fraction of the modeled cases from the rest of the available data for the various
adjustment factor distributions. This would allow the analyst to represent and assess the potential
consequences of the degree of uncertainty in the accuracy of his or her qualitative categorization
of the chemical as to mode of action, etc. A similar type of approach in quantitative dose-
response modeling sometimes goes by the name of “Bayesian model averaging” (Whitney and
Ryan 2009).

2.4.4 Concern: Uncertainties in the Assumption that Human Variability Distributions for
Quantal Effects are Lognormal at Low Doses

In the system we have developed to date, the chief sources of uncertainty that we model are due
to the parameters describing the extent of interindividual variability and the uncertainty inferred
from data on other adjustment factors. We do not yet include uncertainties from potential
departures from true lognormal distributions of individual thresholds for effect, although we
have done some analysis of the effects of some possible departures from perfect lognormality in
earlier papers (Hattis et al. 1999). Other than empirical data for the limited range over which we
can test any distribution, the principal theoretical justification for the lognormal is the asymptotic
tendency of multiplicatively interacting variability factors to approach the lognormal via the

“HABEAS CORPUS.—A writ by which a man may
be taken out of jail when confined for the wrong
crime.”

—from the Devil’s Dictionary
by Ambrose Bierce
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central limit theorem. While this consideration is valid, it certainly provides no guarantee that
there will not be a large major variability contributor or several that will provide departures from
theoretical lognormal distributions in the cases of specific chemicals/effects. And the rate of
asymptotic approach to the theoretical lognormal with increasing number of variability
contributors is not necessarily rapid. Developing appropriate modifications of our calculation
methods to represent uncertainties arising from these sources of departure from lognormal
distributions is challenging, but may be approachable, if desired, with the aid of
statistical/mathematical experts. Our expectation is that building in a user-selectable background
interaction term will tend to reduce the contribution to overall uncertainty produced by possible
departures from lognormality in the underlying distribution of individual thresholds for response.

2.5 Important Details in Projecting Low-Dose Risks and Benefits of Exposure
Reductions

In the following subsections we discuss several details in estimating low-dose risks. These
details often complicate the analysis, but are important to accurately estimate risks as well as the
benefits of exposure reductions.

 How should we proceed if there are good reasons to suspect that there are discrete sensitive
subpopulations?

 How can I proceed if I am missing even a basic study from which to infer potency?

 Do structure/activity categorization and potency estimation systems for different endpoints
hold promise?

 What value is added by the incorporation of new research findings into the analyses?

2.5.1 Sensitive Subpopulations Because of Discrete Genetic Differences or Disease
States

The most generally reasonable approach in these cases is to define separate distributions (each of
which may be lognormal) to represent the different subgroups. This leads to an overall mixture
distribution (e.g., two or three lognormals in the case of a polymorphism for a gene leading to
higher protein levels or higher activity for a specific enzyme.) The overall population may not be
“multi-model” in the sense of producing multiple humps in either linear or log space, but it will
usually be resolvable into separate sub-distributions. The reader should be aware, however, that
postulating sub-distributions for different subgroups will often greatly complicate the population
model statistically. For example, if only a single lognormal mode is fit, it will be sufficient to
derive only two parameters (a mean and a standard deviation in log space for a lognormal). If
there is only one other sub-distribution, then at least five parameters are needed (two means, two
standard deviations and a “mixing” parameter that says what fraction of the population is in each
modal subpopulation). Moreover, the uncertainties in each of these parameters will generally
have dependencies on the other parameters.

2.5.2 Inference from the Distribution of Potencies from Previously Studied Chemicals

There are a substantial number of chemicals in commerce for which no traditional toxicological
studies are available. In the standard system of chemical risk assessment, these chemicals are
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unfortunately treated as having no toxic potency at all, and of course no benefits can be
estimated for reducing human exposures to them.

As we have emphasized earlier, just because we might have no case-specific information about
an uncertainty, we do not need to despair of any analysis. If we widen the field of view, we can
often find that relevant generic information is available—and that we can use this generic
information at least to characterize the uncertainty about what the missing data point is likely to
be if chemical-specific information were to appear from the dark corners of a laboratory
notebook or a journal not covered by the common indexing sources or (most unlikely of all) a
newly commissioned experiment.

One of the largest available databases of traditional toxicological information that we know of
was compiled by Munro et al. (1996). They describe the compilation process as follows:

Four data sources were chosen to represent a variety of chemical substances (e.g. pesticides, food additives,
industrial chemicals, etc.). These included the National Toxicology Program (NTP) technical reports (post-
1984), the toxicological monographs prepared by the Joint FAO/WHO Expert Committee on Food
Additives (JECFA), the Integrated Risk Information System (IRIS) database, and the Developmental and
Reproductive Toxicology (DART) database. No studies on organometallics, inorganic substances, chemical
mixtures, or nonstructurally defined substances (such as gums, resins, oils, etc.) were included in the
reference database. Only studies with oral exposure were entered into the database with the dosing method
specified (i.e. gavage, diet, drinking water or capsule) for each study. The study types included those
typically conducted in toxicology, such as subchronic, chronic, reproduction and teratology studies. Short-
term and acute studies were not included, since these were considered neither to be relevant to establishing
chronic NOELs nor to be representative of other endpoints. Emphasis was placed on obtaining data from
chronic studies. The database consisted mainly of studies in rodents and rabbits. Initially, studies conducted
in other species, including humans, dogs and ferrets, also were included in the reference database; however,
very few studies in these species were found that met the established criteria. …

Although the intent was to develop a database consisting mainly of NOELs from chronic studies, in many
cases, the lowest and thus most conservative NOEL for a substance came from a subchronic study. In order
to group NOELs for substances with only subchronic studies with those with chronic studies to derive the
cumulative distribution of NOELs, subchronic NOELs were divided by a factor of three to approximate the
most likely NOEL that would be derived from a chronic study. …

The data entered into the reference database included the name of the chemical, Chemical Abstracts
Service Registry Numbers (CAS No.), structural classification as assessed using the decision tree of
Cramer et al. (1978) (as discussed below), species, sex, route of administration, dose levels tested, study
type, duration, endpoints reported, lowest-observed-effect level (LOEL), NOEL and references. A further
criterion for inclusion in the database was that a study had to have a demonstrated LOEL as well as a
NOEL, thus ensuring that the study was rigorous enough to detect toxic effects. In some instances,
however, NOELs were included for studies expected not to demonstrate a LOEL since these were
substances, such as major food ingredients, that were without toxicity at the highest dose tested in well-
conducted studies. In these cases, the NOEL was conservatively chosen as the highest dose tested. It should
be noted that the inclusion of such substances in the database would not bias the database in favor of higher
NOELs since the true NOEL for such substances probably would exceed the NOEL established from the
available studies.

In an effort to be conservative in the construction of the reference database, NOELs selected by the
author(s) of each study were used, even though in some cases authors tended to be highly conservative in
the interpretation of their data. In some instances, it was found that the stated NOEL may have been based
on a misjudgment of an adverse effect by the author (e.g. physiological v. toxicological effects) or maternal
toxicity). An example of this is isopropyl alcohol, which has been reported to produce teratogenic effects at
very low doses (0.018 mg/kg body weight) in one study; however, its structure, known metabolism and
other toxicological data provide no evidence for concluding teratogenicity. Even though, scientifically,
some of these author-derived NOELs were not thoroughly substantiated, they were included in the
reference database, thereby increasing the degree of its conservative nature. NOELs selected by the US
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Environmental Protection Agency for the IRIS database were entered without further review. For each of
the 613 substances, the most conservative NOEL was selected, based on the most sensitive species, sex and
endpoint.

Figure 2-2 shows lognormal probability plots10 of the distributions of the 553 LOELs and 294
NOELs that are helpfully provided in an appendix to the Munro et al. (1996) paper. It can be
seen that the distribution of assessed NOELs is close to the regression line representing the fitted
lognormal distribution. The LOEL distribution departs appreciably from the fitted lognormal line
at the high (right) end—corresponding to the least toxic substances with the highest values. It is
possible that many experimentalists do not bother to test substances at dose rates in the
thousands of mg/kg-day that would correspond to the part of the plot where the curvature is seen.
Table 2-5 further characterizes the two distributions numerically.

Figure 2-2: Lognormal Plots of the Distributions of LOELs and NOELs Compiled by
Munro et al. (1996) for All Chemical Structural Classes Combined
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10 In this type of plot, the correspondence of the individual data points to the straight line (representing a normal
distribution the logs of the reported LOELs and NOELs) is a quick qualitative indicator of the fit of the data points
to the assumed distribution. The Z-Score is the number of standard deviations to the left or the right of the mean of a
cumulative normal distribution calculated only from the order of each point in the data. The intercept and slope of
each fitted regression line are estimates of the mean and standard deviation of the log-transformed values. (In all
cases in this paper we use common base 10 logarithms.)
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Table 2-5: Summary Statistics and Selected Percentiles of the Distributions of NOELs and
LOELs (mg/kg-day) Compiled by Muro et al. (1996)

1st 5th 50th 95th 99th Geometric
Mean

Geometric Std.
Dev. (GSD)

NOEL
(mg/kg-day) 0.018 0.050 9.0 44 234 8.1 14.0

LOEL (mg/kg-
day) 0.18 0.86 86 2600 7600 71 11.1

It can be seen that simply assuming that a random chemical is a candidate for toxicological
testing and therefore likely to fall somewhere in these distributions of NOELs and LOELs
represents some, but not a great deal of information on its potency. Empirically derived 90
percent confidence limits (ratios of the 95th to 5th percentile values in the table) span nearly 1,000
fold for NOELs and 3,000 fold for LOELs. 98 percent confidence limits (ratios of the 99th to the
1st percentile values) span over 13,000 fold for NOELs and over 40,000 fold for LOELs.

Another endpoint for which a large amount of toxic potency information is available is the LD50.
LD50s are likely to be more precisely measured than NOELs and LOELs, and have the advantage
that they are not constrained to be one of the experimental doses selected by an investigator for
study. Rhomberg and Wolff (1998), as part of a study of interspecies differences in acute toxicity
compiled oral LD50s for 5,128 chemicals that had been studied in two or more species drawn
from National Institute for Occupational Safety and Health’s Registry of Toxic Effects of
Chemical Substances (RTECS 1982). Figure 2-3 shows the a lognormal plot of the distribution
of the geometric means of LD50s for all available species for each chemical, and Table 2-6 shows
percentiles of the distribution in parallel with Table 2-5. The distribution shows a distinct
departure from lognormality, and is generally narrower than was seen for the NOEL and LOEL
values compiled by Munro et al. (1998). These data indicate that for this more severe acute
lethality endpoint the 95th to 5th percentile potency ratio is about 280 fold; similarly, 98 percent
confidence limits (the ratio of the 99th to 1st percentile values) span a range of nearly 9,000 fold.

The broad empirical potency distributions in this section should be seen as the starting points for
understanding the “value” of chemical structural information and other chemical-specific data
for narrowing uncertainties in risks posed by different substances. However, an important point
is that even in the absence of such further information, it is possible to quantify uncertainties in
toxic potencies for different toxicity endpoints. What is necessary for such an analysis is that
either the whole body of previously tested chemicals or some identifiable subset of those
chemicals can be fairly identified as a reference set from which the chemical of interest can be
seen as a random draw.
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Figure 2-3: Lognormal Plot of the Distribution of Mean Log(ED50) for All 5,128 Chemicals
with Data for Two or More Species in the Database of Rhomberg and Wolff (1998)
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Table 2-6: Summary Statistics and Selected Percentiles of the Distributions of Geometric
Mean LD50s for Chemicals Studied in More than One Species [Compiled by Rhomberg and

Wolff (1998) from Data Recorded in RTECS (1982)]

1st 5th 50th 95th 99th Geometric
Mean

Geometric Std.
Dev. (GSD)

Acute Oral LD50
(mg/kg)

2.4 29 810 8,120 21,300 680 5.8

2.5.3 Structure/Activity Categorization and Potency Estimation

One important contribution of the paper by Munro et al. (1996) was to test out the predictive
value of a classification/ranking system for chemical potencies developed by Cramer et al.
(1978) of the Flavor and Extract Manufacturers Association.11 The Cramer et al. (1978) system is

11 One of the coauthors of the Munro et al. paper lists his affiliation as “Research Institute for Fragrance Materials,
Inc.” The complexity of the decision tree, the fact that there are only three aggregated classes at the end, and the fact
that it was developed by an interested industry association leave open the concern that some of the categorization
advice may have been influenced by the equivalent of gerrymandering—having the effect of grouping favored sets
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a fairly elaborate decision tree based on answers to 33 questions; many with multiple parts.
Chemical groups or other features considered by Cramer et al. to warrant classification into a
higher-toxicity potential category include:

 Q2—aliphatic secondary amines, cyano, N-nitroso, diazo, triazo and halogenated
compounds,

 Q3—elements other than carbon, hydrogen, oxygen, nitrogen, or divalent sulphur; except for
some common salts,

 Q9—Is it a lactone fused to another ring, or a five- or six-membered unsaturated lactone?

 Q33—Does the substance bear on every major structural component at least one sodium,
potassium, or calcium sulphonate or sulphamate for every 20 or fewer carbon atoms without
any free primary amines except those adjacent to the sulphonate or sulphamate? (“No” to this
question indicates a need for a higher toxicity classification; probably because increased
numbers of charged groups make the molecule more soluble and therefore more easily
excreted—DH comment.)

The output of the classification is to sort chemicals into one of only three classes, with III being
the highest and I being the lowest predicted toxicity grouping. Our analysis of the LOEL and
NOEL data in the Munro et al. paper by these classes is shown in Table 2-7; lognormal plots of
the distributions by class are shown in Figure 2-4 and Figure 2-5.

It can be seen in Table 2-7 that overall the system does appear to have predictive value for toxic
potencies measured as both LOELs and NOELs. The mean logs of each endpoint within the
classes differ by an order of magnitude, or a bit more in the case of the NOELs.

However, there is likely to be considerable room for improvement for purposes of quantitative
risk- and benefits analysis. For both LOEL and NOEL endpoints the Cramer classification
captures less than 20 percent of the overall variance in chemical potencies. In our view it would
be better to use a multiple regression analysis to sort out which types of chemical constituent
groups (and/or which combinations of constituent groups) have predictive value and what their
approximate individual contributions are to toxicity in a quantitative sense. (For example, it is
doubtful to us that diverse constituents listed in the bullets describing questions 2 and 3 above
have the same quantitative implication for potency.) The result of this type of analysis would be
a model that would yield quantitative estimates of LOELs and NOELs (with an estimate of
uncertainty in the form of the root mean square error of the model). The data are available in the
Munro et al. paper to create such a quantitative predictive model, although it should of course be
subject to further testing, ideally with independently gathered data.

of compounds with chemicals known to have less toxicity in the hope of gaining more favorable regulatory
treatment. However this kind of possibility could only be tested by considerably more analysis than we have been
able to do of the system at present.
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Table 2-7: Summary Statistics for Distributions of LOELs and NOELs for Chemicals
Sorted into Cramer Classes

A. Analysis for LOELs

Class N Mean Log Log(GSD) Log Variance Gmean GSD

III 442 1.68 1.026 1.05 48.0 10.62

II 21 1.91 0.662 0.44 80.7 4.59

I 90 2.66 0.825 0.68 454 6.69

553 0.969 = weighted average within-group variance
All
Chemicals 553 1.85 1.047 1.10 70.5 11.14

0.969/1.10 = 0.88 = fraction of total variance within
Cramer classes

B . Analysis for NOELs

Class N Mean Log Log(GSD) Log Variance Gmean GSD
III 241 0.682 1.027 1.06 4.8 10.65

II 10 1.295 0.829 0.69 19.7 6.75

I 43 2.094 1.104 1.22 124.1 12.70

294 1.067 = weighted average within-group variance
All
Chemicals 294 0.909 1.146 1.31 8.1 14.00

1.067/1.31 = 0.81 = fraction of total variance within
Cramer classes
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Figure 2-4: Lognormal Plots of LOEL Distributions Compiled and Sorted by Munro et al.
(1996) Sorted into Cramer Classes
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Figure 2-5: Lognormal Plots of NOEL Distributions Compiled and Sorted by Munro et al.
(1996) into Cramer Classes
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2.5.4 Prospectively Assessing the “Value of Information” for Adding Information from
New Research?

The variance-reduction analysis for Cramer classes in the previous section illustrates the basic
technique for evaluating the contribution of new types of information. If a specific test or other
data reduces uncertainty (summarized for convenience as a log variance in the previous section)
then it will lead to improved choices among policy options. The “value” of this reduced
uncertainty in the context of a specific type of regulatory choice can be evaluated if there is a
defined decision rule that depends on the toxicity estimate and the residual uncertainty in that
estimate, as in the case of the “risk specific dose” proposed in the original Straw Man system.12

12 The proposal in that case was that the RfD be redefined as the dose expected to produce less than a 1/100,000
incidence of mild adverse effects with 95 percent confidence, based on evaluation of a defined set of sources of
uncertainty.



DRAFT FOR DISCUSSION ONLY, DO NOT DISTRIBUTE, CITE OR QUOTE.

Abt Associates Inc. 4/10/200926

3. The Promise of Analyses of Specific Resources Available for
Developing Potency Distributions for Air Toxics

The discussion in the previous section reflects the orientation of many toxicological data and risk
analysis methods toward the oral route of exposure. This section surveys resources that are
available for extending the same type of analysis to the inhalation route.

3.1 RD50 Determinations by Alarie

Measurements of RD50s (the air concentration that causes mice to reduce their breathing rate by
half) are the single most promising source of relative potency data for irritation responses via the
inhalation route. The response is caused by activation of receptors triggering a reflex via the
trigeminal nerve (Kasanen et al. 1998).13 Dose-response relationships appear to follow standard
Michaelis-Menten kinetics (Nielsen and Vinggaard 1988) and structure-activity studies of the
response have been productive (Alarie et al 1998; Steinhagen and Barrow 1984; Kristiansen and
Nielsen 1988). Based on an analysis of a database of 145 RD50s, Alarie et al. (1998) report that it
is possible to relate potencies to either the chemical’s reactivity or physical properties.

The idea of relating these simple, short-term measurements in mice to standards for protection of
humans from respiratory irritation from a wide variety of air pollutants originated with Yves
Alarie decades ago (Alarie 1966, 1981). Most recently, Kuwabara et al. (2007) of the California
Environmental Protection Agency have compared RD50s with results of human irritation
measurements and with California’s “acute references exposure levels” (RELs)—which are
analogous to short-term RfCs.

Figure 3-1 shows a lognormal plot of the RD50 data compiled by Kuwabara et al. (2007) for 10-
minute measurements. Many other data are available in the Kuwabara et al. paper and elsewhere
for other exposure durations, and a more extensive analysis of inhalation potency distributions
for chemicals is therefore possible, analogous to Figure 2-1 through Figure 2-4 in the previous
section.

13 On the other hand, it has also been reported that these reflex responses are not necessarily predictive of
inflammatory and tissue damage responses seen over somewhat longer time scales (Bos et al. 2002).
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Figure 3-1: Lognormal Plot of the Distribution of Mean 10-Minute Log(RD50s) (Data
Compilation of Kuwabara et al. 1997)

It can be seen that even analysis of this limited sample suggests that irritant potencies of different
chemicals vary to a similar degree as was seen for LOELs and NOELs; and may have a similar
pattern of departure from a lognormal distribution as was seen for LOELs and LD50s.

Figure 3-2 extends this analysis to the much larger (145 chemicals) database of Alarie et al
(1998). It can be seen that this set of data is relatively well described by the fitted lognormal
distribution line. Moreover, the variability in potencies among chemicals seen in the slope of the
lognormal line is similar to the variability seen for LOELs and NOELs in the completely
independent oral potency distribution data collected by Munro et al (1996) and plotted in Figure
2-2.

Figure 3-3 shows similar plots of the Alarie et al. RD50 data broken down into groups of
chemicals where the authors believe the RD50s are largely determined by either (a) physical
properties (called p chemicals) or (b) chemical reactivity (called r chemicals). Unfortunately
these categorizations were made on the basis of whether the RD50 itself differed from the vapor
pressure by tenfold or more. In our view it would be better not to incorporate a relationship
involving the primary dependent variable used for evaluation to be part of the putatively
independent variable used for classification. A better approach would be to use first principles of
chemical structure or reaction rates with potential biologically relevant macromolecules,.
However, this subcategorization does capture an appreciable amount of the variability in RD50
potencies present in the database,14 as indicated in Table 3-1.

14 About 35% = ( 1 – 0.65, where .65 is the fraction of within-group vs. total variance)
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Figure 3-2: Lognormal Plot of 145 RD50 Values Compiled by Alarie et al. (1998)
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Figure 3-3: Comparison of Lognormal Plots of RD50 Distributions for Chemicals Classified
by Alarie et al. (1998) as Likely to Have Physical vs. Chemical Reaction Mechanisms

Determine Their RD50s
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Table 3-1: Variance of RD50s Explained by the Physical vs. Chemical Reaction Categories
of Alarie et al. (1998)

Class N Mean
Log Log(GSD) Log Variance Gmean (ppm) GSD

Chemical Reaction 83 1.78 1.027 1.06 61 10.7
Physical

Mechanism 59 3.18 0.859 0.74 1,500 7.23

0.92 average within-
group log variance

All Chemicals 142 2.36 1.193 1.42 8.1 14.00

0.65*

*0.92/1.42 = 0.65 = fraction of total variance within "physical" and
"chemical reaction" classes
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Alarie et al. (1998) also provide data for several other physical/chemical properties for the 145
chemicals in their database:

 Excess molar refraction

 Chemical dipolarity/polarizability

 Chemical overall or effective hydrogen-bond acidity

 Chemical overall or effective hydrogen-bond basicity

 Chemical Ostwald partition coefficient on hexadecane at 25oC

 Chemical Ostwald partition coefficient on olive oil at 30oC

 Chemical vapor pressure at 22-25oC

The author does not provide any clear theoretical mechanistic rationale why each of these
physical or chemical properties should matter either to the RD50s in general or to RD50s for a
specific subset of chemicals. However the availability of these data does present the
opportunities for empirical analyses of the predictive value of these parameters.

There is also extensive categorization by recognizable chemical groups15 and regression analysis
results. Unfortunately these are not presented in a form that allows ready evaluation of the
statistical significance or confidence limits of different independent variables. Nevertheless
much of this other material in this paper could contribute to the development of a predictive
model of RD50s for those HAPs that have not been specifically tested in this system.

The chemical structural categories used are listed in Table 3-2. This categorization has the
advantage of being far simpler and easier to evaluate than the Cramer decision-tree. Still, it
leaves open the possibility of ambiguities—for example, if there are both halo groups and
aldehydes or ketones in the same molecule. Additional improvements would include the ability
to score a chemical as having more than one halo, aldehyde, or other chemical group where
indicated (perhaps with some further adjustment, for large molecules, with the molecular weight
or the vapor pressure). This would allow a basis for multiple regression analyses to sort out the
contributions of different groups to irritant potency.

15 Three chemicals were excluded from the reactive vs physical mechanism categories, and therefore do not appear
in this table.
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Table 3-2: Chemical Structural Categories Used By Alarie et al. (1998)
Chemical Structural Categories

Aliphatic acetate (saturated)
Aliphatic acetate (unsaturated
Aliphatic acid (saturated)
Aliphatic alcohol (saturated
Aliphatic aldehyde (saturated)
Aliphatic aldehyde (unsaturated
Aliphatic amine (saturated)
Aliphatic amine (unsaturated)
Aliphatic ether (saturated)
Aliphatic ether (unsaturated
Aliphatic halogenated (unsaturated))
Aliphatic hydrocarbon (saturated)
Aliphatic ketone (saturated)
Aliphatic ketone (unsaturated)
Aromatic aldehyde saturated
Aromatic alkylbenzene (halogenated)
Aromatic alkylbenzene (saturated)
Aromatic alkylbenzene (unsaturated)
Aromatic benzene (halogenated)
Aromatic ketone (saturated
Aliphatic isocyanate
Aromatic isocyanate
Other

3.2 Short-Term LC50 Concentration/Time Tradeoff Data Assembled by ten Berge

An important consideration in assessing risks for airborne toxicants is the interplay between
exposure duration and intensity (concentration). There are many examples in the literature where
empirical data are not compatible with a simple Haber’s rule16 interpretation. Table 3-3 shows
the classical results of ten Berge et al. (1987) where probit analyses were done using a CnT
transformation of dose (C) and time (T) in modeling inhalation lethality observations across a
wide variety of animal species.17 If Haber’s rule were followed, n, the empirically estimated
power of concentration that best fits the available data, would equal 1. However, it can be seen
that the lower 95 percent confidence limit on n, the empirically estimated power of concentration
that best fits the available data, appears to exceed a value of 1 in 14/20 or 70 percent of the cases
shown, although the best-fitting n is 1.2 or less in 8/20 or 40 percent of the cases.

16 Haber’s rule states that time-weighted exposures should have equal toxic potential. In other words, exposure at 1
mg/m3 for 10 days is equally toxic to exposure at 10 mg/m3 for 1 day.
17 The equation fit by ten Berge (1987) is:

Probit of response = standard normal deviate + 5 = B0 + B1 ln(C) + B2 ln(T)

The values of n reported in Table 3-3 are the ratios of the B1 and B2 coefficients. In modern applications, the 5 term
can be omitted. (It was originally added to avoid negative numbers, which could not be processed using the
mechanical calculators of the 1930s).
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Table 3-3: Exponents of CnT Dose Metrics from Log Probit Fits to Inhalation Lethality
Data for a Variety of Chemicals (Data combined from rats, mice, dogs, monkeys, guinea

pigs, and rabbits, as available)
Gas or vapor Exponent (n) 95% confidence limits
Local irritants . .
Ammonia 2.0 1.6-2.4
Hydrogen chloride 1.0 0.7-1.3
Chlorine pentafluoride 2.0 1.4-2.6
Nitrogen dioxide 3.5 2.7-4.3
Chlorine 3.5 2.5-4.4
Perfluoroisobutylene 1.2 1.1-1.4
Crotonaldehyde 1.2 1.1-1.3
Hydrogen fluoride 2.0 1.2-2.8
Ethylene imine 1.1 0.8-1.3
Bromine 2.2 2.0-2.4
Dibutylhexamethylenediamine 1.0 0.6-1.4

. .
Systemic Action . .
Hydrogen cyanide 2.7 1.8-3.7
Hydrogen sulfide 2.2 1.6-2.7
Methyl t-butyl ether 2.0 1.0-2.9
Chlorobromomethane 1.6 1.4-1.8
Ethylene dibromide 1.2 1.1-1.2
Tetrachloroethylene 2.0 1.4-2.6
Trichloroethylene 0.8 0.3-1.4
Carbon tetrachloride 2.8 1.9-3.7
Acrylonitrile 1.1 1.0-1.2

Source: ten Berge (1986).

The CnT transformation is a useful empirical convenience for summarizing dose-response data
collected for a range of exposure durations. However, it carries the inherent difficulty that, for
traditional toxic processes, it must fail at extremes of dose and time outside the bounds of
available data. For example, taking the ten Berge et al. (1987) probit lethality equation quoted in
the footnote 14, it should theoretically be possible to produce 50 percent mortality at any
concentration of a toxicant, so long as we extend the exposure duration (T) long enough.

Where there is good reason to believe that some toxic damage that mediates ultimate end effects
is accumulating in the face of a repair process, it will sometimes be possible to model the
dynamics of the repair process from dose X time response data. For example, Hattis and Shapiro
(1990) used a model assuming a simple linear repair of damage, and the production of a toxic
effect when a critical level of internal damage is reached.18 However, detailed pharmacodynamic
modeling of this type is beyond the scope of this generic methodology paper.

18 When the simple linear repair rate theory was later applied to predict the dynamics of recovery of neurobehavioral
functions following the end of acrylamide exposures, the model seriously underpredicted the times required for
recovery (Hattis and Crofton 1995). This was taken to indicate that the original assumption of fully reversible
damage used in the original analysis was likely to be incorrect—and that some of the delay in the manifestation of
neurotoxic injury was likely to be due to redistribution of function from more to less-damaged neural paths.
However, this very example illustrates the scientific advantage of quantitative mechanism based theorizing over a
simple empirical summarization of data as represented by the CnT transformation of dose data. Mechanistic theories
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The time dynamics for local toxic action of nonreactive chemicals in the respiratory system will
also depend on simple physiochemical factors such as vapor pressure, octanol/water partition
coefficient, and water solubility/Henry’s law constant. These help determine rates of uptake and
loss from lung tissue. The large database of RD50s assembled by Kuwabara et al. (2007) should
be analyzed to detect any regularities in changes in RD50 values with time that may be associated
with these parameters. Other things being equal, lower vapor pressures, and greater
octanol/water partition coefficients should be associated with slower approach to equilibrium
local concentrations and therefore lower RD50s with longer durations of exposure. There has
been historical use of octanol/water partition coefficients to understand not only partitioning but
also potency of unreactive chemicals such as alkanes and aliphatic alcohols for inducing
anesthesia (Hau et al. 2002).

3.3 Prospects for a Compilation of LC50s and Analyses of LC50/ LD50 Correlations

Our literature search turned up a few other references to collections of potency data that may
prove useful in developing a priori reference distributions for the toxic potency of different
HAPs. These include:

 A compilation by Grant et al. (2007) of inhalation NOAELs and LC50 data for 97 chemicals.
Using both of these types of data, they determine NOAEL/LC50 ratios. They also utilize a
“globally harmonized system of classification and labeling of chemicals”—yielding five
categories of chemicals based on potencies for acute toxic effects.

 A series of measurements by Frantik et al. (1994) of air concentrations of 48 common
solvents (hydrocarbons, alcohols, ketones, and acetates) causing defined neurological
changes. These effect concentrations were reportedly several fold lower than those needed to
induce behavioral inhibition and one or two orders of magnitude lower than concentrations
needed to induce narcosis. Reportedly potencies for these kinds of effects were not highly
correlated with octanol/water partition coefficients.

It would be straightforward to analyze the correlations of inhalation potencies in these data sets
with LD50s from the large Rhomberg and Wolff data set with physico-chemical parameters to
partially correct for pharmacokinetic determinants of internal concentrations per unit of external
exposure.

can be the basis of predictions that can extend beyond the previously studied conditions of dosage, duration, or (as in
the present report) age of the subjects exposed. If these out-of-range predictions are refuted by subsequent data, the
departures from theory-predicted values can be the basis for more advanced mechanistic inferences and hopefully
better predictions in the future. On the other hand, success or failure of a CnT model fit to predict further data does
not naturally lead to new kinds of experimental observations that can shed light on relevant mechanisms and toxic
risks outside the range of previous experimental studies.
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3.4 Potencies and Interindividual Variability/Susceptibility Distributions for
Bronchoconstricting Agents—Guidance for a Common Mode of Action for
Several Air Toxicants—Acting in Asthmatics

Short-term bronchoconstriction responses in asthmatic people are important considerations in
standard setting for criteria air pollutants—SO2 and NO2 are discussed in this section and Ozone
is discussed in Section 3.5. Moreover, it happens that we have extensive information about
interindividual variability in susceptibility for this response from large epidemiological studies in
which graded doses of methacholine have been administered to people to identify the lowest
dose causing a specific amount of reversible reduction of FEV1 (amount of air that can be
breathed out in one second—a common measure of lung function) in different individuals,
although the extent of variability observed can be quite different for observations of different
populations by different investigators (Table 3-4). Individual variability in susceptibility to this
response is generally well described by lognormal distributions (Figure 3-4) although it should
be noted that the published data do not usually report the fraction of people responding at the
extreme ends of the distributions. Such data might perhaps be obtained from direct contacts with
the investigators.

Table 3-4: Observations of Human Interindividual Variability in External Concentrations
of Methacholine Needed to Produce Defined Short-Term Changes in Respiratory

Parametersa

Response and Reference Type of Population Log(GSD)
5%-95%

Log(GSD)
conf. limits

Statistical Weight
= 1/variance of
Log[log(GSD)]

100% increase in baseline specific airway
resistance (Balmes et al. 1997)

66 Healthy athletic
adults, 18-50 0.421 0.39-.046 1986

PC20— 20% decrease in FEV1 (Tashkin et
al. 1996)

5733 smokers, mild/
moderate

obstruction
0.642 0.59-0.70 2157

10%, 15%, and 20% decreases in FEV1
(Paoletti et al. 1995)

748 Females—
general population 0.740 0.59-0.93 276

10%, 15%, and 20% decreases in FEV1
(Paoletti et al. 1995)

810 Males—general
population 0.998 0.80-1.25 280

PC20— 20% decrease in FEV1 (Sears et al.
1986)

813 nine year old
New Zealand

children
1.128 0.88-1.45 225

PC20— 20% decrease in FEV1) (Bakke et
al. 1991)

490 Norwegian
adults, Age 18-73 0.974 0.81-1.17 434

PC20— 20% decrease in FEV1 (Hanania et
al. 1998)

15 Allergic
asthmatic patients 0.599 0.44-.82 149

PC20— 20% decrease in FEV1 (O’Connor et
al. 1987) 468 Male veterans 1.088 0.92-1.32 440

Summary, All Methacholine Data 0.704 0.67-0.74 5947
Source: Hattis (2008).
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Figure 3-4: Lognormal Probability Plots of the Distribution of Methacholine
Concentrations Needed To Cause a 20 Percent Reduction in FEV1 in Different Populations
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N = 5733; y = 0.98 + 0.62x R^2 = 0.990

Smokers with mild obstruction are
more sensitive (lower median thresholds)
but less variabile in their sensitivities than
other populations.

The 9-year old New Zealand children are
not notably different in their sensitivity
distributions than veterans or Norway adults

It is not clear at this point that there will be a simple relationship between potency for this kind
of effect and RD50 values, but this seems like a reasonable hypothesis for further exploration. If
there is such a relationship, then the substantial body of RD50 data could be translated into terms
that can be related to extensive regulatory evaluation work with criteria air pollutants.
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3.5 Actions of and Human Susceptibility Distributions for Ozone—Another Basis
for Analogies with Oxidant Chemicals?

Ozone is another criteria air pollutant for which there are extensive human clinical observations
of changes in FEV1 in response to short-term exposures. In this case, however, the response
occurs over a period of hours, and is therefore better seen as a delayed reaction to injury from
this strong oxidant than an immediate neurogenic reaction to the presence of the pollutant. Figure
3-5 shows probability plots of the distributions of individual “thresholds” for different degrees of
FEV1 response to multi-hour exposures to different combinations of time and exposure
concentration for ozone. These plots also indicate that lognormal distributions are reasonable
descriptions of the data.19 The measure of interindividual variability indicated by these data and
those of Horstman et al. (1986) for SO2 are both toward the lower end of the observations
recorded in Table 3-4—Log(GSD) of 0.33-0.38 or so, indicating lower interindividual
variability.

Figure 3-5: Composite Log Probit Plot of the Ozone Dose-Time-Severity-of-Response
Relationship (Based on Data of McDonnell et al. 1995)
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Source: Hattis 1998

19 The plots are in the opposite orientation than the ones we usually produce (Z-scores on the y-axis rather than the
x-axis), and therefore the slopes of the lines are the inverse of our usual measure of interindividual variability—the
log(GSD).
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3.6 Preliminary Categorization and Grouping of the Officially Designated Set of
Air Toxics by a Priori Recognition of Basic Chemical Structural Alerts or
Prominent Concerns for Carcinogenesis

In preparation for possible later work on the HAPs, we have taken a preliminary look at their
chemical structures to see what major chemical groupings emerge that could be used to organize
an overall risk assessment effort with a view toward facilitating cross-chemical inferences on
related properties. This section summarizes our early conclusions about potentially relevant
categories that may be helpful in organizing such efforts for the officially designated HAPs. One
step in such an analysis for the general organics within this list would be to review these
structures in connection with a series of analyses of the implications of different structure
groupings within the RD50 data sets discussed in Section 3.1 above. The inorganics and
previously established carcinogenic chemicals should be subject to distinct analyses oriented to
available chronic carcinogenicity data for those chemicals in animals and people. In several
places we have included single chemicals in more than one category where the same chemical
had multiple potentially reactive groups or other characteristics.

In reviewing the HAPs for organizing categories, the largest distinct category that emerged can
be labeled as “famous carcinogens”—chemicals that are reasonably well known for carcinogenic
activity (Table 3-5) and for which we must anticipate that significant analytical effort will be
needed to evaluate what standards would be indicated to protect against possible cancer risks.
Overall, we place 32 of the HAPs in this category—26 of these are organic chemicals and 6
others are inorganic substances or minerals.
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Table 3-5: Famous Carcinogens
Organic Chemicals Inorganic Substances or Minerals

2-Acetylaminofluorene
Acrylamide
4-Aminobiphenyl
Benzene
Benzidine
Bis(2-Chloroethyl) Ether
Bis(Chloromethyl) Ether
1,3-Butadiene
2-Chlor-1,3-Butadiene
Chloromethyl Methyl Ether
Chlorobenzilate
Coke Oven Emissions
1,2-Dibromo-3-Chloropropane (Dbcp)
1,2-Dibromoethane
3,3'-Dichlorobenzidine
1,4-Dioxane
Epichlorohydrin
Ethyleneimine
Formaldehyde
Hexamethylphosphoramide
4,4'-Methylenebis(2-Chloroaniline)
Polychlorinated Biphenyls
Polycyclic Organic Matter (Pom)
Propane Sultone
Urethane
Vinyl Chloride

Asbestos (Friable)
Beryllium Compounds
Inorganic Arsenic Compounds
Nickel Compounds
Radionuclides
Chromium Compounds (Hexavalent Only)

Another large grouping (26 chemicals) is small molecular weight chlorinated aliphatic
compounds (Table 3-6); or compounds with an aromatic ring and a chlorinated side chain. Many
of these will also need evaluation for possible carcinogenic effects. Also meriting related
evaluation are 12 compounds that are possible or known metabolic precursors of epoxides.
Similarly, possible carcinogenesis evaluations are needed for 8 compounds that are either
preformed epoxides themselves or are lactones or anhydrides, which are also reactive.
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Table 3-6: Need Evaluation for Possible Carcinogenic Effects
Small Molecular Weight

Chlorinated Aliphatic
Compounds

Possible or Known
Metabolic Precursors of

Epoxides

Preformed Epoxides,
Lactones, or Reactive

Anhydrides

Allyl Chloride
Benzoic Trichloride
Benzyl Chloride
Camphechlor (Mixture Of
Chlorinated Camphenes
Containing 67-69% Chlorine)
Captan
Carbon Tetrachloride
Chloroacetic Acid
2-Chloroacetophenone
Chloroethane
Chloroform
Chloromethane
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethylene
Dichloromethane
1,2-Dichloropropane
1,3-Dichloropropene (Mixed
Isomers)
Dimethylcarbamoyl Chloride
Hexachloro-1,3-Butadiene
Hexachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethylene
Trans-1,3-Dichloropropene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethylene

Allyl Chloride
Camphechlor (Mixture Of
Chlorinated Camphenes
Containing 67-69%
Chlorine)
1,1-Dichloroethylene
1,3-Dichloropropene
(Mixed Isomers)
Acrolein
Acrylic Acid
Acrylonitrile
Ethyl Acrylate
Methyl Methacrylate
Propyleneimine
Styrene
Vinyl Acetate
Vinyl Bromide

1,2-Butylene Oxide
Beta-Propiolactone
1,2-Butylene Oxide
Ethylene Oxide
Maleic Anhydride
Phthalic Anhydride
Propylene Oxide
Styrene Oxide
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Finally, a chemical category that is associated with bladder carcinogenesis (Table 3-7) in many
cases is the aromatic amines, of which there are 12.

Table 3-7: Associated with Bladder Carcinogenesis
Aromatic Amines

2-Acetylaminofluorene
Aniline
(1,1'-Biphenyl)-4,4'-Diamine, 3,3'-Dimethyl-
Chloramben

2,4-Diaminotoluene
3,3'-Dimethoxybenzidine
4-Dimethylaminoazobenzene
4,4'-Methylenedianiline
N,N-Dimethylaniline
O-Anisidine
O-Toluidine
P-Phenylenediamine
Quinoline

More generic large categories (Table 3-8) include 14 ring-chlorinated aromatic compounds, 8
“other aromatics” (no amino or halo group on the ring), 5 simple phenols (aromatic alcohols
without a nitro or amino group) and 5 small molecular weight ketones and ethers.

Table 3-8: Other Generic Large Categories

Ring-Chlorinated Aromatic
Compounds

“Other Aromatics”
(no amino or halo group

on the ring):

Simple Phenols
(aromatic alcohols without

a nitro or amino group)

Small Molecular
Weight Ketones and

Ethers
Chloramben
Chlordane
Chlorobenzene
Chlorobenzilate
2,4-D
DDE
1,4-Dichlorobenzene
Hexachlorobenzene
Pentachlorophenol
Quintozene
2,3,7,8-Tetrachlorodibenzo-p-
Dioxin (TCDD)
1,2,4-Trichlorobenzene
2,4,6-Trichlorophenol
2,4,5-Trichlorophenol

Biphenyl
Cumene (Isopropyl
Benzene)
Ethylbenzene
Methoxychlor
Naphthalene
Propoxur
Toluene
Xylene (Isomers And
Mixture)

2,4,6-Trichlorophenol
2,4,5-Trichlorophenol
Catechol
Cresol (individual
and mixedisomers)
Phenol

1,4-Dioxane
2-Chloroacetophenone
Acetophenone
Methyl Tert-Butyl Ether
Isophorone

In addition to these, we also created a substantial number of categories that proved to contain
smaller number of members in the air toxics listing. Even a category with only a few members
on the list may nonetheless eventually be helpful for evaluation using the RD50 database or other
compilations of information. The smaller categories of organic compounds (Table 3-9) include 5
aliphatic azo, nitroso, or other reactive nitrogen compounds (many posing likely carcinogenic
hazards), 4 isocyanates (many probably posing immune sensitization hazards), 4 hydrazines and
alkylhydrazines, 4 chlorinated aliphatic ring compounds (at least 3 primarily used as
insecticides), 1 small molecular weight nitroaliphatic compound, 6 brominated or iodinated
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aliphatic compounds (at least some with major concerns for carcinogenesis because of direct or
indirect alkylating activity), 4 phthalates, 3 bi- or polycyclic aromatics and mixtures, 3 organic
sulfur compounds (not elsewhere classified) of which the first two are related but the third might
well be substantially distinguished, 3 acetylcholinesterase inhibitors (nerve agents primarily used
as insecticides), 3 nitrophenols, 3 esters with possible alylating activity, 2 small molecular
weight aliphatic amides, 1 small molecular weight aliphatic amine.
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Table 3-9: Smaller Categories of Organic Compounds
Category Organic Compounds

Aliphatic Azo, Nitroso, Other Reactive
Nitrogen Compounds

Ethyleneimine
Diazomethane
Methanamine, N-Methyl-N-Nitroso
N-Nitroso-N-Methylurea
N-Nitrosomorpholine

Isocyanates Hexamethylene-1,6-Diisocyanate
Methyl Isocyanate
1,1'-Methylenebis(4-Isocyanatobenzene)
Toluene-2,4-Diisocyanate

Hydrazines And Alkylhydrazines 1,1-Dimethyl Hydrazine
1,2-Diphenylhydrazine
Hydrazine
Methyl Hydrazine

Chlorinated Aliphatic Ring Compounds Chlordane
Gamma-Lindane
Heptachlor
Hexachlorocyclopentadiene

Small Molecular Weight Nitroaliphatic
Compound

2-Nitropropane

Brominated or Iodinated Aliphatic
Compounds

1,2-Dibromo-3-Chloropropane (Dbcp)
1,2-Dibromoethane
Vinyl Bromide
Methyl Bromide
Methyl Iodide
Tribromomethane

Phthalates Captan
Bis(2-Ethylhexyl)Phthalate
Dibutyl Phthalate
Dimethyl Phthalate

Bi- or Polycyclic aromatics and Mixtures Coke Oven Emissions
Polycyclic Organic Matter (Pom)
Dibenzofuran

Organic Sulfur Compounds Carbon Disulfide
Carbonyl Sulfide
Ethylene Thiourea

Acetylcholinesterase Inhibitors Carbaryl
Dichlorvos
Parathion

Nitrophenols 4,6-Dinitro-O-Cresol
2,4-Dinitrophenol
4-Nitrophenol

Esters With Possible Alylating Activity Dichlorvos
Diethyl Sulfate
Dimethyl Sulfate

Small Molecular Weight Aliphatic
Amides

Acetamide
N,N-Dimethylformamide

Small Molecular Weight Aliphatic Amine Triethylamine
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Among inorganic categories (Table 3-10), we found 4 metal kidney and/or cardiovascular toxins,
2 compounds with special immune mediated effects, 3 other metals and metallic compounds,
1 other nonmetal/nonmetallic, and 1 other/miscellaneous.

Table 3-10: Inorganic Categories
Metal kidney and/or

cardiovascular
toxins

Special immune
mediated effects

Other metals and
metallic

substances
Other

nonmetal/nonmetallic Other/miscellaneous
Antimony
Compounds
Cadmium
Compounds
Cobalt Compounds
Lead Compounds

Beryllium
Compounds
Toluene-2,4-
Diisocyanate

Manganese
Compounds
Mercury
Compounds
Titanium
Tetrachloride

Selenium Compounds Mineral Fibers
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4. The Promise of Early-Effect Biomarkers for Two-Step Assessments
of Risks

One of the most notable accomplishments in the past quarter century of risk assessment has been
the use of physiologically based pharmacokinetic (PBPK) modeling to open up what was
formerly a “black box” relating exposures to a pollutant of interest to a toxic response. Use of
early-effect biomarkers to predict risks of apical effects20 of ultimate concern is an additional
two-step process in the same tradition. This process is outlined below and displayed in Figure
4-1.

(1) Assess relationships between exposure to the chemical of interest and the intermediate
biomarker of effect using limited chemical-specific information.

(2) Assess relationships between the biomarker of effect and ultimate endpoints of concern
from general epidemiological data.

Modeling risk using early-effect biomarkers continues the process of reducing a complex causal
pathway to a series of discrete steps that can be separately observed and analyzed with
quantitative modeling tools.

Figure 4-1: Two-Step Risk Process Utilizing Biomarkers

Exposure

Changes in apical effects from a toxicant exposure are inferred by first assessing the effect of the
toxicant on changes in the distribution of the early-effect biomarker in the exposed population.
Then the assessor uses pre-established relationships between the biomarker and risks of apical
adverse effects to infer what changes in the incidence and/or severity of the ultimate effects of
concern are likely to result from the toxicant-induced changes in the population distribution of
the levels of the biomarker. For example, effects of an air toxic on the population distribution of
the levels of a traditional cardiovascular risk factor such as serum cholesterol are combined with
relationships between cholesterol levels and rates of myocardial infarctions to estimate the heart
attack risk likely to be associated with the air toxic at specific levels of exposure. Additional
examples of early-effect biomarkers that can be useful predictors of important human health
endpoints include:

 Fetal growth restriction indicated by birth weight differences as predictors of infant mortality
(Ananth and Platt 2004; Pedersen et al. 2007) and other adverse effects later in life (Lapidus
et al. 2008; Kajantie et al. 2005).

 Semen quality differences as predictors of male fertility differences (Iberico et al. 2004;
Steinberger and Rodrigues-Rigau 1983; Rhemrev et al. 2001).

20 Apical end point. An observable outcome in a whole organism, such as a clinical sign or pathologic state, that is
indicative of a disease state that can result from exposure to a toxicant (NRC, 2007).

Change in Biomarker
Change in Apical Adverse
Effect (from epidemiologic
observations of effect in
relation to the biomarker)
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 Differences in traditional cardiovascular risk factors (e.g., blood pressure, serum cholesterol)
and some newer risk factors (heart rate variability, serum fibrinogen, and some lung
functions) as predictors of cardiovascular mortality (Kannel et al. 2003; Schelens et al. 2008;
Stein et al. 2008; Knuiman et al 1999; Folsom et al. 1997; Tsuji et al. 1994).

 Iodide deficiency and thyroid hormone parameters in young children as predictors of
neurodevelopmental impairment (Delange 2001; Santiago et al. 2004; Pop et al. 2003;
Haddow et al. 1999; Pineda-Lucatero et al. 2008).

Early-effect biomarkers have another important role that they do not share with PBPK modeling.
They serve to aggregate the influences of multiple stressors—both chemical and non-chemical—
that act on the same biological system. Thus, birth weight can reflect effects of cigarette smoke,
nutritional deficiencies, and effects from living at high altitudes, as well as any restriction of fetal
growth from toxicity. Blood pressure is likely to reflect the integrated effects of salt intake,
impairments of kidney function, and psychological stress from working as an air traffic
controller. Motile sperm counts likely reflect both hormonal effects and the adverse effects of
elevated testicular temperature from tight-fitting underwear. Thus, the use of intermediate effect
biomarkers can enable risk assessors to implicitly take account of the host of interacting
processes that affect health outcomes in the diverse human population, at least for a portion of
the pathway to ultimate end effects. In Section 4.1 we discuss some of the caveats to the
biomarker approach, and in Section 4.2 we illustrate an example of applying this approach to the
HAPs.

4.1 Caveats to the Biomarker Approach

There is a need for caution and caveats to using this approach. The accuracy of any projection of
risk with the aid of intermediate effect biomarkers depends on how well existing observations
and inferred quantitative relationships for each of the two steps reflect real causal processes. For
the most part, epidemiological studies yield measures of the association between variables. These
associations may reflect causal processes, but may also be the result of confounding or other
bias, thus causing an overestimate of the adverse effects from the exposure. On the other hand,
quantitative relationships derived from epidemiological studies are notoriously subject to
distortion via imperfection in the measurement of exposures (or, in the case of relationships
between a biomarker and an apical response, measurements of the biomarker). There has been
some use of “errors in variables” models (Stayner et al. 2003; Richardson et al. 2004; Brown et
al. 2004; Choi 2000; Kulathinal et al. 2002; Siebert et al. 2001) to attempt to correct for this kind
of problem, but such innovative analytical models are not yet common in epidemiological
studies. These types of errors would tend to cause risk assessors to underpredict adverse effects
from biomarker exposures. Selection biases—most notably the “healthy worker effect”
(Steenland and Stayner 1991) and the “healthy worker survivor effect” (Steenland et al. 1996;
Kolstad and Olsen 1999)—can cause similar distortions. Thus, although we think the “two-step”
risk assessment approach outlined here is promising, and may be a reasonable approach for
initial estimates of effects, risk conclusions derived using this type of method will be subject to
extensive modification with the development of improved observations and modeling tools.

Decision-making for pharmaceuticals has developed a generic solution to the problem of
resolving causal versus non-causal associations: the double-blind, randomized, controlled
clinical trial. Selection effects are minimized via the randomization process, and distortions from
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dosage measurement errors are avoided by the deliberate supply of measured amounts of test
chemicals to the clinical subjects.

Such measures will seldom if ever be practically available for risk assessment and decision-
making on environmental chemical exposures. However, environmental health researchers can
take a few different approaches to evaluate and reduce uncertainties in the two-step quantitative
inferences of risk:

 Take advantage of “experiments of nature” such as episodes of unusually large or distinctive
population exposures (e.g., the air pollution episodes observed in Donora, Pennsylvania, and
the infamous “London fog,” which first strongly indicated effects of air pollutants on short-
term mortality changes) or the temporary closing of a specific facility responsible for an
important fraction of the pollutant exposures of known types in a specific area.

 Look for situations in which an exposure causes measurable changes in both the intermediate
biomarker, and an apical outcome of ultimate concern. Ask, “Are the changes in the
incidence of the apical effect accurately predicted by the changes brought about in the early-
effect biomarker by the responsible exposure?” and “Is the pattern of change in the apical
effect with dose similar enough to the pattern of change in the biomarker with dose to
suggest a causal relationship? For example, Figure 4-2 juxtaposes the dose-response
relationship between reported cigarette smoking and population-average birth weights and
the similar dose-response relationship between reported cigarette smoking and infant
mortality. Both appear to show saturation-type dose-response relationships, suggesting that
the causal factor(s) for both effects may be the product of a saturable active metabolism
process or a saturable receptor binding process. Quantitatively, we have found that the infant
mortality effect of cigarette smoking can be understood as a combination of effects of
smoking on fetal growth restriction and a shortened period of gestation (unpublished
observations). More formally, an analysis of 10 million singleton live U.S. births between
1998 and 2000 by Ananth and Platt (2004) finds that “the effect of maternal smoking on
neonatal mortality is largely mediated through reduced fetal growth.”

 Quantitatively evaluate the experience with the predictiveness of cardiovascular risk factors
for cardiovascular mortality and morbidity. Beginning in the 1950s and 1960s there were a
substantial number of prospective cardiovascular disease studies that developed predictive
risk relationships using multiple logistic risk equations (Truett 1967). Subsequently, the drug
industry has developed a large number of pharmaceutical interventions designed to reduce
the levels of specific risk factors. Generally, these interventions are likely to have been
evaluated both in terms of their effects on risk factors and in terms of mortality/morbidity
reductions. Risk assessors of today therefore have an opportunity to ask, for each
biomarker/”risk factor,” “Was the degree of mortality/morbidity reduction achieved via the
pharmaceutical intervention larger or smaller than what would have been predicted from the
change in the risk factor(s) brought about by the intervention?”
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Figure 4-2: Relationships Between Reported Cigarettes/Day Smoked, Average Birth
Weight, and Infant Mortality—Data of U.S. National Center for Health Statistics (1990)

Data Source: National Center for Health Statistics. 1996. 1990 Birth Cohort Linked Birth/Infant Death Data Set,
NCHS CD-ROM Series 20 No. 6, SETS Version 1.22a, issued May 1996.

Figure previously appeared in Hattis, D. “Role Of Dosimetric Scaling And Species Extrapolation In Evaluating
Risks Across Life Stages. IV. Pharmacodynamic Dosimetric Considerations.” Draft Report to the U.S.
Environmental Protection Agency Under RFQ No. DC-03-0000, January 2004.
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4.2 Application of the Biomarkers Approach to HAPs

While we do not explore in detail the potential of all the various early-effect biomarkers which
may shed light on the risks of the HAPs, studies of birth weight changes in relation to air
pollutant exposures deserve special mention and are presented as an example illustrating the
application of this promising approach.

Recently, Bell et al. (2007) published an epidemiological study that extends previous work from
California and elsewhere on apparent relationships between exposures to various criteria air
pollutants at ambient levels and birth weights in a large number of babies born in Connecticut
and Massachusetts. This cohort is much larger than has been previously evaluated. Perhaps
because of this, even though exposure assessments were relatively basic (county averages),
apparent effects of various pollutants were quantified with reasonably narrow confidence limits
(Table 4-1). The findings can be brought together into a consistent framework for comparative
analysis of potencies and approximate indicated population-level effects (Table 4-2). This type
of information should be combined with other data through a thorough meta-analysis based on
multiple good studies. Specifically, if the fetal growth restriction potency of exposures to
different air toxics can be related to the potencies of these criteria pollutants through comparative
animal experiments, then it seems possible to make at least approximate evaluations of
population fetal growth restriction hazards of different air pollutants and comparative cost
effectiveness of regulations and other policy actions (e.g., changes to the mix of fuels used in
automobiles or changes in emissions from greater fuel efficiency).

Appendix A, drawn from our previous work (Hattis 2004), provides more extensive background
information on the implications of birth weight changes for infant mortality and longer-term
risks in adult life, such as Type 2 diabetes. Appendix B provides additional background on
implications of iodide uptake changes (as might be produced by perchlorate exposure) for
neurodevelopmental impairment.

Table 4-1: Basic Birth Weight Reduction Results of Bell et al. (2007) Based on County-
Average Air Pollutant Exposures During Gestation for 358,504 Babies in Massachusetts
and Connecticut, Evaluated with Single-Pollutant Models, Controlling for Confounders

Air
Pollutant

Grams Reduction
Birth Weight per

Interquartile
Exposure Range

Lower 95%
Confidence

Limit (g)

Upper 95%
Confidence

Limit (g)

Mean and
Std Dev

Exposure

Interquartile
Exposure

Range

Exposure
units

NO2 8.9 7 10.8 17.4 ± 5.0 4.8 ppb
CO 16.2 12.6 19.7 656 ± 180 303 ppb
SO2 0.9 -2.6 4.4 4.7 ± 1.2 1.6 ppb
PM10 8.2 5.3 11.1 22.3 ± 5.3 7.4 µg/m3
PM2.5 14.7 12.3 17.1 11.9± 1.6 2.2 µg/m3
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Table 4-2: Implications for Population Aggregate Birth Weight Changes of the Bell et al.
(2007) Results for Pollutant Potencies (gram Reduction in Mean Baby Weights Per Unit

Exposure During Gestation) and Suggested Population Aggregate Impacts on Birth
Weights

Air
Pollutant

Indicated Potency in g
Birth Weight Reduction

per ppb Gas or (for
Particles) µg/m3

Lower 95%
Confidence

Limit on
Potency

Upper 95%
Confidence

Limit on
Potency

Suggested Population
Aggregate Effect (g/baby)

(Potency X Mean
Exposure)

NO2 1.85 1.46 2.25 32

CO 0.053 0.042 0.065 35

SO2 Non-significant

PM10 1.1 0.7 1.5 25

PM2.5 6.7 5.6 7.8 80
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5. Conclusions
The suggestions and illustrations in the previous sections indicate that probabilistic modeling
tools can be used to systematically analyze the risks posed by the HAPs. Even in the best of
cases there will be considerable uncertainty about the quantitative level of risk posed by specific
agents. However, some of the important uncertainties can be identified and approximately
quantified. Moreover, the uncertainty quantification itself can be used to design targeted research
activities aimed at the clarifying the most potentially significant opportunities for public health
protection, as assessed by (1) existing exposures, (2) analyses of likely relative potencies, and
(3) analyses of the potential for uncertainty reduction via specific types of research.

Most importantly, the adoption of this kind of approach, as recently recommended by the NRC
(2008), will open up a regulatory system that has been relatively resistant to inputs from new
kinds of information. This openness itself will attract new investigative resources to the field of
quantitative risk estimation. Thus, although the adoption of this approach will not provide “final”
quantitative answers with narrow confidence limits on the posed by specific air toxics, there is
every prospect that it will allow the system for assessing and managing health risks from toxicant
exposures to develop in ways that cannot be fully anticipated at present.
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A APPENDIX A—Birth Weight in Humans and Fetal Growth
Reduction in Animals—Model Biomarkers for Assessing Generic
Reproductive Toxicity in Animals and People

A.1 Birth Weight and Infant Mortality

The concept of homeostatic controls can support the plausibility of a no-adverse-effect level for a
particular person (an individual threshold) for a specific mechanism of damage. However, as
mentioned earlier, this does not necessarily imply the existence of a population threshold (a dose
so low as to be at, or below, the lowest threshold dose for any individual in a mixed population
with diverse sensitivities). Specifically, there may be a finite expectation for individuals to be
affected by even marginal exposures in cases where even without additional exposure some
people have no “functional reserve capacity” to act as a buffer between the base health state and
a state of at least marginally worse health. Two specific types of cases where this can happen are:

 Some individuals in the diverse population are already suffering from various kinds of
pathological dysfunction in key parameters that may be marginally affected by different
toxicants (e.g., a person undergoing a myocardial infarction may have a marginally expanded
area of heart muscle death if the oxygen carrying capacity of his or her blood is reduced by a
marginal exposure to additional carbon monoxide)

 Some individuals are presently engaged in a task (e.g., running a 100-yard dash) that taxes
some physiological capabilities to their limit, and marginal exposures to a toxicant
marginally reduce those physiological capabilities.

One possible example of the second type is the possibly limiting mobilization of metabolic
energy to sustain growth and development during gestation. Briefly, dose-response relationships
for fetal growth inhibition in relation to a variety of toxicant exposures in experimental animals,
and cigarette smoking in people suggest that marginal exposures to toxicants may impose a
metabolic “tax” on the developing fetus that cause changes in developmental progress that, at
least on a population basis, can have potentially significant implications for public health.

One of the most common types of effects that are observed in reproductive/developmental
studies is an inhibition of fetal growth. The current practice is to express this effect in terms of
the dose causing a particular increase in the percentage of animals that have growth that is more
than a standard deviation below the control mean weight. This treatment implies that this is an
effect that should be treated as if it were a classical individual threshold response, to be fed into
the usual NOAEL/uncertainty factor system.

However, we first noticed in a 1988 analysis of developmental effects of glycol ethers (Ballew
and Hattis, 1989) that the observed pattern of dose-response relationships for fetal weight
reductions differed considerably from the highly nonlinear observations of the frequency of
typical teratogenic anomalies. Figure A-1 and Figure A-2, reproduced from that study, show the
pattern of mean birth weight change in relation to dose observed for ethylene glycol ethyl ether
(EGEE) and methylene glycol ethyl ether (MGEE) in different experimental animal systems.
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Figure A-1: Loss in Fetal Weight in CD-1 Mice Exposed to EGEE via Oral Gavage (Data of
Weir, 1987)

Figure A-2: Loss in Fetal Weight in New England White Rabbits Exposed to EGME via
Inhalation

The impression that this category of effect often appears to be linear or near linear over a wide
range of tested doses was strengthened by a series of observations of fetal weight responses to a
variety of disinfection byproducts, prepared from data assembled by Syracuse Research for an
EPA-sponsored workshop in 1999 (Figure A-3 through Figure A-8). To reduce some of the noise
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in individual dose-response data sets, Figure A-9 shows the results of combining these data (with
inverse variance weighting) in terms of a dosimeter labeled “Trichloroacetic Acid (TCA)
equivalents” constructed from the slopes of the fetal weight dose-response relationships for the
individual agents. It can be seen that overall, the data do not seem to be incompatible with low-
dose linearity, although there is some indication of smaller effects than predicted by the straight
line for the lowest dose points, and also some high-dose saturation of the response. The data are
also compatible with simple empirical models that incorporate quadratic and cubic terms (Figure
A-10 and Figure A-11).

The simplest overall interpretation of this type of finding for diverse toxicants is that the
toxicants impose a kind of nonspecific “tax” on the resources that the organism would otherwise
have available to grow and develop. This implies that for the case of the developing fetus, there
simply may be little or no functional reserve capacity. The fetus, particularly in late pregnancy,
may be mobilizing energy and other resources as fast as it can, such that even a marginal drain
on these resources to counteract perturbations caused by a toxicant marginally reduces the
growth and development of the organism.

Such fetal growth inhibition observations in animal systems could be of considerable public
health significance if they turn out to be predictive of birth weight reductions in humans. Birth
weights are strongly related to infant mortality and the association between lower birth weights
and higher infant mortality is not at all confined to the traditional category of “low birth weight”
babies weighing under 2,500 g (Figure A-12). Certainly, this does not reflect a direct causal
connection between lighter weight at birth and mortality, but it does seem likely that birth weight
is a proxy for the energy resources that were available to the developing fetus to grow and
develop the protective mechanisms that could be causally related to impairment of mechanisms
that help reduce mortality risks in the first year of life.
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Figure A-3: Data of Smith et al. (1989a) on the Fetal Weight Response of Rats to
Trichloroacetic Acid
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Figure A-4: Data of Smith et al. (1992) on the Fetal Weight Response of Rats to
Dichloroacetic Acid
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Figure A-5: Data of Randall et al. (1991) on the Fetal Weight Response of Rats to
Monobromoacetic Acid
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Figure A-6: Data of Smith et al. (1988) on the Fetal Weight Response of Rats to
Trichloroacetonitrile
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Figure A-7: Data of Smith et al. (1989b) on the Fetal Weight Response of Rats to
Dichloroacetylnitrile
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Figure A-8: Data of Randall et al. (1991) on the Fetal Weight Response of Rats to
Monobromoacetic Acid
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Figure A-9: Results of Regression Analysis of the Fraction of Control Fetal Weight
Response in Grouped Categories of TCA Equivalents—Interpretation with a Linear Model
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Figure A-10: Results of Regression Analysis of the Fraction of Control Fetal Weight
Response in Grouped Categories of TCA Equivalents—Interpretation with a Quadratic

Model
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Figure A-11: Results of Regression Analysis of the Fraction of Control Fetal Weight
Response in Grouped Categories of TCA Equivalents—Interpretation with a Third Degree

Polynomial
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Figure A-12: Relationship Between Weight at Birth (in 500 g Increments) and Infant
Mortality
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Human data are available (National Center for Health Statistics 1996) for the associations of both
birth weight reduction and infant mortality for reported exposures during pregnancy for one
toxicant—cigarette smoking. It can be seen in Figure 4-2 (p. 47 in the main text) that the dose-
response relationships for these effects bear a strong resemblance. This suggests that inferences
about incremental effects on infant mortality may not be unreasonable based on the predicted or
observed effects of some toxicants on fetal growth and birth weights.

A.2 The “Barker” (2001) Observations and a Hypothesis—Latent Effects
Appearing in Later Life From Early-Life Reductions in the Reserve Capacity
To Accomplish Homeostatic Control

A repeated finding in recent years is that relatively low birth weights in humans are strongly
associated with elevated risks of type 2 diabetes 3-7 decades after birth (Forsen et al., 2000). The
data in Figure A-13 indicate that the relationship is continuous over a wide range of birth
weights, and does not appear to be confined to the traditional “low birth weight” babies (under
2,500 g).

Hill and Duville (2000) review confirmatory mechanistic observations in rats—including
findings that a 50% restriction of maternal calorie intakes from gestation day 15 through birth
leads to a reduction in the mass of pancreatic ß-cells—the cells that produce insulin and thereby
control blood sugar levels. If dietary restriction is continued through weaning, the changes
became irreversible in later life. Animals with continuing restriction through weaning are
susceptible to glucose intolerance in later life. Thus, it appears that the size of the reserve
capacity (pancreatic islets and beta cell numbers) built by the system for blood sugar control
depends on what the system sees during developmental phases both before and after birth. A
stressor (nutrient restriction in this case) can reduce the amount of reserve capacity that the
system builds to provide for homeostatic control. The long-term consequence of this may be the
excess incidence of Type II diabetes observed in people after normal aging processes have an
opportunity to deplete the initially low reserve capacity to critical levels.

Similar finding have also been reported for another cardiovascular risk factor—blood pressure in
human adolescents studied in the Philippines (Adair et al., 2001), even after correction for
maternal nutrition variables.

In a guinea pig system, a period of maternal nutrient restriction as short as 48 hours in late
pregnancy gives rise to detectable changes in pituitary-adrenal function in adult offspring
(Lingas and Matthews, 2000).

The presence of mutually supportive findings in this area in both human and experimental animal
systems indicates that there is good potential to use the experimental animal models to work out
detailed dose-time response relationships and mechanistic pathways for the likely actions of
environmental toxicants these systems—particularly toxicants such as the disinfection
byproducts, glycol ethers, and valproic acid, where there are established effects on fetal growth.
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Figure A-13: Plot of the Incidence of Type 2 Diabetes in Relation to Log (Mean Birth
Weight)—Data of Forsen et al. (2000)
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B APPENDIX B: Case Study: Competitive Inhibition of Iodide
Uptake by Perchlorate

Regulation of perchlorate in drinking water has been a subject of much recent controversy. An
analysis by the National Research Council (NRC 2005) recommended an increase of about 20
fold in an earlier EPA recommended RfD for this substance, based on a group-average analysis
of human data on perchlorate transport. Some of the reason for the controversy involves the
likely interactions between perchlorate exposure and iodide deficiency (Ginsberg and Rice,
2005). Iodide transport into the thyroid is a vital part of the causal chain of events that leads to
synthesis of thyroid hormones, and perchlorate is a competitive inhibitor of the “symporter”
protein that is responsible for active transport of the iodide ion. Particularly during the perinatal
period, iodide deficiency is associated with risks of impaired neurological development
(Delange, 2001). Measurements associate even relatively mild iodide deficiency (as imperfectly
indicated by the excretion of relatively low levels of iodide in spot urine samples) with
detectable and apparently continuous decrements in IQ in school age children (Figure B-1—
based on our analysis of data from Santiago et al., 2004). This result suggests, contrary to
arguments advanced by NRC (2005) that mild iodide deficiency present in developed countries
is associated with detectable effects that are not fully offset by normal compensatory
mechanisms (including, for example, increased levels of symporter molecules. (The NRC in
discussing the results of this study, complains that the authors did not adjust for parental
socioeconomic or educational status.)

One objection to the NRC (2005) analysis raised by Ginsberg and Rice (2005) is over the
analysis of the data from the key study (Greer et al 2002) of low-moderate perchlorate exposures
on a group, rather than an individual basis. (This is not the same as the “ecological fallacy”
familiar in epidemiology; but it does represent a potential failure to use the data as fully as
possible to most sensitively detect effects that may be most clearly manifest in a minority of
people with different baseline iodide status.) Analysis on a group basis led the NRC to designate
the lowest 0.007 mg/kg dose in the Greer et al study a NOEL on the basis that the 1.8% group
average inhibition of the 7 individuals in that low-dose group was not statistically significantly
different from the 0-dose group. Ginsberg and Rice (2005) note from the individual data that
some individuals in this group with relatively higher observed baseline uptakes (possibly
associated with lower internal iodide concentrations, although this was not measured) appeared
to show a much larger inhibition when exposed to the low dose of perchlorate. A second
objection is that the mathematical formula used for the original analysis by Greer et al. is a
simple empirical log-linear model with no apparent mechanistic justification. We believe that an
improved analysis of the individual data is possible utilizing the raw study data for all dose
groups (made available to us by the Massachusetts Department of Public Health) and the basic
mechanistic formula for competitive Michaelis-Menten inhibition provided in the previous
section. The goal of such an analysis is to illustrate the potential for greater use of basic
mechanistic information in assessing the potential for toxicologically significant interactive
effects in putatively sensitive subsets of the overall human population. Unfortunately time and
space constraints prevent us from
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Figure B-1: Inferences of the Population Change in Median IQ in Relation to Spot Urinary
Iodide Measurements at Age 9
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carrying out and presenting the full mechanistic-based analysis of the individual data in this
general review paper. However, we can briefly illustrate how the mechanistic framework could
be applied to the individual data to shed light on the potential for biologically relevant interactive
effects and assess population implications for possible changes in the population distribution
changes in neurodevelopment as measured by childhood performance on IQ tests.

First it is important to note that the NRC (2005) in its analysis did not completely neglect the
mechanistic competitive inhibition formulae described in the previous section. From the
equations in the main text of the present paper, we should expect,

Absolute iodide transported =
Vmax[I-]

Km{1+[Perchlorate]/Ki} + [I-]

Dividing both sides by an initial concentration of iodide, an Appendix to the NRC (2005) report
correctly inferred from this that the quantity measured by Greer et al. (2002)—the fraction of
radioiodide taken up by the thyroid from a given administered dose should be

Fraction transported =
Vmax

Km{1 +[Perchlorate]/Ki} + [I-]

They then go on to infer that for some specific assumed values of the enzyme “constants” (in
quotes because these could well be variable among individuals) Vmax, Km, and Ki, and a range
of concentrations of iodide, there should be no appreciable interactions of expected iodide levels
with the fraction of iodide transported. The NRC (2005) unfortunately do not document the
source of their symporter constants and fail to analyze the individual Greer et al (2002) data to
assess whether the data could be used to make individual estimates of at least some combinations
of these parameters, and potential for important interactions.

A common approach to analysis of data within the Michaelis-Menten framework is to
take the reciprocal of both sides of the equation, e.g.,

1
Fraction transported

=
Km +[I-]

Vmax
+[Perchlorate]/KiVmax

This form allows the data from each individual to be fit to a straight line with an intercept and a
slope that directly depends on the perchlorate concentrations achieved over time in the body
(presumably directly dependent on the amount of perchlorate administered per body weight). It
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can also be readily seen from this that at low iodide concentration that the fraction of iodide
absorbed should tend toward a constant, as noted by NRC. However, of course, the absolute
amount of iodide transported (and therefore available for hormone synthesis) will still be linearly
dependent on the iodide available. At high iodide concentration, by contrast, the effect of
perchlorate will be reduced, even when stated in terms of the “fraction transported” terms.

Another clear implication of the equation above is that individual differences in “baseline” and
post-exposure measurements (zero perchlorate levels) in the Greer et al. (2002) study data should
give us a direct indication of whether different people differ in their iodide concentrations
enough to change things in relation to Km, or, alternatively, whether there might be individual
differences in Vmax that could affect the slope of the relationship between 1/fraction transported
and perchlorate concentration. The individual data analysis could be strengthened statistically by
including normalized effects from measurements on both “day 2” and “day 14” of exposures; as
well as a revised individual “baseline” from pre- and 15-day post exposure measurements. The
fact that neither the original authors nor the NRC or, as far as we can tell, regulatory agencies
have chosen this path for analysis of the individual data is testimony to the continuing
dominance of the NOAEL/uncertainty factor paradigm based on empirical analyses of group
average data for continuous variables; rather than a new paradigm of mechanistically driven
assessments of the distribution of expected effects in a diverse human population.
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