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Selected definitions and abbreviations 
Replicates: A set of measurements carried out at a single concentration of an analyte, 
close in time and space (e.g., adjacent wells), using common biological materials, reagent, 
and instrumental setting. In the binding assay data to be dealt with in this report, 
replicates are % binding values usually measured in triplicate. 
 
Run: A set of replicates for an analyte(s) over a range of concentrations performed 
together on a single occasion, often with accompanying measurements concurrently 
performed for a reference chemical and positive control. Runs are often performed by 
different technicians and/or on different days. 
 
SE: standard error 
 
LS: least square 
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Executive Summary  
EPA is validating receptor binding assays to be used to screen chemicals for their 
endocrine disrupting potential. One of the goals in the validation is to describe within-
laboratory and between-laboratory variabilities of the assays. It is necessary to determine 
an acceptable level of variability for these assays, and then to demonstrate that  
laboratories obtain results that are within the acceptable level. 
 
In order to ensure low levels of these variabilities, EPA developed performance criteria 
for a rat uterine cytosol estrogen receptor (RUC ER) binding assay. This document 
provides a detailed description of the methods for deriving such criteria so that a new set 
of performance criteria for another assay (or for the same assay based on a new set of 
interlaboratory data) may be developed in the future. 
 
These methods are based on descriptions of within-run, between-run, within-lab, and 
between-lab variations of the estimates of four parameters that describe a chemical’s 
interaction with a receptor of interest. The conventional approach for describing these 
variations was deemed suboptimal, and a new approach was sought and developed. 
 
The interaction between a test chemical and receptor is described by a sigmoidal curve 
showing how much the test chemical displaces a reference chemical as the concentration 
of the test chemical increases.  The sigmoidal curve is represented by four parameters, i.e., 
top plateau level, bottom plateau level, logIC50 (or logEC50) and Hill slope.  The relative 
binding affinity (RBA) of a test chemical for the receptor (relative to the binding affinity 
of the reference chemical) is expressed as logRBA, which is the difference between the 
logIC50 for the test chemical and that for  the reference chemical. Variation of individual 
binding level measurements also is of interest.  
 
The performance criteria that were developed may be separated into two groups, 
accuracy criteria and precision criteria. The accuracy criteria consist of upper and lower 
limits for top, bottom, logIC50, Hill slope, and logRBA estimates. The precision criteria 
include upper limits for within-lab variation of logIC50 and logRBA estimates as well as 
within-run variation of individual binding level measurements.1

                                                 
1 In response to feedback from Dr. Feder (Feder, 2007a, 2007b, 2007c) on an earlier draft of this report 
(Aoki, 2007a), EDSP decided to substantially revise performance criteria numbers in this document. The 
revision was to be performed by Data Coordination Center at Battelle. Some of the methods described in 
this report were to be used in the revision while some other methods were to be replaced by improved 
counterparts chosen by DCC after discussion with EDSP. This report was prepared as a part of contract 
awarded to Yutaka Aoki working as an independent contractor. The original purpose of preparing this 
report was to document his statistical work regarding data from receptor binding assay during his tenure as 
an ASPH Fellow at EDSP. During its preparation, certain needs for additional work were identified, and 
limited amount of additional analyses was performed to enhance the integrity of the report. Dr. Feder’s 
feedback was very thorough and helpful to EDSP’s efforts to produce justifiable performance criteria. He 
identified items in the draft report that require further improvement. In order to preserve the original scope 
of the contract to the extent possible, the revision based on feedback from Dr. Feder was limited to at 
minimum per EDSP’s request. As such, some necessary corrections were made on the text, formulae, etc., 
in the description of methods in Chapters 1 and 2, but the most of numerical results in Chapter 3 generated 
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using the originally developed methods were left unrevised. A separate document (Aoki, 2007b) provides 
responses to main comments in Feder (2007a and 2007c). 
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1 Introduction 

1.1 Overview 
The Endocrine Disruptor Screening Program is developing and validating assays for 
detecting the potential of a chemical to interact with the endocrine system. A group of in 
vitro assays under consideration are called receptor binding assays and have the 
following common features. 
 

• A radioactively-labeled natural ligand is allowed to bind to a receptor  
• A non-labeled test chemical is then introduced at increasing concentrations to see 

how much it takes to displace the radioactive ligand 
 
Whether the displacement occurs at all is the primary outcome to determine. If it does, 
the concentration of the test chemical at which a pre-specified level of displacement 
occurs is estimated as a summary measure of the test chemical’s capacity to displace the 
radioactive ligand, which may be interpreted as a measure of the test chemical’s potential 
to interact with the receptor. 
 
Estrogen receptor (ER) binding assays and androgen receptor (AR) binding assays belong 
to this group. In order to improve precision of the above-mentioned summary measure, it 
is customary to run three replicates side-by-side and combine the results, and to perform 
the experiment three times on different occasions (i.e., perform separate “runs”) rather 
than to perform a single run without replicates. 
 
EPA needs to assure that results from one laboratory are comparable to results from other 
laboratories. For this reason, it intends to place limits on the quality of data collected for 
certain standard2 and positive control compounds that will be run every time the assay is 
performed. In general, we would like the summary measure to be within a reasonable 
range and to have low variability; and for the parameters that describe the shape of the 
concentration-binding relationship to be within biologically- and experimentally-
plausible ranges. In order to derive the various limits to be imposed, a proper method for 
summarizing data across runs within a lab and then across labs by describing data 
variabilities is needed. 
 
A conventional way of summarizing data across runs (and across labs) is to take a simple 
algebraic mean of run-specific (lab-specific) parameter estimate and evaluate its 
variability based solely on the observed variability of such means. It falls short because it 
does not explicitly distinguish within-run variability from between-run variability, or 
within-lab variability from between-lab variability.3 For instance, if results from multiple 
laboratories look like they might be different from one another, it would not be clear 
whether they are truly different from one another, or whether they appear to vary simply 
                                                 
2 The terms “standard chemical”, “standard compound”, etc., are used in this report. They are more 
appropriately termed “reference chemical”, “reference compound”, etc. 
3 Dr. Feder (Feder, 2007b) disagrees with this and state “the conventional method falls short because it does 
not account for correlation within runs or labs.” It seems the disagreement is at a semantic level.  
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because within-lab variation is high. Also, various published assay validation guidelines 
require separate estimations of within-lab and between-lab variabilities. 
 
EPA has developed a method that properly analyzes the two sources of variability 
(within-unit and between-unit) and established performance criteria by applying the 
method to a set of historical data. The performance criteria will be used in an upcoming 
interlaboratory validation study.4 

1.2 Statistical Background 

1.2.1 Raw data 
A typical data set from a single run of a receptor binding experiment (competitive 
binding assay) is shown below. 
 
x: log(concentration of the test chemical, M) 5 
y: Percent binding of indicator ligand (i.e., radioligand) to the receptor  
   
 x y 
 -7.0 0.8 
 -7.0 0.6 
 -7.0 0.0 
 -8.0 11.6 
 -8.0 12.9 
 -8.0 13.1 
 -9.0 59.7 
 -9.0 55.9 
 -9.0 57.6 
 -9.5 79.6 
 -9.5 78.8 
 -9.5 85.8 
 -10.0 98.1 
 -10.0 86.5 
 -10.0 104.4 
 -10.5 104.3 
 -10.5 96.8 
 -10.5 99.6 
 -11.0 104.9 
 -11.0 103.3 
 -11.0 101.7 
 
Data from a competitive 
                                                 
4 As will be discussed later, decisions to not impose some of the derived criteria for the ongoing 
interlaboratory study have been made. This document focuses more on explaining approaches to 
quantitatively describe data variability and use to such quantitative information to derive performance 
criteria rather than which criteria are useful in the light of the agency’s need and therefore should be 
imposed. Some discussion on merits and demerits of subsets of the derived performance criteria will be 
included in this report such that the discussion would be useful for the EDSP when it makes further 
decisions as to which performance criteria should be developed and enforced for the ongoing and future 
interlaboratory studies. 
5 In this document “log” is used to mean "logarithm of base 10" unless otherwise noted. This applies to 
abbreviations such as logIC50, logEC50, and logRBA. 
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binding assay usually are plotted in the format shown above. The curve shown in red is a 
fitted curve to be explained below. For standard chemicals, a pre-specified set of 
concentration levels are used, which typically cover about 4 units in logarithm of base 10. 

1.2.2 Model and parameters 
In order to describe the data, a model is fit to the data. A common choice of model is the 
4-parameter Hill equation model: 

( ' )*1 10 X H

T BY B μ −

−
= +

+ ..................................................................................................1.1 

where 'μ  = logEC50, H = Hill slope, T= top plateau level, B = bottom plateau level. This 
model is consistent with the law of mass action under the assumption that the labeled and 
unlabeled ligands compete for a single binding site (Motulsky and Christopoulos, 2003). 
For the reasons to be explained in Chapter 2, we use the following equation, a modified 
version of the standard equation:  
 

[( )* log( 1)]
501 10
T BX H

B

T BY B
μ −
− + −

−

−
= +

+
..........................................................................1.2 

where μ   = logIC50.   
 
The parameter of primary interest is logIC50, 
which is defined as x at which y is 50%. On 
the other hand, logEC50 is x at which y = 
(B+T)/2, i.e., the midpoint between the top 
and bottom of the curve. The difference 
between these two parameters is illustrated 
in Figure 1.2. 
 
The four parameters are estimated using a 
nonlinear regression to be discussed in detail 
later. It should be noted that the collected 
data do not always allow estimation of μ̂  
because sometimes the underlying curve does not cross a horizontal line at y = 50%. 
However, even for such cases, logEC50 may be estimated.6 

                                                 
6 Note that logIC50 and logEC50 each has a unit of log(concentration in moles/liter), and there are 
counterparts for these expressed in a unit of absolute concentration, i.e., IC50 and EC50. For the reasons 
explained in Chapter 2, the use of IC50 and EC50 when evaluating variability and setting up performance 
criteria is to be generally avoided. We use logarithms of base 10 of IC50 (or EC50) instead. 
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Figure 1.2 logEC50 and logIC50 
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1.3 Statement of the problem 

1.3.1 Need for accuracy and precision 
EPA is considering defining a binder in terms of bottom plateau level and/or logIC50 for 
each chemical.  In addition, logIC50 may be used as a measure of binding affinity 
(relative to a standard whose IC50 is also measured). Both of these need to be estimated 
with sufficient accuracy and precision. Note that these terms, “accuracy” and “precision”, 
are used with a specific statistical meaning as described below. For a given true value of 
a parameter, e.g., μ , accuracy has to do with ˆ( )E μ μ−  (i.e., “expectation of μ̂ ” minus μ  
or its true value) or bias, and precision has to do with standard error of ( μ̂ ) where μ̂  is 
an estimate of μ .7 An ideal estimate would be both very accurate and precise.  
 
The logIC50 estimates may vary widely across chemicals, but for well-behaved chemicals 
such as standards, the estimates of the other three parameters are supposed to be within a 
relatively narrow range. Theoretically, a true one-site competitive binder should produce 
data consistent with a top plateau of 100 %, bottom plateau of 0%, and Hill slope of -1. 
Deviation from these biologically plausible values for standards indicates problems 
regarding the data and renders the data suspicious. Thus a check for these parameters 
would be useful in ensuring data quality, but this can only be done using well-
characterized standard and control chemicals. The curve fitted to data on estradiol, a 
natural ligand of the ER receptor, should have parameter estimates close to these default 
values if experiments are performed properly. Estradiol is a standard compound for the 
ER binding assay and will be tested concurrently with any test chemical. Sufficiently 
high accuracy of estimates of these three parameters for estradiol should be demonstrated 
by laboratories that participate in the screening of chemicals. 
 
A summary measure called the logarithm of the relative binding affinity (logRBA) may 
be estimated for a test chemical. logRBA is defined as follows: 
 
logRBA = (logIC50 for estradiol) - (logIC50 for test chemical) 
 
A large logRBA value for a chemical indicates it has strong affinity with a receptor 
relative to the standard. Performance criteria for logRBA can be established for a specific 
positive control, e.g., norethynodrel, relative to estradiol for the estrogen receptor binding 
assay. Criteria for logRBA of a positive control might ultimately turn out to be more 
useful than that for logIC50 since logRBA may be used as a primary measure of binding 
affinity for chemicals of unknown binding affinity. LogRBA would be unchanged when 
there is a parallel shift in logIC50 for the standard and that for the positive control as may 
occur when there are differences in dilution and other techniques that would be consistent 
within one lab, but differ between labs. 
 
Discussions so far have dealt with EPA’s need for accuracy of parameter estimates. EPA 
also needs to ensure precision of key parameter estimates. In other words, we would like 

                                                 
7 In general θ̂  is used as shorthand for an estimate of parameter θ  and is read as “theta hat”. 
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ˆ( )SE μ  to be small. Specifically, precision of logIC50s for the standard and test chemicals 
is of EPA’s interest in that the precision of logRBA of an unknown, which is more 
meaningful than the logIC50 for the unknown, is largely determined by precision of the 
logIC50s. EPA also considered imposing a criterion for precision for replicates (i.e., an 
upper limit for variation in individual replicates measured at the same concentration in a 
single run), which we call within-replicate-set variability. This measure of variability can 
be estimated after each run, rather than after three runs, it would have use as a 
preliminary checkpoint for data variability. Imposing a limit for within-replicate-set 
variability potentially is a simple and efficient way to ensure data quality. We could also 
impose limits for between-replicate-set variability in y given x and total variability in y 
given x. 
 
To summarize, the need for the following components of performance criteria was 
recognized and procedures for deriving them were developed. 
 

Table 1.1 Components of performance criteria 
Parameter Accuracy criterion Precision criterion 
logIC50 (μ ) min maxˆμ μ μ< <  ˆlog( ( ))SE μ  < Max 
Top (T ) min maxˆT T T< <  Not derived 
Bottom ( B ) min maxˆB B B< <  Not derived 
Slope ( H ) min maxˆH H H< <  Not derived 
logRBA ( ρ ) min maxˆρ ρ ρ< <  ˆlog( ( ))SE ρ  < Max * 
Within-replicate-set variation of 
y 

Not applicable SDwithin-replicate-set(Y) < Max 

Between-replicate-set variation 
of y given x  

Not applicable SDbetween-replicate-set(Y) < Max 

Total variation of y given x  Not applicable SDtotal-between-replicate-set (Y) < 
Max 

* Only for positive control 
 

1.3.2 Issues in interpreting and estimating variability between runs 
and between laboratories 

1.3.2.1 Terminology 
 
Terminology for specifying data variabilities is somewhat confusing because there is a 
hierarchical structure in the data from receptor binding experiments and it is not always 
clear to which level of the structure a particular term is referring. Even for a seemingly 
straightforward term such as “between-run variability” there is more than one 
interpretation. Consistent use of clearly-defined terminology is essential in discussion on 
data variability in our context. 
 
The confusion arises from the fact that the variability observed across multiple units of 
observation such as runs or laboratories generally has two components. To illustrate this, 
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let us take a look at overall between-run variability. Under the assumption of 
independence between the two right-hand side terms, the following relationship generally 
holds: 
 

Overall (total) between-run variability = intrinsic between-run variability + 
within-run variability 

 
To understand this properly, it is illuminating to consider a special case where the true 
“intrinsic between-run variability” is zero. That is, all runs have a common true mean and 
the sole source of variation is within-run variation (data with this feature can be 
artificially created by performing an experiment in nine replicates then dividing the entire 
set into three sets of triplicate data each.) In this special case, although the true intrinsic 
between-run variability is zero, the observed overall between-run variability usually takes 
a non-zero value. The true overall between-run variability in this situation is equal to the 
true within-run variability. 
 
In more general situations where intrinsic between-run variability is not zero, the 
observed overall between-run variability, assessed from variability across three run-
specific means, most of the time would not be greater than the observed within-run 
variability. In principle, we can estimate the intrinsic between-run variability by 
estimating the overall between-run variability from the observed data first and then 
subtracting from it the contribution of within-run variability. It is possible that the 
observed between-run variability may even be smaller than the level expected from the 
observed within-run variation. In that case, our estimate of intrinsic between-run 
variability is set or truncated to zero. 
 
Turning our attention to between-lab variability, we have: 
 

Overall (total) between-lab variability = intrinsic between-lab variability + 
overall within-lab variability 

  
The following equation relates the two equations above to each other. 
 

Overall (total) between-run variability = Overall within-lab variability 
 
By combining the three equations given above, we get: 
 

Overall (total) between-lab variability = intrinsic between-lab variability + 
intrinsic between-run variability + 
overall within-run variability 

 
That is, overall between variability at a level of the hierarchy is addition of the intrinsic 
between variability of the hierarchical level in question, intrinsic between variability at 
the lower level(s) of hierarchy, and within variability at the lowest level of hierarchy. 
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In discussion of between-run or between-lab variability, the distinction between the 
overall between variability and intrinsic between variability often is vague. There is a 
tendency for a non-statistical data analyst to interpret the observed overall between-run 
variability as a proxy for intrinsic between-run variability. The observed overall between-
run variability and intrinsic between-run variability are generally not the same when 
within-run variability is large relative to intrinsic between-run variability. Thus, the 
contribution of the within-run variability to the overall between-run variability cannot be 
ignored. Similar caution applies to overall between-lab variability, intrinsic between-lab 
variability, and within-lab variability. 
  

1.3.2.2 Limitations in the conventional approach to estimating 
variability between laboratories 

One of the general goals in assay validation is to assure low data variability. An ideal 
assay would have low variability at all hierarchical levels of analysis. One way to assure 
this is to establish a low level of overall between-lab variability, which is a sufficient 
condition for low variability at all levels. Low overall between-lab variability implies that 
all of the three components (intrinsic between-lab variability, intrinsic between-run 
variability, overall within-run variability) are low. When this is true, a method for 
assessing variability that is primarily based on the overall between-lab variability is 
conceivable.  
 
This approach of focusing only on overall between-lab variability, which shall be referred 
to as the conventional approach hereafter, has a few limitations. The first limitation is that 
it provides no information about where the source of variability lies.  If overall between-
lab variation is found to be high, we would conclude that additional efforts to improve the 
assay in terms of variability is necessary, but merely knowing that the overall between-
lab variability is high does not provide any guidance as to how to control it. With 
additional information on a major source(s) of the variability, it would be possible to 
target efforts towards reducing variability in the source(s). Knowing the relative 
contributions of the three aforementioned sources of variability is useful for such 
targeting. 
 
There is another shortcoming of the conventional approach. If we use the observed 
overall between-lab variability alone, ignoring the observed within-lab variability when 
estimating the overall between-lab variability, we tend to underestimate the true 
underlying level of overall between-lab variability in certain situations (to be discussed in 
detail in “2.8.2.2 Underestimation of between-unit variability in the conventional 
method”).  

1.4 Proposed solutions 

1.4.1 Estimate between-lab variability via the DerSimonian/Laird 
model 

A relatively simple statistical method is useful in overcoming the limitations described 
above. The DerSimonian and Laird random effects model (DL model) (DerSimonian and 
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Laird, 1986) allows estimation of intrinsic between-unit variability, which then can be 
combined with conventional estimates of within-unit variability to produce a good 
estimate of overall between-unit variability. 
 
Let’s take an example of summarizing logIC50 across runs (and then across labs) to 
illustrate the use of the DL model. The DL method can be used to summarize estimates of 
the three other parameters of interest, i.e., top plateau level, bottom plateau level, and Hill 
slope. Suppose we have the following data from a single lab. SE(logIC50) is standard 
error of “logIC50 for each run” or “run-specific logIC50”. 
 
 Run logIC50 SE(logIC50) 
 1 -9.02 0.40 
 2 -9.41 0.33 
 3 -8.50 0.21 
 
Fitting the DL model to these data generates an overall summary logIC50 of -8.93 with SE 
of 0.30. Intrinsic between-run variability expressed as standard deviation is estimated to 
be 0.42. This estimate is not available through the conventional approach, which would 
compute standard deviation (standard error) for three logIC50 observations as an estimate 
of overall between-run variability using a regular formula, ignoring SE(logIC50) of each 
run. Exactly how the DL model computes these is to be discussed in Chapter 2. 
 
Let’s say the above results were reported by lab 1. Suppose data from two other 
laboratories (lab 2 and lab 3) also are summarized in a similar manner, and the following 
is obtained. (SE(logIC50) denotes standard error of  “logIC50 for each lab” or “lab-specific 
logIC50”): 
 
 Lab logIC50 SE(logIC50) 
 1 -8.93 0.30 
 2 -9.20 0.15 
 3 -8.71 0.14 
 
The same method that was used to summarize results across runs can be applied to these 
results to summarize results across labs, giving an overall summary logIC50 of -8.95 with 
SE of 0.18. Intrinsic between-lab variability expressed as standard deviation is estimated 
to be 0.24. This estimate of intrinsic between-lab variability again is not available 
through the conventional approach.8 

                                                 
8 In the conventional approach, estimates of overall between-run variability and overall between-lab 
variability are computed without using run- or lab-specific SE(logIC50). In order to grasp a potential 
problem with this disregard, consider another data set for three labs similar to but different from the one 
shown above. Suppose this second data set has the same logIC50 but its SE(logIC50) values are the above 
values multiplied by a very large number. Note that the multiplication factor could be set large enough to 
make the estimate of intrinsic between-lab variability to be truncated to zero. If we further increase the 
multiplication factor, the estimate of overall between-lab variability could be made arbitrarily large, greater 
than the level estimated by the conventional method. Let’s say the second data set has such a huge within-
lab variability. From these two data sets, the conventional approach would compute the same estimate of 
overall between-lab variability no matter how large the within-lab variability is. Intuitively, the overall 
between-lab variability in the second data set should be greater than that in the first data set because of 
much greater within-lab variability in the second data set. As explained in detail in “2.8.2.2 
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The SE is for the mean over three labs; therefore, the standard deviation (SD) of logIC50 
reported by any given lab drawn from the universe of laboratories from which these three 
labs are selected is 0.18 * sqrt(3). In general, if the SE for the overall mean is calculated 
across k labs, 
 
SD(lab-specific logIC50) = SE(pooled mean logIC50 from  labs) * sqrt( )k k ................. 1.39 

  
The measure of variability we use here is SD, which describes the distribution of logIC50s 
reported by individual labs, not the distribution of the pooled mean of the logIC50s from 
multiple labs. 

1.4.2 Deriving accuracy performance criteria 
Let’s say we have data from several laboratories that we deem acceptable and calculated 
SD(logIC50). Using this SD, which is a measure of between-lab variability, along with the 
overall mean logIC50, we can describe a distribution of logIC50s reported by a lab drawn 
from a universe of laboratories from which these several labs were drawn. From this 
distribution, we can expect that the logIC50 from a lab from this universe would fall in the 
following range 80% of the time.10 
 

50 0 90 50(Overall mean logIC ) ± (t * 1+1/k*SD(lab-specific logIC )) ................................. 1.411 

                                                                                                                                                 
Underestimation of between-unit variability in the conventional method”, the conventional approach-based 
estimate of the overall between-lab variability is likely to underestimate the true underlying level of overall 
between-lab variability when within-lab variability is relatively large compared to the between-lab 
variability, like in the second data set. 
9 Dr. Feder pointed commented as follows (Feder, 2007b). “This is approximation. It is exact when the 
within-lab component of variability is constant across labs. Otherwise, strictly speaking a standard 
deviation is not really defined.” It would be worthwhile to see if the exact method (one way heterogeneous 
ANOVA) proposed by Dr. Feder (2007c), which does not assume within-lab variability being constant 
across  labs, would generate much different results. If the difference is small, it would be justified to use the 
approximation. Also, although heterogeneity of within-lab variability is noticeable in our current data for 
logIC50 whether the statistical evidence for the heterogeneity is strong or not has not been assessed to my 
knowledge. The argument for using the exact method would be strengthened by empirically demonstrating 
the violation of the constant variability assumption using real data. It is suspect that the power to detect 
heterogeneity may be  rather limited given the size of available data, i.e., data are available only up to four 
labs. 
 As a related topic, to my knowledge the assumption of constant within-run variability across runs within a 
lab has not investigated either. Since there are 3 to 12 runs per lab, the power for detecting across-run 
heterogeneity would be better than that for detecting across-lab heterogeneity. If the assumption is found to 
be violated, the use of one way heterogeneous ANOVA would also be necessary when summarizing results 
across runs within a lab. 
10 Different levels of probability coverage for different parameters. Our original choice of 80% for logIC50, 
rather than 95% that was used for top, bottom, and Hill slope parameters, was the result of the EDSP’s 
initial desire to tightly control accuracy of logIC50. When the probability of 90% or 95% was used for 
deriving the acceptable range for logIC50, the width of range appeared to be too wide and unsatisfactory. In 
contract, the range based on the 80% probability coverage appeared satisfactory. 
11The formula 1.4, which is a prediction interval, was a corrected version proposed by Dr. Feder. The 
following formula that appeared in previous drafts, 
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We can compare a particular logIC50 reported from a new lab to this range to decide 
whether we would deem it as acceptable or not. Either of the following actions may be 
taken based on this comparison: 
 

• Accept the lab if the lab’s logIC50 falls in the range 
• Reject the lab if the lab’s logIC50 falls outside of the range 

 
This would ensure that we would be accepting a lab, with a probability of 80%, if it 
belongs to the set of all labs which are similar in competence to the labs which generated 
the data from which the logIC50 and SD performance criteria were derived. 
 
With some necessary modifications to how to estimate SD, this general approach may 
also be applied to logRBA. 12 
 
In order to set performance criteria for estimates of the three other parameters of interest, 
e.g., top plateau level, a slightly modified version of the above-described method can be 
used. As mentioned earlier, the estimate of these parameters for each run should be 
within a relatively narrow range (for typically behaving one-site competitive binders such 
as the reference chemicals), and imposing performance criteria on an estimate from a 
single run, rather than an estimate based on multiple runs from a lab, is desired. For 
example, a relevant measure of spread for deriving performance criteria for an estimate of 
parameter T (top plateau) would be 
 
SD(run-specific T) = SE(pooled mean T from 3 runs)*sqrt(3) ..........................................1.5 

Using this measure of spread, a performance criterion in the form of lower and upper 
95% limits13 is computed as 
 

0 975(Overall mean T) ± (t * 1+1/k*SD(run-specific T)) .......................................................1.6 

                                                                                                                                                 
50 0 90 50(Overall mean logIC ) ± (Z *SD(lab-specific logIC ))  

is incorrect. This is the most important correction proposed by Dr. Feder and the reader of this 
document should avoid the use of the incorrect formula. The use of t0 975 instead of Z0 975  is suggested 
because the SD is unknown and estimated from the data. The degree of freedom based on Satterthwaite-
type approximation is after Hartung and Makambi (2001) according to Feder (2007a, 2007b, 2007c). The 
inclusion of 1/k in the square root term is to account for uncertainty around the estimated mean. 
11 Dr. Feder stated that log(SE(logIC50))  “is more nearly Normally distributed [than SE(logIC50)], and so 
the asymptotic method will work better in small sample sizes.” 
12 To be described in “2.5.2 logRBA”. 
13 Some rationale for choosing the probability coverage among alternatives, e.g., 95% vs. 80%, is explained 
in “3.5.5 logRBA”. A notable difference between the above-mentioned example of logIC50 and the example 
of T (top plateau parameter) is that in the former the lower and upper limits were derived for a pooled mean 
of logIC50s from 3 runs while in the latter the lower and upper limits were derived for a top plateau estimate 
from a single run. 
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1.4.3 Deriving precision performance criteria 
As mentioned earlier, we also need precision criteria for logIC50, logRBA, and within-run 
variability of individual y measurements.  

1.4.3.1 Performance criteria for variability of logIC50 and logRBA 
estimates 

A measure of within-run variability for logIC50 is SE(logIC50) reported for a single run. 
Since SE(logIC50) > 0, it makes sense to work on log(SE(logIC50)),14 which we shall call 
λ . We can impose an upper limit for λ  to ensure acceptable precision for logIC50. Since 
small λ  is a good feature, there is no need to impose a lower limit for λ . 
 
Theoreticallyλ  can be summarized across runs and across labs in a manner similar to 
how we establish limits for four parameters in the Hill equation model. An problem here 
is that SE(λ ) is not readily available in output from a nonlinear regression. In order to 
overcome this, a Jack-Knife method of estimating variance may be used.15 A detailed 
discussion of this method will be given in “2.2.4 Jack-Knife variance estimation”.16 
 
Once SE(lab-specificλ ) is obtained, a performance criterion for λ  in the form of an 
upper limit for 90% prediction interval can be set as 
 

0 90(Overall mean ) + (t * 1+1/k* SD(lab-specific ))λ λ ........................................................1.7 

Procedures for deriving an upper limit for log(SE(logRBA)) are similar. 
 

1.4.3.2 Performance criteria for within-replicate-set variability of y 17 
Another measure of precision on which we would like to impose an upper limit is within-
replicate-set variability of individual y measurements. This within-replicate-set 
variability can be represented by log(SDwithin-replicate-set(Y)), which we call ν (nu). 
 

                                                 
14 Dr. Feder commented  log(SE(logIC50))  “is more nearly Normally distributed [than SE(logIC50)], and so 
the asymptotic method will work better in small sample sizes.” 
15 Dr. Feder proposes the use of delta method in place of Jack-Knife method (Feder, 2007b, page 27). I 
agree with his preference for delta method based on its ease of computation. This point applies to all 
occurrence of the proposed uses of Jack-Knife throughout the document. Although delta method as used in 
this context is considered as a simple procedure by DCC, it involves the use of not widely-known 
Satterthwaite approximated degrees of freedom after Hartung and Makambi (2001). If the Hartung and 
Makambi method  is to be used by DCC on a regular basis, EDSP would benefit from having easy-to-
follow instructions as to how it is performed. 
16 The standard error of a parameter estimate is the square root of the variance of the parameter estimate.  
17 Please note that in the revision of performance criteria numbers mentioned in footnote 1 the approaches 
described in Sections 1.4.3.2 and 1.4.3.3 was to be largely abandoned and an alternative  method similar to 
the one used for the four Hill equation parameters was to replace those approaches. Dr. Feder thought that 
the justification for the methods described in Sections 1.4.3.2 and 1.4.3.3 was unclear. These methods were 
developed based primarily on EDSP’s desire in the past to control precision of logIC50 estimates. Now 
EDSP has lost such a desire, it makes sense to use a method comparable to the one chosen for other 
parameters. 
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An approach somewhat different from the approaches taken for other parameters was 
taken to derive the upper limit for ν . In short, the limit can be set by translating the upper 
limit for λ  (i.e., log(SE(logIC50))) to that for ν  using an empirical relationship between 
ν  and λ . 
 
Through analysis of historical data for the RUC ER binding assay it was noted that ν  and 
λ  are positively correlated. Since the parameter estimate of ultimate interest is logIC50, 
our main target for precision control is log(SE(logIC50)), i.e., λ . To the extent that ν  and 
λ  are positively correlated, keeping ν  low ensures low λ  as well. 
 
As discussed earlier, a method for deriving an upper limit for λ  has been developed. The 
positive correlation between ν  and λ  allows us to translate the upper limit for λ  into 
that for ν . 
 

1.4.3.3 Performance criteria for overall and between-replicate-set 
variabilities of y given x 

We also consider setting upper limits for total variability and intrinsic between-replicate-
set variability of individual measurements of binding at a given concentration. The 
relationship between these two variability measures and within-triplicate-set variability, 
which was discussed in the previous section, is similar to that described for SE(logIC50), 
that is, 
 

Overall (total) variability = intrinsic between-replicate-set variability 
 + within-replicate-set variability 

 
Intuitively, the total variability of binding measurements at a given concentration would 
be most closely associated with the standard error of the lab-specific logIC50. This is 
because the standard error of the lab-specific logIC50 is a function of mean square errors 
from the nonlinear regression fitted to the data. The mean square errors would equal the 
total variability of y given x as long as the condition that the mean of y at a given x on 
average equals the level expected from the underlying curve.18 This forms a basis for 
setting up an upper limit for the total variability in binding at a given concentration.  
 
It was noted while analyzing the historical data that the intrinsic between-run variability 
in logIC50 contributed more to the within-lab variability of the logIC50 than did its other 
component, within-run variability. Intuitively the between-replicate-set variability be 
more closely correlated with the intrinsic between-run variability in logIC50 than within-
replicate-set variability. Therefore, setting an upper limit for the between-replicate set 
variability is also an option. 
 

                                                 
18 This condition may not hold if the expectation of Y given x systematically differs from the expected level 
in the underlying curve. Such systematic difference is possible, but there is no strong reason to suspect that 
such differences exist. It would be of interest to investigate this in the context of regression diagnostics. 
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A counter-argument for setting these upper limits is that SE(lab-specific logIC50) can be 
estimated with the same data that are used in estimating between-replicate-set variability 
in binding at a given concentration. If keeping SE(lab-specific logIC50) low is one of our 
ultimate goals, directly controlling it rather than through controlling total or intrinsic 
between-replicate-set variability in binding at a given concentration may be more 
straightforward and justifiable. 
 
Nonetheless, the capacity to estimate within-run and between-run, as well as the total 
variability in binding at a given concentration, may be useful when it is difficult to locate 
laboratories that have sufficiently small standard errors on the logIC50. Knowledge of an 
individual laboratory's within-replicate-set and between-replicate-set variability in 
binding measurements at a given concentration allows us to modify the protocol for a 
substandard lab, such that it would generate sufficiently precise data (i.e., require 
additional replications if its within-replicate-set variability is exceedingly high, or require 
additional runs if its between-replicate-set variability is exceedingly high).19 

                                                 
19 Dr. Feder commented on this paragraph as follows. “I disagree. A lab cannot make up for producing 
imprecise or inaccurate results by producing more of them! Better to find out why the lab is more variable. 
Standard assay should require a specified number of replications.” I am not proposing that we should 
routinely allow labs to increase number of replications/runs as a kind of “loophole” for poorly-performing 
labs. This is proposed as a last resort when an agency is desperate to secure many enough acceptable labs. 
This situation might arise if data variability remains to be too high even after exhaustive attempts to 
improve an assay protocol. In such a case, it might be necessary to increase the specified number of 
replications/runs for any lab. I agree it would be better to investigate the reason for a exceeding high 
variability for a given lab, but with limited resources an agency may not be able to do so. 
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2 Statistical Methods 

2.1 Basic assumptions 

2.1.1 Input data specification 
Input data for the dependent variables should be standardized and expressed as “% 
binding of the reference ligand to the receptor”. Concentration of a standard/test chemical 
is expressed as log(concentration). Generally speaking, the use of concentrations and 
IC50s  on absolute scales shall be avoided, primarily because the modeling equation of 
choice includes log(concentration), not concentration itself (see modified Hill equation, 
equation 1.2).20 By fitting the model to the data using nonlinear regression, we obtain an 
estimate of the logIC50, not the IC50 itself, along with its standard error.21 
 
The chemical concentration levels and the number of replicates at each concentration 
must be specified for the chemicals (viz., reference standard and positive control) for 
which performance criteria are to be set. If data were collected at a greater number of 
concentration levels than specified in the protocol, the standard error for each of the 
parameters of interest on average would be smaller. The same is true if a greater number 
of replications were used at each concentration. Also, some concentration levels are more 
informative in estimating certain parameters. For instance, data collected at concentration 
levels near the true logIC50 are particularly informative for logIC50 estimation, and data 
collected at very low concentration levels are generally more informative for estimating 
top plateau levels. In general, data to be used for describing data variability and setting 
performance criteria should conform to protocol specifications regarding concentration 
levels and number of within-run replications at each concentration.  

2.1.2 Method for model fitting 

2.1.2.1 Model equation 
Conventionally the following equation, called the 4 parameter Hill equation or 4 
parameter logistic equation, is used to describe single-site competitive binding data. 

                                                 
20 Dr. Feder comments as follows. “No! I agree with the statement but not the rationale. Distribution of 
log(IC50) is more nearly normal than that of IC50 so asymptotic distribution theory works better.” I do not 
think my version of rationale is incorrect. I argue that the reason why distribution of log(IC50) is more 
nearly Normal is because the Hill equation has log(concentration) not concentration as a right hand-side 
variable. The log(concentration) is used in part because its use would make the distribution of residuals 
more nearly Normal. That is, the two versions of rationale complement, rather than contradict, with each 
other. 
21 There is a tendency for experimentalists to prefer expressing concentration on absolute scales, including 
the use of IC50 rather than logIC50 . In order to summarize IC50 estimates across labs, we would need 
SE(IC50). Note that is it incorrect to compute SE(IC50) as 50SE(logIC )10   We can more correctly obtain 
SE(IC50) using a delta method, but the SE(IC50) obtained thereby is not ideal, since the sampling 
distribution of the IC50 would not be symmetrical. It would be acceptable to perform all the analyses on the 
log scale and translate the final results back into IC50. Dr. Feder recommends that we calculate “boundary 
for logIC50 and then exponentiate them” and asserts that “[t]his is the standard approach. This approach is 
exactly what I meant in the previous sentence. 
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where 'μ  = logEC50, H = Hill slope, T= top plateau level, B = bottom plateau. EC50 is the 
"effective concentration, 50%"—that is, the concentration at which binding = (B+T)/2, 
and is represented graphically as the x-coordinate of the vertical mid-point of the curve. 
This parameter is of limited use for chemicals for which the bottom plateau is not 0 % 
and the top plateau is not 100%, because the % binding corresponding to the EC50 
changes according to the locations of the bottom and top plateau.  
 
In order to compare binding affinities of different chemicals, we would like a summary 
measure that allows one to represent the concentration associated with a specific, 
standardized level of binding. For a level of 50%, this concentration is called the IC50 
("inhibitory concentration, 50%") and represents the concentration at which 50% of a 
reference ligand is displaced from the receptor by the competitor.  It can be estimated by 
fitting the binding data to the following equation. 
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where μ   = logIC50.  
 
The difference between logEC50 and 
logIC50 , and the reason that logIC50 is 
the preferred quantity to use for 
comparing binding affinities across 
chemicals, are illustrated in Figure 2.1. 
The four solid curves shown all have the 
same logEC50 at -7.5 and would be 
regarded as having the same binding 
affinity if we use logEC50 as a measure of 
affinity. They, however, differ in terms 
of logIC50. No logIC50 exists for  
the dashed curve (see the next paragraph). 
The three solid curves have different logIC50s with the chemical having the lowest 
bottom plateau also having the lowest concentration at which 50% of the reference ligand 
is displaced from the receptor (that is, the smallest logIC50). 
 
It should be noted, though, that the logIC50 is not perfect since we cannot estimate 
logIC50 for a chemical whose curve does not cross the 50% level of reference-ligand 
binding (in the figure, the upper most, dashed curve ), and we will not be able to compare 
its logIC50 to those for the other curves in figure 2.1. In other words, the logIC50-based 
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model cannot be fit to the data for a chemical of this sort. A logEC50-based model still 
could be fit to the data of this kind, allowing us to document bottom, top, and slope of the 
curve. The two approaches, one based on logIC50 and the other on logEC50, are 
complementary and have their own merits and demerits. 
 
The problem associated with ranking chemicals using logEC50 is illustrated again in 
Figure 2.2 using two underlying curves with different Hill slope values. 
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Figure 2.2 Advantage of logIC50 over logEC50 

 
Curve A is above (or right) of the curve B at any x, indicating the former is less potent 
than the other.  The logIC50 for A is higher than that for B, properly reflecting this 
relative relationship between the two curves. The logEC50 for A, however, is lower than 
that for B and if it were being used as the indicator of relative binding affinity we would 
improperly conclude that the chemical represented by curve B is a stronger binder than 
the chemical represented by curve A. 

2.1.2.2 Parameter estimation by nonlinear regression 
In fitting either model to the data and estimating the four parameters, a nonlinear 
regression method is used. This procedure usually is available in regular commercial 
software. Using the logIC50-based equation, the statistical model for the nonlinear 
regression is expressed as follows, 
 

[( )* log( 1)]
501 10
T BX H

B

T BY B
μ

ε−
− + −

−

−
= + +

+
.................................................................2.1 

 
where ε  is an error term. Typically, parameter estimation is performed via the least 
squares procedure, i.e., by finding the values of the four parameters that minimize the 
residual sum of squares, assuming ε  is independently and identically normally 
distributed.22  

                                                 
22 Some software provide an option for log-normal error or other error structure, but as explained in 
“2.1.2.5 Homoskedastic error structure” below we chose to assume Normal distribution. 
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The least squares method may not be the best estimation procedure for receptor binding 
data because it treats all data points equally even though the data may contain outliers (or 
exceptional data points), which intuitively should be somehow downplayed. By giving 
smaller weight to outliers we may be able to improve the accuracy and precision of the 
estimate. This may be achieved by using a so-called "robust" regression method such as 
the iterative re-weighted least square method.  Investigation of whether the use of robust 
regression would considerably improve estimation of parameters from datasets likely to 
be encountered in screening chemicals for receptor binding is beyond the scope of this 
report. 
 
It may be argued that fitting the logEC50-based model rather than the logIC50-based 
model would be preferable since that model could be fit irrespective of the bottom 
plateau level. This position is aided by the fact that the logIC50 and its standard error may 
be derived from the logEC50 and the other three parameters as 
 

( )ˆ ˆlog ( 50) (50 )
ˆ ˆlog IC50 ˆ

T B

H
μ μ

− −
′= = − ...........................................................................2.2 

 
where μ̂′  = logEC50. SE( μ̂ ) may be derived by the delta method.  It has been confirmed 
that the logIC50 results from logIC50-based regression and those from logEC50-based 
regression followed by the delta method agree completely at least in Stata, a statistical 
package. The same is likely to be the case for other statistical packages. 
 
The reason we did not choose this logEC50-model-based logIC50 estimation as the default 
approach is a practical one. Although the delta method is usually available in regular 
commercial statistical software packages such as SAS and Stata, these packages may not 
always be accessible to the laboratories that perform the receptor binding assay. For 
instance, a curve-fitting package called GraphPad Prism (version 4) that is widely used 
for analysis of receptor binding data does not have this generic delta method. 
 
Although there is a practical disadvantage to the approach based on the logEC50-based 
regression equation, its use should be kept in mind. 

2.1.2.3 Constraints for parameters 
Commercial software for model-fitting sometimes includes an option of “fixing” certain 
parameters in nonlinear regression by way of a built-in, simplified form of a general 
equation. For instance, the bottom, top, and slope parameters could be fixed to 0, 100, 
and -1, respectively, giving rise to the following equation. 
 

'

100
1 10XY μ−=
+ ...................................................................................................................2.3 
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This kind of option often is available also under an option of “parameter constraints”, 
which allows us to force a parameter to be a constant or to fall in a range, e.g., bottom > -
10%. In general, constraints like this should be avoided 23 Their use gives a false sense of 
security regarding the precision of parameters for which no constraint was imposed. In 
certain situations, constraints imposed on parameters may bias estimates of other 
parameters. 24 

2.1.2.4 Error structure assumption 
As mentioned earlier, independently and identically distributed (iid) Normal error 
structure is assumed in the regular form of nonlinear regression we apply to receptor 
binding data. Other forms of error structure such as log-Normal and Poisson are possible. 
 
For a given error structure the best weighting scheme is implied. No weighting or equal 
weighting is the best weighting scheme for iid Normal error. For log-Normal and Poisson 
distributions of error, weighting by 1/Y2 and 1/Y, respectively, is optimal. 
 
EDSP has found it justifiable to assume that the error structure of receptor binding data is 
Normal rather than log-Normal or Poisson, and to use equal weighting. The basis for this 
position is two-fold. The first, a practical reason, is that the alternative error structures, 
where the error is assumed to be proportionate to a function of the response variable, 
could not be handled properly in certain widely used commercial software such as 
GraphPad Prism.25 The second reason, an empirical one, is that there is evidence that the 
error structure is better described as Normal rather than Poisson or log-Normal.  
 
Practical reason: The alternative error structure calls for a weighted nonlinear regression. 
Weights are supposed to be positive, but the actual weights may be calculated as a 
negative number when an observed response is negative. This happens when a Poisson 
error structure is specified and there are negative y values. When faced with negative 
weights, software may stop, issuing an error message. 
 

                                                 
23 Dr. Feder comments as follows. “We can do goodness-of-fit test to see if the constraints are appropriate.” 
If this is a suggestion that goodness-of-fit test be performed routinely using some selected (set of) 
constraints such as top = 100% or slope = -1, then I would disagree mainly because of the reason stated in 
the following sentence. Routinely applying different constraints and testing which constraints are 
appropriate also seem impractical. 
24 Dr/ Feder suggests that the phrase, “(only if the constraints are not valid)”, be inserted here.  
25 Dr. Feder states “This is not a good reason… There are workarounds in Prism…” I believe the 
“workaround” referred here is the method of adding a (arbitrary) small positive constant (say, c) to all % 
binding values and specify weighting scheme of choice in nonlinear regression for fitting a Hill equation. 
This would require estimating logIC50+c in place of logIC50. The procedure for choosing an appropriate 
value of the constant c is not self-evident. The constant needs to be greater than absolute(the smallest 
observed  % binding value”) when the smallest observed value is negative. It does not seem justifiable to 
use a pre-set constant for all experiments for different labs as error structures would very across labs (and 
potentially between runs, within lab). These would mean the constant needs to be chosen for each run (or 
lab). There would be certain arbitrariness in the process of choosing the constant. The approach of using 
non-weighted procedure also would be deemed arbitrary given uncertainly regarding the true error structure. 
Given these considerations, it seems that the use of “adding a positive constant” procedure seems 
excessively cumbersome while it is not certain how much reduction in arbitrariness its use can achieve. 
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Empirical reason: In order to assess error structure, we would fit an appropriate model, 
obtain residuals, and examine the relationship between the squared error at a given 
concentration and E(Y) at the concentration. (See the next section for how this is done.) 
When this relationship was examined in the historical RUC data, there was little evidence 
that the error structure was log-Normal. The observed structure was something in-
between Poisson and Normal, slightly closer to Normal. As such, SD( ˆy-y ) is assumed to 
be constant across varying y.26 

2.1.2.5 Homoskedastic error structure 
The iid Normal errors represent a kind of homoskedastic error structure. Deviations from 
this, e.g., Poisson or log-Normal error distribution, where the magnitude of errors varies 
as a function of the dependent and/or independent variable, represent heteroskedasticity. 
Our assessment of homoskedasticity focused on whether the errors change monotonically 
with the dependent variable. It was performed by taking the following steps. 
 

1. Fit the logIC50-based Hill equation model to the data from a run using a non-
weighted nonlinear regression 

2. Obtain the predicted value ( ŷ ) at each x of a given run 
3. Obtain the residuals (=  ˆy-y ) 
4. Obtain mean squared error at each x of a given run 
5. Repeat this for all runs for all laboratories and chemicals under consideration 
6. If there are q concentration levels for each run and there are a total of r runs, we 

have q*r pairs of mean squared error and 2ŷ  
7. Take the logarithm of mean squared error (MSE) 
8. Take the logarithm of 2ŷ  
9. Investigate relationship between log(MSE) and log( 2ŷ ).  Specifically, regress 

log(MSE) and log( 2ŷ ) and estimate the regression coefficient k in 
log(MSE) = β0 + k*log( ŷ 2) + ε 

 
The regression coefficient k is interpreted as follows: 
 

• k = 0 indicates the error structure is homoskedastic (error level does not 
change linearly with y). 

• k = 0.5 indicates the error structure is Poisson-type (variance(residual) increases 
proportionately with ŷ ). 

• k =1 indicates the error structure is log-Normal-type (SD(residual) increases 
proportionately with ŷ ). 

 
To see this, the following rearrangement of expression for SD(residual) is informative.  
                                                 
26 Dr. Feder states that the reasoning in this paragraph is “OK” for ER binding assay. He then recommends 
that the error structure be investigated for different assay. I agree with this as long as EDSP’s resources 
allows such investigation. Another approach may be to perform a simulation study, and investigate whether 
incorrect assumption on error structure would lead to substantially different parameter estimates and their 
standard errors.  
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kˆ( ) c ySD residual = ⋅ ...........................................................................................................2.4 

Squaring both sides of the above yields 
 

2 2kˆ( ) c yVar residual MSE= = ⋅ ......................................................................................2.5 

Taking logarithms of both sides the above then yields 
 

2ˆlog( ) 2 log(c)+ log(y )MSE k= ⋅ ⋅ ..................................................................................2.6 

A summary of the analysis of the noise levels for historical RUC ER binding assay data is 
presented in the section “2.8.1 Constant noise assumption”. 

2.1.3 Statistical software 
There are several potential choices for statistical software to be used when fitting the 4-
parameter Hill equation model to the data. They include: GraphPad Prism, which is 
developed primarily for laboratory data and is widely used by academic and commercial 
laboratories; SAS, a versatile package widely used in pharmaceutical industry and 
academia, which is relatively inaccessible because of high cost and; Stata, another multi-
purpose package popular among public health researchers and econometrists, which 
probably is not as widely used as SAS but is more accessible than SAS in terms of cost. 
As long as nonlinear least square regression capacity is available, any other package 
would be usable for fitting the 4-parameter Hill equation model. 
 
For the kind of data to be encountered in validation, i.e., data for standard and positive 
control chemicals, any of the three software packages listed above would produce 
equivalent results. For certain atypical, difficult-to-fit data that have been encountered 
(and might be encountered in large-scale testing), Stata and SAS performed better  (and 
are expected to perform better) than GraphPad Prism in that estimation convergence was 
achieved in Stata and SAS for such data while GraphPad Prism issued an error message 
without completing the estimation. GraphPad Prism and Stata do not allow the full 
execution of the alternative model-fitting and data-summarizing method discussed in the 
section “2.8.2.1 Comparing methods for summarizing data from multiple runs”. 

2.2 Method for between-run and between-lab summary of 
parameters 

2.2.1 DerSimonian-Laird random effects model 
In dealing with summary statistics for receptor binding experiments, we encounter the 
need to summarize parameter estimates from independent experimental units (either run 
or lab). Generally, the ith unit has a parameter estimate îθ  and its standard error ˆ( )iSE θ . 
For instance, for i = 1, 2, 3, we have a data set of 
 
estimate Standard error of estimate 
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1̂θ  1̂( )SE θ  

2̂θ  2̂( )SE θ  

3̂θ  3̂( )SE θ  
 
Our goal is to summarize these across units into a pooled estimate and its standard error. 
In doing so, we assume the following. 
 

2ˆ ~ ( , ) and ~ ( , )i i i i RN v Nθ θ θ θ τ ..............................................................................................2.7 

 
That is, two distinct sources of variation are assumed to exist. First, each of the parameter 
estimates from a unit has a unit-specific true value and a within-unit variation. In addition, 
the true parameter follows a Normal distribution with a common mean ( Rθ ) and common 
between-unit variation ( 2τ ). Commonly used estimators of 2τ and Rθ  are due to 
DerSimonian and Laird (1986). The model they proposed is called the DerSimonian-
Laird (DL) random effects model. 2τ  is estimated by the method of moments as follows: 
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and îv  is the estimated variance of îθ , i.e., 
2ˆˆ ( )i iv SE θ= ...............................................................................................................................2.12 

Subscript i indexes units, and k is the total number of the units. Using this estimate of 2τ , 
the revised weight *

iw , the estimate of the random effects overall mean Rθ  and its 
standard error are calculated as follows. 
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Typically, the standard error of R̂θ , rather than its variance, is reported by a statistical 
package. 
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=
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.................................................................................................................2.16 

 
The Q statistic has a chi-square distribution of k-1 degrees of freedom, and is used to test 
the null hypothesis of 0τ = , i.e., to test heterogeneity of îθ . In the DL random effects 
model’s application in meta-analysis, it has been noted that using the typical α level of 
0.05, the test of heterogeneity is underpowered in detecting non-zero τ  (Takkouche et al., 
1999). It has been recommended that “because these tests often falsely fail to detect true 
heterogeneity, it may be advisable to use random effects models routinely” (the National 
Research Council, 1992). An alternative level of α = 0.1~0.15 may also be used for this 
test to get around the underpowered problem, but since our number of units would be 
small a formal test in general of limited use.  Our primary use of the Q statistic is for the 
point estimation of parameters of our interest, not for the formal tests.27 
 
The DL random effects model shall be used when summarizing results of multiple runs 
within a lab, yielding summary statistics for each laboratory (i.e., a lab-specific summary 
estimate of the parameter of interest, its standard error, and intrinsic between-run 
variation). Lab-specific summary estimates and their standard errors could be further 
summarized across labs, again using the DL random effects model.  
 
There is a likelihood-based, rather than a moment-based, method similar to the DL 
method, available in SAS. In a simulation study (Feder and Ma, 2005) this maximum-
likelihood random effects model was found to outperform the DL model by providing 
more accurately estimated standard errors of parameter estimates. However, this method 
does not appear to be widely available. Because of its SAS-specific availability, we did 
not consider its use. 
 

                                                 
27 In addition to the overall test for τ  = 0, the Q statistic may be used to test whether a particular unit(s) are 
“different” from the other units in terms of their estimates of the parameter of interest. The test is based on 
a difference in two Q statistics computed with or without the units that are hypothesized to be different. The 
difference has a chi-square distribution of Δ degrees of freedom, where Δ is the number of the units that are 
hypothesized to be different. 
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Of note, ˆ( )iSE θ  is an important ingredient for estimation of the overall mean, its standard 
error, and the intrinsic between-unit variability. One of the reasons for working primarily 
with logIC50, rather than IC50, is that SE(logIC50) is much better defined than SE(IC50). 
Distribution of IC50 estimates would be right-skewed compared to that of logIC50. 
Although SE(IC50) may be calculated via the delta method, it is a forced summary 
measure of the spread, which is not symmetrical around the center of distribution. From 
the expression of R̂( )SE θ , which is a measure of total variation of R̂θ , i.e.,  
 

R
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we can see it has contributions from two sources of variation, i.e., within-unit variation 

2ˆ( )iSE θ and between-unit variation 2τ̂ , although they are not combined into R̂( )SE θ  by 
simple addition. 
 

Of note here is that this standard error describes variation of  
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 or the 

overall mean estimate. In order to describe how  “individual îθ  to be obtained in the 
future” varies due to within-unit and between-unit variabilities, we would need to convert 
this standard error to a standard deviation as follows. (By the strict usage of statistical 
terminology, the following also is a standard error since it is a standard deviation of an 
estimate. It is called SD in order to emphasize the fact that it is variation of an estimator 
for an individual unit, not of an overall mean estimator based on information from 
multiple units.)  
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When the units of interest are laboratories, k in this formula means that there are a total of 
k labs that took part in the study. This ˆ( )SD θ  represents overall (total) between-lab 
variability.29 

                                                 
28 Dr. Feder comments as follows, repeating the point he made on Equation 1.3 (see footnote 9). “This is an 
approximation. It is exact only if within-lab SE, ˆ( )iSD θ , is constant across labs. Otherwise standard 
deviation is not actually defined.” My response to this is included in footnote 9. 
29 Please note that ˆ( )SE θ  and ˆ( )iSD θ  look similar but denote two very distinct quantities. ˆ( )SD θ  is the 

standard deviation of individual θ̂  (either a run-specific or lab-specific estimate of θ ) to be obtained in 
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When the units of interest are runs in a particular lab, k in this formula means that there 
are a total of k runs for the lab. In this case, the ˆ( )SD θ  represents overall (total) between-
run variability or lab-specific overall within-lab variability. 
 
As described later, this method can be used to summarize the log(standard error of 
estimate) or ˆlog( ( ))iSE θ . In order to do this, we would need ˆ(log( ( )))iSE SE θ , which 
typically is not reported as standard output from the DL random effects model. Estimates 
of ˆ(log( ( )))iSE SE θ  may be obtained using the Jack-Knife method of variance estimation, 
which is described in “2.2.4 Jack-Knife variance estimation”.30 
 
In the context of the model to be described in “2.3.2 Random effects one way ANOVA”, 
the relative contribution of intrinsic between-unit variability to the total between-unit 
variability may be described using a measure called the intraclass correlation coefficient, 
which is defined as “between variance/(between variance + within variance) or 

2 2 2/( )α ε ασ σ σ+  using the notation introduced at the end of “2.3.2 Random effects one
way ANOVA”. Intraclass correlation is the proportion of the total variation that is 
explained by the "between" variation and is comparable to the widely used R-squared 
statistic. By analogy, we can compute a statistic with equivalent meaning for the DL 
random effects model as 
 

2 2ˆˆIntraclass Correlation / ( )SDτ θ= .......................................................................................2.19 

2.2.2 Correction for the number of runs performed31 
Sometimes data are available for more than 3 runs.  This will be the case, for example, if 
estradiol and the positive control are run concurrently with many unknown test chemicals. 
As long as there are more chemicals to be tested than can be accommodated in a single 
run, we will end up with data for more than 3 runs of estradiol and positive control in our 
efforts to obtain 3 runs of each unknown chemical. Intuitively, when trying to summarize 
                                                                                                                                                 
the future for a run (lab) that is similar to the runs (labs) that were considered in deriving R̂θ . ˆ( )iSE θ  is 

the estimated standard error of the îθ  that has been observed.  
30 In our initial attempt to summarize ˆlog( ( ))iSE θ  in 2005, we did not use the Jack-Knife method. 

Instead, we used simulation-based estimates of ˆ(log( ( )))iSE SE θ , which were available in a study by 
Battelle (Feder and Ma, 2005). The idea to use the Jack-Knife method was conceived later, and actual 
analysis using the method has not been preformed. In Chapter 3 the simulation-based estimates of 

ˆ(log( ( )))iSE SE θ  are given. Because Jack-Knife-based standard errors may be obtained with much less 
computational effort than simulation-based standard errors, the use of the Jack-Knife method is 
recommended in future efforts to summarize ˆ(log( ( )))iSE SE θ . Dr. Feder recommends the use of delta 
method in place of Jack-Knife. 
31 Please see “4.2 Improved correction for the number of runs performed”, which is an addendum written 
after the most of this report was completed. An improved equation to correct for varying numbers of runs 
per lab is proposed. 
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results across labs we would like ˆ( )iSE θ  (here, i denotes labs) to be comparable to each 
other. Also, we would like to ensure that each lab is “fairly” represented in deriving the 
overall mean. For instance, when a lab-specific summary estimate and its standard error 
for lab A are based on data from 10 runs and that for lab B is based on data from 5 runs, 
the conditions of “comparability” and “equal representation” are not met because: ˆ( )ASE θ  

would be 1/sqrt(2) of ˆ( )BSE θ  even if they have the same level of within-lab, between-run 
variability; and because lab A is represented more than lab B by a factor of 2 in the 
universe of labs we are envisioning (The “comparability” issue and “equal 
representation” issue actually are the two faces of the same thing in this example). 
 
A simple, though imperfect, solution to this problem is to draw a random sample of the 
same size (e.g., 3) of runs from each lab, and derive lab-specific summaries. This is 
inefficient as we end up throwing out much of the available data. We do not recommend 
this approach. 
 
A better solution is to use all available data, but to modify the lab-specific summaries 
such that they become comparable to each other, at the same time ensuring equal 
representation. For the summary estimate standard error for lab i, this is done by applying 
a factor of 3/ki in the standard error formula as follows. 
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That is, recalculate the standard error as if we obtained the overall mean from 3 runs, 
instead of ki runs as actually performed, thus forcing the hypothetical 3 runs to be 
representative of the ki runs. The key number in this calculation, 3, is chosen since it is 
the default number of runs for unknowns and represents the minimum number of runs we 
will have for any chemical (the number of runs for the concurrent standard and positive 
control will always be 3 or more). 

2.2.3 Pooled estimation of within-lab variability 
Each lab has its own ˆ( )iSE θ  (here îθ  being the lab-specific estimate of θ ), which tells us 
about the within-lab variability for that lab. This within-lab variability is lab-specific, but 
we often need to estimate the typical within-unit variability for multiple units. For 
instance, when we evaluate variability of logIC50 we would like to report three measures: 
                                                 
32  Dr. Feder notes “This is  approximation for the reasons discussed above.” See footnote 9. This 
comments implies inappropriateness of this formula, but that negative connotation contradicts with the 
method that Dr. Feder used in his illustration of how to construct prediction intervals and tolerance 
intervals (Feder, 2007c). In that illustration, he apparently uses the Equation 2.20-like correction (i.e., the 
column labeled  “SE Crctd 3 Runs” in Table 1 and seems to be comfortable to assume the constant within-
run variability across runs within a lab. I think he mistook this equation for the one for across-lab summary 
rather than across-run summary, which this actually is. 
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overall between-lab variability, intrinsic between-lab variability, and within-lab 
variability. The DL random effects model generates estimates of overall between-lab 
variability and intrinsic between-lab variability, but it does not generate a pooled estimate 
of within-lab variability common to the multiple labs. That is, estimates of lab-specific 
within-lab variability from each lab, or ˆ( )iSE θ , are generated as the DL method is used 
for within-lab summary, but the DL method as a procedure for across-lab summary does 
not generate a common estimate of within-lab variability. A method for generating 
overall or pooled estimates of within-lab variability is needed because an estimate of 
within-lab variability is required in many validation guidelines. There are two approaches 
for this.  
 
One approach is to work directly with ˆlog( ( ))iSE θ  and its standard error, rather than îθ  

and ˆ( )iSE θ , and fit the DL random effects model to ˆlog( ( ))iSE θ . Let us call this direct 

pooling. It makes sense to work with ˆlog( ( ))iSE θ  rather than ˆ( )iSE θ  per se because 
ˆ( )iSE θ  is always positive and its distribution would be right-skewed. To take this 

approach, estimates of ˆ(log( ( ))iSE SE θ  are needed. They may be obtained using the Jack-
Knife method of variance estimation.33  
 
The second approach is what we can call a “subtraction” method, which was actually 
used in this report. In this approach, we keep working with îθ  and ˆ( )iSE θ , obtain overall 
between-lab variability and intrinsic between-lab variability of îθ , and from these two 
variability measures derive a pooled estimate of within-lab variability exploiting the 
relationship that exists for overall between-lab variability, intrinsic between-lab 
variability, and within-lab variability, which can be informally described as 
 

Overall (total) between-lab variability = intrinsic between-lab variability + 
overall within-lab variability 

 
or more formally  
 

2
î ˆvar( ) (common within-lab variance)θ τ= +  

 
Another expression for the left hand-side of this equation is  
 

                                                 
33  As an alternative to the Jack-Knife method, simulation may be performed to estimate ˆ(log( ( ))iSE SE θ .  

In the early stage of this work the simulation-alternative was used estimate ˆ(log( ( ))iSE SE θ  in another 
context as mentioned in the preceding footnote. The relative ease in computing the standard error estimates 
using the Jack-Knife method holds irrespective of the intended use of them. 
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(The notation is somewhat imprecise and arbitrary here. In this equation, îvar( )θ  denotes 

variance of îθ  as a random variable while ˆ( )iSE θ  on the left hand-side is referring to the 

analytical standard error of observed îθ . As such, in this equation îvar( )θ  and 2ˆ( )iSE θ  
mean two separate entities.) 
 
 
The “common within-lab variance” can be derived by subtraction as 
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or  
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∑

....................................................................... 2.2334 

 
This subtraction method does not generate an estimate of standard error of 

within-lab î( )SD θ .35 On the other hand, the direct pooling described in the previous 

                                                 
34  Dr. Feder states that before pooling within-lab SE’s we need to determine whether they are constant 
across labs It they are approximately constant, a simple arithmetic mean of lab-specific would serve as a 
good pooled estimate. It is implied that if not constant, pooling is not meaningful since there is no common 
level to begin with. This argument makes sense, but it seems even if ˆ( )iSE θ  are heterogeneous, we can 
think of a typical level around which the heterogeneous SE’s are distributed. The subtraction method 
computes an estimate of such a measure of central tendency if in an oversimplified manner. DL method is 
widely-used to obtain estimate of intrinsic between-group variance 2τ̂  and variance of  a pooled mean, 
which combines contribution of 2τ̂  and within-group variance. My understanding is that DL method does 
not strictly require constant within-group variance across groups. (Its use in meta-analysis that combines 
trials of vastly different sample sizes seems to be based on lack of such requirement.) As such, irrespective 
of whether the within-lab variability is constant across labs or not, it seems justifiable to use the subtraction 
method to compute “average” contribution of within-lab variability to overall between-lab variability. 
When there is a more justifiable methods exists, at least the idea behind the subtraction method could be 
used to explain to non-statistician audience how the more justifiable method works as a refined method to 
achieve the same goal of estimating “typical” level of within-lab variability. In fact, I think the utility of the 
DL method, which arguably is not the best method as Dr. Feder shows, to EDSP or anybody contemplating 
the issue of analysis of data from receptor binding assay and performance criteria for the assay is the 
underlying concepts of the two components (intrinsic between-group and within-group variabilities) in the 
overall between-group variability. 
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paragraphs does generate an estimate of the standard error of the pooled mean of 
ˆlog( ( ))iSE θ , which may be used to compute an estimate of standard error of 

within-lab î( )SD θ . In our applications, we do not need any measure of spread for 

within-lab î( )SD θ : within-lab î( )SD θ  is one of the summary measures of variation that should be 

reported in an assay validation, but the standard error of within-lab î( )SD θ  is not one of them. 
A merit of the subtraction method is that it uses the statistics available as standard output 
of the curve-fitting procedures, eliminating the need to compute ˆ(log( ( ))iSE SE θ . The 
subtraction method was used in “3 Examples” 

2.2.4 Jack-Knife variance estimation36 
As mentioned earlier, in deriving precision criteria and computing an estimate of within-
unit variation common to multiple units, a Jack-Knife method may be used in estimating 
the SE of log(SE(lab-specific logIC50)) or log(SE(lab-specific logRBA)).37 
                                                                                                                                                 
35 For the simple purpose of computing an estimate of within-lab î( )SD θ , we do not need its standard error. 

When we try to analyze multiple within-lab î( )SD θ  estimates further, the standard error of within-lab î( )SD θ  

may be needed. For instance, let’s say that multiple within-lab î( )SD θ  for different chemicals are available. 

We may need to summarize these multiple estimates across chemicals or see if within-lab î( )SD θ  is higher or 
lower for any particular chemical(s). In another instance, we may have two groups of labs, well-trained and 
minimally-trained, and would like to compare if the additional training provided for the well-trained labs 
decreased within-lab î( )SD θ . In these instances, the standard error of within-lab î( )SD θ  would be useful. 

Nonetheless, for our general purposes we do not need the standard error of within-lab î( )SD θ . 
Commenting on the sentence above, Dr. Feder stated “I disagree. You need the SE if you are going to use it 
as a performance criterion.” EDSP has not intended to set up any performance criterion targeted at 

within-lab î( )SD θ , which is a pooled estimate for multiple labs in the context of this section. Performance 
criteria that EDSP has been developing all are intended to be used to determine acceptability of a single lab, 
not that of multiple labs as a set. I doubt this would change in the future. As such, for the EDSP’s “general 
purposes,” On the other hand, standard error of log( R for lab i

ˆ( )SE θ ) are indeed necessary for setting up 

precision performance criteria.  I have just used within-lab î( )SD θ  as referred in Equation 2.20. 

within-lab î( )SD θ  is a non-pooled version of within-lab î( )SD θ -like quantity computed for individual lab, not 
for multiple labs. 
36 There probably is an argument that the boot-strap method of variance estimation is superior to the Jack-
Knife method. The Jack-Knife is recommended since its implementation is transparent and there is no need 
for special statistical software.  
37 Dr. Feder has two comments on this. The first is that delta method is a better procedure to use. The 
second is “Similarly [to the previously explained solution to “pooling” within-lab SE’s] if SE’s are the 
same across labs then use simple average. If they are not the same then why pool?” I do not understand his 
objection to “pooling” the SE’s. This objection seems to contradict his statement (“You need the SE if you 
are going to use it as a performance criterion.”) recorded in the footnote 35 above. Indeed, the “pooling” is 
necessary for proper description of between-lab variability in log(SE(lab-specific logIC50)) or log(SE(lab-
specific logRBA)), which in turn is necessary for setting performance criteria for these variability measures. 
His handwritten suggestion recorded near the end of this section, as I understood it, recommends that we 
use delta method to compute SE(log(SE(lab-specific logIC50))) or SE(log(SE(lab-specific logRBA))). I take 
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In general, Jack-Knife variance estimation is performed as follows. Let θ̂  denote the 
value of the statistic of interest obtained using the entire data set, and let ( )

ˆ
jθ  denote the 

value of the same statistic obtained with the jth observation omitted. We calculate the 
“pseudovalue” *ˆ

jθ   for the jth observation as, 
 

*
( )

ˆ ˆ ˆ( 1)j jN Nθ θ θ= − −
................................................................................................................2.24 

 
where N is the total number of observations. The standard error of θ̂  is estimated by 
taking the standard error of the mean of N pseudovalues, i.e., *

1̂θ , *
2̂θ , *

3̂θ , …, *ˆ
Nθ . θ̂  itself 

is used as the estimator of the parameter that the statistic of interest estimates. An 
alternative estimator of the parameter (i.e., the mean of the pseudovalues) is available but 
its use was not adopted. 
 
When computing the Jack-Knife standard error for a lab-specific summary and the 
number of runs (where “run” is the observation unit) is greater than 3, the correction for 
the number of runs performed would be necessary. Such correction has been discussed in 
“2.2.2 Correction for the number of runs performed”. 
 
Let’s focus on the SE log(SE(lab-specific logRBA)) for the rest of this section. The same 
procedure applies to the SE of log(SE(lab-specific logIC50)). In estimating the SE of 
log(SE(lab-specific logRBA)), each log(SE(run-specific logRBA)) may be treated as an 
“observation” for which the above-mentioned pseudovalue is computed and summarized 
across observations in the Jack-Knife method. That is, three log(SE(lab-specific logRBA) 
pseudovalues are computed based on results either from runs “1 and 2”, “2 and 3”, or “3 
and 1” using the DL random effects model. The SE of the mean of these three 
pseudovalues is the Jack-Knife SE of log(SE(lab-specific logRBA).  

2.3 Method for evaluating within- and between-replicate-set 
variation of binding measurements 

2.3.1 Definition of unit used in partitioning within- and between-
variation 

As discussed earlier, we derived upper limits for within-replicate-set and between-
replicate-set variabilities of individual binding measurements y at a given x. In other 
words in doing so we defined the triplicates at any given concentration within a run of a 
binding assay as a unit of observation.38 

                                                                                                                                                 
it to mean that those SE’s can be used to describe the distribution of log(SE(lab-specific logIC50)) or 
log(SE(lab-specific logRBA)), which in turn can be used to set up precision performance criteria, and he is 
actually not objecting to the general strategy for setting precision performance criteria. 
38 Why we chose the within-replicate-set and between-replicate-set variabilities as measures to partition the 
total variability of y given x into “within-run”-like and “between-run”-like variabilities may not be self-
evident. There is an alternative to the “replicate set” as a unit used for partitioning such two variabilities. 
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There is a standard method for partitioning within-unit and between-unit variation called 
“random effects one-way ANOVA”. A typical situation where this method is used 
involves taking measurements for many subjects (i.e., persons) in duplicate or triplicate. 
In this setting, measurement error alone is manifested as within-subject variation, which 
contributes to overall observed between-subject variation. Intrinsic between-subject 
variation (often expressed as SDbetween-subject or a variant such as SDgroup effect) is estimated 
by obtaining overall between-subject variation and subtracting from it the contribution of 
within-subject variation. If there are 3 subjects with triplicate measurements, the data 
would look like the following with 9 (= 3 times 3) observations. 
 

Table 2.1 Simple between-subject data structure 
Subject 

1 2 3 
Replicate Replicate Replicate 

 1 2 3 1 2 3 1 2 3 
Observations y11 y12 y13 y21 y22 y23 y31 y32 y33 
 
In random effects one-way ANOVA, the expected level of within-subject variation is 
assumed to be the same for all subjects and a single estimate of within-subject variation is 
obtained.  
  
An extension of this kind of standard random effects one-way ANOVA can be used to 
define and derive within-replicate-set and between-replicate-set variabilities for data from 
receptor binding experiments, which take the general form shown in Table 2.2. In this 
table actual values of x, e.g., -11, -10, etc., were replaced with a generic expression in a 
form of ix , i = 1, 2, …, 7. In this table, a simpler notation for y without subscripts is used. 
In a more precise notation comparable to the one in Table 2.1, subscripts for run, x, 
replicate would be added, e.g., y111 for the cell at the upper left hand corner.  
 

                                                                                                                                                 
We chose not to use this alternative, but it is described in “4.1 Alternative definition of a unit in partitioning 
variation in % binding”. 
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Table 2.2 Receptor binding data seen as an extension of between-subject structure 
Run 

1 2 3 
Replicate Replicate Replicate 

X 1 2 3 1 2 3 1 2 3 
1x  y y y y y y y y y 

2x  y y y y y y y y y 

3x  y y y y y y y y y 

4x  y y y y y y y y y 

5x  y y y y y y y y y 

6x  y y y y y y y y y 

7x  y y y y y y y y y 
 
Focus on a single row of Table 2.2 and compare that to Table 2.1 for the triplicate data 
for 3 subjects. They have similar structure. If we are interested in within replicate set and 
between replicate set variability at x = 1x only, for instance, we can use the standard 
random effects one way ANOVA to estimate such variabilities. 39 
 
We would like to estimate the variabilities for the entire data set, encompassing multiple 
levels of x (or rows), not just a single level of x (or a row). In doing so, we would like to 
ignore the part of the variation in y attributable to varying levels of x. Thus we need to 
remove any x related variation before we can fit a random effects one way ANOVA 
model. The variation in y due to x is removed by calculating the mean of y at each x 
across all runs (see Table 2.3) and subtracting it from each y at that x as illustrated in 
Table 2.4.  
 

                                                 
39 Dr. Feder pointed out this setup is incorrect. A correct way to partition variance using two way mixed 
effects ANOVA is given on page 56 of Feder (2007b). Because of this, the description in this and next 
section are largely incorrect. To indicate this, affected portion of the texts are shown with strikethrough 
effect. 
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Table 2.3 Removal of effects of varying concentration  calculation of x specific 
overall mean 

Run 
1 2 3 

Replicate Replicate Replicate 
x 1 2 3 1 2 3 1 2 3 Mean(y)

1x  y y y y y y y y y 1y  

2x  y y y y y y y y y 2y  

3x  y y y y y y y y y 3y  

4x  y y y y y y y y y 4y  

5x  y y y y y y y y y 5y  

6x  y y y y y y y y y 6y  

7x  y y y y y y y y y 7y  
 
That is, we calculate *y  = y

ixy   and analyze *y  using random effects one way ANOVA 
treating each combination of x and run as a different unit. In the example above, there are 
21 units (7 x levels times 3 runs) across which between unit variability is estimated. Each 
unit has 3 observations. A unit as defined here is a replicate set consisting of triplicates at 
any given log(concentration), or x. 
 

Table 2.4 Modification of receptor binding data 
for computation of within unit and between unit variance: 

unit specification by run x combination 
Run 

1 2 3 
Replicate Replicate Replicate 

x 1 2 3 1 2 3 1 2 3 

1x  y 1y  y 1y  y 1y  y 1y  y 1y  y 1y  y 1y  y 1y  y 1y  

2x  y 2y  y 2y  y 2y  y 2y  y 2y  y 2y  y 2y  y 2y  y 2y  

3x  y 3y  y 3y  y 3y  y 3y  y 3y  y 3y  y 3y  y 3y  y 3y  

4x  y 4y  y 4y  y 4y  y 4y  y 4y  y 4y  y 4y  y 4y  y 4y  

5x  y 5y  y 5y  y 5y  y 5y  y 5y  y 5y  y 5y  y 5y  y 5y  

6x  y 6y  y 6y  y 6y  y 6y  y 6y  y 6y  y 6y  y 6y  y 6y  

7x  y 7y  y 7y  y 7y  y 7y  y 7y  y 7y  y 7y  y 7y  y 7y  

 
This way of defining a unit, which is equivalent to a “subject” in the previous simple 
situation, may not be self evident. Nonetheless, this definition of unit appears to be used 



 

33 
 

commonly. We call the within unit variability measure computed using this definition of 
unit “within replicate set variation” and express it as SDwithin-replicate-set.40 
 
Complementary to this within replicate set variation is between replicate set variation. 
The within replicate set variation does not include any variation due to the effect of x 
(because by definition of “replicate” x is constant within a replicate set). Since *y  does 
not include influence of x, between replicate set variation computed on *y  also does not 
include influence of x although the descriptor “between replicate set” may indicate 
otherwise. To be precise, the between replicate set variation in *y  probably should be 
termed “between replicate set variation in y given x”. For simplicity, though, we call it 
within replicate set variability and express it as SDbetween-replicate-set. 

2.3.2 Random effects one-way ANOVA 
Random effects one way ANOVA is used to compute SDwithin replicate set and SDbetween

replicate set. For the default data setup consisting of 3 runs each having 7 log(concentration) 
levels (i.e., x levels), there are a total of 21 replicate sets.  
 
Since we regard a replicate set (each combination of run and concentration) as a unit, let i 
denote each replicate set, i = 1, 2, …, k (where k represents the total number of replicate 
sets, or 21 in our default setup). Let’s denote each replication by j, j = 1, 2, 3 for our 
default setup of triplicate measurements. 
 
Let’s denote each observation of * = 

ixy y y  as defined in the previous section as ijy . 
Now we are ready to apply the standard random effects one-way ANOVA to ijy . Using 

ijy , two mean squares are computed as follows. The nomenclature involving ijy  and the 
procedures described hereafter through the end of this section are standard for random 
effects one way ANOVA. 
 

2.( ) /( 1)i i
i

MS w y y kα = − −∑ ..................................................................................................2.2541 

2( ) /( )ij ij i
i j

MS w y y N kε = − −∑∑ ..............................................................................................2.26 

 
where 
 

                                                 
40 In some documentation that has been presented to EDSP as a part of the method development work to 
date, this variability measure has been described under different names. The most frequently used was 
SDwithin-run, which was used, e.g., in an Excel spreadsheet titled “lab$run_chem@YYMMDDSDw.xls”. 
Explanations for abbreviations used in this spreadsheet appear in  “2.3.3 Excel spreadsheet for variability of 
y within a replicate set”. 
41 Dr. Feder pointed out that definition for ijw is missing. For our purposes, 1ijw = . 
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i ij
j

w w=∑ ...................................................................................................................................2.27 

i
i

w w=∑ ...................................................................................................................................2.28 

/i ij ij i
j

y w y w=∑ .........................................................................................................................2.29 

/i i
i

y w y w=∑ ..........................................................................................................................2.30 

 
N is the number of observations and k is the number of units. 
 
The standard deviation within the replicate set, εσ  or SDwithin-replicate-set , is estimated as 
 

MSε εσ = ................................................................................................................................2.31 

 
The standard deviation of unit effects, ασ  or SDbetween replicate set, is estimated as 
 

( ) /MS MS gα α εσ = ...........................................................................................................2.32 

 
where 

2 /
1

ii
w w w

g
k

−
=

−
∑

.....................................................................................................................2.33 

 
For the case of equal unit size and no missing data, g = “number of observations in each 
unit” = N/k.  

2.3.3 Excel spreadsheet for variability of y within a replicate set 
An Excel spreadsheet titled “lab$run_chem@YYMMDDSDw.xls” computes within-
replicate-set variation in y for data from a single run. Explanations for abbreviations used 
in the “Calculation” datasheet in this Excel file are given below.  
 
x: log(concentration). 42 
 
y: Observed % binding values. 
 
x_with_y: This column shows the value of x only when y on the same row was non-

missing. 
 

                                                 
42 The font used for the abbreviations is matched to the one that was used in the Excel spreadsheet titled 
“lab$run_chem@YYMMDDSDw.xls” for easy comparison. 
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my_x: Mean of y given x. There usually are three y observations for each level of x. 
When there is a missing y (e.g., one y observation missing/removed), it should calculate 
the mean based on duplicate measurements rather than the usual triplicate 
measurements. This quantity corresponds to iy  in Table 2.3 and Table 2.4. 

 
yij: Individual y value minus mean of y given x, or y - my_x. This quantity corresponds 

to ijy  as defined in “2.3.2 Random effects one way ANOVA”. 
 
myio:  Mean(y) at ith level of x or  

/i ij ij i
j

y w y w=∑ ...............................................................................................2.29 

as defined in “2.3.2 Random effects one way ANOVA”. In this spreadsheet, it is zero 
since ijy  is defined as the original y value - (mean(y) at ith level of x). 

 
yijMNyiosq: Square of (individual y value minus the mean(y) at ith level of x). This 

quantity corresponds to 2( )ij iy y−  as it appears earlier in 43 
2( ) /( )ij ij i

i j
MS w y y N kε = − −∑∑ ....................................................................2.26 

sum_yijMNyiosq: Sum of squares of “the individual y value minus the mean(y) at ith 
level of x”. This quantity corresponds to 2( )ij ij i

i j
w y y−∑∑  in the equation for MSε  

above. 
 
N: Number of observations as used in the equation above. 
 
k: Number of x levels as used in the equation for MSε  above. 
 
Mse: Mean within-unit sum of squares ( MSε ). See the MSε  equation above. 

2.4 Method for describing the relationship between variability 
measures44 

As stated in the section “1.4.3.2 Performance criteria for within-replicate-set variability 
of y”, the upper limit for within-replicate-set variation of y is derived by finding the level 

                                                 
43 Although the originally proposed ANOVA model had incorrect degrees of freedom for the between-
replicate-set effects as pointed out by Dr. Feder, the formula for the within-replicate-set variance was 
correct. 
44 Additional explanation regarding why the general approach described in this section was originally 
favored by EDSP is given in Aoki (2007b). Over time this initial preference by EDSP has been lost, and I 
recommended that EDSP forgo the originally developed method and use a method comparable to the one 
used for setting performance criteria for Hill equation parameters in the revision of performance criteria 
prompted by Dr. Feder’s feedback. As such, materials in this section now has limited relevance to EDSP’s 
performance criteria development activity. Because of this and because of limited time available for me to 
revise this report, I am keeping response to Dr. Feder’s comments in this section at minimum. 
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of within-replicate-set variation of y corresponding to the SE(lab-specific logIC50 
estimate) upper limit. To do this, we need a quantitative description of the bivariate 
relationship between the within-replicate-set variation of y and SE(lab-specific logIC50 
estimate). 
 
Intuitively, in data for many runs collected under a common experimental design for a 
given analyte, there should be a relationship between the overall between-replicate-set 
variation and the precision of the estimated logIC50. It may be possible to derive this 
relationship on a theoretical basis, but such derivation is beyond the scope of this report. 
The discussion below deals only with empirically determining such a relationship. 
 
The relationship was not expected to be an exact deterministic kind since there would be 
unexplained variation. (This could be confirmed easily in the actual interlab study data by 
plotting the data.)  Thus, some kind of regression method is called for. For reasons to be 
explained later, ordinary least square regression is used to describe the quantitative 
relationship. This relationship was then used to derive the performance criteria for 
within-replicate-set variability of y. 
 
There is a certain intuitive basis for the existence of a monotonically increasing 
relationship between the two variability measures in question. For a given design (a pre-
determined number of x levels surrounding the target logIC50 with appropriate intervals 
so that y would reach both top and bottom plateaus within the range of x levels), the 
greater the overall between-replicate-set variation is, the greater the SE(lab-specific 
logIC50 estimate) should be.  
 
By analogy to simple linear regression, this intuition would hold if the following 
condition holds since the mean sum of squares based on the left-hand side is an estimate 
of overall between-replicate-set variance of y given x and the square root of the residual 
mean square based on the right-hand side is proportionate to the standard error of the 
estimated parameters. 

ˆ ˆˆˆ[( )* log( 1)]ˆ50
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−

⎛ ⎞
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.....................2.34 

(Note that the expectation on the left hand-side involves no parameterized model.) 

 
In assessing the bivariate relationship, it is natural to choose the dependent (outcome) and 
independent (predictor) variables as 
 
Dependent variable  ≡ overall between-replicate-set variability in y given x 
Independent variable ≡ SE(lab-specific logIC50 estimate ) 
 
since the level of the former corresponding to a certain level of the latter (i.e., the upper 
limit value) is the quantity of interest. 
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The estimate of overall between-replicate-set variability in y given x may be obtained 
only after data from multiple (at least 2) runs are collected. EPA was also interested in 
limiting the level of within-replicate-set variation in y, which can be assessed with data 
from a single run, and is contemplating use of criteria imposed on it. There are various 
conceptual approaches for how to set up such criteria, and a method based on the  
bivariate relationship between within-replicate-set variability in y and SE(lab-specific 
logIC50) was eventually chosen. 
 
The within-replicate-set variability in y is one of two components of the overall between-
replicate-set variability in y given x (the other component being the intrinsic between-
replicate-set variability). Upon assessment of the RUC interlab data, a positive 
association between the within-replicate-set variability in y and SE(lab-specific logIC50) 
was found. As mentioned earlier, there is a reason to believe the within-replicate-set 
variability is directly associated with the SE(lab-specific logIC50). In addition to that 
direct association, there presumably was an indirect association between the within-
replicate-set variation and SE(lab-specific specific logIC50) due to positive correlation 
between within-replicate-set variability and between-replicate-set variability, both of 
which reflect the quality in execution of laboratory work. For instance, the precision of 
pipetting technique can affect both within- and between-replicate-set variability. 
 
A positive correlation also was found between the intrinsic between-replicate-set 
variability in y given x and SE(lab-specific logIC50). As expected, a positive correlation 
between the overall between-replicate-set variability in y given x and SE(lab-specific 
logIC50) also was found. This correlation was slightly weaker than that between the 
intrinsic between-replicate-set variability and SE(lab-specific logIC50). This was 
unexpected since intuitively the overall between-replicate-set variability in y given x was 
thought to most closely reflect the underlying overall noise level in y, which is 
proportional to SE(lab-specific specific logIC50). The discrepancy probably was due to 
random variation as we have only 8 data points (four laboratories each for two chemicals) 
for the regression involving overall or intrinsic between-replicate-set variability in y as a 
dependent variable.45 
 
In general, the bivariate relationship between independent variable U and predictor V is 
described in the following general form 
 

0 1U = + V+β β ε .........................................................................................................................2.35 

where ε  is an error term. Estimates of 0β  and 1β , 0β̂  and 1̂β , are obtained by fitting an 
appropriate model to the data. The rest of this section describes certain features that need 
to be exercised in choosing an appropriate model for description of bivariate relationships. 
 
Scale: It is desirable to analyze the logarithms of both the dependent variable and the 
independent variable because both of them are non-negative by definition (and almost 
                                                 
45 When the designations for independent and dependent variables were reversed and log(SE(lab-specific 
logIC50)) was regressed on log(SDtotal-between-replicate-set) and log(SDintrinsic-between-replicate-set), log(SDtotal-between-

replicate-set) appeared to be a better predictor of log(SE(lab-specific logIC50)) than log(SDintrinsic-between-replicate-set). 
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certainly positive in any realistic situations we encounter). The non-negative nature of 
both of these implies their relationship is multiplicative (consider the fact that any 
predicted decrease beyond zero is meaningless), and computation performed on an  
absolute scale may produce nonsensical results such as a negative standard deviation. 
Variance or standard deviation could be used as a measure of quantities on either side of 
the regression equation. Once a logarithm is taken these two measures are equally 
appropriate as long as the same measure is used on both sides of the regression equation 
since: 
variance = (standard deviation)2 log(variance) = 2 × log(standard deviation) → ........2.36 

and multiplication by two on both sides of the regression equation cancels out each other. 
 
Within-lab correlation: Within-replicate-set variability estimates from the same 
laboratory are correlated to each other when multiple laboratories are under consideration. 
46 However, independence among observations typically is assumed in certain regression 
techniques, including the ordinary least square (OLS) regression method. Correlation is 
allowed in more robust methods developed as an extension of the standard method. Such 
robust methods would need to be used in order to assess the strength of evidence for a 
bivariate association in a receptor-binding dataset. As long as only point estimates of 
bivariate regression are concerned, however, the OLS and its robust counterpart generate 
the same results.47 The OLS regression also provides a readily implemented option for 
computing a predictive band around the fitted line, which we need when deriving the 
upper limit for the dependent variable. Although the use of the OLS means we are 
ignoring the within-lab correlation, from the inspection of the predictive band computed 
it was felt the consequence of ignoring this correlation was not serious. 

2.5 Deriving accuracy criteria 

2.5.1 logIC50, Top, Bottom, Hill slope 
A common method may be used for deriving accuracy criteria for the four parameters 
logIC50, top, bottom, and Hill slope. Following the notation used in the section  
“2.2 Method for between-run and between-lab summary of parameters”, a parameter is 
referred to generically as θ  in this section. 

                                                 
46 Dr. Feder questions “Why do you have multiple within-replicate-set variability for the same lab?” Isn’t 
within-replicate-set variability pooled over multiple runs within lab?” Because of the aforementioned 
interest of EDSP to set limit for within-replicate-set variability measured after each run, the analysis were 
performed using data set of log(SDwthin-replicate-set) computed for each run and lab-specific SE(logIC50). 
(That is, all log(SDwthin-replicate-set) from the same lab had a common lab-specific SE(logIC50). 
In addition to the check for within-replicate-set variability for each run, EDSP also once planned to check 
within-replicate-set variability for three runs together. The description of the method for calculating within-
replicate-set variability in this document was intended for such “3 runs together” analysis, but I failed to 
clearly document these background nor the within-replicate-set variability estimation method based on data 
from a single run. EDSP’s original plan regarding how these checks were to be performed is illustrated in a 
slide titled “How criteria will be used” on page 15 of Aoki (2007b).  
47 Dr. Feder comments “No. You will get different point estimates, sometimes very different estimate.” 
This statement does not agree with actual computational result I had. I applied either OLS or its robust 
version to the data set involving estimates of log(SDwithin-replicate-set) and log(SE(logIC50)) and obtained 
exactly the same point estimates with different standard errors.  
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To derive accuracy criteria, we first need to select a set of laboratories that are deemed 
acceptable.48 After analyzing the data from an initial interlab study, these labs were 
chosen by informal judgment, which is more of a practical, rather than a scientific, nature. 
From a scientific standpoint, it is best to accept laboratories that meet a very strict 
standard. It may be infeasible to do so because of the cost for training a laboratory and 
other practical obstacles. From an administrative standpoint, laboratories should be as 
good as possible within the practical constraints such as the cost and feasibility of finding 
laboratories meeting the performance criteria. Past experience of the EDSP in terms of 
locating laboratories and ensuring a certain quality of data from them was deemed to be 
relevant in making an administrative judgment as to what “as good as possible within 
practical feasibility” means. In the revision of performance criteria after a round of 
subsequent interlab study, there would be various approaches to the selection of 
acceptable labs. An approach would be to define acceptable labs as the labs participating 
in the subsequent interlab study that meet the provisional performance criteria based on 
the original interlab study. This seems most straightforward. It might be justifiable, 
though, to “fortify” the set of new acceptable labs with the “deemed-to-be-acceptable” 
labs in the original study if the number of the new acceptable labs is small.49 Also, any 
“novice” labs meeting the provisional performance criteria, whether it is in the original or 
subsequent study, may be chosen as acceptable.50 Either way, the initial selection of 
acceptable laboratories drives the whole process of criteria derivation.  
 
Let’s say we have selected k acceptable laboratories. We are concerned about the 
distribution of θ̂ , which is an estimate of θ  to be reported from a laboratory drawn from 
a universe of laboratories like the ones that are deemed acceptable. As described in the 
section “2.2.1 DerSimonian-Laird random effects model”, standard deviation of θ̂  is 
computed as 
 

2 21

ˆ( ) 1
ˆ ˆ( )
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i

kSD

SE

θ

θ τ=

=

+∑
.......................................................................2.18 

This measure of spread includes two sources of variation, within-lab and between-lab. To 
appreciate this, consider two extreme cases.  
 

                                                 
48 Dr. Feder states “This is extremely important. Width of prediction intervals depend on this.” I agree. 
There are different philosophies as to how this is done conceptually, which I tried to depict in Section 
“2.3.2. Prediction interval vs. tolerance interval” of Aoki (2007b). I believe EDSP and Dr. Feder are 
operating under different philosophy. 
49 If we take the “fortification” approach for the interlaboratory study that follows the existing interlab 
study for the RUC ER binding assay, it would be advisable to include “novice” labs only and exclude lab E, 
which was the leading lab.  
50 Not all “deemed-to-be-acceptable” labs would meet the provisional performance criteria as will be shown  
in Chapter 3 “Examples”.  



 

40 
 

If τ̂  is zero (that is, intrinsic between-lab variation is zero) and 

1 2
ˆ ˆ ˆ( ) = ( ) ,... ( )kSE SE SEθ θ θ= = (that is, the standard errors of the parameter estimates 

within each single laboratory are equal), then the formula simplifies to  
 

ˆ ˆ( ) ( )iSD SEθ θ= .........................................................................................................................2.37 

that is, the standard deviation of the parameter estimate across laboratories is also the 
standard error of the parameter estimate within a single laboratory, implying that the 
within-lab variation is the sole contributor to the distribution of parameter values across 
labs. 
 
If 1 2

ˆ ˆ ˆ( ) = ( ) ,... ( ) 0kSE SE SEθ θ θ= = = , (that is, the standard errors of the parameter 
estimates in each laboratory are all zero) then the formula becomes 
 

ˆ ˆ( )SD θ τ= ..................................................................................................................................2.38 

That is, the variability in the parameter is due only to between-lab variation. 
 
Using the pooled estimate of within-lab variance described in “2.2.3 Pooled estimation of 
within-lab variability”, the formula for ˆ( )SD θ  may be rewritten as 
 

2 2
overall
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where 2
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 is the average within-lab variation. 51 This formula has 

the following generic form introduced in the first chapter: 
 

Overall (total) between-unit variability = intrinsic between-unit variability + 
overall within-unit variability 

 
Using this estimator of the spread and the estimator of the central location, we can 
construct a range for θ̂  within which, at a specified probability, an estimate of θ  to be 
reported from a laboratory drawn from the universe of laboratories like the ones that are 
deemed acceptable will fall. Assuming Normality, such a range (prediction interval) at 
probability coverage of (1-α)*100% is computed as 
                                                 
51 The equation  might look somewhat odd as 2τ̂  appears twice on the right side, and they appear to cancel 
each other out. This is a regularly used technique to get at a quantity one would like. 
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R 1- /2, 
ˆ ˆ± t * 1 1/ * ( )k SDα νθ θ+ .................................................................................................2.40 

where ν  is Hartung and Makambi (2001) degrees of freedom and, as presented earlier,  
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For instance, an 80% prediction interval is computed as 
 

R 0 90, 
ˆ ˆ± t * 1 1/ * ( )k SDνθ θ+ ..................................................................................................2.41 

  

1- /2, t α ν  instead of 1- , t α ν  is used since 1- /2, t α ν  corresponds to (1-α/2)*100 percentile of 
Normal distribution and we are interested in the range that encompasses from α/2*100 
percentile to (1-α/2)*100 percentile. 

2.5.1.1 Analytical vs. simulation-based SE(lab-specific logIC50) and 
SE(lab-specific logRBA) 

As described in “2.8.2.1 Comparing methods for summarizing data from multiple runs”, 
simulation studies were performed. It was found that the analytical standard errors of 
SE(lab-specific logIC50) and SE(lab-specific logRBA)—that is, the within-lab variability 
of the logIC50 estimate and that of the logRBA estimate —computed using the 
DerSimonian-Laird analytical method appeared to underestimate the realistic level of 
within-lab variability, which may be approximated by simulation. The degree of 
underestimation was quantified and a correction factor was applied to the observed 
analytical standard error to derive more realistic standard error values. However, whether 
we use the analytical standard error as is or with the correction, there is little difference in 
the derived accuracy criteria for logIC50 and logRBA. Detail of this will be presented in 
“3.5.6 Impact of underestimation of SE(lab-specific logIC50) and SE(lab-specific 
logRBA)”. Since it will be cumbersome to perform simulation every time we need to use 
analytical SE(lab-specific logIC50) and the consequence of ignoring the underestimation 
seems small, it seems justifiable to the analytical SE(lab-specific logIC50) and SE(lab-
specific logRBA) without correction on a routine basis. 

2.5.2 logRBA 
Relative binding affinity is defined as 
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RBA (IC50 of standard) / (IC50 of test chemical)≡ ...........................................................2.42 

 
Accordingly, logRBA is defined as 
 

50 50logRBA (logIC  of standard) - (logIC  of test chemical)≡ .............................................2.43 

 
SE(logRBA) is determined assuming that the (logIC50 of the standard) and the (logIC50 of 
test chemical) are independently distributed. However, the standard is concurrently run 
with a test chemical and the (logIC50 of standard) is computed from data for the 
concurrently-run standard, so the assumption of independence between (logIC50 of 
standard) and (logIC50 of test chemical) probably does not hold in truth. In general, the 
variance of logRBA is given as 
 

standard test chemical standard test chemical

Var(logRBA) 
= Var(logIC50 ) Var(logIC50 ) 2 Cov(logIC50 , logIC50 )+ − ⋅

...... 

.....................................................................................................................................................2.44 

 
For lack of an easy way to quantify the covariance, we ignore the covariance term.52 By 
the independence assumption, variances are converted to standard errors by taking the 
square root of both sides. 
 

2 2
50 50SE(logRBA) = SE(logIC  of standard)  + SE(logIC  of test chemical) ..................2.45 

 
Once pairs of logRBA and SE(logRBA) estimates are obtained for each run of a chemical, 
results are summarized across runs and then across labs by fitting the DL random effects 
model. A prediction interval of the same form as that for other parameters, i.e., 

R 1- / 2,
ˆ ˆ± t * 1 1/ * ( )k SDα νθ θ+ , is then computed. 

2.6 Setting precision criteria 

2.6.1 Standard error of logIC50 
SE(logIC50) is non-negative and log(SE(logIC50) would be more symmetrically 
distributed than SE(logIC50) itself. Working with log(SE(logIC50) rather than SE(logIC50) 
is desirable for these reasons. By choosing to do so, we are avoiding the occurrence of a 
nonsensical, negative lower limit of a prediction interval for a standard error, which 
might arise when working with SE(logIC50).53 
                                                 
52 Dr. Feder states “With enough runs you can estimate Var(logRBA) directly.” I can see that would true 
for between-run Var(logRBA). In this section, though, I was referring to within-run Var(logRBA), which 
can be used as input for between-run summary of logRBA using DL method. If there is an easy way to 
compute within-run Var(logRBA), it could have been used in Feder and Ma (2005), but apparently such a 
method was not used in Feder and Ma (2005). 
53 Dr. Feder notes “Also, the distribution is more nearly symmetrically thereby giving better approximation 
to asymptotic theory in small samples.”  
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Derivation of precision criteria for SE(logIC50) starts with selection of acceptable 
laboratories in terms of SE(logIC50). This is analogous to the initial step in the derivation 
of accuracy criteria. The set of laboratories with acceptable between-lab SE(logIC50) does 
not need to be the same as the set having acceptable logIC50 estimates or other parameter 
estimates. The same caveat about the informal, practical nature of this selection applies 
here. 
 
In order to apply the DL random effects model to log(SE(logIC50)), we need 
SE(log(SE(logIC50))), which was estimated using simulation in the initial effort to set up 
performance criteria. The simulation was performed by Battelle and described fully in its 
report (Feder and Ma, 2005). Alternatively, it may be computed using the Jack-Knife 
method described in the section “2.2.4 Jack-Knife variance estimation”. In future 
performance setting exercises, the Jack-Knife method would be a preferable approach 
because of its simplicity.54 
 
Once estimates of log(SE(logIC50)) and SE(log(SE(logIC50))) are computed, we proceed 
by treating them as îθ  and ˆ( )iSE θ  and use the method described in the section “2.5.1 

logIC50, Top, Bottom, Hill slope” to derive R̂θ  and ˆ( )SD θ .  
 
Since low levels of SE(logIC50) are not problematic (it actually is desirable to have low 
SE(logIC50)), we do not need to set a lower limit for SE(logIC50). For SE(logIC50) we set 
up an upper limit only, in the following form. 
 

R 1- / 2,
ˆ ˆ+  t * 1 1/ * ( )k SDα νθ θ+ ................................................................................................2.46 

 
For instance, the upper limit for an 80% prediction interval is set as follows. 
 

R 0 80,
ˆ ˆ+ t * 1 1/ * ( )k SDνθ θ+ ...................................................................................................2.47 

 
An estimator of ˆ( )SD θ , which uses information available as standard output of the DL 
random effects model applied to îθ  (that is, lab-specific parameter estimates) is 
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This could be rewritten as 
 

                                                 
54 See footnote 15 for preference given to delta method over Jack-Knife. 
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This formula involves an estimator of within-lab variation in the following form, 
 

2
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Instead of this estimator of ˆ( )withinSD θ , the other estimator of ˆ( )withinSD θ  described in 

“2.2.3 Pooled estimation of within-lab variability” may be used in computing overall
ˆ( )SD θ . 

This estimator was based on a “DL random effects model”-based overall mean of 
log(SE(θ̂ )). As shorthand, let the following be a formula for such an overall mean and its 
standard error.  
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Using this shorthand, an alternative estimator of ˆ( )withinSD θ  has the following expression.  
 

( ) ( ) 2
R Rˆ ˆlog( ( )) log( ( ))

ˆ ˆ( ) / log( )

within, direct pooling
ˆ( ) 10 SE SEi i

SE e
SD θ θ

θ θ
θ

+
= ...................2.53 

(Derivation of this involving the formulae to convert the mean and variance for original and log- 
transformed lognormal random variable is omitted.)55 
 

Plugging this into 2 2
overall

ˆ ˆ ˆ( ) ( ) ( )between withinSD SD SDθ θ θ= + , i.e., the formula for the 

overall between-lab variation, an alternative estimator of overall
ˆ( )SD θ  is 

 
                                                 
55 Dr. Feder recommends the use of “ 2

/ν νχ  for SE distribution”. 
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( ) ( ) 2
R Rˆ ˆlog( ( )) log( ( ))
ˆ ˆ( ) / log( )2 2

overall
ˆ ˆ( ) (10 )SE SEi i

SE e
SD θ θ

θ θ
θ τ

+
= + ..................2.54 

 

Whether this estimator performs favorably compared to 
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not has not been investigated. 

2.6.2 Standard error of logRBA 
The procedure used to set precision criteria for logRBA is virtually the same as that for 
logIC50.  
 

2.6.3 Within- and between-replicate-set variability of binding 
measurements 

Derivation of criteria for within- and between-replicate-set variability of individual y 
measurements or y given x includes two components: limits established for the overall 
within-lab variation of logIC50 and; relationship between the overall within-lab variation 
of logIC50 and the specific variability measure of individual y measurements. 
 
The performance criteria that have been developed to date include criteria for within-
replicate-set variability of y given x. Let (variability measure)UL  denote an upper limit 
derived for a particular measure of variability. Also, suppose there is the following 
relationship between the two variability measures of interest. 
 

0 1
ˆlog( (y)) = log(SD( ))within replicate setSD β β θ ε− − + + ................................................................2.55 

 
as a particular example of 
 

0 1U = + V+β β ε ...............................................................................................2.35 

 
Estimates of  0β  and 1β  (i.e.,  0β̂  and 1̂β ) may be obtained by fitting an appropriate 
model to the data. The following equation holds for ( (y))within replicate setUL SD − − , which is the 
upper limit for (y)within replicate setSD − − . 
 

0 1 0 95
ˆ ˆ ˆlog( ( (y)))= log( (SD( )) STDF *Zwithin replicate setUL SD ULβ β θ− − + + ................................2.56 
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where STDF is standard error of the forecast, which combines the error in prediction and 
residual error. Exponentiating both sides, the upper limit for (y)within replicate setSD − −  is 
computed as 
 

0 1 0.95
ˆ ˆ ˆlog( (SD( )) STDF *Z( (y))=10 UL

within replicate setUL SD β β θ+ +
− −  

 
Upper limits for the overall between-replicate-set variability and intrinsic between-
replicate-set variability in y given x, may be computed in a similar manner by describing 
the bivariate relationship between the measure of interest and ˆSD( )θ . 

2.7 Relative utility of accuracy and precision criteria 
Accuracy criteria for top, bottom, and Hill slope ensure the general quality of data. The 
accuracy criteria for logIC50 of the standard are of limited use since even among 
competent labs logIC50 varied considerably. 
 
An accuracy criterion for logRBA of a positive control chemical is more useful than an 
accuracy criterion for logIC50 of the reference chemical or positive control. 
 
The precision criteria for logIC50, logRBA, and within- and between-replicate-set 
variability of individual measurements given x are, like the accuracy criteria for the three 
“shape” parameters, useful for ensuring internal consistency of data.  

2.8 Justification for some assumptions and solutions 
Certain supporting analyses for the assumptions are summarized in this section. 

2.8.1 Constant noise assumption 
The results of the analyses that support the operating assumption of constant noise level 
are presented in this section. The analysis investigated the noise levels for one historical 
set of RUC ER binding assay data. 
 
For estradiol data, k was estimated to be 0.13, indicating the error structure was more like 
a Normal distribution than a Poisson distribution. For norethynodrel (the positive control 
chemical), the estimated k was 0.26, giving more—albeit not overwhelming—support for 
a Poisson distribution than for the constant error structure. 
 
The residuals for the above analysis were calculated using unweighted nonlinear 
regression. Using a weight of 1/Y would give rise to a different set of parameter estimates, 
predicted values, and residuals. It is possible that residuals from a 1/Y-weight regression 
show Poisson-like structure. For this reason, the entire analysis was repeated using 1/Y as 
a weight. This alternative analysis yielded k-estimates of 0.11 and 0.31 for estradiol and 
norethynodrel, respectively, meaning that again for estradiol, the constant error level was 
supported; and for norethynodrel the Poisson error structure was slightly more supported. 
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Transformation of the outcome variable can “stabilize” error structures (i.e., make the 
error structure of the transformed variable Normal). In other words, after transformation, 
the error becomes independent of the outcome variable. For Poisson error structure, 
square root transformation is such a variance-stabilizing transformation. Since our 
outcome variable sometimes takes a negative value, we can use ( ) ( )f Y sign Y Y= as a 
variance-stabilizing transformation and change the model equation accordingly as 
follows:56 
 

( )* log 1 ( )* log 1
50 50

( )
1 10 1 10

T B T BX H X H
B B

T B T Bsign Y Y sign B B
μ μ

ε
− −⎛ ⎞ ⎛ ⎞− + − − + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞
− −⎜ ⎟= + + +⎜ ⎟⎜ ⎟+ +⎝ ⎠

 

.....................................................................................................................................................2.57 

 
The idea of a variance-stabilizing transformation provides another way to investigate 
which error structure is most supported by the data. For instance, if Poisson distribution is 
truly the underlying error structure, the mean squared residuals of the transformed 
variable regressed on X using the modified model equation would be constant across the 
transformed variable. This premise was examined using the RUC interlaboratory data. 
The analysis yielded k estimates of -0.17 and -0.15 for estradiol and norethynodrel, 
respectively, each of which has 95% confidence intervals that exclude 0.  These results 
indicate that the residuals decrease as the average y increases, instead of staying constant 
as the assumption of Poisson error on the original scale would imply. Therefore, the 
Poisson error assumption is not supported by the transformed historical data on estradiol 
or norethynodrel. 
 
Table 2.5 summarizes estimates of k for estradiol, norethynodrel and daidzein obtained 
using three different fitting procedures. 
 

Table 2.5 Estimated k for estradiol, norethynodrel, and daidzein 
based on three alternative transformation-weighting schemes 

Estimated value of k 
Analyte 

Assumed error 
structure (and 
correct k value) Transformation Weight Estradiol Norethynodrel Daidzein 
Constant (k = 0) None Equal 0.13 0.26 0.32 
Poisson (k = 0.5) None 1/|Y| 0.11 0.31 0.18 
Poisson (k = 0) Sign(Y)*sqrt(|Y|) Equal -0.17 -0.15 -0.88 
 
Similar analyses were performed on data collected on another 7 chemicals (Bisphenol B, 
4-Cumylphenol, Estrone, Coumestrol, Tamoxifen citrate, 4-tert-Octylphenol, and 
Bisphenol A). Table 2.6 summarizes results for the data from three labs (C, D, and E), 
two labs (C and E) or lab D alone. Overall, the data more strongly, if not overwhelmingly, 
support a homoskedastic error structure than a Poisson error structure when the data were 
                                                 
56 Dr. Feder objects this procedure, stating “I disagree. Negative values should not get larger weights than 
small positive values.” My attempt to defend this procedure is included in Aoki (2007b). 
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analyzed without transformation. The Poisson error structure is slightly more favored by 
the untransformed data from lab D, but when the same data were analyzed with the 
square root transformation there is much less evidence for a Poisson error structure (k = -
0.49). (Analyses by different subsets of laboratories were not performed for estradiol, 
norethynodrel, and daidzein because of small sample sizes for each of these chemicals.) 
 

Table 2.6 Estimated k for various chemicals 
based on three alternative transformation-weighing schemes 

Estimated value of k 
Laboratory 

Assumed error 
structure (and 
correct k value) Transformation Weight All (C, D, E) C and E D 
Constant (k = 0) None Equal 0.22 0.17 0.27 
Poisson (k = 0.5) None 1/|Y| 0.22 0.17 0.24 
Poisson (k = 0) Sign(Y)*sqrt(|Y|) Equal -0.22 -0.17 -0.49 
 
The fact that estimated k ≈ 0.2 > 0 indicates the error level tends to increase as Y 
increases, but the rate of increase is not as fast as the level expected for a Poisson error 
structure. As noted earlier, there are practical obstacles for incorporating a Poisson error 
assumption in the nonlinear regression curve-fitting procedure. Taken together, the best 
course of action was determined to be to use the standard weighting option for nonlinear 
regression, i.e., equal-weighting without transforming the Y variable.  

2.8.2 DerSimonian-Laird random effects model 

2.8.2.1 Comparing methods for summarizing data from multiple runs 
The method discussed in “2.2.1 DerSimonian-Laird random effects model” for 
summarizing receptor binding data from multiple runs consists of two steps. The first step 
is to fit the Hill equation to data from each run by nonlinear regression. The second step 
is to summarize sets of the parameter estimates obtained in the first step by fitting a 
DerSimonian-Laird random effects model parameter by parameter. An alternative method 
fits the Hill equation to data sets from multiple runs.  It simultaneously provides run-
specific summaries and between-run summaries for the four parameters of the Hill 
equation, complete with estimates of between-run variation for each of the four 
parameters. A modification of this procedure also may be used to estimate logRBA by 
fitting a properly-parameterized model to a combined data set from concurrently-
performed runs for a standard and test chemical.  
 
In a simulation study conducted by Battelle (Feder and Ma, 2005), this alternative 
method was compared to the method based on the DL random effects model. The goal of 
this study was to investigate the appropriateness of using the DL random effects model 
for summarizing parameter estimates from multiple runs. The alternative curve-fitting 
procedure available as PROC NLMIX in SAS that simultaneously produces summary 
statistics across runs was found to be impractical because of the issue of non-convergence 
and very lengthy computation time.  
 
Comparison of the analytical standard error for a parameter estimate from fitting a DL 
random effects model with the observed standard deviation of estimates of the parameter 



 

49 
 

from simulation revealed that the standard error was underestimated by the DL procedure, 
but not by much. The maximum likelihood (ML) alternative to the DL procedure, which 
is a moment-based method, was found to perform better than the DL in that the standard 
error was less biased. The ML procedure involves iterative estimation and is much less 
accessible compared to the DL method. That is, the DL method involves closed-form 
solutions only and can be performed manually or by using a spreadsheet program while 
the ML procedure is available only in SAS and other costly commercial software. 
  
Based on the results of the simulation study and concerns for accessibility, it was judged 
that the practical advantage of the DL procedure prevails over its statistical 
shortcomings.57 

2.8.2.2 Underestimation of between-unit variability in the conventional 
method 

In “1.3.2.2 Limitations in the conventional approach to estimating variability between 
laboratories” it was claimed that the conventional method for estimating between-unit 
variability, which relies solely on the observed overall between-lab variability, ignoring 
the estimated within-unit variability, tends to underestimate the true level of overall 
between-lab variability. This tendency is more pronounced when the true intrinsic 
between-unit variability is small compared to the true within-unit variability. 
 
These claims are based on simulations. The simulations performed, along with their 
results, are summarized below. 
 
In each round of simulation, three realized values of  iθ  , i = 1, 2, 3, are drawn from a 

Normal distribution with mean zero and variance k2, N(0, k2). For each of these, îθ  were 
generated as a mean of l realized random variable values. Each one of these l values is 
generated as, 
 

 , ~ (0,1) ,    1,  2,  ...,  ij i j j N j lθ θ δ δ= + = ...........................................................................2.58 

i.e., with Normally-distributed random error such that the expectation of ˆ( )iSE θ  ≡ 1. 
 
The choice of l determines the variability of ˆ( )iSE θ . The greater l is, the smaller the  

across-run variability in simulated ˆ( )iSE θ  values will be. It was determined that an l of 4 

or 5 corresponds to the level of the variability in ˆ( )iSE θ  observed in the previous interlab 
study for the RUC estrogen receptor binding assay. How this conclusion has been drawn 
is summarized in the next few paragraphs. 
 
The observed levels of between-run variability (standard deviation) of ˆlog( ( ))iSE θ  are 
shown in Table 2.7 for the combination of laboratories (A, C, D, E) and analytes 

                                                 
57 As noted earlier, the preference to the more accessible procedure is largely of EDSP, not of me. 
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(estradiol used as standard and norethynodrel used as positive control) for the logIC50 
parameter. (Data from the first run for norethynodrel from lab A was dropped because of 
very poor quality.) 
  

Table 2.7 Observed SD( ˆlog( ( ))iSE θ ) 
Analyte 

Laboratory Estradiol Norethynodrel 
A 0.108 0.189 
C 0.146 0.242 
D 0.146 0.211 
E 0.205 0.081 

  
ˆ(log( ( )))iSD SE θ  of about 0.2 seems to be a representative level. 

 
On the other hand, the simulated values of ˆlog( ( ))iSE θ  generated as described above had 
the following standard deviations when l was varied from 2 to 20. 
 

Table 2.8  Standard deviation of simulated ˆlog( ( )iSE θ  
corresponding to the number of within unit replications  

Value of l 2 3 4 5 10 20 
ˆ(log( ( ))iSD SE θ   0.486 0.275 0.213 0.173 0.108 0.071 

 
From this table we can see that the level of l corresponding to ˆ(log( ( ))iSD SE θ  ≈ 0.2 is 
4~5. 
 
For demonstration purposes, an l of 5 was chosen. Using the simulated data, we can 
compute two separate estimates of ˆ( )RSE θ , one using the conventional method of simply 
taking the mean of three run-specific summaries and calculating its standard error and the 
other using the DL random effects model. The former ignores ˆ( )iSE θ  associated with 

each îθ —that is, it ignores within-run variability. The latter incorporates ˆ( )iSE θ  in the 

computation. Let’s call these ˆ( )R convSE θ  and ˆ( )R DLSE θ . 
 
In an extreme case where the ratio of intrinsic between-run SD to within-run SD (k) is 0, 
i.e., the intrinsic between-run variation is zero (or there is no between-run heterogeneity), 
the simulated distributions of ˆ( )R convSE θ and ˆ( )R DLSE θ  are shown in Figure 2.3. The 

vertical line indicates the level of ˆ( )RSE θ  expected from between-run and within-run 
variabilities specified in the simulation. 
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Figure 2.3 Comparison of ˆ( )R convSE θ  and ˆ( )R DLSE θ , intrinsic between-run 

variability = 0 
 
Note that the distribution for ˆ( )R convSE θ  has greater probability mass near zero away 
from the expected center or its center is shifted towards zero from its expected center 
than that for ˆ( )R DLSE θ . This indicates that the chances of underestimating the true level 
of overall between-run variability are greater for the conventional method than for the DL 
method. This happens because values of îθ  may happen to be close to each other, making 

ˆ( )R convSE θ  small. When this happens, a user of the conventional approach is stuck with 

an unusually low estimate of ˆ( )RSE θ . In the same situation, the DL method computes the 
overall between-run variation by adding the observed between-run variation, which 
would be at or near zero, and within-run variation, which most of time is NOT near zero.  
 
The degree of underestimation depends on the relative contribution of the intrinsic 
between-run variation and within-run variation to the overall between-run variation. As 
the contribution of the intrinsic between-run variation increases, the tendency of the 
conventional method to underestimate the overall between-run variation diminishes. In 
order to get a good understanding of the realistic level of this underestimation, k (the 
hypothesized ratio of intrinsic between-run SD to within-run SD) needs to be set to a 
realistic value. 
 
In the data from the previous interlab study, the observed ratios of intrinsic between-run 
SD to within-run SD were computed as follows.58 
 

                                                 
58 The ratios shown in Table 2.9 differ from those presented in Table 3.3 and Table 3.4. They are different 
because the two set of ratios were computed in a different manner. In Table 2.9, the arithmetic mean of the 
ratio values computed for each lab-analyte combination is shown. In contrast, in Table 3.3 and Table 3.4, a 
ratio was computed for each lab-analyte combination by dividing the intrinsic between-run SD by the 
pooled estimate of within-run SD. Since the ratio tended to be right-skewed, a ratio values in Table 2.9 is 
greater than the corresponding ration in Table 3.3 and Table 3.4. 
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Table 2.9 Observed ratio of SDintrinsic between-run variability to SDwithin-run variability 
Analyte 

Laboratory Estradiol Norethynodrel 
A 1.7 1.1 
C 3.6 4.2 
D 3.7 2.4 
E 1.7 0.6 

 
There is a single estimate of the between-run SD for each lab-analyte combination, and 
the ratio is computed taking this common between-run SD and each of the run-specific 
within-run SD estimates (the number of runs ranges from 3 to 12). In order to show the 
run-to-run variation of this ratio, the estimated run-specific ratios are summarized using 
box plots in Figure 2.4. 
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Figure 2.4 Observed ratios of SDintrinsic between-run to SDwithin-run by laboratory 

 
The average “between-to-within” ratio most of the time was greater than 1 for labs C and 
D. A value of the ratio near or below 1 occurs on occasion for lab A. Ratios close to or 
below 1 were not uncommon for lab E, and in fact lab E’s ratios for norethynodrel were 
all below 1. Note that lab E was the lab whose performance was the best among the 4 
labs. Lab E had the lowest overall between-run variability largely due to its low intrinsic 
between-run variability. 
 
Figure 2.5 below shows a comparison of simulated distributions of ˆ( )R convSE θ  and 

ˆ( )R DLSE θ  in the case where the intrinsic between-run is not zero and the between-to-
within ratio is one, i.e., k  = 1. 
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Figure 2.5 Comparison of ˆ( )R convSE θ  and ˆ( )R DLSE θ , 

SDintrinsic between-run variability = SDwithin-run variability 
 
The degree of the underestimation does not seem serious, but it still is noticeable. When k 
is increased to 4, though, the underestimation becomes hardly noticeable as shown in 
Figure 2.6 below. 
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Figure 2.6 Comparison of ˆ( )R convSE θ  and ˆ( )R DLSE θ , 
SDintrinsic between-run variability = 4  SDwithin-run variability 

 
Taken together, at certain realistic levels of relative magnitudes of between-run variation 
and precision of ˆ( )iSE θ , ˆ( )R DLSE θ  would perform better than ˆ( )R convSE θ . 
 
Let us try a similar analysis for estimation of between-lab variation of θ̂ . The observed 
levels of between-lab variability (standard deviations) of ˆlog( ( ))iSE θ  were 0.210 for 
estradiol and 0.374 for norethynodrel, meaning the variability corresponds to an  l of 4 
for estradiol and an l of 2~3 for norethynodrel for .59 The observed average ratio of 

                                                 
59 Unfortunately, the use of logIC50 results as an example here was not very useful because logIC50 
estimates are already known to be not comparable across labs. The observed ratios of between-lab 
variability to within-run variability often were much smaller for other parameters, e.g.: 
0 for top plateau parameter (norethynodrel) as shown in Table 3.7; 
0 for bottom plateau parameter (both estradiol and norethynodrel) as shown in Table 3.8 and Table 
3.9Table 3.10; 
0 for slope parameter (estradiol) as shown in Table 3.10. 
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intrinsic between-lab SD to within-lab SD was 4.4 for estradiol and 8.1 for 
norethynodrel.60 These relatively high ratios indicate that the intrinsic between-lab 
variation is the predominant source of variation in the overall between-lab variability of 
logIC50 estimates. It is unlikely that ˆ( )R DLSE θ  and  ˆ( )R convSE θ  generate diverging 
estimates of the overall between-lab variabilities due to the above-discussed 
underestimation associated with ˆ( )R convSE θ . Note, though, that such assurance becomes 
available to us only if we look at the relative contribution of the intrinsic between-lab 
variability to the overall between-lab variability, about which the DL method can inform 
us but the conventional method cannot. As long as we rely on the conventional method 
alone, we would have no way of assessing whether the potential underestimation was of 
real concern or not. Interestingly, the above results indicate that as an assay improves in 
terms of reduced intrinsic between-lab variability, the likelihood of underestimating the 
overall between-lab variability increases. 

2.9 Other uses of variability estimates 
The use of separate estimates of the intrinsic between-unit and within-unit variabilities 
for setting performance criteria has been described. There are other uses of them, some of 
which are described below. 

2.9.1 Uses in assay development 
Separate estimates of the intrinsic between-unit and within-unit variabilities may be 
useful at a pre-validation stage when one is trying to identify specific sources of variation 
as targets of efforts to reduce overall variability. High variability in radioactive count 
measurement, for example, would tend to increase within-run variation, not intrinsic 
between-run variation. Inappropriate preparation of a stock standard solution for each run, 
from which appropriate serial dilutions can be made reliably, would result in an increase 
in intrinsic between-run variation, not within-run variation. The fact that such sources of 
variation are likely to be associated more with one or the other of the two variabilities, 
combined with knowledge of the observed contribution of these two variabilities, helps 
us identify specific sources of variation to which our efforts to reduce variation should be 
targeted. 

2.9.2 Uses in assay implementation 
For an instance of post-validation use of the between and within variability estimates, 
suppose the overall between-lab variability for an assay has been found to be 
unacceptably high under a specified design in all or most of novice laboratories, and we 
would like to know whether a feasible increase in the number of runs per laboratory 
would reduce the variability to a meaningful degree and how much of an increase would 
reduce the variability to the desired level. Only with the separate estimates of intrinsic 

                                                                                                                                                 
These represent a situation where underestimation of overall between-lab variability by the conventional 
method is potentially substantial at least in terms of the “between/within” ratio. The variability of between-
lab variation as it affects the precision of ˆ( )iSE θ  has not been investigated. 
60 These mean ratio values differ from the “Between/within” ratio values shown in Table 3.3 and Table 3.4 
for the reason explained in the footnote 58. 
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between-lab variability and overall within-lab variability (which is a function of the 
number of runs), would easy calculation of the necessary number of runs be possible. 
 
Outside of validation exercises, we generally do not have a chemical tested by two or 
more laboratories. If intrinsic between-lab variability is very high, though, testing by 
multiple laboratories may be justified.61 This may happen when, for instance, intrinsic 
between-lab as well as within-lab variability for logRBA is found to be high for a 
particular class of chemicals of regulatory importance. The agency may want to control 
precision of logRBA by requiring testing by multiple laboratories and performing more 
than three runs per laboratory. The optimal combination in terms of the laboratory cost 
and gain in precision may be determined using the estimates of intrinsic between-lab and 
within-lab variabilities. An example of exercise of this kind is given for the combined 
between-replicate-set variability in individual binding measurement given x in the section 
“3.6.3.3 Total between-replicate-set variability of % binding of radioligand”. 

                                                 
61 Dr. Feder notes “I disagree. A large component of variability across labs indicate the assay or the 
protocol needs to be improved. Assay is not reproducible. Sources of variation need to be eliminated. 
Running greater number of variable labs does not increase reproducibility of assay.” Please note that I am 
recommending this as a routine solution. It would be great if an agency has limitless time and  resources to 
keep improving unsatisfactorily variable assay, but in reality it usually has some timeline and limited 
resources. In the case of RUC ER binding assay, EDSP felt that it had done as much assay improvement it 
could perform. It is reasonable to suggest a potential solution for the situation where the time (and 
resources) for assay development has been exhausted but the assay still has unacceptably high between-lab 
variability. Using multiple labs is shown here as such a last-resort solution. Consider also the following 
specific situation. Even for assay with acceptably low between-lab, during the implementation of large 
scale screening an agency may encounter a (newly emerged) class of test chemical for which between-lab 
variability is found to be much higher than for those tested during assay development.  
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3 Examples62 

3.1 Structure of this chapter 
This chapter shows how the methods described in Chapters in 1 and 2 were applied to the 
data collected as a part of the activities called “Task 6 ” of  Work Assignment 2-30, 
Contract No. 68-W-01-023, and performance criteria were derived. The title of Task 6 
was 
 
Establish the variability of results among the five independent laboratories when using 
Battelle-supplied “standard” cytosol preparation, 17β-estradiol, and a range of 8-10 test 
chemicals 
 
A part of the same data was used in the analysis performed by Battelle (Feder and Ma, 
2005). The overall structure of this chapter is as follows. 
 
“3.2 Overall organization of the data” is a short section that summarizes how many runs 
are used for each combination of chemical and laboratory. Correction for the number of 
runs performed is necessary in order to make results comparable across laboratories. 
 
The following section “3.3 Run- and lab-specific estimates of the Hill equation 
parameters” provides a graphic overview of the data in terms of run-by-run summary 
estimates for each laboratory of the Hill equation parameters and laboratory-by-
laboratory summary estimates of them. These are computed using the DerSimonian-Laird 
random effects model. Graphic summary of the data of this kind is useful in making an 
informal judgment regarding which laboratories are “acceptable” in terms of accuracy 
and precision of a parameter estimate. This section focuses more on the data rather than 
the methods. Nonetheless, the usefulness of the DL model as a tool for data description is 
exemplified in this section. 
 
In the next section titled “3.4 Within-run, between-run (= within-lab), and between-lab 
variations”, an example of actual computation of the pooled means and summary 
variability measures using the DL method is given as well as an example of actual full 
numerical summary for an entire interlaboratory study data set in terms of pooled means 
and various between- and within-unit variability estimates. 
 
The estimates of across-lab pooled mean and overall between-lab variation of the Hill 
equation parameter described in Section 3.4 are the key quantities in deriving accuracy 
criteria for those parameters. In “3.5 Deriving accuracy criteria”, how to derive accuracy 
criteria are described for each of the Hill equation parameters. Approaches similar to 

                                                 
62 EDSP has decided to revise the performance criteria derived in this section. The revision is to be 
performed separately in part based on Aoki 2007c). To illustrate the originally proposed method, most of 
description were left unchanged from the version submitted earlier (Aoki, 200a). Some of the necessary 
changes to the original proposed method, which were suggested by Dr. Feder, are incorporated where 
possible (in the form of correcting formulae and text), but performance criteria numbers and interim results 
are left unchanged. As such, performance criteria numbers in this section in general are not to be used. 
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those used for deriving the accuracy criteria with necessary modifications are used for the 
derivation of the precision criteria, which is described in the last section “3.6 Setting 
precision criteria”.  
 
Since the EDSP’s priority for data quality has changed over time, some potential 
alternatives to cope with the change were considered and described.  

3.2 Overall organization of the data  
Table 3.1 gives the number of runs performed for each chemical by laboratory. For most 
laboratory-chemical combinations there are more than 3 runs. We are interested in a 
standard condition of three runs performed for a test chemical under the current protocol. 
The consideration for extra runs described in “2.2.2 Correction for the number of runs 
performed” applies to the analysis of this data, meaning that when we try to generate a 
summary across labs we modify the input data so that the results will be relevant to future 
situations where three runs per chemical are the norm.  
 

Table 3.1 Number of runs for which usable data are available 

Laboratory 

logIC50, top 
plateau, bottom 

plateau, and 
Hill slope for 

Estradiol 

logIC50, top 
plateau, bottom 

plateau, and 
Hill slope for 
Norethynodrel 

logRBA  for 
Norethynodrel 

A 4 3 3 
C 6 6 6 
D 7 12 7 
E 6 6 6 

 
Usable data on norethynodrel from lab A were available for 3 runs. There was an 
additional run for this chemical-lab combination, but the data for that run was obviously 
erratic and excluded from the analysis. Lab B was dropped during the qualification 
process because of its poor performance. 

3.3 Run- and lab-specific estimates of the Hill equation 
parameters 

In order to give an overall visual impression of data variability, so-called forest plots  
(Lewis and Clarke, 2001) are produced for each of the four parameters: logIC50, top, 
bottom, and slope. Forest plots typically are used in epidemiological publications 
reporting results of meta-analysis, which is a systematic review of multiple independent 
studies complete with a quantitative summary of study results. 
 
They are useful for the purpose of this section in presenting results across runs (or labs) 
because they give visual impressions of within-run (lab) as well as between-run (lab) 
variability. In general, they are useful for summarizing results from independent “units”, 
whether the units are runs, laboratories, clinical trials, or observational studies. 
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In the forest plots below, the results from each unit are represented by a rectangle and a 
horizontal line. The horizontal location of the center of a rectangle corresponds to the 
point estimates of the parameter of interest from individual units. The area of the 
rectangle is inversely proportional to the variance of the point estimate. The edges of the 
horizontal line represent the lower and upper 95% confidence limits for the point estimate. 
The overall mean of the estimates, as derived by fitting the DL random effects model to 
them, is shown as the horizontal location of the center of the diamond at the bottom of 
each plot. Again, the left and right edges of the diamond represent the lower and upper 
95% confidence limits for the estimate of the overall mean. 
 
Features of forest plots can be understood easily through the use of an example. Let’s 
take a look at the set of forest plots summarizing the results for logIC50, shown in Figure 
3.1. When the results from multiple units are homogeneous or between-unit variability is 
low, the rectangles are aligned in terms of horizontal location. An example of such a 
situation is the panel for lab E and norethynodrel at the right bottom corner. When the 
rectangles are similar in size or the lengths of horizontal lines are similar, that means 
within-unit variability varied little across units (as is the case, again, with lab E and 
norethynodrel). 
 
When the intrinsic between-unit variability is high (or results are heterogeneous across 
units), a plot often includes horizontal lines that exclude the center of another horizontal 
line or, in more extreme cases, do not overlap with each other. An example of such a 
situation is seen in the two panels for lab C where the horizontal lines at the top in each 
panel are away from the rest of the horizontal line. The relatively high heterogeneity for 
results from lab C is reflected in the high SDintrinsic between-run variability to SDwithin-run variability 
ratios shown in Table 2.9 “Observed ratio of SDintrinsic between-run variability to SDwithin-run 

variability”. Note that some lines in the panels for lab D also exclude each other, and that is 
consistent with the high values of the ratio for lab D in Table 2.9. 
 
A large difference in the size of rectangles indicates that some point estimates were much 
more precise than others. In the presence of such a large difference, the DL method is 
more suitable in producing a more precise estimate of the overall mean than the 
conventional method. Although this gain in precision is not the main reason for us to use 
the DL method (the main reason is its capacity to separate within- and between-unit 
variation), this feature can also be thought of as an additional merit since the precise 
estimation of overall mean for each lab results in a better estimate of between-lab 
variation, which is ultimately the quantity of most interest. 
 
By comparing plots for the same chemical across laboratories, we can gain some insights 
as to whether the results are different across labs.  The informal visual impression we 
receive is that there are differences across laboratories. Lab E appears to give higher 
logIC50 values than others, and lab D lower logIC50s. 
 
A formal investigation on whether results vary across labs is carried out by fitting the DL 
random effects model to the lab-specific logIC50s and their standard errors. The result of 
across-lab summarization is shown in another set of forest plots (Figure 3.2). As a 
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preparation for producing these, adjustment for the number of runs performed for each 
lab (see “2.2.1 DerSimonian-Laird random effects model”) was made. 
 



 

60 
 

Analyte  
Lab Estradiol Norethynodrel 

A 

  

C 

  

D 

 
 

 

E 

 
 
 
 
 
 
 
  

 

Figure 3.1 logIC50 estimates by analyte and laboratory 
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Analyte 
Estradiol Norethynodrel 

 
 

 

Figure 3.2 Across-lab summary of logIC50 estimates 
 
Between-lab heterogeneity is easily noticeable within each panel in Figure 3.2. From a 
different perspective of comparing the observed pattern across two panels, a parallel shift 
for logIC50 for estradiol and norethynodrel, which implies a type of similarity across 
chemicals within lab, appears to exist, i.e., deviation of estradiol logIC50 for a lab from 
the overall mean is in the same direction for those of norethynodrel logIC50. Within-lab 
variation, as represented by the inverse of the area of rectangle and reflected in the length 
of the horizontal line (i.e., the width of the 95% confidence interval), is the smallest for 
lab E, indicating relatively good precision by lab E. 
 
This heterogeneity probably is primarily due to variation in the concentration of protein 
originated in the RUC preparation used. The protein concentration in the RUC 
preparation can vary considerably across labs. Since the protein concentration has 
substantial influence on logIC50 and standardizing the protein concentration for RUC 
preparations is infeasible, the EDSP has decided to not impose criteria for accuracy for 
logIC50.63 
 
Some signs of between-lab heterogeneity were observed for the estimates of the other 3 
parameters, but they are not as conspicuous as those for logIC50. 

                                                 
63 In the absence of the knowledge on the variable protein concentration and how strongly it affects logIC50, 
the same conclusion to not enforce performance criteria for accuracy of logIC50 still might have been 
reached. The observation that the logIC50 estimates from lab E appeared different from those from other 
labs raised concerns as to whether these four laboratories are representative in a general sense. As a 
background, lab E was the leading lab and had gone through the most intensive scrutiny regarding how 
experiments were conducted. Information collected by observing actual experimental sessions at lab E was 
used to improve the written laboratory protocol. The final protocol that underwent such improvement was 
distributed to laboratories A, C, and D to be used the current interlab study. 

It might have been the case that there were certain practices in lab E that were not completely 
reflected in the final protocol, and the same practices also resulted in its stellar performance in terms of 
precision as well as its “eccentric” logIC50 values. This would mean there was qualitative between-lab 
heterogeneity in the performance of four laboratories. If this is the case, statistical results based on the 
combined data from lab E and other labs would not have had good interpretation. The DL random effects 
model allow heterogeneity across labs, which is quantitative in nature. The potential heterogeneity of 
qualitative nature hypothesized above is not something the model can properly describe. 
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 Figure 3.3 Top parameter estimates by analyte and laboratory 
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Figure 3.4 Across-lab summary of the estimates of the top plateau level 
 
Within-lab variation for the estimate of the top plateau was higher for lab A than for the 
other three labs (Figure 3.4). There is noticeable within-lab, between-run variation as can 
be seen in Figure 3.3. 
 
Theoretically, the true top plateau level should be 100% and the top estimates should 
center around 100%. In terms of central tendency alone, the top estimates from lab C 
were quite good, although the apparent tendency of them to increase over time (run 
numbers reflected chronological order) was a cause for concern. Lab E, which was 
supposedly the best-performing as explained earlier, did not produce expected results for 
estradiol. The confidence interval (CI) for the top plateau estimate for estradiol computed 
for lab E shown in Figure 3.3 did not include 100%, meaning there is statistical evidence 
that lab E reported top plateau estimates consistently greater than 100% (in Figure 3.4 the 
CI for estradiol for lab E does include 100%, but the computation of that CI was based on 
the pretence that we only had a hypothetical 3 runs instead of the actually available 6 
runs). The top plateau estimates for estradiol from lab D, on the other hand, had a 
tendency to be lower than 100% as the CI for that barely included the 100% value. The 
top estimates from Lab A were highly variable in terms of both within-run and between-
run variation. 
 
Let’s turn our attention to the estimates of the bottom plateau level, results for which are 
shown in Figure 3.5 and Figure 3.6. Note that these plots were drawn using a scale 
directly comparable to that used for the top parameter, i.e., the biologically expected 
value ± 20%. Except for the norethynodrel results from lab A, most of the time the 
estimates are close to zero, which biologically is the most credible value. The good 
accuracy overall for this parameter most likely reflects the fact that computation of y 
values includes a step to subtract an estimate of non-specific binding, which is measured 
for each run . There is strong evidence that bottom estimates are often lower than 0%. 
This could be explained if the non-specific binding value, which is estimated using a 
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fixed, high concentration of non-radioactive estradiol for each run, tended to be 
overestimated.64 

                                                 
64 There seems to be no readily available explanation for why the non-specific binding (NSB) value may 
have been consistently overestimated. Some speculations on the potential cause of the overestimation are 
made below.  
 
In an ideal assay, we would quantify NSB at each analyte concentration and subtract it from the total 
binding to get at the specific binding. This is not done in the current protocol, and most likely such NSB 
measurements would practically be impossible. Instead, we use a single NSB value for each run, which is 
estimated by measuring the total binding in the presence of excess amount of non-radioactive estradiol and 
in the absence of a test chemical. This is akin to the general idea of background signal subtraction, but the 
analogy does not work perfectly since the NSB would change according to the concentration of test 
chemical.  
 
The single, nominal NSB value thus obtained may tend to be greater than the actual levels of NSB at 
varying concentration of the test chemical. Theoretically the actual level of NSB increases proportionally 
with the concentration of free radioactive estradiol in the assay solution. The actual levels of NSB could 
have been lower than the nominal level if the concentration of free radioactive estradiol present in the 
liquid phase at varying chemical concentrations had been lower than the level corresponding to the fixed 
excess level of non-radioactive estradiol used for estimation of the common non-specific binding value. 
Since we do not know the actual levels of NSB this possibility remains to be a speculation. 
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Figure 3.5 Bottom parameter estimates by analyte and laboratory 
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Analyte 
Estradiol Norethynodrel 

 
 

 

Figure 3.6 Across-lab summary of the estimates of the bottom plateau level 
 
Whatever the mechanism is, the tendency for the laboratories to report negative bottom 
plateau levels may be an artifact of the protocol rather than an indication of improper 
performance of the laboratories as a whole.  
 
The results for Hill slope estimates are given in Figure 3.7 and Figure 3.8. Most of the 
time the 95% CI from a run includes the biologically expected value of -1. Except for the 
tendency for lab A to produce a Hill slope estimate for estradiol < -1 all labs produced 
Hill slope estimates near -1. 
 
The pooled across-lab summary of Hill slope was slightly greater than -1, but its 95% CI 
included -1. Overall, the Hill slope estimates appeared to be credible and deviation from -
1, if any, seemed to be due to reasonably small random error.  
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Figure 3.7 Hill slope parameter estimates by analyte and laboratory 
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Analyte 
Estradiol Norethynodrel 

  

Figure 3.8 Across-lab summary of the estimates of the Hill slope 
 
Results for logRBA for norethynodrel are shown in Figure 3.9 and Figure 3.10. Note that 
the same scale is used in these figures as is used in Figure 3.1 and Figure 3.2 for logIC50, 
for easy visual comparison. Computation of logRBA requires a matched pair of logIC50 
estimates for estradiol and test chemical, and so there are only 7 logRBA estimates for 
lab D although there are 12 logIC50 measurements for norethynodrel. 
 
Comparing Figure 3.9 to Figure 3.1, within each lab the between-run scatter of logRBA 
seems to be smaller than that of logIC50 for labs A, C, and D. Comparing Figure 3.10 to 
Figure 3.2, the between-lab scatter of logRBA is smaller than that of logIC50. These 
presumably are the result of within-run correlation between (i.e., parallel shift for) 
logIC50 of standard and that of norethynodrel. The width of the diamond, i.e., the width of 
the 95% CI for overall mean, in Figure 3.10 is much narrower than that in the right-hand 
panel of Figure 3.2, indicating the overall between-lab variation is smaller for logRBA 
than for logIC50. 
 
The across-lab order of logIC50 values for norethynodrel and that of logRBA for 
norethynodrel were different. Norethynodrel logIC50s (as well as standard logIC50s) for 
lab D were the highest among the four labs whereas norethynodrel logRBA for lab D was 
the lowest. This observation that the order was not preserved between logIC50 and 
logRBA of the same chemical may be taken as a sign, if not a very convincing one, that 
the standardization by standard’s logIC50 was helpful in reducing between-lab variation. 
High precision of logRBA for lab E also is noticeable. The concerns over potential 
qualitative65 differences between lab E and the remaining labs have been explained in the 
footnote 63, and they are applicable here.  

                                                 
65  Dr. Feder suggests that “qualitative(ly)” used in this context be replaced by “systematic(ally)”. I prefer 
to retain “qualitative(ly)”. My choice of  the adjective “qualitative” was based on its broad meaning. 
Although lab E seems to be systematically in a quantitative manner from other labs (i.e., different logIC50 
values and smaller variation in logIC50), we do not know exactly how the difference came about. The word 
“systematic” seems to imply we are to some extent certain about the exact nature of the difference in 
question. What we are certain about the difference is the fact that lab E was the leading lab and 
improvement for the protocol was largely based on its experience. My view is that such “qualitative” has 
bring about the systematic difference in the parameter estimates. At any rate, if a reader would like to 
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If the standard-norethynodrel shift for logIC50 is completely parallel, logRBA estimates 
would show very low or zero between-run and between-lab variation. That was not the 
case. Nonetheless, as can be seen in comparisons of numerical results shown in Table 3.4 
and Table 3.12 to be presented later, overall and intrinsic between-run/lab variabilities 
were generally lower for logRBA of norethynodrel than for logIC50 of norethynodrel 
(except for overall and intrinsic between-run variabilities for lab E, where these 
variabilities for norethynodrel logIC50 were rather low).  
 
The fact that the confidence interval for logRBA from one of the laboratories excludes 
the pooled-across-lab-mean is not so much to worry about. Looking at Figure 3.10 from 
another perspective, the point estimate of logRBA for lab E lies, if barely, within the 
confidence interval of the pooled across lab mean (i.e., the estimate is inside the edges of 
the diamond). The within-lab variability of logRBA is expected to decrease as the 
protocol is refined. With that change, the width of the confidence interval for each lab 
gets narrower, and the chances that the confidence intervals for some labs exclude the 
pooled across-lab mean would increase if the intrinsic between-lab variability of logRBA 
remains unchanged.  
 
What we need to bear in mind is that lab E actually was qualitatively different from other 
labs66. It was the leading lab, which contributed to the improvement of the protocol. 
Other labs received the improved protocol and started from scratch. In terms of the level 
of experience with the RUC estrogen receptor binding assay, the laboratories that will 
take part in subsequent interlaboratory studies and actual implementation of this assay 
will likely be more like labs A, C, and D than lab E. That implies the performance criteria 
we developed using data from lab E are not optimal to be applied to novice laboratories. 
 
As we reevaluate the performance criteria in the light of the new data from subsequent 
interlaboratory study (and update them if necessary), it would be prudent to make efforts 
to remove the influence of lab E on the update performance criteria.67 Sensitivity analyses, 
e.g., comparing criteria derived with and without inclusion of data from lab E, would 
facilitate such efforts. In deriving the criteria described in this report, sensitivity analyses 
of this kind were not feasible because of the small number of laboratories from which 
usable data were available. For instance, we determined that labs D and E were 
acceptable in terms of precision of logIC50, and removal of data from lab E would have 
left data from a single lab, from which no estimate of between-lab variability could be 
computed. Without an estimate of between-lab variability, the methods for deriving 
performance criteria that are described in this report do not work. 

                                                                                                                                                 
replace the original wording with “systematic(ally)” it can be done so without altering the originally 
intended nuances.  
66 Dr. Feder would like to insert a phrase “with respect to IC50 but not RBA”. It is true in terms of location 
of logIC50 and logRBA, but, as noted earlier in the body of text, lab E also has smaller variation for 
logRBA. As such, I prefer to keep the original sentence as is. 
67 This advise is expressed from a practical and empirical view point. From a purely scientific view point, 
laboratories should meet the higher standards of a well-trained lab such as lab E. 
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Figure 3.9 logRBA parameter estimates by laboratory 
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Analyte: Norethynodrel 
 

Figure 3.10 Across-lab summary of logRBA parameter estimates 
 

3.4 Within-run, between-run (= within-lab), and between-lab 
variations 

The forest plots are useful in conveying an overall impression of within-unit variation 
and overall between-unit variation at two levels, run and lab, of hierarchy. They do not, 
though, help us gain quantitative insights on these. They also are less informative about 
intrinsic between-unit variation. This section provides a quantitative summary of the 
various variability measures as well as some examples of how they are computed. 
 
Let us use logIC50 data on estradiol from lab A, which are shown below, as an example.68 
The notation used in “2.2.1 DerSimonian-Laird random effects model” will be used as 
consistently as possible. 
 
Run (i) îθ  ˆ( )iSE θ 69 
1 -8.792 0.0769 
2 -8.956 0.0510 
3 -8.971 0.0425 
4 -9.107 0.0564 
 
Fitting the DL random effects model to this data yields the output shown below. 
 
Meta-analysis  
 
       |  Pooled      95% CI         Asymptotic      No. of 
Method |     Est   Lower   Upper  z_value  p_value   studies 
-------+---------------------------------------------------- 
Fixed  |  -8.976  -9.028  -8.924 -338.468    0.000      4 
Random |  -8.965  -9.070  -8.861 -168.064    0.000 
 

                                                 
68 Using computation for logIC50 as an example is not the best choice since across-lab comparison of  
logIC50s is not something that the EDSP regards valid at the time of this writing. This choice merely 
reflected our initial focus in 2005 on logIC50. 
69 Transcriptional errors for data from runs 2-4 in the draft report have been corrected. 
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Test for heterogeneity: Q= 11.298 on 3 degrees of freedom (p= 0.010) 
Moment-based estimate of between studies variance =  0.008 
 
For our purposes, we ignore the results based on fitting the “fixed effects model”, which 
are shown on the row labeled “Fixed”. Among the statistics of our interest computed 
from the DL methods, only the overall mean and heterogeneity p-value are shown in bold 
in Table 3.2.   
 

Table 3.2 Summary statistics related to within- and between-run variation 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ
70 

Overall 
between-
run SD 

ˆ( )SD θ  

Intrinsic 
between-
run SD 

r̂unτ  

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -8.965 0.0533 0.1067 0.0905 0.0565 0.720 1.60 0.010 
 
The other statistics are calculated from interim results, which do not appear in the output 
and need to be extracted in a manner specific to the statistical package in use. The 
formulae that are used for generating interim results are shown below so that the process 
can be reproduced irrespective of the statistical package in use. 
 
SE(overall mean), R̂( )SE θ  = 0.053 

R

2 21

1ˆ( ) 1
ˆ ˆ( )

k

i
i

SE

SE

θ

θ τ=

=

+∑
......................................................................2.17 

Overall between-run SD, ˆ( )SD θ  = 0.107 = sqrt(0.053^2*4) 

2 21

ˆ( ) 1
ˆ ˆ( )

k

i
i

kSD

SE

θ

θ τ=

=

+∑
.......................................................................2.18 

Intrinsic between-run SD, r̂unτ  = 0.091 = sqrt(0.08) 
Take the square root of either side of the following. 
 

2
2

1
1

1

Q-(k-1)ˆ max 0, k
k ii

i ki
ii

w
w

w

τ
=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑
∑

...................................................................2.8 

                                                 

70 The formula should look like . That is, there should be a hat mark above SD. This is to indicate 
that the SD is an estimate. It may not be displayed properly depending on the version of the word processor 
or associated software. The same issue seems to exist for Table 3.2 though Table 3.13. 
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where  

ˆ1/i iw v= .............................................................................................................2.9 

1
F

1

ˆ
ˆ

k
i ii

k
ii

w

w

θ
θ =

=

= ∑
∑ .................................................................................................2.10 

and îv  is the estimated variance of îθ , i.e., 

2ˆˆ ( )i iv SE θ= .....................................................................................................2.11 

Within-run SD, within-run î( )SD θ  = 0.056 = sqrt(0.053^2*4 - 0.008) 

2
within-lab i

2 21

ˆ ˆ( ) 1
ˆ ˆ( )

k

i
i

kSD

SE

θ τ

θ τ=

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟+⎝ ⎠
∑

................................................2.23 

Intraclass correlation = 0.849 = 0.008/0.107^2 
2 2ˆˆIntraclass Correlation / ( )SDτ θ= .............................................................2.19 

Between/within ratio =  
(Intrinsic between-run SD)/(within-run SD) = 1.6 =0.091/0.056 
Heterogeneity p-value =  0.10 = 2Pr( 11.298| q~ (3))q Q χ> =  

2Pr( | q~ ( 1))q Q kχ> − , i.e., the Q statistic follows the chi-square distribution of 
degrees of freedom k-1, k being the number of units, and   

2
F1

ˆ ˆQ  ( )k
i ii

w θ θ
=

= −∑ ........................................................................................2.9 

where 

ˆ1/i iw v= ...........................................................................................................2.10  

1
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ˆ

k
i ii

k
ii

w

w

θ
θ =

=

= ∑
∑

.................................................................................................2.11 

 
Similar computation for labs C, D, and E generates a set of corresponding run-specific 
summary measures. They are summarized in Table 3.3 for estradiol and Table 3.4 for 
norethynodrel. Once lab-specific summaries are computed, we can further summarize 
them across laboratories. The across-lab summary so obtained also is included in Table 
3.3 and Table 3.4. 
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Table 3.3 Within- and between-variabilities for logIC50: Estradiol71 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ  

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -8.965 0.0533 0.1067 0.0905 0.0565 0.720 1.60 0.01 
C -8.966 0.0328 0.0803 0.0765 0.0242 0.909 3.16 8*10-14 
D -9.158 0.0293 0.0774 0.0740 0.0228 0.913 3.25 6*10-17 
E -8.905 0.0164 0.0403 0.0331 0.0229 0.676 1.45 0.002 

 

Overall 
mean 

R̂θ
72 

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -8.997 0.0600 0.1200 0.1112 0.0450 0.859 2.47 1*10-5 
 

Table 3.4 Within- and between-variabilities for logIC50: Norethynodrel 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ  

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -6.517 0.0574 0.0994 0.0707 0.0698 0.507 1.01 0.14 
C -6.463 0.0722 0.1768 0.1679 0.0553 0.902 3.04 8*10-20 
D -6.583 0.0266 0.0922 0.0826 0.0411 0.802 2.01 1*10-12 
E -6.271 0.0108 0.0264 0.0143 0.0221 0.295 0.65 0.21 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -6.457 0.1026 0.2053 0.1998 0.0473 0.947 4.23 1*10-28 
 
The steps taken to compute the across-lab summary are illustrated below using the 
estradiol logIC50 data as an example. 
  
As explained in “2.2.2 Correction for the number of runs performed”, correction for the 
number of runs performed is applied to standard errors computed for each lab (Table 3.5). 
73 
 
                                                 
71 After these tables that summarized within- and between-variabilities were completed, it was realized that 
inclusion of statistics based on the conventional method, e.g., overall between-run SD, overall between-lab 
SD, and intraclass correlation computed over labs as units of observation, could have been informative. 
72 To distinguish the between-lab overall mean from within-lab, between-run overall mean, the former is 
designated as R̂θ  rather than R̂θ . 
73 Please see the addendum on the “number of runs” correction (Section 4.2 Improved correction for the 
number of runs performed ).   
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Table 3.5 “Number of runs” correction for standard errors  
Lab-specific 
summaries in Table 
3.3 

Lab îθ  ˆ( )iSE θ  

Number 
of runs 
performed

ˆ( )iSE θ  
for 3 runs 

A -8.965 0.0533 4 0.0616 
C -8.966 0.0328 6 0.0464 
D -9.158 0.0293 7 0.0447 
E -8.905 0.0164 6 0.0233 

 

e.g., for lab A, 

2 2 2 21 1

1 1 1 0.0533=  = 0.0616
3 3/41 3 1

ˆ ˆˆ ˆ( ) ( )
i ik k

j j
iiij i ij i

kkSE SEθ τ θ τ= =

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
∑ ∑

 

R for lab i

2 21

1ˆ( )
1 3

ˆ ˆ( )
ik

j
iij i

SE

kSE

θ

θ τ=

=
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠
∑

...................................................2.20  

Using values of îθ  and “ ˆ( )iSE θ  for 3 runs” in the thick rectangles of Table 3.5, statistics 
in the last row of Table 3.3 are computed. 
 
Similar computation for the top, bottom, Hill slope, and logRBA generates the results 
shown in Table 3.6 through Table 3.12. The numerical results shown in these tables 
correspond to the graphical across-lab summaries presented in the preceding section “3.3 
Run- and lab-specific estimates of the Hill equation parameters”. 
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Table 3.6 Within- and between-variabilities for top parameter: Estradiol 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ  

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A 98.74 4.19 8.39 7.77 3.15 0.859 2.47 5*10-5 
C 100.30 1.49 3.64 3.20 1.73 0.775 1.85 6*10-5 
D 97.97 1.05 2.77 2.18 1.71 0.619 1.27 0.008 
E 102.76 1.16 2.83 2.47 1.38 0.763 1.80 3*10-5 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All 100.23 1.28 2.55 1.46 2.09 0.326 0.70 0.021 
 

Table 3.7 Within- and between-variabilities for top parameter: Norethynodrel 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ 74 

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A 94.03 3.28 5.69 5.04 2.63 0.785 1.91 0.007 
C 99.94 1.09 2.68 2.11 1.65 0.622 1.28 0.007 
D 99.48 1.05 3.63 3.23 1.65 0.794 1.96 8.7*10-14 
E 98.93 1.07 2.62 2.47 0.86 0.893 2.89 1*10-09 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All 99.01 0.92 1.84 0.00 1.84 0.000 0.00 0.44 

                                                 
74 In Table 3.7 through Table 3.13, some estimates of intrinsic between-run(lab) SD, intraclass correlation, 
and between/within ratio are zero. These estimates of zero generally occurred as a result of truncation for 
intrinsic between-run(lab) SD as indicated in the following formula. 
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Table 3.8 Within- and between-variabilities for bottom parameter: Estradiol 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ 75 

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -0.35 1.43 2.87 0.00 2.87 0.000 0.00 0.99 
C -1.60 0.52 1.28 0.00 1.28 0.000 0.00 0.88 
D -0.87 0.41 1.08 0.00 1.08 0.000 0.00 0.99 
E -1.38 0.43 1.05 0.00 1.05 0.000 0.00 1.00 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -1.21 0.37 0.73 0.00 0.73 0.000 0.00 8.2E-01 
 

Table 3.9 Within- and between-variabilities for bottom parameter: Norethynodrel 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ  

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -1.56 2.49 4.31 2.94 3.15 0.465 0.93 0.16 
C -2.37 0.73 1.79 0.00 1.79 0.000 0.00 0.82 
D -0.80 0.59 2.03 1.14 1.68 0.313 0.68 0.12 
E -2.43 0.51 1.25 0.00 1.25 0.000 0.00 0.84 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -2.06 0.52 1.03 0.00 1.03 0.000 0.00 0.67 
 

                                                 
75 See the footnote on the previous page. τ̂  of zero usually occurs as a result of truncation. 
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Table 3.10 Within- and between-variabilities for Hill slope parameter: Estradiol 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ 76 

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -1.19 0.112 0.224 0.000 0.224 0.000 0.00 0.83 
C -0.96 0.024 0.059 0.000 0.059 0.000 0.00 0.75 
D -0.96 0.027 0.072 0.027 0.067 0.136 0.40 0.33 
E -0.98 0.112 0.224 0.000 0.224 0.000 0.00 0.97 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -0.98 0.021 0.052 0.000 0.052 0.000 0.00 0.97 
 

Table 3.11 Within- and between-variabilities for Hill slope parameter: 
Norethynodrel 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ  

Within-
run SD 

within-run î( )SD θ

 

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -1.03 0.080 0.139 0.000 0.139 0.000 0.00 0.92 
C -1.02 0.043 0.106 0.000 0.106 0.000 0.00 0.94 
D -0.88 0.034 0.117 0.093 0.071 0.629 1.30 3*10-4 
E -0.92 0.020 0.049 0.000 0.049 0.000 0.00 0.71 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab î( )SD θ

 

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -0.95 0.032 0.064 0.035 0.053 0.310 0.67 0.24 
 

                                                 
76 τ̂  of zero mostly occurs as a result of truncation. 
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Table 3.12 Within- and between-variabilities for logRBA parameter: Norethynodrel 

Lab 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
run SD 

ˆ( )runSD θ

Intrinsic 
between-
run SD 

r̂unτ 77 

Within-
run SD 

within-run ˆ( )SD θ

Intraclass 
correla-
tion 

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

A -2.50 0.0464 0.0804 0.0000 0.0804 0.000 0.00 0.79 
C -2.52 0.0431 0.1057 0.0899 0.0555 0.724 1.62 0.0002 
D -2.60 0.0222 0.0588 0.0423 0.0409 0.518 1.04 0.04 
E -2.63 0.0170 0.0416 0.0258 0.0326 0.385 0.79 0.14 
 

Overall 
mean 

R̂θ  

SE(over-
all mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between-
lab  SD 

l̂abτ  

Within-
lab SD 

within-lab ˆ( )SD θ

Intraclass 
correla-
tion 

Between/
within 
ratio 

Hetero-
geneity 
p-value 

All -2.57 0.0340 0.0680 0.0527 0.0430 0.601 1.23 0.05 
 

Table 3.13 Within- and between-variabilities for labs C, D, and E that are deemed 
acceptable 

Analyte Parameter 

Over-
all 
mean 

R̂θ  

SE(over
all 
mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ

Intrinsic 
between
-lab SD

l̂abτ  

Within-
lab SD 

within-lab ˆ( )SD θ

Hetero-
geneity 
p-value 

logIC50 -9.006 0.0768 0.1330 0.1271 0.0391 3*10-06

Top 100.33 1.51 2.61 1.92 1.77 0.11
Bottom -1.25 0.37 0.65 0.00 0.65 0.73

Estradiol 

Slope -0.969 0.0199 0.0345 0.0000 0.0345 0.84
logIC50 -6.434 0.1199 0.2076 0.1975 0.0639 4*10-08

Top 99.44 0.96 1.66 0.00 1.66 0.90
Bottom -2.08 0.53 0.91 0.00 0.91 0.47
Slope -0.935 0.0320 0.0554 0.0305 0.0463 0.26

Norethynodrel 

logRBA -2.606 0.0260 0.0451 0.0243 0.0379 0.26
 

                                                 
77 τ̂  of zero mostly occurs as a result of truncation. 
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3.5 Deriving accuracy criteria78 

3.5.1 logIC50 
An alternative graphical summary of interlaboratory data is given in Figure 3.11 for the 
estimated logIC50 of estradiol. The distribution of logIC50 averaged for 3 runs that would 
be reported from each lab is plotted as a Normal curve. 
 
The first step in developing accuracy 
performance criteria for logIC50 is to make 
an informal decision regarding which of the 
participating laboratories were deemed 
acceptable in terms of their performance. A 
visual summary such as Figure 3.11 along 
with other plots presented so far would be 
informative in making this decision. 
 
Lab A was deemed unacceptable because 
of low data quality. Lab A’s low data 
quality was strikingly evident in the 
analyses performed before one of the 
norethynodrel runs from lab A, which was obviously problematic, was excluded from 
analyses. The distribution curve for lab A in Figure 3.11 was estimated using the data 
after the exclusion, but lab A still has the most “flat” curve, indicating logIC50 estimates 
from lab A were less precise than those from other labs. In fact, Table 3.3 shows that lab 
A had the highest overall between-run SD, intrinsic between-run SD, and within-run SD. 
Its relatively high within-run SD for logIC50 seems to be due to high within-run 
variability in y given x as summarized later. It was felt that a competent laboratory should 
be able to, after some reasonable attempt to improve data quality, perform better than lab 
A. We knew that multiple laboratories, i.e., labs C and D, were able to do so.  
 
The next step is to estimate the distribution of logIC50s that would be expected from a 
laboratory drawn from the universe of laboratories that are like labs C, D, and E in terms 
of their ability to measure logIC50 accurately and precisely.79 The distribution has the 
                                                 
78 As noted earlier, accuracy criteria for logIC50 were derived, but the ESDP has made a decision to not 
impose them because of the variation in protein concentration in the RUC preparation, which renders the 
concept of accuracy for logIC50 questionable. Nonetheless, the EDSP’s effort in 2005 for developing a 
statistical method for the analyses of data from receptor binding assays focused initially on logIC50, and 
accuracy criteria for logIC50 was one of the first criteria that were eventually developed. During the 
development of logIC50-related methods, many relevant issues were realized, investigated, and resolved. It 
makes easier to address these issues in this report if the historical context is maintained to some extent. 
79 As mentioned earlier, the concept of accuracy is ill-defined for logIC50 since the protein concentration of 
RUC preparation, which is difficult to standardize across laboratories or batches, is a strong determinant of 
logIC50. In our general scheme of deriving accuracy performance criteria for a parameter, the target value 
of a parameter, which is taken to be “accurate”, is estimated using the pooled mean of the estimates of the 
parameter from labs that are judged to have acceptable data quality. Because of the protein concentration 
issue, though, the pooled mean of logIC50 does not truly have the interpretation of the accurate logIC50 
value. The method for deriving the accuracy criteria for logIC50, is included as an example and what 
referred to as “accuracy” in section 3.5.1 is nominal accuracy. Its use as an example includes pointing out 

0
5

10
15

20
y

-8.6-8.8-9-9.2-9.4
x

A C D E

 
Figure 3.11 Distribution of lab-specific 

logIC50(estradiol) estimates by 
laboratory 
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mean R̂θ  = -9.006 and spread ˆ( )labSD θ  = 0.1330 as shown in Table 3.13. Based on these 
parameter estimates, an interval, to which a future realized value of logIC50 will fall at a 
specified probability, can be computed. As shown earlier in “2.5.1 logIC50, Top, Bottom, 
Hill slope”, such an interval generally called a “prediction interval” is given as 
 

R 1- /2, 
ˆ ˆ± t * 1 1/ * ( )k SDα νθ θ+ .......................................................................2.40 

 
Using this, an 80% prediction interval is 
derived as follows. 
 
-9.006 ± 1.82*sqrt(1+1/3)*0.1330 
 
The estimated distribution of future 
logIC50s of estradiol from an acceptable lab 
and the 80% prediction interval are shown 
in Figure 3.12 along with the overall mean 
of the distribution of logIC50s for labs 
similar to labs C, D, and E.  
 
The probability associated with the 
prediction interval, 80% in this case, was chosen based on informal judgment. We do not 
want to set this probability too high since that would result in accepting values so far 
away from the middle of the distribution. At the same time, we don’t want to set this 
probability too low, which would make the acceptable ranges too narrow. A few factors 
would help choose the probability what makes practical sense. 
 
For instance, from Figure 3.12 we can see that if labs C and E were to produce logIC50 
values repeatedly, they would fall in the prediction interval most of the time. Note, 
though, that the curve for lab D indicates that a logIC50 reported by lab D would be 
accepted only at a probability slightly more than 50% despite the fact that lab D was 
deemed acceptable to begin with. This could have constituted a basis for increasing the 
probability to, say, 90%.81 
 
This kind of assessment of acceptance rate would help gauge the prospect of identifying 
acceptable laboratories among any laboratories that might apply for qualification. In the 
above example, there are three novice labs taking part in the interlaboratory study (i.e., 
labs A, C, and D), and among them the expected number of acceptable laboratories was 
about 1.5 (lab A had near 100% acceptance rate, lab C had about 100% acceptance rate, 

                                                                                                                                                 
potential issues that may arise in the future and how we might deal with them. It also served as an example 
of real utility for the assay in which the protein concentration could be better controlled. 
 
80 The limits shown in this plot are incorrect. 
81 Dr. Feder objects to this practice of “tweaking” probability level. In the light of the need to balance 
sensitivity and specificity of performance criteria (see Aoki, 2007b for some discussion on this), I believe 
there is certain justification for changing the probability level. 
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Figure 3.12  Distributions of  lab-
specific logIC50 for estradiol and 

prediction interval80 
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lab D had about 50% and so expectation is 1*1+1*1+1*0.5 = 2.5). This would give us an 
estimate of about 83% acceptance rate (2.5/3*100) for all novice lab that would take part 
in the future qualification process assuming they are like labs A, C, and D. In these 
calculations we ignored the existence of lab B, which was disqualified at an early stage. 
If we include lab B in the calculation, the acceptance rate for any novice laboratories 
would decrease accordingly. 
 
The criteria for norethynodrel were established following similar steps. Figure 3.13 
shows the distribution of logIC50 estimates for norethynodrel. Although the distribution 
for lab A was not worse than others, data from only labs C, D, and E were used, to make 
the analysis consistent with that for estradiol. Figure 3.14 shows the prediction interval 
and distribution curves. The distributions for labs D and E have virtually no overlap. 
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Figure 3.13 Distributions of lab-specific logIC50 estimates for norethynodrel by 

laboratory 
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Figure 3.14 Distributions of lab-specific logIC50 estimates for norethynodrel and 
prediction interval82 

                                                 
82 The limits shown in this plot are incorrect. 
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3.5.2 Top 
Distributions of the estimates of the top 
plateau for estradiol are plotted in Figure 
3.15. The distribution of the estimate from 
lab A is much flatter than the distributions 
from other labs. Lab A was deemed 
unacceptable, and it was decided that the 
criteria for the top plateau would be derived 
using the data from labs C, D, and E. 
 
The prediction interval for a parameter may 
be derived either for a lab-specific 
summary of the parameter based on data 
from 3 runs, or for a run-specific summary 
of the parameter based on data from a 
single run. 
 
For the three Hill equation parameters that have to do with shape, not horizontal location, 
of the binding curve (i.e., top, bottom, Hill slope), an approach to derive criteria for a run-
specific estimate was taken. For each of these parameters, a common biologically 
plausible level exists for any chemical that interacts with the estrogen receptor through a 
typical one-site competitive binding mechanism, no matter how strong or weak the 
interaction is. For any individual run a competent laboratory would generate data from 
which estimates of these parameters close to the biologically plausible level should be 
obtained. Because of this increased certainty, it was felt justifiable to set up criteria to 
which estimates of these parameters from each run of estradiol and norethynodrel are 
compared.  (Estradiol and norethynodrel are typical one-site competitive binders.)  
 
For an estimate from each run, the prediction interval formula is modified slightly as 
follows to account for the fact that the estimate is run-specific, not a pooled estimate 
based on data from 3 runs. 
 

R 1- /2, 
ˆ ˆ± t * 1+1/k * ( ) 3labSDα νθ θ  

 
as opposed to 
 

R 1- /2, 
ˆ ˆ± t * 1+1/k* ( )labSDα νθ θ  

 
This is because the ˆ( )labSD θ  was a lab-specific summary estimate based on 3 runs, not a 
run-specific summary. 
 
Using the between-lab summary information in Table 3.13, the 95% prediction interval 
for the top estimate from an estradiol run is computed as 
 

0
.0

5
.1

.1
5

y

80 90 100 110 120
x

A C D E

 
Figure 3.15  Distributions of the 

estimate of the top plateau for estradiol, 
by laboratory 
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100.33 ± 4.08*sqrt(1+1/3)*2.61*sqrt(3) = 
(79.0, 121.63)83 
 
The probability of 95%, rather than 80% 
that was used for a prediction interval for 
lab-specific logIC50 estimate from 3 runs, 
was chosen based on the tentatively chosen 
requirement that, for data from a laboratory 
to be accepted, an estimate of top plateau 
parameter from a run needs to be accepted 
three times for three consecutive runs. This 
issue of the predictive probability will be 
revisited in “3.5.5 logRBA”. The interval is 
shown in Figure 3.16 along with 
distribution curves. 
 
Figure 3.17 shows distributions of the estimates of the top plateau for norethynodrel. Lab 
A again sets itself apart from the rest. The distribution curves for labs C, D, and E are 
closer to each other and as a result the 95% prediction interval for norethynodrel, shown 
in Figure 3.18, is narrower than that for estradiol. 
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Figure 3.17 Distributions of estimates of the top plateau for norethynodrel, by 

laboratory 
 
The lower and upper limits for the estimates of the top plateau are presented in Figure 
3.18 along with those for bottom and slope parameters, which are established in a similar 
manner. 

                                                 
83 The t degree of freedom used and the interval computed are copied exactly from Dr. Feder’s suggestion 
on page 108 of his hand-written comments (Feder, 2007b). 
84 The limits shown in this plot are incorrect. 

0
.0

5
.1

.1
5

P
ro

ba
bi

lit
y 

D
en

si
ty

80 90 100 110 120
Top

Lab C Lab D Lab E
New lab like lab C, D, E

Solid vertical lines are lower and upper limits of 80% predictive interval.
Broken vertical line is the overall mean of top from labs like labs C, D, and E.  

Figure 3.16 Distributions of estimates of 
the top plateau for estradiol, and the 

95% prediction interval84 
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Figure 3.18 Distributions of estimates of the top plateau for norethynodrel, and the 
95% prediction interval85 

3.5.3 Bottom 
The distributions for estimates of the bottom plateau for estradiol are close together for 
labs C, D, and E, and Lab A’s estimates are shifted upwards and are more variable 
(Figure 3.19). Again, the 95% prediction interval was set using data from labs C, D, and 
E (Figure 3.20).  
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Figure 3.19 Distributions of estimates of the bottom plateau for estradiol by 

laboratory 
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Figure 3.20 Distributions of estimates of the bottom plateau for estradiol, and the 
95% prediction interval86 

                                                 
85 The limits shown in this plot are incorrect. 
86 The limits shown in this plot are incorrect. 
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The distributions for estimates of the bottom plateau for norethynodrel are close together 
for labs C, and E. Lab D’s estimates are shifted upwards with slightly wider spread. Lab 
A’s estimates again are more variable (Figure 3.21). Again, the prediction interval was 
set using data from labs C, D, and E (Figure 3.22).  
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Figure 3.21 Distributions of estimates of the bottom plateau for norethynodrel, by 

laboratory 
 

0
.1

2
.3

P
ro

ba
bi

lit
y 

D
en

si
ty

-20 -10 0 10 20
Bottom

Lab C Lab D Lab E
New lab like lab C, D, E

Solid vertical lines are lower and upper limits of 80% predictive interval.
Broken vertical line is the overall mean of top from labs like labs C, D, and E.  

Figure 3.22 Distributions of estimates of the bottom plateau for norethynodrel, and 
the 95% prediction interval87 

 
It is notable that we can see from Figure 3.22 that the bottom plateau estimates from lab 
D will be accepted only 80% although we included lab D in the set of acceptable 
laboratories whose data were used to derive the prediction interval.88 If we would like to 
ensure that bottom parameter estimates from laboratories exactly like lab D would have a 
better chance to be accepted, we can increase the predictive probability from 95% to, e.g., 
99% (this change would increase the probability of acceptance of the estimates from lab 
D to 91%). Such a change would cause increased chance of acceptance for estimates 
from laboratories exactly like lab A, which we deemed unfit, from 53% for the 
predictable probability of 95% to 65% for the predictable probability of 99%. It is an 
administrative decision to set the probability level for a prediction interval. Such a 

                                                 
87 The limits shown in this plot are incorrect. 
88 The discussion in this paragraph is not valid since it is based on incorrectly computed prediction interval.  
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decision is a balancing act between ensuring better performance of laboratories and 
potential difficulty in finding such competent laboratories. 
 
As an aid to get a better understanding on the impact of different predictive probability 
choices, tables similar to Table 3.14 shown below may be produced. 
 
Table 3.14 Acceptance rates of estimates of bottom plateau parameter for two levels 

of the probability for the prediction interval 
Probability for 

the prediction interval 
Laboratory 95% 99% 
A 53% 65% 
C 91% 98% 
D 80% 91% 
E 98% 100% 

 

3.5.4 Hill slope 
Distributions of Hill slope estimates for estradiol and norethynodrel are shown in Figure 
3.23 and Figure 3.25, respectively. A large downward shift and higher variability were 
notable for the estimates for estradiol from lab A. No such distinctive anomaly was seen 
for the estimates for norethynodrel from lab A, but, because of the overall poor quality of 
data quality from lab A, only data from labs C, D, and E again were used to derive the 
prediction intervals. Figure 3.24 and Figure 3.26 show the 95% prediction intervals 
derived as well as distribution curves.  
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Figure 3.23 Distributions of Hill slope estimates for estradiol, by laboratory 
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Figure 3.24 Distributions of Hill slope estimates for estradiol, and the 95% 
prediction interval89 

 

                                                 
89 The limits shown in this plot are incorrect. 
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Figure 3.25 Distributions of Hill slope estimates for norethynodrel, by laboratory 
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Figure 3.26 Distributions of Hill slope estimates for norethynodrel, and the 95% 
prediction interval90 

 
In Figure 3.26, relatively low rates of acceptance for the estimates from labs C and D 
(83% and 86%, respectively) may be noted. A similar situation has been noted in Figure 
3.22 for lab D, and a potential remedy and its side effects were discussed.91 
 
Performance criteria derived for top plateau, bottom plateau, and slope parameters from a 
single run are summarized in Table 3.15. The number was rounded “outwards” to the 
nearest number in the unit of 0.1. It may be worth considering increasing upper limits for 
the bottom plateau parameter because of biological reasons. Both for estradiol and 
norethynodrel, they seem to be too close to 0.  
 

                                                 
90 The limits shown in this plot are incorrect. 
91 The quantitative points in this paragraph is invalid since they are based on incorrectly computed intervals. 
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Table 3.15 Performance criteria (lower and upper limits of 95% prediction 
intervals) for top, bottom, slope parameters from a single run92 

Estradiol Norethynodrel 

Parameter Unit 
Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

Top plateau level  [%binding] 91.5 109.2 93.8 105.1 
Bottom plateau level  [%binding] 4.0 1.0 5.0 1.0 
Hill Slope  [(log(M)-1] 1.1 0.8 1.1 0.7 

 
 

3.5.5 logRBA 
The distributions of run-specific logRBA for norethynodrel are shown in Figure 3.27 and 
included again in Figure 3.28 along with the prediction interval derived for future run-
specific logRBA estimates. 
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Figure 3.27 Distributions of run-specific logRBA estimates for norethynodrel, by 

laboratory 
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Broken vertical line is the overall mean of top from labs like labs C, D, and E.  

Figure 3.28 Distributions of run-specific logRBA estimates for norethynodrel, and 
the 95% prediction interval93 

 
This prediction interval has not been presented to EDSP for a detailed discussion of its 
appropriateness. A potential problem may be appreciated in Figure 3.28, which shows 

                                                 
92 The limits shown in this table are incorrect. The numbers are shown as “strikethrough” to indicated that. 
93 The limits shown in this plot are incorrect. 
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that logRBA estimates from lab C would be rejected quite often. A simple calculation 
reveals that the probability of the acceptance is only 73%. Before implementing the 
criterion for logRBA, its appropriateness should be carefully considered.94 
 
A logRBA prediction interval would be used to determine whether a run-specific logRBA 
is acceptable or not. Instead of setting a prediction interval for run-specific estimates, we 
can set a prediction interval for lab-specific estimates, i.e., a summary of 3 runs for a new 
lab. Derivation of such an interval has been shown for logIC50 (Section 3.5.1). For 
logRBA, imposing a criterion on a lab-specific estimate makes better sense because, 
unlike top, bottom, and slope parameters for which there is high certainty that their 
estimates for each run are close to biologically plausible values, we would like to make a 
judgment as to whether a lab can produce a logRBA estimate close to the target value. 
 
The distributions and potential criteria for lab-specific logRBAs are shown in Figures 
3.29 and 3.30 so that they can be easily contrasted to the run-specific logRBA 
distributions and criteria that are shown in Figures 3.27 and 3.28. 
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Figure 3.29 Distributions of lab-specific logRBA estimates for norethynodrel, by 

laboratory 
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Figure 3.30 Distributions of lab-specific logRBA estimates for norethynodrel, and 
80% prediction interval95 

                                                 
94 Because of incorrectly-computed interval limit values, the quantitative points in this and several 
following paragraphs are invalid.  
95 The limits shown in this plot are incorrect. 
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Note that for run-specific logRBA estimates a 95% prediction interval was constructed, 
and for lab-specific logRBA estimates an 80% prediction interval was constructed. A 
higher coverage probability is used for the run-specific prediction interval since, if we 
were to require the criterion to be met for three consecutive runs, the overall probability 
coverage for a set of 3 runs taken together gets smaller (0.953 = 0.853).  An 80% 
prediction interval for a run-specific logRBA would result in an overall coverage that is 
too low (0.83 = 0.51) again if the criterion were to be met for three consecutive runs.  In 
other words, if a run-specific criterion were set so that only 80% of values from a new lab 
like Labs C, D, and E were accepted, only 51% of such labs would produce 3 consecutive 
runs that are each acceptable.96 
 
A modification to the requirement that 3 consecutive runs meet the criterion would result 
in a change in overall coverage probability. In order to achieve a desired overall coverage 
probability, the coverage probability used in deriving the criterion for estimates from a 
single run could be adjusted.  
 
For instance, we may require that at least 3 out of a total of 5 runs meet the criterion. In 
this case, the probability for estimates from 3 or more runs falling within the 95% 
prediction interval is the binomial probability of 3 or more successes in 5 trials when the 
probability of a success on a single trial is 0.95, which is  
 
5C3*0.95^3*0.05^2 + 5C4*0.95^4*0.05^1 + 5C4*0.95^5 = 0.9988 
 
If we use the “3 out of 5” requirement but change the probability coverage for a single 
run from 0.95 to 0.8, this changes to 
 
5C3*0.8^3*0.05^2 + 5C4*0. 8^4*0.05^1 + 5C4*0. 8^5 = 0.9421 
 
If we want the overall coverage of (X*100)% for the “3 out of 5” requirement, the 
desired coverage probability for a single run of (P*100)%, we can solve the following 
equation to obtain P. 
 

5C3*P^3*(1-P)^2 + 5C4*P^4*(1-P)^1 + 5C4*P^5 = X 
 
An easy way to find P given X is to use a binomial function available in a spreadsheet 
application such as Excel or statistical package. One could keep trying different values of 
P as an input to the binomial function of an appropriate form until a desired X is obtained. 
Such was tried for X = 0.8 and it was found that the acceptance probability of 67.4% for 
estimates in a single run would achieve an overall coverage probability of 80%. 
 
This calculation gets further complicated if we consider the requirement of meeting 
criteria for multiple endpoint, e.g., in our case simultaneously meeting the criteria for top 
plateau, bottom plateau, Hill slope, and logRBA. Ignoring the correlations among 
estimates of different parameters, a very simple approximation is possible. For instance, 
the above-mentioned “3 out of 5” requirements with a success probability of 0.95 for a 
                                                 
96 Dr. Feder recorded many comments regarding the rest of this section. Please see Feder (2007b). 
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single trial for a single parameter, the overall probability of meeting it simultaneously for 
4 parameters would be 0.9988^4 = 0.9952. Changing the success probability to 0.8 would 
result in the overall probability of  0.9421^4 = 0.7877. 
 
In Figure 3.28 and Figure 3.30, relatively low acceptance for lab C, which was one of the 
labs deemed acceptable, is noticeable. An observation like this, which also was noted for 
lab D (Figure 3.22) albeit in a less pronounced manner, is somewhat disturbing. It is not 
clear how often these occur and whether we need to consider some remedy. Most likely 
we are hitting the limit for the capacity of the DL random effects model, which is an 
asymptotic model. Our combined distribution for acceptable labs is based on at most 3 
labs so the asymptotic model, which uses a large number approximation, may not match 
the data well. In order to avoid the consequence of an excessively strict criterion that we 
might set inadvertently (i.e., rejecting too many laboratories and accepting too few to the 
extent that the testing program becomes infeasible), it may be advisable to make the 
criteria somewhat lenient.97 

3.5.6 Impact of underestimation of SE(lab-specific logIC50) and 
SE(lab-specific logRBA)98 

In computing overall across-lab summaries of logIC50 and logRBA presented so far, the 
analytical estimates of standard errors obtained using the DL method were used. These 
analytical standard errors have been found to underestimate the true level of variability as 
mentioned in “2.5.1.1 Analytical vs. simulation-based SE(lab-specific logIC50)”.99 
(Whether the analytical standard error for each run was estimated without bias has not 
been investigated. If there is a bias of that kind, its impact should be reflected in the 
analytical standard error for each lab.) 
 
The DL method uses the inverse of estimated within-run variance as a weight, and the 
underestimation of within-lab variance can result in overestimation of intrinsic between-
lab variance 2

l̂abτ  since the intrinsic between-lab variance is computed, conceptually 
speaking, by subtracting the contribution of within-lab variation from the apparent 
observed variation. The effect of underestimating within-lab variance on the overall 
                                                 
97 This is likely to be unnecessary if a correct method for deriving a prediction interval had been used as Dr. 
Feder points out. 
98 Since a decision has been made to not impose accuracy criteria for logIC50, the discussion regarding 
logIC50 in this section has limited relevance. The corresponding discussion on logRBA, however, remains 
relevant as long as the EDSP is concerned about the accuracy and precision of logRBA estimates. There 
was a limited amount of data for the analysis of precision of logRBA alone. As explained later, it was 
discovered the degree of underestimation was similar for logIC50 and logRBA and the data for both were 
combined to obtain a better estimate of magnitude of underestimation. 
99 Dr. Feder suggests the use of maximum likelihood ANOVA in place of DL method. This suggestion 
seems to be based on the proposition that ML ANOVA generate more valid analytical standard error. Such 
a proposition does not seem to be supported by the results of the simulation study (Feder and Ma, 2005). As 
can be seen in Tables 21, 22, 24, 25, 27, and 28 of Feder and Ma (2005), for logIC50 for estradiol and 
norethynodrel, underestimation of standard errors were sometimes greater for ML ANOVA than for DL 
method for some parameters and laboratories. In some instances, standard errors were overestimated by 
ML ANOVA. In terms of logRBA, they summarized their finding at these two “procedures performed 
about the same” (on page xi of Feder and Ma, 2005). As such, the simulation results did not show clear 
advantage of ML ANOVA over DL. 
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between-lab variance estimate is difficult to predict because the overall between-lab 
variance is computed by combining the (underestimated) within-lab variance and the 
(overestimated) intrinsic between-lab variance. It could be argued that in principle it 
would be desirable to correct for the underestimation of within-lab variability. No such 
corrections, however, were made for the summary results presented so far. 
 
The discussion below describes an attempt to correct for average underestimation of 
standard error of the lab-specific logIC50 at the between-run, within-lab level.100  The 
analysis revealed that the correction made little difference in the estimates of overall 
between-lab variability. Based on this finding it was concluded that the correction was 
unnecessary.101 
 
As mentioned earlier, the results of simulation studies performed by Battelle (Feder and 
Ma, 2005) were used for this comparison. The first step to take for this comparison is to 
extract necessary information, i.e., average analytical standard error of SE(lab-specific 
logIC50) and simulation-based standard error of SE(lab-specific logIC50) are extracted 
from the report for each combination of laboratory and test chemical. How such 
information was extracted is shown below using the combination of lab C and 
norethynodrel as an example.  
 

Table 3.16 Excerpt of “Table 22” for Laboratory C, Norethynodrel by Feder and 
Ma (2005)102 

Param- 
eter 

 Estimate 
DL 

Average 
StdErr DL

Run-to-Run 
Vrnce DL 

 

B  -2.390 
 (  0.5332)

0.862  
(  0.2164) 

0.063  
(  0.2996) 

 

T Omitted 99.944  
(  1.5892)

1.410  
(  0.6718) 

5.665  
(  6.8353) 

Omitted 

U  -6.466  
(  0.1253)

0.103  
(  0.0552) 

0.040  
(  0.0441) 

 

H  -1.012 
 (  0.0360)

0.050  
(  0.0141) 

0.001  
(  0.0028) 

 

 
0.103 = Average analytical standard error(lab-specific logIC50)  
0.1253 = Simulation-based standard error(lab-specific logIC50)  
                                                 
100 Dr. Feder repeats his suggestion regarding the use of maximum likelihood ANOVA in place of DL 
method. As discussed in the footnote 99, this does not seem to be a clear advantage of this alternative 
method.  
101 The initial attempt to make this comparison in 2005 unfortunately included some methodological flaws. 
Using a correct method the comparison was performed again as this report was prepared. It has turned out 
that the methodological flaws did not affect the numerical results much. The comparison results based on 
the correct method is shown below followed by a brief description of the incorrect method that should have 
been avoided. 
102 Feder and Ma (2005) used symbols B, T, U, and H to designate bottom plateau, top plateau, logIC50, and 
Hill slope parameters, respectively. 
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The simulation-based standard error(lab-specific logIC50) represents the true level of 
random variation that the analytical standard error should center around. For this 
combination, the analytical standard error on average was smaller than the simulated-
based standard error, and the same is the case for all of the other lab-chemical 
combinations as summarized in Table 3.17.  
 
Table 3.17 Comparison of analytical standard error and simulation-based standard 

error for logIC50 
Estradiol Norethynodrel 

 
Analytical 
SE 

Simulation-
based SE 

Analytical 
SE 

Simulation-
based SE 

C 0.0489 0.0611 0.1034 0.1253 
D 0.0366 0.0457 0.0446 0.0571 
E 0.0177 0.0226 0.0171 0.0180 

 
Corresponding results for logRBA are shown in Table 3.18. 
 
Table 3.18 Comparison of analytical standard error and simulation-based standard 

error for norethynodrel logRBA 

 
Analytical 
SE 

Simulation-
based SE 

C 0.1146 0.1413 
D 0.0580 0.0758 
E 0.0262 0.0305 

 
These data are plotted in Figure 3.31, which 
uses a logarithm scale since the ratio, not 
absolute difference, between these two SEs 
is more likely to be constant. Except for 
one data point (norethynodrel for lab E), 
there appears to be a seemingly constant 
difference between the analytical and 
simulated-based standard errors. 
 
The average of  “log(analytical standard 
error) - log(simulated-based standard 
error)” is -0.08752 for logIC50 and its 
robust standard error computed by treating 
labs as clusters is 0.0119, indicating there is 
statistical evidence (p =  0.02) that the difference is different from zero. This means the 
use of the analytical standard error would underestimate the standard error by a factor of 
0.820 (= 10-0.08752).  
 
Figure 3.31 includes data points for standard errors of logRBA. The degree of 
underestimation is similar for logRBA (-0.09118 on log scale, 0.812 on absolute scale). 
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Figure 3.31 Comparison of analytical 
standard error and simulation-based 
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Using the combined data for logIC50 and logRBA, the analytical vs. simulation-based 
ratio is estimated to be 0.0817. 
 
Using this estimate of the magnitude of underestimation, the 80% prediction intervals for 
logIC50 could be re-computed by multiplying the ratio as a correction factor to each of the 
input standard errors for the DL method. From the values computed with or without 
correction for the underestimation given in Table 3.19 and Table 3.20, there was little 
impact on the end results. The correction is unnecessary. 
 
Table 3.19 Impact of correction for underestimation in SE(logIC50) on pooled mean 

and lower and upper limits of 80% prediction intervals 
Estradiol Norethynodrel 

 
Lower 
limit 

Pooled 
mean 

Upper 
limit 

Lower 
limit 

Pooled 
mean 

Upper 
limit 

Without correction -9.1769 -9.0065 -8.8361 -6.5333 -6.4230 -6.3127 
With correction -9.1756 -9.0050 -8.8344 -6.5287 -6.4156 -6.3025 

 
Table 3.20 Impact of correction for underestimation in SE(logIC50) on pooled mean 

and lower and upper limits of 80% prediction intervals 
Norethynodrel 

 
Lower 
limit 

Pooled 
mean 

Upper 
limit 

Without correction -2.6445 -2.6111 -2.5777 
With correction -2.6511 -2.6127 -2.5744 

 

3.6 Setting precision criteria 
The method to derive the upper prediction limits for SE(logIC50) is described in this 
section since such upper limits made a basis for the upper limits for within-replicate-set 
variability in % binding. Originally efforts to develop the method for deriving upper 
limits for SE(logIC50) and SE(logRBA) were initiated in 2005 based on the perceived 
importance of precisely estimating logIC50 and logRBA. That was the reason for driving 
the upper limits for SE(logIC50). 
 
Over time, though, the EDSP has shifted its focus on the qualitative classification of 
binder vs. non-binder as the main outcome of the receptor binding assay as a screening 
tool. This meant quantitative measure of potential of a chemical to interact with the 
receptor in question, i.e., logRBA, is not regarded as important as it was thought to be. 
 
Still, the capacity to accurately and precisely measure logRBA is still considered to be an 
important feature for a receptor binding assay. Imposing an upper limit for SE(logRBA) 
for a standard weakly-positive chemical would ensure good precision for logRBA 
estimates. For this reason the method for deriving the upper limit for SE(logRBA) is 
described below. 
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This approach has a limitation in that our estimates of SE(logRBA) is not optimal as 
discussed in “2.5.2 logRBA” because covariance of logIC50 of the standard and logIC50 
of test chemical, which is a component of var(logRBA), is ignored when SE(logRBA) is 
estimated. This leaves some uncertainty regarding our description of variation in 
SE(logRBA) (or to be more precise, variation in log(SE(logRBA)).103 
 
One way to keep SE(logRBA) low is to keep both SE(logIC50(standard)) and 
SE(logIC50(positive control)) low. In that sense, imposing upper limits for 
SE(logIC50(standard)) and SE(logIC50(positive control)) still serves our goal. 
 

3.6.1 Standard error of logIC50 
As discussed in “2.6.1 Standard error of logIC50”, it is appropriate to describe distribution 
of SE(logIC50) on log scale. Logarithm of base 10 was used as a scale. In order to 
summarize log(SE(logIC50)) across laboratories, it is necessary to have 
SE(log(SE(logIC50))), which is not available from standard output for the DL random 
effects model used for within-lab, between-run summary of logIC50. 
 
In the initial attempt to set up criteria for SE(logIC50), we used SE(log(SE(logIC50))) 
values computed in a simulation study (Feder and Ma, 2005). An alternative is to use the 
Jack-Knife method of variance estimation. Since performing a simulation study is 
cumbersome, it would be advisable to use the Jack-Knife method104 in the future attempts 
to set up criteria for SE(logIC50) or similar precision measures such as SE(logRBA). It 
would be prudent to apply the Jack-Knife method to Task 6 data and compare results 
with those based on SE(log(SE(logIC50))) from a simulation. 
 
The initial step for performance criterion setting is selection of acceptable laboratories.105 
For SE(logIC50), it was determined that labs D and E were acceptable and labs A and C 
were unacceptable. 
 
SE(log(SE(logIC50))) was estimated by taking the standard deviation of log(SE(logIC50)) 
reported for each simulation round. For estradiol, mean and SE of log(SE(logIC50)) were 
as follows. 
 

                                                 
103 Dr. Feder proposes to “resolve this with a simulated experiment”. If we take this approach, it would be 
necessary to run a simulated experiment for each chemical. It is not clear whether this needs to be done for 
each chemical for each run, or whether to be done for each chemical using data from multiple runs and the 
a common estimate of SE(logRBA) thereby computed would be used for multiple runs. Either way, running 
a simulated experiment seems to be beyond the usual statistical capacity of a contracting lab. To re-
emphasize my point described in footnote 52, by “SE(logRBA)” I am referring to within-run SE(logRBA).  
104 Dr. Feder repeats his points on preference given to delta method over Jack-Knife. 
105 Dr. Feder questions the deletion of a lab (actually two labs here) and asks “How can you estimate lab-to-
lab variance based on just two labs?” I agree estimate of variance based on just two labs is unstable, but 
increasing the number of labs has its own drawbacks of including the labs EDSP has determined to be 
unacceptable on the basis that are of administrative nature, not so much of statistical nature. 



 

98 
 

Lab Mean SE 
D -1.499 0.243  
E -1.803 0.210  
 
Fitting the DL random effects model to this yields a pooled mean of -1.673 and overall 
between-lab SE of 0.1587. Intrinsic between-lab SD was 0 (truncated). Using the 
estimated overall between-lab SE of 0.1587 as an estimated measure of total spread, the 
upper limit of 95% prediction interval for log(SE(logIC50)) from a laboratory drawn from 
the universe of laboratories that are like labs D and E in terms of SE(logIC50) is computed 
as 
 
-1.673 + t0.95* sqrt(1+1/2)*sqrt(2*0.15872)106 
 
where t0.95 is 6.314 for with degrees of freedom of 1 or 2.920 for degrees of freedom of 2..  
 
Multiplication by 2 (i.e., 2*0.15872) is necessary to convert a standard error of pooled 
mean of estimates from two laboratories to a standard deviation of a future estimate from 
a single laboratory. 107 
 
The distributions were computed in a similar manner for logIC50 for norethynodrel, and 
the upper limit was -1.130. 
 
These distributions and upper limits are shown in Figure 3.32, which shows results based 
on two alternative decisions as to which labs are acceptable. The three panels on the left 
are based on the decision that labs D and E are acceptable. Those on the right are based 
on the decision that labs C, D, and E are acceptable. Results for norethynodrel logRBA 
also are included. As mentioned earlier, the actual decision was to deem labs D and E 
only as acceptable. Inclusion of lab C as an acceptable lab would have shifted the upper 

                                                 
106 This corrected formula and clarification on t0 95 is due to Dr. Feder. 
107 (THE FORMULA AND RESULTING NUMBER IN THIS FOOTNOTE ARE INCORRECT.)  In the 
initial attempt to derive an upper limit for SE(lab-specific logIC50), a standard deviation of log(SE(logIC50)) 
from a laboratory drawn from the universe of laboratories that are like labs D and E was computed using 
the estimated intrinsic between-lab SD and SE(log(SE(logIC50))) for lab D as a conservative estimate of 
within-lab variation since SE(log(SE(logIC50))) was greater for lab D than lab E.  
Numerically, the computation was 
 
-1.673+ 1.645*sqrt(0^2 +0.243^2) = -1.273 
 
It was realized that it was desirable to use an alternative based on the estimated overall between-lab SE, 
rather than the combined estimate of overall between-lab variation used in the formula above, as an 
estimate of overall between-lab variation. The computed standard deviation, -1.273, is slightly more 
conservative (higher as a number), meaning that its use would lead to higher acceptance of poorly 
performing labs, than the above-mentioned limit of -1.304. In this particular example, though, the 
difference was small.  
 
The main reason for preferring the alternative is that the use of greater (greatest) estimate among those of 
all laboratories combined with the intrinsic between-lab estimate is not necessarily conservative. It also 
makes the computed upper limit more interpretable statistically. For these reasons, the alternative should be 
thought of as a default. 
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limits upwards, but as can be seen in Figure 3.32 the impact of taking the alternative 
decision would have been relatively small. 
 
In setting these upper limits, the coverage probability of 95% was used. In the examples 
shown earlier for setting accuracy criteria for logIC50 a lower probability coverage value,  
80%, was used. The choice of the higher coverage probability here was based on an 
informal judgment regarding the greater uncertainty of the distribution of 
log(SE(logIC50)). Data from labs D and E only were used to estimate the distribution. In 
Figure 3.32 it may be noted that estimates of estradiol logIC50 from lab D would be 
accepted at a probability of 82%. This probability value would drop to 61% if the 
coverage probability of 80%, instead of 95%, was used. This probability of 61% seems 
too low given the fact that D was deemed an acceptable lab and data from it were used in 
the estimation of the distribution for the acceptable laboratories.108 
 
This discrepancy arose because data from only two labs were used for the estimation. If 
data from a greater number of acceptable laboratories were used for estimating the 
combined probability distribution, there still would be some labs that would be accepted 
at a relatively low probability. The proportion of such labs among the labs that were 
deemed acceptable would be small, and we would not perceive the existence of such labs 
as alarming. In the present example where only two labs were deemed acceptable, one 
out of two labs has a seemingly low acceptance probability, and it does seem alarming 
because we may be rejecting labs like D too often. The derived upper limits may be too 
stringent and may make it very difficult to qualify many enough labs as acceptable. To 
avoid such a situation, it seems prudent to use the 95% coverage probability. 
 
The use of this coverage probability still leaves us some capacity to reject labs like lab C, 
which we judged to be unacceptable. As can be seen in Figure 3.32, estimates from lab C 
will be rejected at close to 50% for estradiol SE(logIC50)) and at greater than 50% for 
norethynodrel SE(logIC50)) and norethynodrel SE(logRBA)). As such, the use of the 95% 
coverage probability seems a reasonable compromise between accepting as many as good 
labs and rejecting as many as bad labs. 

                                                 
108 As noted earlier in similar instances, numerical details of the argument in this and following paragraphs 
are invalid due to the use of incorrect formula. Prediction intervals were narrower than they should be. 
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Figure 3.32 Distributions and upper limits based on the 95th percentile of combined 

distribution for standard error of logIC50(estradiol), logIC50(norethynodrel), and 
logRBA(norethynodrel)109 

 
The log(SE(logIC50)) upper limits for estradiol and norethynodrel were based on 
simulated log standard errors. Simulated standard errors were observed to be 
systematically different from observed standard errors for between-lab summary logIC50. 
The observed log(standard error) on average was found to be greater than the simulated 
log(standard error) by 0.1297, which we can use to correct for the observed vs. simulated 
difference in log standard errors. 
 
Using the measure of between-lab variation, i.e., the overall between-lab SE, and 
applying the observed vs. simulated correction, the upper limits for log(SE(logIC50))are -
1.434 and -1.259 for estradiol and norethynodrel, respectively. By exponentiating these 
with base of 10, the upper limits for SE(logIC50) for estradiol and norethynodrel are 
computed as 0.036 and 0.074.110 
 
Before we move on, let us recapture the discussion on the best method for setting an 
upper limit for SE(log(SE(logIC50))) to be used in the future. First SE(log(SE(lab-specific 
logIC50))) should be estimated using the Jack-Knife method. The distribution of future 
SE(lab-specific logIC50) from an acceptable lab should be described using pooled 

                                                 
109 The upper limits were incorrect as they were computed using inappropriate formula. 
110 Dr. Feder points what he regards a contradiction between the text and the computational results. In the 
preceding paragraph, I stated analytical SE was greater than simulated SE, which is taken to be closer to the 
true SE, by 0.1297. To correct for over-estimation, I subtracted 0.1297 from the observed analytical SE. 
There seems no contradiction. 
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between-lab*sqrt(number of labs) as an estimate of overall between-lab SD. The Jack-
Knife method has not been applied to Task 6 data yet, but it would be possible to do so. 

3.6.2 Standard error of logRBA 
The distributions and upper limits were computed for logRBA for norethynodrel in a 
manner similar to the one described in the previous section. In terms of observed vs. 
simulated standard errors, the observed log(standard error) on average was found to be 
smaller than the simulated standard error by 0.2725. Applying a correction for this 
magnitude of underestimation yielded a corrected upper limit of -0.8230. The upper limit 
for SE(logRBA) for norethynodrel is computed as 0.150 (=10-0.8230).  
 
When the alternative measure of between-lab variation, i.e., the overall between-lab SE, 
is used, the upper limits was computed as -1.011 after observed vs. simulated correction. 

3.6.3 Within- and between-replicate-set variability of % binding of 
radioligand 

3.6.3.1 Within -replicate-set variability of % binding of radioligand 
The bivariate relationship between within- and between-replicate-set variability of % 
binding (that is, % binding of radioligand at a given concentration of competitor) and 
SE(lab-specific logIC50) was described as follows. 
 
log(SDbetween-within-replicate(y)) =  1.295 + 0.5894*log(SE(lab-specific logIC50)) 
 
This equation was obtained by fitting a simple linear regression111 112model to the data 
consisting of 50 data points, which are depicted as dots in Figure 3.33. Each data point 
represents a pair of log(SE(lab-specific logIC50)) and log(SDbetween-within-replicate(y)). The 
line corresponding to this estimated equation is shown as a common diagonal line in the 
two panels in Figure 3.33. Using a common line as opposed to two separate lines for 
estradiol and norethynodrel, was supported by the lack of evidence for different intercept 
or slope between the subsets of data belonging to each analyte. 

                                                 
111 In order to properly account for the correlation among run-specific SDwithin-replicate(Y) estimates within the 
same lab, the use of a “robust” version of simple linear regression is desirable in this situation. When we 
use a simple linear regression instead, the standard error accompanying the regression coefficient estimates 
may be incorrect. On the other hand, the use of the simple linear regression allows us to take advantage of a 
readily accessible procedure to compute predictive interval for the dependent variable for a given value of 
the predictor variable, which usually is available as an option for a standard linear regression command in 
statistical software. When actual reported standard errors were compared across these two regression 
method alternatives, though, the differences appeared to be small. The simple linear regression method was 
used here because of this and the aforementioned advantage. 
112 Commenting on the approach of using a robust regression explained in the preceding footnote, Dr. Feder 
states “Why not simply include lab as a block effect in the model. That would introduce equi-correlation 
within the labs. This is simpler than “robust regression”. I take this to mean to include indicators for lab-
analyte combinations. This does not seem to work since there is a single value of “x” for each lab-analyte 
combination as can be seen in Figure 3.33, and there would be no x-y relation after inclusion of the 
indicators..  
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Figure 3.33 Upper bound of the 95% prediction interval for SDwithin-replicate-set 
variation corresponding to the upper limit set for SE(log(SE(lab-specific 

logIC50)))113 114 
 
How to determine the upper boundary of the one-sided 95% prediction interval for this 
fitted line is depicted in Figure 3.34. There is a standard procedure to derive a two-sided 
prediction interval around a fitted line. The shaded area shows the two-sided 90% 
prediction interval. The upper edge of this interval corresponds to the upper boundary of 
the one-sided 95% prediction interval, which is quantitatively described as 
 
(upper boundary) =intercept + slope*log(SE(lab-specific logIC50) + STDF *Z0.95  

...................................................................................................................................................3.1115 

 
where STDF is the standard error of the forecast supplied as a part of optional output of 
simple linear regression. STDF is a function of log(SE(lab-specific logIC50)), and its 
computed value is usually available as a part of output from a simple linear regression 
procedure. 
 

                                                 
113 Although we work on log(SDwithin-replicate-set), the vertical axis for figures and values in tables in Section 
3.6.3 are on the natural scale. 
114 The upper limits in this figure were incorrect as they were computed using inappropriate formula. 
115 Dr. Feder  suspects “It looks like the variability of the estimates of intercept and slope are not accounted 
for.” The STDF actually accounts for such a variability. This was illustrated in “Example” on pages 346-7 
of “Stata Base Reference Manual Volume 3 Release 8”.  
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The location of the horizontal line in Figure 3.34, which is the upper limit for the 
dependant variable, is determined by identifying the point at which the upper boundary of 
the prediction interval and each of two vertical lines for the analyte-specific upper limit 
for the SE(lab-specific logIC50) cross each other. 
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Figure 3.34 How to derive the upper boundary of the 95% prediction interval for 

SDwithin-replicate-set
116 

 
By changing the vertical width of the shaded area, i.e., percent coverage of prediction 
interval, we can tweak the acceptance rate of data from a run in terms of whether the 
within-replicate-set variation in y is low enough. Computed upper limits for several pairs 
of coverage probability of the prediction interval and the percentile value corresponding 
to the upper limit of SE(lab-specific logIC50) are shown in Table 3.21  

 

                                                 
116 Dr. Feder points out the band shown in this figure “looks funny”. He is right. By mistake, instead of 
correct upper and lower limits that accounts for the contribution of variability due to residual errors and 
variability of estimates for the intercept and slope, the limits for confidence interval, which account only 
for the variability of estimates for the intercept and slope, were plotted. The upper limits in this figure also 
were incorrect as they were computed using inappropriate formula. 
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Table 3.21 Upper limits of SDwithin-replicate-set(Y) for various levels of prediction 
interval coverage and acceptance rate for a laboratory like labs D and E117 

Percentile value corresponding to 
the upper limit of SE(lab-specific logIC50) 

80% 90% 95% 99% 
Analyte  

% coverage 
of 
prediction 
interval E2* NE** E2 NE E2 NE E2 NE 
80% 3.2 3.7 3.6 4.4 4.1 5.1 5.0 6.8 
90% 3.9 4.5 4.4 5.4 4.9 6.2 6.0 8.3 
95% 4.5 5.3 5.1 6.3 5.7 7.3 7.1 9.7 
99% 6.1 7.1 6.9 8.4 7.7 9.7 9.5 13.0 
* Estradiol, ** Norethynodrel 

 
By choosing 95% of these, the upper limits for SDwithin-replicate-set(Y) were set to 5.7 and 
7.3% for estradiol and norethynodrel, respectively. Choosing these levels is an informal  
process. We would like to set it high such that we can allow enough labs, but setting it 
too high results in inclusion of poorly performing labs. It is a balancing act. It is desirable 
to have many participating laboratories, but as in this case we may have a very small 
number of labs, only two in this case, that we consider acceptable.  
 
Because of great uncertainty in between-lab variation in SE(lab-specific logIC50), it 
seemed prudent to lean towards leniency. Some levels of percentile values resulted in a 
cut-off for SDwithin-replicate-set(Y) which seems overly stringent. For instance, when the 
upper limit for SDwithin-replicate-set(Y) is set at 5.0, a run from lab D would have been almost 
always rejected even though lab D was one of the two labs deemed acceptable and the 
data from it were used for deriving the upper limit. When a data point sits at the edge of 
horizontal line, which is for an upper limit of SDwithin-replicate-set(Y), it means estimates 
from the lab would be accepted only half the time. Conceptually this indicates that the 
upper limit was computed based on information from only 1.5 labs. We cannot put much 
faith in the limit value based on data from so few labs. 
 
This section illustrated how to set an upper limit for within-replicate-set variability 
estimated using data from a single run. Instead, in some situations it may be desirable to 
set up an upper limit for within-replicate-set variability estimated using data from three 
runs.  

3.6.3.2 Intrinsic between-replicate-set variability of % binding of 
radioligand 

Intrinsic between-replicate-set variability was measured as lab specific SDbetween-replicate-

set(Y) and its relationship with SE(lab-specific logIC50) was described. There were only 8 
data points (4 laboratories with 2 chemicals tested at each), and the relationship is 

                                                 
117 The upper limits in this table were incorrect as they were based on incorrect upper limits for SE(logIC50) 
computed using inappropriate formula for its prediction interval. 
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assumed to be common to two chemicals. Figure 3.35 depicts the relationship along with 
the fitted line and upper limits set for the two variability measures. 
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Figure 3.35 Relationship between SDbetween-replicate-set and  SE(lab-specific logIC50) and 
the upper limits derived for them118 

 
The method for translating the upper limit for SE(lab-specific logIC50) to an upper limit 
for SDbetween-replicate-set is basically the same as the one described for SDwithin-replicate-set. The 
upper limit for SE(lab-specific logIC50) was the 95th percentile value computed for the 
universe of acceptable laboratories. The upper bound of the one-sided 95% prediction 
interval was used for setting the upper limit for SDbetween-replicate-set. How the upper limit 
changes according to varying percentile values based on which limits are set is shown in 
Table 3.22. Using 95% both for the acceptance probability of labs in terms of SE(logIC50) 
and the coverage probability for prediction interval associated the fitted line, the upper 
limits for SDbetween-replicate-set were set as 4.1 and 5.5119 for estradiol and norethynodrel, 
respectively. 
 

                                                 
118 As pointed out by Dr. Feder, the upper limits corresponding to 99% coverage were plotted in this figure. 
The limits of 4.1% for estradiol and 5.5 for norethynodrel should have been plotted to be consistent with 
the text. The upper limits in this figure also were incorrect as they were computed using inappropriate 
formula. Values of SDbetween-replicate-set also were incorrectly computed. 
119 See the preceding footnote. 
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Table 3.22 Upper limits of SDbetween-replicate-set(Y) for various levels of prediction 
interval coverage and acceptance rate for a laboratory like labs D and E120 

Percentile value corresponding to 
the upper limit of SE(lab-specific logIC50) 

80% 90% 95% 99% 
Analyte  

% coverage 
of 
prediction 
interval E2* NE** E2 NE E2 NE E2 NE 
80% 2.4 2.9 2.9 3.7 3.3 4.4 4.3 6.4 
90% 2.8 3.3 3.2 4.1 3.7 5.0 4.8 7.2 
95% 3.1 3.7 3.6 4.6 4.1 5.5 5.3 8.0 
99% 3.7 4.4 4.3 5.5 4.9 6.6 6.4 9.8 
* Estradiol, ** Norethynodrel 

 

3.6.3.3 Total between-replicate-set variability of % binding of 
radioligand 

Using the between-replicate-setSD  and within-replicate-setSD , the variation of the mean of y at a given 
log(concentration) can be computed as follows. 
  

2
within-replicate-set2

between-replicate-set

total-etween-replicate-set

(SD )
(SD )  + 

Number of replicatesSE  = 
Number of runs

..................................3.2 

 

For instance, in our default setting of triplicate measurements at each concentration in 
each run and total of three runs performed, this would be  
 

2
within-replicate-set2

between-replicate-set

total-etween-replicate-set

(SD )
(SD )  + 

3SE  = 
3

 .......................................3.3 

In this setting the mean of y at a given x is a mean of 9 replicates, and that is why in the 
inside of the square root on the right hand side 2

within-replicate-set(SD )  has 9 as a denominator. 

This mean is a mean of three run-specific means, and that is why 2
between-replicate-set(SD )  on 

the left hand side has 3 as a denominator. 
 
The within-replicate-setSD  in this expression is a single lab-specific estimate based on data from 
all available runs rather than a run-specific estimate. 
 
This expression has a practical use. It gives us an idea about how much reduction in 

total-etween-replicate-setSE  we could gain by increasing the number of replicates and/or number 

                                                 
120 The upper limits in this table were incorrectly computed and so are shown in strikethrough format 
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of runs. Further, using that estimate of variability reduction we can predict the reduction 
in SE(lab-specific logIC50) that we can gain by changing the number of replicates or runs 
in a certain manner.121 
 
For each laboratory-analyte combination we can compute log( total-etween-replicate-setSE ) and 
assess its relationship with log(SE(lab-specific logIC50)). The observed relationship can 
be used to translate the limits for SE(lab-specific logIC50) into the limits for 

total-etween-replicate-setSE . The observed relationship between total-etween-replicate-setSE  and SE(lab-
specific logIC50) is depicted in Figure 3.36 along with the established upper limits for 
both dependent and independent variables. 
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Figure 3.36 Relationship between SEtotal-between-replicate-set and  SE(lab-specific logIC50) 
and the upper limits derived for them122 

 

A numerical summary of upper limits for varying levels of probability coverage is given 
in Table 3.23.  
 

                                                 
121 A similar expression can be written for between-run and within-run variability for a pooled mean of any 
of other parameters (logIC50, top plateau, bottom plateau, and Hill slope). Application of this to other 
parameters may be of more practical advantage. The total between-run variation in the mean y given x is 
used as an example only because this analysis has been performed in response to the expressed interest of 
the ESDP in the initial stage of this project. 
122 Values of SDtotal-between-replicate-set and upper limits in this figure were incorrectly computed. 
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A practical use of the expression for total-etween-replicate-setSE  in terms of between-replicate-setSD  and 

within-replicate-setSD  is illustrated below. The use of this kind of expression was conceptually 
described in “2.9.2 Uses in assay implementation”. Imposing an upper limit for 

total-between-replicate-setSE is described as an inequality of the following form. 
 

2
within-replicate-set2

between-replicate-set

total-between-replicate-set

(SD )
(SD )  + 

Number of replicateSE (Upper limit)
Number of runs

= < .......3.4 

We can now focus on the two components of the SE, i.e., between-replicate-setSD  and 

within-replicate-setSD . 
 

2
within-replicate-set2

between-replicate-set

(SD )
(SD )  + 

Number of replicate (Upper limit)
Number of runs

< ............................................3.5 

The left hand side of this inequality can be manipulated by changing the number of runs 
and/or number of replicates.123 Curves for a set of equations corresponding this inequality 
(change “<” to “=”) for various numbers of runs (3, 4, 5) and numbers of replicates (3 
and 4) are plotted in Figure 3.37 along with observed values of ( between-replicate-setSD , 

within-replicate-setSD ). If a data point is below a certain curve, the inequality corresponding to 
the curve holds or the point is acceptable in terms of the imposed upper limit included in 
the inequality. For instance, data points corresponding to labs C, D, and E are below the 
thick black curve in the estradiol panel, indicating they met the criteria using 3 runs in 
triplicate. On the other hand, the data point for lab A was above the curve, meaning it was 
not accepted when using 3 runs in triplicate are used. Lab A using 3 runs in triplicate is 
disqualified for estradiol because the data point representing it is above the black thick 
curve. If lab A used 5 runs in triplicate or quadruplicate, it would be able to generate low 
enough SE(logIC50). The black thick curves correspond to the horizontal lines in Figure 
3.36. 
 
In general, we would not favor giving special treatment to a particular lab, and so this 
example is not realistic. In some other circumstances, e.g., where an agency is finding it 
extremely difficult to find any laboratories that meet certain pre-specified precision 
requirement, the method described above could be useful. If this type of difficulty is 
faced, it may be justifiable to tweak the experimental protocol and increase the default 
number of runs, for instance, to allow enough laboratories to produce data that meet the 
pre-specified precision requirement. 

                                                 
123 Dr. Feder repeats his criticism on an approach of this kind. My response may be found in footnote 19. 
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Table 3.23 Upper limits of SDtotal-between-replicate-set(Y) for various levels of prediction 
interval coverage and acceptance rate for a laboratory like labs D and E124 

Percentile value corresponding to 
the upper limit of SE(lab-specific logIC50) 

80% 90% 95% 99% 
Analyte  

% coverage 
of predictive  
interval E2* NE** E2 NE E2 NE E2 NE 
80% 1.7 2.1 2.0 2.6 2.3 3.1 3.0 4.3 
90% 1.9 2.3 2.2 2.8 2.5 3.4 3.2 4.8 
95% 2.1 2.5 2.4 3.0 2.7 3.6 3.5 5.2 
99% 2.4 2.9 2.8 3.5 3.2 4.2 4.1 6.1 
* Estradiol, ** Norethynodrel 
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Figure 3.37 Relationship between SEtotal-between-replicate-set and  SE(lab-specific logIC50) 

and the upper limits derived for them125 

3.6.3.4 Alternative method for derivation of upper limits 
The development of the methods described in Section 3.6.3 was driven by the interest of 
the EDSP expressed in 2005 to keep SE(logIC50) at a low level. To achieve that end, the 
SDwithin-replicate-set was to be quantified after each run and data from the runs with low 
enough SDwithin-replicate-set were to be deemed acceptable. 
 
The EDSP’s position on the importance of logIC50 has been changed since, and it no 
longer places a high priority on the need to keep SE(logIC50) low.126 127Given that change, 
                                                 
124 The upper limits in this table were incorrectly computed and so are shown in strikethrough format 
125 Values of SDtotal-between-replicate-set and upper limits in this figure were incorrectly computed. 
126 Keeping SE(logIC50) low for the standard and positive control is expected to result in low SE(logRBA) 
for the positive control. This itself still may form a basis for the continued use of the limits for within-
replicate-set variability based on the limit for SE(logIC50). In computing SE(logRBA), we need to ignore 
the covariance of logIC50 for the standard and that for the positive control because of lack of easy way to 
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the method for deriving the upper limit for within-replicate-set variability and related 
variability measures may be completely overhauled. 
 
To reflect the decreased emphasis on logIC50, we may disconnect SDwithin-replicate-set from 
SE(logIC50) and regard it as a variability measure of its own merit. Conceptually, a 
reduction in SDwithin-replicate-set would result in reduction in the standard deviation of any of 
the four Hill equation parameters, i.e., not only logIC50 but also the top, bottom, and 
slope parameters. Based on this general idea, an alternative method for derivation of 
upper limits for SDwithin-replicate-set is conceived and described below.  
 
We will treat log(SDwithin-replicate-set) as a parameter. Observed distributions of log(SDwithin-

replicate-set) for existing acceptable labs are described, and then we estimate the distribution 
of log(SDwithin-replicate-set) for the universe of acceptable labs. Based on the distribution for 
the universe of acceptable labs, a level below which estimates from most of acceptable 
labs would fall may be determined.  
 
Specifically, log(SDwithin-replicate-set) will be computed after each run using the one-way 
random effects ANOVA. Following a procedure similar to what we applied to a Hill 
equation parameter, e.g., top plateau level parameter, we can summarize log(SDwithin-

replicate-set) across runs within a lab, then across labs using the DL random effects model. 
Once between-lab and within-lab variation is quantified for log(SDwithin-replicate-set) it is 
straightforward to establish a one-sided prediction interval for log(SDwithin-replicate-set) using 
the procedures applied to other Hill equation parameters described in “2.5 Deriving 
accuracy criteria” and exemplified in Sections 3.2-3.5. The only main difference would 
be that limits for log(SDwithin-replicate-set) will be based on one-sided prediction intervals 
while the derivation of the accuracy criteria was based on two-sided prediction interval.  
 
In order to apply the DL method to log(SDwithin-replicate-set), we will need SE log(SDwithin-

replicate-set). Regular output or interim results of the one-way random effects ANOVA does 
not include any numerical information that can be used directly to estimate 
SE(log(SDwithin-replicate-set)). The Jack-Knife method may be used to estimate 
SE(log(SDwithin-replicate-set)) for each run, using a replicate set as a unit of observation to 
compute pseudovalues.128 
 
The use of this alternative method would treat the log(SDwithin-replicate-set) as a parameter in 
a manner comparable to that used for other Hill equation parameters and would provide a 
unified look for the entirety of this performance criterion derivation exercise. As done for 

                                                                                                                                                 
estimate it. As a result, there is an increased level of uncertainty for the estimated distribution of 
log(SE(logRBA)), and it may not be prudent to fully trust the upper limits derived using that distribution. 
The distribution of log(SE(logIC50)) is more reliably estimated, and upper limits for log(SE(logIC50)) thus 
may be more trustable. 
127 In commenting on the preceding footnote, Dr. Feder notes “We can estimate correlation within run” and 
offers a sketch of how the covariance could be estimated on page 143 of his hand-written comments (Feder, 
2007b). 
128 Dr. Feder repeats his recommendation that delta method be used in place of Jack-Knife in this context. 
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the upper limits for SE(logIC50) and SE(logRBA), the derived limits would be back-
transformed to the natural scale and expressed as limits for SDwithin-replicate-set.129 
 
Similar procedures may be applied to log(SDbetween-replicate-set) and log(SDoverall-between-

replicate-set) in order to derive upper limits for SDbetween-replicate-set and SDbetween-replicate-set, 
respectively. 

                                                 
129 It may be feasible to use a kind of hierarchical random effects ANOVA model and based on it directly 
construct an upper limit for log(SDwithin-replicate-set), avoiding the use of the DL random effects model. It is 
beyond the scope of this report to discuss such an approach. The DL method-based approach described here 
has an appeal of relatively easy implementation and comparability with the procedures used for other 
parameters. 
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4 Appendix 

4.1 Alternative definition of a unit in partitioning variation in % 
binding 

A decision to use a replicate set as unit for partitioning variation in y given x was 
explained in “2.3.1 Definition of ”. There is an alternative to this choice a unit. 
Justification for our choice is given below.130 
 
An alternative way to define the unit of interest is to define a unit as each run as in the 
following table. There are 3 units, each having 21 (triplicates times 7 levels of x) 
observations. 
 

Table 4.1 Preparation of receptor binding data for computation of 
within-unit and between-unit variance: 

unit specification by run alone 
Run 

1 1 1 
Replicate Replicate Replicate 

x 1 1 1 1 1 1 1 1 1 

1x  y- 1y  y- 1y  y- 1y  y- 1y  y- 1y  y- 1y  y- 1y  y- 1y  y- 1y  

2x  y- 2y  y- 2y  y- 2y  y- 2y  y- 2y  y- 2y  y- 2y  y- 2y  y- 2y  

3x  y- 3y  y- 3y  y- 3y  y- 3y  y- 3y  y- 3y  y- 3y  y- 3y  y- 3y  

4x  y- 4y  y- 4y  y- 4y  y- 4y  y- 4y  y- 4y  y- 4y  y- 4y  y- 4y  

5x  y- 5y  y- 5y  y- 5y  y- 5y  y- 5y  y- 5y  y- 5y  y- 5y  y- 5y  

6x  y- 6y  y- 6y  y- 6y  y- 6y  y- 6y  y- 6y  y- 6y  y- 6y  y- 6y  

7x  y- 7y  y- 7y  y- 7y  y- 7y  y- 7y  y- 7y  y- 7y  y- 7y  y- 7y  

 
A statistically natural name for the within-variation calculated using this definition of unit 
may arguably be SDwithin-run. 131 This measure includes not only the variation within a 

                                                 
130  Dr. Feder request additional explanation as to what this section is intended for. The reason is, as stated, 
to give justification for how I partitioned total variability of individual y measurements. The procedure of 
my choice is partitioning the variability to “within-replicate” and “between-replicate”. The within-replicate 
variability corresponds to, as I learned from interaction with participants of conference calls on inter-lab 
study for ER binding assay, what experimentalists refer informally as “within-run variation”. 
Biostatisticians, though, would reserve the term “within-run” variation for the “within” components of the 
alternative procedure for variability partitioning. As such, the purpose of this section is to clearly show that 
which kind of partitioning I was using and to justify why it was chosen. I stated the main reason for this 
choice was a good analogy to a standard between-subject set-up. I should have mentioned another, arguably 
more important, reason is that between-replicate-set variation could be computed from data from a single 
run. With data from a single run, the “wiggle” component could not be evaluated and so the alternative 
procedure does not work if we need an estimate of “within” variability from a single run. As explained in 
Aoki (2007b), such an estimate that can be obtained with data from a single run was initially desired by 
EDSP. 
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triplicate set, but also how *y  varies across x levels within a run. The SDbetween-replicate-set 
derived using this definition, includes a parallel shift of the entire curve from the curve 
constructed by joining the means at each x.  
 
The two alternative pairs of definitions for within- and between-replicate-set variabilities 
arise from the fact that *y  actually has three sources of variation depicted in Figure 4.1. 
 

 
Figure 4.1 Three sources of overall between-run variation 

 
In this figure, how *y  varies across x levels within a run is tentatively labeled as 
“wiggle” and is illustrated in the middle panel. Depending upon which definition of 
“unit” is used (i.e., replicate set or run), this “wiggle” variation could be partitioned into 
either within-unit or between-unit variation. If the unit is the replicate set, wiggle 
becomes part of between-unit variation; if the unit is the run, wiggle becomes part of 
within-unit variation. 
 
It has been decided to combine the “wiggle” variation and “constant shift” variation, 
separating the former from within-triplicate-set variation. The main reason to do this is 
that there is natural analogy between the within-triplicate-set variation in our receptor 
binding assay setting and the within-unit variation in the standard between-subject setup 
in that both deal only with measurement error at the lowest level of organization. 

4.2 Improved correction for the number of runs performed 
While finalizing this report, an important issue related to the method described in “2.2.2 
Correction for the number of runs performed” was noted. The method deals with varying 
numbers of runs across labs (e.g., 3 runs worth of data are available from on lab while 6 
runs worth of data are available from the other) probably was not optimal.  
 
The proposed and actually used method was to employ the following formula to generate 
a hypothetical standard error value that would correspond to data from three runs. 
 

                                                                                                                                                 
131 What we defined as SDwithin-replicate-set tended to be called SDwithin-run by experimentalists. 
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...................................................2.20 

Standard error values corrected in this manner are used when combining lab-specific 
pooled means across labs. This forces the laboratories to be comparable in terms of the 
numbers of runs. 
 
In hindsight, this solved one problem of imbalance in the number of runs, but created 
another. The problem is that the lab-specific means were still computed on the original 
full data, not from just three runs, and they were on average less variable than the lab-
specific means computed on the data from three runs only. In the data we used as an 
example, the numbers of runs were 3 or more. It would have been desirable to use the 
mean number of runs per lab instead of a fixed number of runs (i.e., 3) in the following 
manner. 
 

R for lab i

1
2 21

1ˆ( )
/1

ˆ ˆ( )
i

N
k ii
j

iij i

SE
k N

kSE

θ

θ τ
=

=

=
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

∑∑
................................................................4.1 

For instance, for norethynodrel there were data from 3, 6, 12, and 6 runs for labs A, C, D, 
and E, respectively. In stead of 3/ki on the right hand-side of this equation as a correction 
factor, we would use 6.25/ ki (i.e., 

1
/ (3 6 12 6) / 4  6.25N

ii
k N

=
= + + + =∑ ). 

 
The use of Equation 4.1 in place of Equation 2.20 is recommended in the future. It would 
be advisable that the analyses presented in this report be repeated using Equation 4.1 
instead of Equation 2.20.132 
 
The pooled estimate of within-lab SD previously described, 
 

2
within-lab i

2 21

ˆ ˆ( ) 1
ˆ ˆ( )

k

i
i

kSD

SE

θ τ

θ τ=

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟+⎝ ⎠
∑

................................................2.23 

where k  is the total number of laboratories. 

 

                                                 
132 Please see Section “2.3.1.2. Correction for the number of runs pre lab” in Aoki (2007b) for additional 
discussion on how   is to be computed from data with varying number of runs (≠ 3) per lab. 
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as computed following the between-lab summary using Equation 4.1  is for R for lab iθ̂  

based on 
1

/N
m ii

k k N
=

=∑  runs ( mk  is the average number of runs per lab). In order to 
compute the SDwithin-lab based on a different number of runs, 3 (out default) for example, 
is 
 

2
within-lab i

2 21

ˆ ˆ(  based on 3 runs) 1 3
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kkSD

SE

θ τ
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∑

......................................4.2 

 
SDwithin-lab for a single run is 
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.............................4.3 

 
Dr. Feder recommends alternative formulae for Equations 4.2 and 4.3.  

2
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............ Alternative to 4.3  

These formulae imply the following two alternative formulae for the SDtotal-between-lab. 
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total-between-lab i

2 21

ˆ(  based on a single run) 1
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+∑
.......................................4.5 

These make better sense than the ones I was using. In place of the last two formulae, I 
was using the following two although that was not properly documented in the draft 
report. 

2 2
total-between-lab i
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.......................4.6 

2 2
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..............4.7 

That is, pooled within-lab variance was calculated and it was added to intrinsic between-
lab variance in order to reconstruct total between-lab variance. The use of equations 4.4 
and 4.5 would eliminate this redundant step. 
 
A preliminary investigation into the effects of the suboptimal correction that was 
employed mostly in this report was performed using equations 4.2, 4.3, 4.6, and 4.7. Its 
results are shown in Table 4.2 below. 
 
For all parameter-analyte combinations, the choice of a correction method made little 
difference in the estimates of overall mean. SE(overall mean) values also were not 
affected substantially except for the bottom plateau parameter. SE(overall mean), at any 
rate, is not directly used in derivation of performance criteria.133 
 
Some of the within- and between-variability measures, though, are substantially affected. 
Changes in intrinsic between-lab SD and within-lab SD directly affect performance 
criteria to be derived based on them. Overall between-lab SD is a measure that combined 
the between-lab SD and within-lab SD for the lab-specific summary estimates based on 
three runs. The within-lab SD values changed little no matter which of the original or 
improved correction factor was used. The use of the improved correction factor increased 
the intrinsic between-lab SD estimates (and thereby increased overall between-lab SD 

                                                 
133 Dr. Feder comments as follows. “I disagree. SE(overall mean) is used in setting the performance criteria 
for the accuracy formulae, e.g., Eq. 2.17, 2.18, 2.40.” Actually I was not using Eq. 2.17 and 2.18 directly. 
Equation 2.40 includes ˆ( )SD θ , which was computed using a formula in the form of Equation 4.6 or 4.7 
(as mentioned in the paragraph preceding Eq. 4.6, this was not properly documented in the draft report). If 
we use a formula for total variability in the form of Equation 4.4 or 4.5 as Dr. Feder would have done, SE 
and SD are more closely connected and SE(overall mean) is almost directly used  in setting performance 
criteria. 
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estimates, too) for the top plateau and Hill slope parameter. This indicates that the limits 
derived for these parameters using the original correction factor may have been overly 
stringent. It may account at least partially for the previously-noted observation that the 
prediction interval for norethynodrel’s Hill slope seemed to narrow (Figure 3.26 and the 
text immediately after the figure). Since the EDSP is using “three out of five” rule, which 
seems to be fairly lenient (see discussion on this in Section “3.5.5 logRBA”), it seems 
unlikely that somewhat stringent limits have made the coverage probability of the limits 
too low. 
 
Overall, the use of the suboptimal correction factor did not seem to have profoundly 
compromised the utility of the derived performance criteria. Nonetheless, the use of the 
improved correction factor is recommended in the future since the potential adverse 
consequences of using the suboptimal correction factor could be inferred theoretically as 
well as empirically from the result of preliminary investigation. 
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Table 4.2 Comparisons of across-lab summary results based on the original and improved correction factors 

Param-
eter Analyte 

“Number 
of run” 
correction 
method 

Overall 
mean 

R̂θ  

SE(overall 
mean) 

R̂( )SE θ  

Overall 
between-
lab SD 

ˆ( )labSD θ  

Intrinsic 
between-
lab SD 

l̂abτ  

Within-lab 
SD 

within-lab î( )SD θ
Intraclass 
correlation

Between/ 
within 
ratio 

Hetero-
geneity 
p-value 

Original -8.997 0.0600 0.1200 0.1112 0.0450 0.859 2.47 1*10-05
Estradiol Improved -8.998 0.0596 0.1237 0.1150 0.0456 0.864 2.52 2*10-11

Original -6.454 0.0964 0.1928 0.1826 0.0620 0.897 2.95 2*10-10logIC50 
Norethynodrel Improved -6.457 0.0954 0.1962 0.1857 0.0633 0.896 2.93 2*10-21

Original 100.23 1.28 2.55 1.46 2.09 0.326 0.70 0.21Estradiol Improved 100.16 1.32 3.13 2.09 2.33 0.446 0.90 0.02
Original 99.01 0.92 1.84 0.00 1.84 0.000 0.00 0.44

Top 
plateau Norethynodrel Improved 98.75 0.93 2.34 1.25 1.97 0.287 0.63 0.13

Original -1.21 0.37 0.73 0.00 0.73 0.000 0.00 0.82Estradiol Improved -1.21 0.25 0.73 0.00 0.73 0.000 0.00 0.59
Original -2.06 0.52 1.03 0.00 1.03 0.000 0.00 0.67

Bottom 
Plateau Norethynodrel Improved -2.04 0.38 1.08 0.22 1.05 0.042 0.21 0.36

Original -0.97 0.020 0.040 0.007 0.040 0.029 0.17 0.38Estradiol Improved -0.98 0.022 0.055 0.031 0.046 0.315 0.68 0.09
Original -0.95 0.032 0.064 0.035 0.053 0.310 0.67 0.24

Hill 
Slope  Norethynodrel Improved -0.96 0.033 0.079 0.053 0.058 0.453 0.91 0.03

Original -2.57 0.0340 0.0680 0.0527 0.0430 0.601 1.23 0.05logRBA Norethynodrel Improved -2.57 0.0340 0.0696 0.0544 0.0433 0.613 1.26 0.03
Values in bold indicate instances where the two versions of the correction factor made noticeable difference. 
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4.3 Statistical software 
Stata version 8 was used for the analyses described in Sections “2 Statistical Methods" 
and “3 Examples”. Statistical methods used include the DL random effects model 
(implemented via a user-defined module called “meta”), random effects one-way 
ANOVA (“loneway” command), and OLS with or without robust SE estimation 
(“regress” command with a cluster option). 
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