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ABSTRACT: In 1996, the US Environmental Protection Agency was given a mandate by Congress to develop a screening
program that would evaluate whether variously identified compounds could affect human health by mimicking or interfering
with normal endocrine regulatory functions. Toward this end, the Agency chartered the Endocrine Disruptor Screening and
Testing Advisory Committee in October of that year that would serve to recommend a series of in vitro and in vivo protocols
designed to provide a comprehensive assessment of a chemical’s potential endocrine-disrupting activity. A number of these
protocol s have undergone subsequent modification by EPA, and thisreview focuses specifically on therevisedin vivo screening
procedure recommended under the title Research Protocol for Assessment of Pubertal Development and Thyroid Function in
Juvenile Female Rats. Background literature has been provided that summarizes what is currently known about pubertal
development in the female rat and the influence of various forms of pharmaceutical and toxicological insult on this process and
onthyroid activity. Finally, asectionisincluded that discussestechnical issuesthat should be considered if the specified pubertal
endpoints are to be measured and successfully evaluated.

KEY WORDS: endocrine-disrupting chemicals, prepubertal exposures, female rat, EDSTAC recommendations.

Abbreviations: y HCH, Lindane; 1,2,3,4,5,6-hexaclorocyclohexane; 18-homo-estradiol, 18-methylestra-1,3,5(10)-triene-
3,17B-diol) estradiol; 3a-diol, 5-a-androstane-33,173-diol; AMPA, pL-a-amino-3-hydroxy-5-methyl-4-isoxazole proprionic
acid anandamide, N-arachidonylethanolamine; AP-5, DL-2-Amino-5-phosphonovaleric acid (a competitive NMDA receptor
antagonist); BPA, Bisphenol A; CB 47, 2,2'4,4'-tetrachlorobiphenyl; CB-154, 2-Bromo-a-ergocryptine mesylate, a dopamine
agonist; CNS, central nervous system; CRF, corticotrophin-releasing hormone; DDE, 2,2-bis-p-chlorophenyl-1,1-dichlorethylene;
DES, diethylstilbestrol; DNQX, 6,7-dinitroguinoxaline-2,3-dione; E1, estrone; E2, 17p3-estradiol; E2B, 173-estradiol benzoate;
E785, 3-(3,4-dihydro-6-methoxy-2-napthyl)2-dimethyl hexanoic acid; E969, 3-(3,4-di-hydro-6-methoxy-2-naphthy)2-dimethyl
pentanoic acid; EAA, excitatory amino acid; eCG, equine chorionic gonadotropin; EE, ethynyl estradiol; ER, estrogen receptor;
EGF, epdidermal growth factor; FGF-2, fibroblast growth factor; FSH, follicle-stimulating hormone; GABA, y-aminobutyric
acid; GH, growth hormone; GHRH, growth hormone-releasing hormone; GnRH, gonadotropin-releasing hormone; hCG,
human chorionic gonadotropin; HPTE, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane; | GF-I, insulin-like growth factor-I;
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LH, luteinizing hormone; M ER-25, ethamoxytriphetol; M K-801, methyl,10-11-dihydro-5H-dibenzo [a,d]-cyclohepten-5,10-
imine maleate (a noncompetitive NM DA receptor antagonist); M TD, maximum tolerated dose; NIADDK D, Nationa Institute
for Arthritis, Diabetes, Digestive and Kidney Diseases; NM DA, N-methyl-p-aspartate; NPY, neuropeptide Y'; ob, obese; PCB,
polychlorinated biphenyl; PGE2, prostaglandin E2; PM SG, pregnant mare serum gonadotrophin; POM C, proopiomelanocortin;
QC, quality control; RU-486, mifepristone; T3, 3,5,3'-triiodothyronine; T4, thyroxine or 3,5,3',5'-tetraiodothyronine; TCDD,
2,3,7,8-tetrachlorodibenzo-p-dioxin; TGF-e, transforming growth factor-alpha; THC, A-9-tetrahydrocannabinol; TRH, thy-
rotropin-releasing hormone; TSH, thyroid stimulating hormone; VO, vagina opening.

[. INTRODUCTION

In 1996, in response to emerging concerns
about the influence of environmental chemicalson
human health, the U.S. Environmental Protection
Agency was given a mandate by Congress under
the Food Quality Protection Act and Safe Drink-
ing Water Amendments. The Agency was to de-
velop a screening program that would evaluate
whether variously identified compounds could af-
fect human health by an effect similar to one “pro-
duced by a naturally occurring estrogen, or such
other endocrine effect as the Administrator may
designate (U.S. EPA, 1998a).” Toward this end,
in October 1996 the Agency chartered the Endo-
crine Distruptor Screening and Testing Advisory
Committee (EDSTAC), which included govern-
ment and non-government scientists, along with
“stakeholder” representatives from various inter-
est groups. The goal in assembling the series of
screening and testing protocol s was to provide suf-
ficient information that could allow accurate clas-
sification of chemicals as endocrine disruptors,*
described by EDSTAC asany exogenous substance
that changes endocrine function and causesadverse
effects at the level of the organism, its progeny,
and/or (sub)popul ations of organisms. Initsensu-
ing deliberations, EDSTAC then decided to extend
the scope of the screening and testing batteriesto
include both pure compounds and common mix-
tures that could enhance (mimic) or inhibit estro-
genic-, androgenic-, and thyroid hormone-rel ated
Pprocesses.

The protocols recommended by EDSTAC
consist of anumber of invivo and in vitro proce-
duresgroupedintoaTier 1 screen (T1S, Tablel).
The expressed intention was to: (1) incorporate
endpoints of sufficient diversity to permit deci-

sions based on “weight-of-evidence” consider-
ations, (2) alow for the detection of various modes
of action associated with the endocrine measures
of concern, (3) maximize the sensitivity of the
evaluations and minimize the incidence of false
negatives, and (4) expand the number of organ-
isms used for such evaluations to allow for inter-
speciesdifferencesin metabolic activation/detoxi-
fication and receptor-associated mechanisms of
endocrine activity (U.S. EPA, 1998b).

The proposed in vitro tests (i.e., receptor-bind-
ing assays, steroidogenic assessments, and pla-
cental aromatase determinations) are designed to
complement the in vivo protocols by providing
information specific to the ability of achemical to
interferewith steroid-mediated activities. Similarly,
therat uterotrophic, male and female pubertal, and
Hershberger protocols, along with the frog meta-
morphosis and fish gonadal recrudescence deter-
minations (Table 1), that comprise the in vivo
components of the T1S recommendations &l so tar-
get these types of steroid- associated toxic insult.
At the sametime, the protocolsallow for an evalu-
ation of additional apical effects on reproductive
function that may not necessarily be associated
with an dteration in steroidogenesis or steroid-
receptor mechanisms. Thisis particularly true for
the pubertal screening procedures, that are less
mechanistically targeted and allow for such abroad-
ened casting of the endocrine disruptor net.

After recommendation, each of these proto-
cols is subjected to a formalized process of vali-
dation before it can be brought into the laboratory
for general use. However, it is first necessary to
determine if there is sufficient information about
the method to support a vaidation study. Thisin-
volves both a comprehensive examination of the
scientific literature relevant to the protocol and

* Use of the term “endocrine disruptor” has been the subject of some debate since it first entered the toxicological lexicon. More recently,
the National Research Council in a critical review of the area (NRC, 1999) instead recommended “hormonally active agent” in its place.
However, the appropriateness of such semantic adjustments will depend on individual perceptions concerning the scope of an insult to
endocrine regulatory functions. The designation endocrine disrupting chemical has been used by the U.S. Environmental Protection Agency

and will be applied within the present context.
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the performance of a prevalidation assessment us-
ing a limited number of compounds selected to
optimize and standardize conduct of the protocol.
In support of this process, the following two com-
panion papers focus on the pubertal protocols for
both the female (whose performance in T1S is
listed asrequired) and malerat (listed as an alter-
native assessment). They have been presented by
EDSTAC under the names Research Protocol for
Assessment of Pubertal Development and Thyroid
Function in Juvenile Female Rats and Research
Protocol for Assessment of Pubertal Devel opment
and Thyroid Function in Immature (33 to 53-Day-
Old) Male Rats (U.S. EPA, 1998c). The current
versions of these protocols are modifications of the
original recommendations that have been evalu-
ated by an EPA intraagency committee comprised
of scientific advisors from the Office of Research
and Development and the Office of Pesticide Pro-
gramsand Toxic Substances. Considerationsof clar-
ity, accuracy, and applicability for use under Good
Laboratory Practice (GLP) proceduresresulted in
these amended versions that are the subjects of
the present companion male and female reviews.
Both of these reviews focus on what is cur-
rently known about the mechanisms of mamma-
lian pubertal development and, using the rat as a
model species, provide acomprehensive presenta-
tion of those alterations in puberty that result from
exposureto chemicalswith awidevariety of modes
of action. Asthe protocols are also concerned with
evaluations of thyroid function, additional infor-
mation is presented on developmental changesin
the hypothal amic—pituitary—thyroid axis and the
impact of chemical insult on thyroid function.
The material in the present review specifi-
cally addresses sexua maturation in the female rat
and the influence of prepubertal exposures to en-
docrine disrupting chemicals on this process. The
concern is primarily with those exposure param-
eters recommended in the current protocol (pre-
sented as Table 2), or ones that are chronologi-
cally similar. Effectsof gestational exposures, those
given to lactating pups during the first 2 weeks of
postnatal life, or early neonatal treatments extend-
ing through puberty will not typically beincluded,
because the impact of such types of insult may be
quite distinct from treatments initiated in the 3rd
and 4th week. Finally, a section is presented on
technical issues that should be considered if the
recommended endpoints (and those designated as

optional) are to be measured and evaluated suc-
cessfully.

IIl. PUBERTAL MATURATION
IN THE FEMALE RAT

Inthefemalerat, asin other atricial mammals,
the postweaning period is a time during which a
variety of interrelated neuroendocrine processes
undergo a progressive integration that will culmi-
nate in the emergence of aphysiologically mature
reproductive system. Asthetoxicological database
has grown, along with our understanding of the
mechanisms involved in this transition, what has
become increasingly clear is that the onset of pu-
berty can be vulnerable to perturbationsin one or
more of those underlying processes that contrib-
utetoit. Moreover, theform of pubertal ateration,
that is, a maturational delay or advancement, is
dependent on the nature of the insult, and the sen-
sitivity to these effects can vary with the species
and strain of the animal model chosen. Although
mammalian reproduction can show marked spe-
ciesvariationsin cyclelength, seasonality and the
importance of cervical stimulation as an ovulatory
trigger, the underlying reproductive physiology gen-
erally exhibits a remarkable degree of homology
among members of the class. Whilerats (and mice)
have been used in a wide variety of biologica
research, the reproductive system of the females
shares a number of addtional characteristics with
that of the human female. Both are regularly cy-
cling “spontaneous ovulators’, having midcycle
gonadotropin surgesthat trigger comparablefolli-
cular and oocytic maturational changeswithin the
ovaries. Consequently, these animalshaveroutine-
ly been employed in laboratory studies designed to
elucidate shared mammalian mechanisms of repro-
ductive development and function.

The onset of puberty in the femaleis atran-
sitional process and encompasses the period of
vagina opening (VO) and first ovulation. Vaginal
opening (or vaginal patency) in the rat commonly
takes place between postnatal days 30 and 37,
although variations occur between strains and be-
tween different colonies (or commercia suppliers)
of the same strain (see Rivest, 1991 for review).
Such diversity isevident in representative VO sum-
mary datathat have been reported by various labs
for different strains (Table 3).
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TABLE 2
Modified Research Protocol for Assessment of Pubertal Development and Thyroid Function
in Juvenile Female Rats

Purpose and Applicability

Gen

The purpose of this protocol is to outline procedures to quantify the effects of environmental compounds on
pubertal development and thyroid function in the intact juvenile female rat. This assay detects agents that
display antithyroid, estrogenic, antiestrogenic (estrogen receptor [ER] or steroid-enzyme-mediated) activity,
or alter puberty via changes in luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin (PRL)
and growth hormone (GH) secretion, or via alterations in hypothalamic function.

Required Endpoints:
Growth (body weight)
Age and weight at vaginal opening
Serum thyroxine (T4) and thyroid stimulating hormone (TSH)
Liver, kidney, pituitary, and adrenal weights
Thyroid histology
Uterine and ovarian weights and histology
Vaginal cytology

Optional Endpoints:
Serum tri-iodothyronine (T3), estradiol (E2), and prolactin
Thyroid weight
Liver, kidney, pituitary, adrenal and vaginal histology
Ex vivo ovarian and pituitary hormone production
Hypothalamic neurotransmitter concentrations
Estrous cycle length (requires extension of dosing)

eral conditions

A. Rats are housed in clear plastic cages (20 x 25 x 47 cm) with heat-treated (to eliminate resins that induce
liver enzymes) laboratory-grade pine shavings as bedding. Animals are maintained on a complete and balanced
laboratory diet and tap water ad libitum, in a room with a 14:10 hour photoperiod (lights on at 0500 h, off at 1900
h), temperature of 20 to 24°C and a relative humidity of 40 to 50%. Reasonable variations of this portion of the
protocol should be acceptable when documented and justified.

B. Animals: Juvenile Female Rats

The study will use Sprague-Dawley or Long-Evans hooded female rats weaned on day 21. The litters may be
derived from individually housed pregnant females that were bred in-house or purchased from a supplier as
“timed pregnant” on days 7 to 10 of gestation. Enough litters should be available to ensure a sufficient number
of juvenile females to provide 15 pups per treatment group. To maximize uniformity in growth rates, the litters
are culled to 8 to 10 pups per dam at postnatal day 3 or 4, and body weight is monitored on a weekly basis,
with any unthrifty litters or runted pups excluded from the study. On day 21, the pups are weighed to the nearest
0.1 g and weight ranked. A population of rats that is as homogeneous as possible is selected for the study by
eliminating the “outliers” (i.e., the largest and smallest of the pups with a range of 8 grams above or below the
mean used as a guideline). Pups are then assigned so that treatment groups exhibit similar body-weight means
and variances. In this regard, one nuisance variable, i.e., body weight at weaning, is experimentally controlled.
After assignment to treatment groups, similarly treated females are housed 2 to 3 per cage.

C. Experimental Design

The treatment conditions are (1) vehicle and (2) xenobiotic treated. If necessary, the study can be conducted
in blocks rather than at one time. In this case, the blocks should contain all treatment groups and balanced with
respect to number of animals (i.e., two blocks with two treatment conditions, with 7 to 8 females/treatment/
block). Varying dosage levels of the xenobiotic can be tested, although only one high dosage level at or just
below the maximum tolerated (MTD) or limit dose is required.

D. Treatment

Treatments are administered daily by oral gavage beginning on day 22 and continuing through 42 days of age
(see Figure 1). The dose should be administered between 0700 and 0900 h using an 18 gauge gavage needle
(1 inch length with 2.25 mm ball) and a 1 cc glass tuberculin syringe in a volume of 2.5 to 5.0 ml corn oil/kg
body weight. Doses should be administered on a mg/kg body weight basis and adjusted daily for weight changes
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changes. Body weight (nearest 0.1 g) and the volume of the dose administered (nearest 0.1 ml) are recorded
daily.

E. Vaginal Opening

Females are examined daily for vaginal opening. The appearance of a small “pin hole” or a vaginal thread, as
well as complete vaginal opening should be recorded on the days they are observed. However, the day of
complete vaginal opening is the endpoint used in the analysis for the age of vaginal opening. In addition, the
weight at complete vaginal opening should be recorded. Following vaginal opening, daily vaginal smears are
monitored until necropsy to determine the age of first estrus and/or the first vaginal cycle, thus providing a way
to distinguish pseudo-precocious puberty from true precocious puberty.

F. Necropsy

The method of euthanasia will depend on the endpoints desired. If pituitary hormone analyses are not included,
the females may be killed with CO2 on the last day of treatment. If pituitary hormone analyses are to be included,
the females should be killed by decapitation, which is conducted in a room separate from the housing area and
within 15 s of the animal’'s removal from the cage. Blood is collected, centrifuged and stored in siliconized
microcentrifuge tubes at —20°C for subsequent thyroxine (T4) and TSH measurements. At necropsy, the
ovaries, uterus, liver, pituitary and adrenals are removed and the weights recorded (to the nearest 0.1 mg). Care
must be taken to remove mesenteric fat from the uterine horns and not to damage the uterus, so that the uterine
fluid is retained. The uterus and cervix are separated from the vagina, and the weight of the uterus with fluid
is recorded. The uterus is then placed on a paper towel, slit to allow the fluid contents to leak out, gently blotted
dry and reweighed. The thyroid, ovaries, and uterus are prepared for histological evaluation by placing in Bouin’s
fixative for 24 h, after which they are rinsed and stored in 70% alcohol until embedded in paraffin, sectioned
and stained with hematoxylin and eosin (H & E).

G. Statistical Analysis

All data (age at vaginal opening, weight at vaginal opening, body and organ weights at necropsy, and serum
hormones) are analyzed using multivariate analysis of covariance, with the bodyweight at weaning as a
covariate. If the treatment X bodyweight interaction is not significant, then differences among treatment means
may be tested using a two-tailed test. Combining all endpoints into a MANCOVA will assure that issues involving
multiple comparisons because of the number of endpoints examined will be properly addressed. If data display
heterogeneity of variance, then appropriate data transformations or use of nonparametric analyses should be
employed. Often log transformation of serum hormone data is required because the variance is proportional to
the mean.

H. Data Summary

Table providing data from individual animals should be provided in conjunction with a summary table listing the
mean, standard error of the mean (SEM), and sample size for each treatment group. The mean, SEM, and
coefficient of variation (CV) values for the control data are examined to determine whether they meet acceptable
QA criteria for consistency with normal values. Data presented should include age and weight at vaginal
opening, thyroid, ovarian, uterine (with and without fluid), adrenal, liver and body weights at necropsy, body
weight change from day 21 to necropsy, and serum T4 and TSH. Data may also be presented after covariance
adjustment for body weight at weaning, but this should not replace presentation of the unadjusted data. A
summary of any histological findings should be included.

Latefollicular growth of thefirst ovulatory co-
hort is stimulated about 8 days prior to first ovu-
lation (Meijs-Roelofs et al., 1982), an event that
occursat about the time of vaginal opening (Ojeda
et al., 1976). However, there can be some dissoci-
ation between VO and thisinitial release of ooyctes
(Firlit and Schwartz, 1977). The females then be-
ginto display repetitive 4 to 5 day patterns of vagi-
nal cytology and circulating hormones, but there
tends to be a greater number of irregular cycles
during theimmediate post-pubertal period (Goldman
et a., 1985).

A. Gonadotropin Secretion

Themanifestation of the above pubertal events
is a consequence of progressive functional shifts
in signaling within the brain hypothalamic—pitu-
itary—ovarian endocrine axis (Figure 2) and repre-
sents a culmination of processes that begin during
infancy (for a general review see Ojeda and
Urbanski, 1994). The occurrence of the first ovu-
latory episodeisaresponseto gonadotropin stimu-
latory signals, which themselves are triggered by
peripubertal pulsesof gonadotropin-rel easing hor-
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TABLE 3

Reported Female Pubertal Parameters in Various Strains of Rats?

Strain
Holtzman

Holtzman
Holtzman
Holtzman

Sprague-Dawley
Sprague-Dawley

Sprague-Dawley
Sprague-Dawley
Sprague-Dawley
Sprague-Dawley

Sprague-Dawley

Sprague-Dawley

Sprague-Dawley
Wistar

Wistar
Wistar
Wistar
Wistar

Wistar
Wistar (R-
Amsterdam
substrain)
Wistar (R-
Amsterdam
substrain)
Fischer 344
Long-Evans
Long-Evans
Long-Evans
Long-Evans
Long-Evans

Control VO (day)

36.8+0.2

35.6+0.7
35.6+0.8
34.4+1.2°
35.0+£0.3
35.6+1.2
355+10
38404

35.2+0.3
34.0+£0.2
31.7+04
33.6+0.5

31.9+0.4¢
36.1+0.4
37.9x£0.5
38.3+0.5
34.2+0.79
through
37.2+15
33.4%£0.8
41.7+05

37.4+3.1
37.0+0.8
36.7+0.3
34.3+0.8

354+1.0
39.3+0.5¢
38.2+0.8

38.6 £0.49
through
42.1+0.3
36.5+15
39.0+£3.0
32-34¢
35.0+£0.3
36.2+0.5
30.6+0.2

NR

NR
NR
NR

35.9+0.9
NR

NR
NR
NR
NR

NR

NR

NR
NR

NR
NR
NR
35.1+0.8

NR
39.5+04
38.5+0.9

NR

NR
NR
33-34¢
NR
NR
NR

Age- 1st E  Age- 1st Di

NR

36.6+0.7
36.7+0.8
NR

NR
NR

36.6+0.2
35.0+04
33.0+04
NR

NR

NR

NR
NR

NR
NR
NR
NR

NR
NR

NR

NR
NR
NR
NR
NR
NR

BW at VO
NR

129.7+2.6
1149+4.1
NR

1159+5.5
180 + 8¢

90 + 2¢
124.3+4.44
NR
1259+1.2

126.1 + 2.1f

129.1+ 3.0

NR
NR

104.8 £ 20.5
123+2.4
NR

101+3

NR
90.8+2.0
90.6+2.0

93.9+2.89
through

105.9+1.8

86.6 £3.2
NR

97-116¢
130+2
NR
114+1.8
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Note: Above data are taken from selected papers that are representative for each of the listed rat strains. VO, vaginal
opening; E, vaginal estrus; Di, vaginal diestrus; NR, not reported.

a  Values are group means * standard errors of the mean.
All cited studies employed light:dark photoperiods of 12 h:12 h or 14 h:10 h with the exception of Dees and Skelley
and Nyberg et al., which reported 10 h:14 h.
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BW at d35.
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Numbers represent the range of control group means for different experimental blocks.
body weight (BW) at 1st Di.
Estimate from graphed data.



9 Group range for a variety of control groups matched against different treatment conditions.

h BW at d37.

i Mean age * standard deviation for control rats from studies conducted at Merck Pharmaceutical between 1989

and 1997.
i BW at 1st ovulation.

mone (GnRH) from nerve terminals in the hypo-
thalamus.

Over the first 3 weeks of life, circulating con-
centrations of the gonadotropins, luteinizing hor-
mone (LH), andfallicle-stimulating hormone (FSH)
show modest el evations. There are sporadic bursts
of secretory activity (MacKinnon et a., 1976) that
are triggered by an induction of GnRH releasein
response to brief increases in hypothalamic nora-
drenergic activity. These elevations, particularly
in the case of FSH, are considered important for
ovarian maturation (e.g., Schwartz, 1974; Hage et
al., 1978). At the beginning of week 4, the gona-
dotropin levels fall and there begins to emerge a
pattern of small LH pulses spaced about 30 min
gpart. These pulsesare more pronounced inthe after-
noon hours (Urbanski and Ojeda, 1985) and appear
to be influenced by circulating steroid concentra-
tions (Urbanski and Ojeda, 1987) that have begun
to increase around this time. This activity then
continuesthrough puberty and presagesthe appear-
ance of the cyclic patterns of gonadotropin secre-
tion (the midcycle surges of LH and FSH) in the
postpubertal female that function to stimulate fol-

4 21 22 25

licular/oocytic maturation and ovulation. A gen-
eral chronology of these changes and those to
follow below are presented in Figure 3.

B. Hypothalamic Involvement in Sexual
Maturation

1. Neurotransmitters and Hypothalamic
Secretory Activity

As touched upon above, GNnRH secreted in a
pulsatile fashion from the hypothalamic median
eminence region into the portal vessels that de-
scend to the pituitary induces an episodic release
of LH and FSH into the circulation (Figure 2).
This secretion of GnRH from the network of hy-
pothalamic GnRH neuronsis associated with con-
current, synchronized increases in multiunit elec-
trical activity in the mediobasal area. The
mechanism that drives this phenomenon is re-
ferred to asthe GnRH pulse generator, but exactly
what constitutes this functional entity has still not
been specified at an anatomical or cellular level.

3 Postnatal Day

35 40 42

Body weights checked daily - Dosing adjusted accordingly
Daily examination for VO - then daily vaginal lavage for cyclicity

1 | I | | 1 1 | | 1 |

Cull'to Wean .
8-10 oo KI'”
PuPS  plcian <-Dose >BW
Blood
Collection
Necropsy

FIGURE 1. Timeline for the conduct of the female pubertal assay. Following group assignment on postnatal day
21, dosing is begun on day 22 and continued until necropsy on day 42. Body weights (BW) are taken daily, and the
animals are checked each day for vaginal opening (VO). After VO is observed, vaginal lavages are taken daily for
the remainder of the dosing period and evaluated for estrous cyclicity.
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FIGURE 3. Chronology of maturational changes within the female rat hypothalamus, pituitary, ovaries, and thyroid
over postnatal weeks 1 through 6. The arrows indicate alterations that have been reported to commence at the times

indicated (see text for descriptions).

Nevertheless, its development is critical to the
process of puberty.

The network of GnRH neuronsactually arises
outside of the brain from progenitor cdlsin the al-
factory placode (Wray et al., 1989). By gestation
day 12, GnRH can be detected in the rat hypothal -
amus (Aubert et al., 1985), and thelevelsgradually
increase until afew daysafter parturition (Chiappa
and Fink, 1977). A steeprisethentakesplacethrough

the second postnatal week, followed by a further
increasein thefemale that continues until puberty
(Chiappaand Fink, 1977). At puberty, the respon-
siveness of the GnRH neurons to neurotransmitter
stimulation becomes enhanced (e.g., Ojeda et al.,
1986), asaprevioudy inhibitory influence of estra-
diol declines(e.g., Dockeet a., 19814). Thereisno
change over thistimein thetotal number of GhRH
neurons, athough they do seemto exhibit asteroid-
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related morphological increasein spiny projections
(Wray and Hoffman, 1986; Becu-Villalobos and
Libertun, 1995).

A number of neurotransmitter systems partici-
pate in GNRH release and as a consequence are in-
volved in the progression through puberty in the
rat. Catecholamines, y-aminobutyric acid (GABA),
the excitatory amino acid glutamate, and possibly
acetylcholine all have been implicated in the pro-
cess, which now appears to involve shifts in the
interrel ationships among the regulatory input by
these systems (Figure 2). Moreover, for an indi-
vidual transmitter system, puberty can represent a
period of functional transformation, where aprevi-
oudly excitatory stimulus transitions to an inhibi-
tory one. Such has been reported to be the case for
GABA, which in prepubertal (16 d) femaleratsis
able to stimulate gonadotropin secretion (through
alikely effect on GnRH secretion), whereasin the
peripubertal (30 d) animal, the signal becomes an
inhibitory one. During both of thesetimes, theaction
appearsto involve the GABA-A receptor subtype
(Moguilevsky et al., 1991). Subsequent evidence
has implicated an activation of excitatory amino
acid neurotransmission that mediates this early
prepubertal effect (Scacchi et al., 1998).

The shift in GABAergic input from excitation
to inhibition seemsto take place around the week
preceding the onset of puberty (Figure 3). Between
day 20 and the emergence of the pubertal indices,
LH levelsin therat are very low, and at that time
the hypothal amic mechanism for generating GnRH
pul ses appearsto be suppressed (Roth et a., 1997).
At 30 days, injections of the GABA-A receptor
blocker bicuculline were able to increase serum
LH (Roth et al., 1997), suggesting that during this
prepubertal period GABAergic transmission im-
poses a tonic inhibition on the pulsatile GhRH re-
lease mechanism.

Theexcitatory amino acid (EAA) receptorsare
now believed to be the primary receptors mediat-
ing excitatory neurotransmission in the brain (for
reviews see Headley and Grillner, 1990; Brann,
1995). They appear to principaly bind glutamate
and aspartate, as these are the brain’s most abun-
dant EAAS, athough others such asL-homocysteic
acid and the tryptophan metabolite quinolinic acid
are present and may have functiona roles. While
EAA receptors can be broadly classified as either
ionotropic (linked to cation specific channels) or
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metabotrophic (coupled to G-protein-associated
second messenger pathways), it istheionotrophic
classthat hasbeen most closely associated with the
process of pubertal development. Three types of
these ionotrophic receptors have been identified
(see Brann, 1995), each with multiple subforms:
NMDA (N-methyl-p-aspartate) receptors, AMPA
(pL-a-amino-3-hydroxy-5-methyl-4-isoxazole
proprionic acid) receptors and kainate receptors.
Most of the available data have implicated
activation of the NMDA receptors as excitatory
participants in the female pubertal process (e.g.,
Veneroni et a., 1990; Meijs-Roelofs et al., 1991,
Smyth and Wilkinson, 1994). A role for the other
two types of receptorsiis gill uncertain. AMPA re-
ceptor binding, unlikethat for the other two classes,
does show an increase in the hypothalamus at the
time of puberty (Zamorano et al., 1998), although
GnRH neurons apparently do not expressthe mes-
sagefor that receptor subtype (Eyigor and Jennes,
1997). On the other hand, these neurons do con-
tain the mRNA for certain subtypes of both the
NMDA and kainate receptors (Eyigor and Jennes,
1997), and there is some evidence that kainate
receptors regulate gonadotropin release in the
prepubertal male (Pinillaet a., 1998). In females,
the maturational shift from negative-to-positive
feedback in the influence of estradiol/progester-
one on gonadotropin secretion has been reported
to be linked to a similar influence of this combi-
nation of steroids on EAA release (Carboneet a.,
1995). Previouswork on the stimulation of NMDA
receptors by EAAs have implicated progesterone
asprimary potentiating factor inthiseffect (Brann
and Mahesh, 1991).
Norepinephrineisacatecholamine neurotrans-
mitter that has long been known to participate in
therelease of GnRH. Inimmaturerats, the admin-
istration of pregnant mare serum gonadotropin
will cause adrop in the numbers of a-noradrener-
gic receptors (Wilkinson et al., 1979) and induce
the appearance of a GnRH-triggered LH surge,
something that is prevented by the destruction of
dorsa hypothalamic noradrenergic input (Sarkar
et a., 1981). Moreover, during puberty, norepi-
nephrineturnover intheregionisenhanced (Advis
et a., 1978; Raum et al., 1980), which may be a
response to increases in estradiol concentrations
(e.g., Crowley, 1982). For the secretion of GhRH,
the action of norepinephrine is Ca?*-dependent



and probably uses prostaglandin E2 (PGE2) asan
intermediate (Ojeda et al., 1988), because a sup-
pression of PGE2 synthesis by cyclo-oxygenase
inhibition will prevent a norepinephrine-induced
release of GnRH (Ojeda et al., 1979).

A blockade of the receptorsfor the catechola-
mine neurotransmitter dopamine beginning on day
28 was reported to advance both VO (day 38 —
day 35) and first ovulation (Docke et ., 1987),
while administration of a specific receptor agonist
from day 22 onward was observed to delay VO and
ovulation (Advis et a., 1981a). It has been well
established that dopamine released from hypotha-
lamic terminal s of tuberoinfundibular neuronsinto
hypophyseal portal capillaries actsto tonically in-
hibit pituitary prolactin release. During the prepu-
bertal period in the female rat, there is a gradual
increase in serum levels of prolactin that peaks
around the time of vaginal opening (Dohler and
Wuttke, 1974; Ramaley, 1981). Inthe 1960s, it had
been observed that prolactin introduced into the
hypothalamic median eminence was able to ad-
vance puberty in immature females (Clemens et
al., 1969), while somewhat later it was found that
a chronic suppression of prolactin from day 22 on-
ward caused amarked delay (Adviset al., 1981a).
Moreover, 21-day-old rats made hyperprol actine-
mic by grafting apituitary from alittermate donor
under the kidney capsule (thus dissociating the
grafted tissue from the inhibitory influence of hy-
pothalamic dopamine) aso showed a significant
advancement in vaginal opening (Gonzalez et dl.,
1984), reinforcing arole for prolactin in the tran-
sition to sexual maturity. As with the hypotha:
lamic implants, this effect did not appear to be
dependent on ovarian estradiol feedback (Lung
and Docke, 1981).

A direct participation of cholinergic mecha-
nismsin puberty istill unresolved. Inthefemale,
acholinergic mechanism may contributeto the peri-
pubertal appearance of adiurnal rhythmin tubero-
infundibular dopaminergic (TIDA) neuronal activ-
ity (Shieh and Pan, 1998). Thisrhythmisimportant
in maintaining the afternoon prolactin surge that oc-
cursin the postpubertal female on the days of pro-
estrus and estrus. Even so, a cholinergic role in
sexual maturation may be minor. An advancement
of ovulation by the administration of estradiol to
sexually immature rats has shown that thereisan
accompanying decrease in the hypothalamic con-
centration of acetylcholine (Modak et al., 1979).

At the same time, a prepubertal blockade of mus-
carinic receptor subtype was reported to delay
VO and first estrus (Trkuljaand Lackovic, 1996),
suggesting some type of involvement.

The pubertal maturation of the TIDA rhythm
in the rat also appears to involve input from the
opioid neuronsin the area (Shieh and Pan, 1998).
These neurons, together with the TIDA system,
comprise the principal inhibitory neuronal sys-
tems in the prepubertal female (Becu-Villalobos
and Libertun, 1995). The regulatory role of en-
dogenous opioid peptides in gonadotropin secre-
tion has been well established in the adult (e.g.,
leiri et al., 1980; Kubo et a., 1983; Adler and
Crowley, 1984) and is functional in the immature
female (e.q., leiri et al., 1979; Cicero et al., 1986).
During puberty, an attenuating effect of the en-
dogenous opioid B-endorphin on LH secretion is
diminished. The effect has been attributed to an
increase in the metabolic inactivation of this pep-
tide in the hypothalamus (Martensz, 1985) and
suggests that one factor in the emergence of a
pattern of LH pulsatility is a lessening of an in-
hibitory restraint.

2. Growth Factors

The actions of a variety of growth factors
have been implicated in the process of puberty in
the female rat. Transforming growth factor-alpha
(TGF-a), epidermal growth factor, insulin-like
growth factor-1 (IGF-I), and fibroblast growth
factor (FGF-2) all appear to undergo changes at
the time of puberty (Figure 3). Thereis evidence
for changesin concentration or shiftsinthe expres-
sion of relevant mRNAs for these factors or their
receptors (Hiney et al., 1991; Ma et a., 1992,
1994; Smyth et al., 1997). As glial cell-secreted
neurotropic factors, they may be involved in any
maturational processes that occur. While the data
right now are generally correlational, it has been
observed that a suppression in the action of TGF-
o in the median eminence region can delay pu-
berty (Ma et a., 1992). Moreover, in immature
females an activation of TGF-a expression in the
hypothalamususing grafted fibroblastsretrovirally
transfected with a human TGF-a gene under the
control of ametallothionein promotor was ableto
advancefirst ovulation (Rageet a., 1997a). Similar
grafts not expressing hTGF-a had no such effect.
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Prepubertal rats with lesions of the anterior
hypothalamus have frequently been reported to
exhibit a premature VO accompanied by ovula
tion (Donovan and van der Werff Ten Bosch,
1956). These lesioned femal es have elevated con-
centrations of circulating gonadotropins in the
afternoon, and a commonly accepted hypothesis
wasthat the lesions removed a central restraint on
gonadotropin secretion (Donovan and van der
Werff Ten Bosch, 1956). More recent data have
indicated that the damage caused increased TGF-
O gene expression in proliferating astrocytes
around the lesion (Junier et a., 1991), which
could underlie structural and activational remod-
glinginthearea(Junier et al., 1992) and stimulate
GnRH secretion viaan enhancement of glial PGE2
production (Ma and Ojeda, 1997). This process
has been determined to involve the activity of a
particular class of transcription factorsin what is
known as the POU-domain gene family, which
has been shown to play critical roles in nervous
system development (Latchman, 1999). Thesefac-
tors are products of phylogenetically conserved de-
velopmental control genes that serve to regulate
the transcription of other genes. POU proteinshave
been found to act as transcriptional regulators of
neuropeptide or neutrotransmitter genes expressed
in the hypothalamus and pituitary (e.g., Simmons
et a., 1990; Rosenfeld et al., 1996). One of these
regulatory factors, termed Oct-2, now appears to
be a component of anormal process by which the
glia cells up-regulate the neuronal secretion of
GnRH in the pubertal female rat by activating the
TGF-a gene (Ojeda et al., 1999).

C. Ovarian Maturation and Steroid
Production

1. Ovarian and Follicular Maturation

In the fetal rodent ovary, oogonia that are
formed from proliferating germ cells undergo a
further meiotic division to reach an arrested diplo-
tene stage of development between gestational
day 17 and postnatal day 5 (Byskov, 1974). At the
same time, each becomes surrounded by a struc-
ture of supporting cells, which together comprise
a primordial follicle. Under hormonal influence,
both the arrested oocyte and this immature fol-
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licle must progress through a number of further
maturational stages before ovulation takes place.

Until about postnatal day 12, maturing folli-
cles containing an antral cavity are completely ab-
sent from theimmature ovary (Carson and Smith,
1986). The progression in development from a
primordial follicle to a mature preovulatory one
requires the proliferation and differentiation of
granulosa cells surrounding the oocytes. Few fol-
liclesactually progressthisfar, and it is estimated
that upward of 95% undergo atresia during their
antral stage (see Greenwald and Terranova, 1988
for review). Theimpetusfor the proliferative pro-
cess appearsto be due to a coordinated regulation
by growth factors and FSH. While FSH has been
implicated in these changes, it may actually be
that the early follicular growth and steroid pro-
duction are equally dependent on the presence of
other bioactive compounds. Nerve growth factor,
transforming growth factor-3, epidermal growth
factor, insulin-like growth factor |, and vasoac-
tive intestinal polypeptide (VIP) have al been re-
ported to be important contributorsto follicular cell
maturationintheimmatureovary (e.g., Funkenstein
et a., 1980; George and Ojeda, 1987; Tornell et
a., 1988; Ojedaet a., 1992; Dunke et al., 1994;
Roy and Hughes, 1994; Mayerhofer et al., 1997;
Y oshimura, 1998). Moreover, it now appears that
anumber of these factors may facilitate follicular
maturation by enhancing FSH receptor number
and affinity (e.g., Dunkel et a., 1994; Mayerhofer
et a., 1997).

2. Steroid Production and Feedback
Signaling

Ovarian FSH receptors begin to increase over
the first few weeks of life and show maximal
levels by the 4th week (Smith-White and Ojeda,
1981) (Figure 3). The earliest FSH binding can be
detected sometime over the latter half of the first
or beginning of the second week (Uilenbroek and
van der Linden, 1983; Sokkaet a., 1992). Similar
binding data (using human chorionic gonadotropin,
hCG) were reported for the LH receptor (Sokka
and Huhtaniemi, 1990), although a functional re-
sponse (CAMP production) to this binding occurs
somewhat later (d7) than for FSH (d4). At this
time, FSH becomes able to stimulate the aroma-



tase activity necessary for the conversion of tes-
tosterone to estradiol (George and Ojeda, 1987).
By day 7, aromatase activity has significantly in-
creased, but low levels of progesterone and tes-
tosterone limit estradiol production (Carson and
Smith, 1986). Therisein estradiol isnot until the
|atter half of week two, when afollicular thecacell
layer emerges to surround those granulosa cells
that had already begun to proliferate.

During the first 2 weeks, the rising levels of
estradiol are relatively ineffective in depressing
gonadotropin levels (e.g., Frawley and Henricks,
1979), which may account for the modest eleva-
tionsin LH and FSH during that time (Figure 3).
Thisis primarily attributable to the high circulat-
ing concentrations of a-fetoprotein at this time,
which bind up the available estrogens(e.g., Meijs-
Roelofs and Kramer, 1979). Asthe postnatal lev-
els of a-fetoprotein undergo a decline (Esumi et
al., 1982), the augmentation in the effectiveness of
estradiol negative feedback causes LH and FSH
to decline around the beginning of the 3rd week
(Andrewsand Ojeda, 1981; Andrewset al., 1981).

In the 4th week, there occurs a transition in
the feedback effects of estradiol, and the rat hypo-
thalamus and pituitary begin to respond positively,
resulting in astimulatory release of LH (Andrews
et al., 1981; Kawagoe and Hiroi, 1983). Astherat
continues to mature, the hypothalamus and pitu-
itary become more sensitive to estrogen, an effect
that may belinked to an enhancement by estradiol
of PGE2 production (Ojedaet d., 1986; Rageet dl.,
1997b). Thisincreased synthesis of PGE2 would
then augment the stimulation of GhRH secretion
by noradrenergic neuronal activity. Inturn, the mag-
nitude of LH releaseincreasesthat, along with the
occurrence of vaginal opening, culminatesin the
appearance of the first preovulatory surge of LH
(Ojeda and Urbanski, 1994) and the initiation of
adult-like cyclic changes in the circulating endo-
crine profile.

During the 3rd week, a cohort of immature, pri-
mordia folliclesis stimulated by elevated levels
of circulating FSH to undergo a series of matura-
tional changes that will prepare surviving mem-
bers of the cohort to respond to the first ovulatory
surgeof LH. Theprogressioninfollicular devel op-
ment from a primordial follicle to a preovulatory
follicle involves growth in two maor cellular re-
gions, theouter thecacell layer and theinner granu-

losa cell layer. In the rat, the theca cells emerge
somewhat later in development than the initial
granulosa cell layer, appearing after two to three
layers of granulosa cells are formed (Hirshfield,
1991). The theca layer in the maturing follicle be-
comes well vascularized (Bassett, 1943) and pro-
vides the blood supply necessary for conveying
nutrients and hormonal factorsto the layers of non-
vascularized granulosa cells.

The proliferation and differentiation of the
granulosa cells surrounding the oocytes is a pro-
cess that not only involves the stimulatory action
of FSH (McNatty et al., 1979), but previously
mentioned contributions from anumber of growth
factorsaswell. TGF-[3, in combination with FSH,
has been shown to promote DNA synthesis in
immaturerat granulosacells (Skinner et al., 1987;
Dorrington et al., 1988; Adashi et al., 1989), and
regulatory roles have also been found for IGF-I
and epidermal growth factor (EGF) (e.g., Adashi
et a., 1985, 1991; Feng et al., 1986; Bendell and
Dorrington, 1990).

Granulosa cdlls stimulated by FSH produce
the glycoprotein hormoneinhibin, whichin adults
exerts a specific negative feedback effect on pitu-
itary FSH secretion. In juvenile female rats, this
feedback action does not appear until postnatal
week 4 (Rivier and Vale, 1987; Culler and Negro-
Vilar, 1988). The importance of inhibin in sexual
maturation isstill unclear, although there are some
data to suggest that stress- or exercise-induced in-
creases in prepubertal circulating concentrations
may contribute to a pubertal delay (Pellerin-
Massicotte et al., 1987).

Asthe growing follicle matures, an antrum or
cavity formswithin the granulosa cells. This pro-
cessisgonadotropin dependent (Eppig, 1991) and
is augmented by estrogen synthesized within the
follicle (Goldenberg et al., 1972). At thistime, the
granulosa cells immediately adjacent to the oo-
cyte (corona radiata cells) develop intimate con-
tact with the oocyte until the preovulatory stage
of development. They are part of the cellular mass
that surroundsthe oocyte (cumulus ocophorus) and
attaches it to the follicle wall, providing both
physical and nutritional support. The majority of
the granulosa cells form the mural, or parietal
granulosa cells lining the follicular cavity.

Under LH stimulation, cellsinthethecal layer
synthesize and secrete androgens, which are then
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transported to the granulosa cells for conversion
to estrogens by the action of cytochrome P450
aromatase (P450 arom) (e.g., Fortune and
Armstrong, 1977; Liu and Hsueh, 1986; Roberts
and Skinner, 1990). The steroids produced stimu-
late further follicular growth and enhance LH
receptor formation that augments the granulosa
cell responsiveness to the LH surge in mature
antral follicles (Kessel et al., 1985).

D. Pubertal Development, Food Intake,
and Body Weight

Inthe femalerat, it haslong been known that
reductions in body weight during development are
ableto cause either delaysin the onset of puberty,
or aloss of fertility in the adult. Amenorrhea and
infertility are also seen in women who have main-
tained a reduced body weight by caloric restric-
tion or vigorous exercise (e.g., Frisch et al., 1980;
Bateset al., 1982; Warren et al., 1999). For ratsin
which delays were induced by dietary restriction,
pubertal changes were observed to appear at the
sameweight asinfully fed female controls (Wilen
and Naftolin, 1978; Holehan and Merry, 1985),
although this relationship between body weight
and puberty has not always held true (Bronson,
1987; Ikeda et al., 1994).

Overweight mice with mutations in what has
been termed the ob (obese) gene were found to be
infertile, with an immature reproductive axis
(Swerdloff et al., 1976). In 1994, the structure of
this gene and its human homolog were described
(Zhang et al., 1994). Its product is a 167 amino
acid protein secreted from adipocytes that has
been termed | eptin (from the Greek |eptos, mean-
ing thin). Over the last severa years, a spate of
published studies haveimplicated leptin asaregu-
latory factor in food intake and metabolism (e.g.,
Ahima et al., 1998; Buchanan et al., 1998;
Rosenbaum and Leibel, 1998) and one that plays
acritical rolein thetiming of puberty (e.g., Barash
eta., 1996; Sahu, 1998; Cunninghamet al., 1999).
Although the weight of evidence indicates that
adequate levels of leptin in the circulation are
important (but not sufficient) for pubertal pro-
gression, it has been reported that immature mice
injected with leptin exhibited an advancement in
puberty of up to 9 days (Chehab et al., 1997). In
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the genetically obese ob/ob mice(Yuet al., 1997)
or food-restricted, ovariectomized/steroid-primed
rats (Kohsaka et al., 1999), leptin administration
elevated gonadotropin secretion and stimulated
increases in gonadal weights and ovarian tissue
(Barash et al., 1996) that were consistent with a
gonadotropin activation. The brain has been es-
tablished as a target site, with the mRNA for the
ob receptors being found in the hypothalamus and
various other regions of the central nervous sys-
tem (Elmquist et al., 1998). Its receptors are co-
localized on hypothalamic estrogen-containing
neurons (Diano et al., 1998), and an estrogen-
induced elevation in leptin production in vivo
(Shimizu et d., 1997; Brann et al., 1999) suggests
that its role during puberty istied to the increases
in estradiol production at thistime. Receptors are
also found in other organs, including the ovaries,
and leptin administered in vitro is able to attenu-
ate ovarian steroid synthesis (Spicer and Fran-
cisco, 1998; Barkan et a., 1999). Such direct
action implies that leptin functions as an addi-
tional regulatory factor in the feedback control of
steroid production.

Another factor that hasbeen implicated in the
relationship between body weight and sexual matu-
rationisNeuropeptide Y (NPY). NPY isabiologi-
cally active 36 amino acid peptide that is now
known to function as a peptidergic co-transmitter,
interacting with the classic neurotransmitters. Itis
synthesized in adrenergic neurons and for the regu-
lation of GNRH likely acts in the adult to amplify
the catecholaminergic signals (see Kalra and
Crowley, 1992 for review). There does appear to
be anincreaseinimmunoreactive NPY within the
hypophyseal-portal circulation around the time of
VO (Sutton et al., 1988), and its immunoneutral -
ization on the day of first proestrus was able to
attenuate the subsequent LH surge (Minami et al.,
1990). However, evidence is also emerging that
leptin is able to regulate NPY production (Dube
et al., 1999) and that NPY levels increase during
periods of food restriction or deprivation. This
response may be due to activation of a subset of
NPY neurons in the arcuate nucleus (Baskin et
al., 1999) and could represent an inhibitory matu-
rational signal during atime of adverse metabolic
conditions. In this regard, centrally administered
NPY hasbeen observed to completely block sexua
maturation in previously food-restricted rats re-



turned to anormal diet (Gruaz et al., 1993). How-
ever, a mediation by NPY is likely not the sole
mechanism by which leptin acts on the hypo-
thalamus. Mouse mutants devoid of NPY appear
normal (Palmiter et al., 1998), and across of NPY -
deficient mice with ob/ob mice resultsin offspring
that still exhibit some degree of obesity (Erickson
et a., 1996). In fact, studies have shown that a
variety of hypothalamic factors, including proop-
iomelanocortin (POMC) neurons and the bioactive
peptides galanin and neurotensin, are al so affected
by leptin (Cheung et a., 1997a; Sahu, 1998).

Some of the recent data have underscored a
melanocortinroleinleptinsignding (e.g., Schwartz
etal., 1997; Zemel, 1998; Watanobe et al., 1999).
Melanocortins are a group of peptides that in-
cludes adrenocorticotrophic hormone (ACTH) and
thea, 3, and y-melanocyte-stimul ating hormones.
They are cleaved from the POMC precursor, and
the administration of specific melanocortin re-
ceptor agonists has been found to reduce food
intake (e.g., Fanetal., 1997; Murphy et a., 1998).
Five melanocortin receptors have thus far been
identified, and this hypophagic effect appears to
be associated most prominently with binding to
the M C4-R subtype (Giraudo et a ., 1998; Harrold
et a., 1999).

E. The Thyroid

The influence of thyroid hormones is virtu-
aly ubiquitous throughout the body. They regu-
late growth and devel opment, cellular metabolism,
and oxygen use and basal metabolic rate. A vari-
ety of hormones, including testosterone, growth
hormone, and norepinephrine, have some effect
on metabolic rate, but the thyroid hormones, thy-
roxine (3,5,3',5'-tetraiodothyronine or T4) and
3,5,3 -triiodothyronine (T3), are by far the most
important in this regard. The secretion of these
thyroid hormones is part of a functional axis that
is structurally comprised of the hypothalamus,
pituitary, and thyroid. Thyrotropin releasing hor-
mone, secreted from the hypothal amus, reachesthe
pituitary viathe portal vessdls and prompts the re-
lease of thyroid stimulating hormone (TSH). TSH
then entersthe general circulation and servesasthe
trigger for T3 and T4 synthesisand release. These
thyroid hormones then feed back on the hypo-

thalamus and provide a modulatory signal to the
axis, attenuating hypothal amic-pituitary secretory
activity during times when thyroid hormone con-
centrations are elevated.

1. Thyroid Influences on Pubertal
Development

In the developing femalerat, circulating con-
centrations of TSH show a bimodal pattern (Fig-
ure 3). There is an early peak during the first
2 weeksof lifethat isfollowed by a second eleva-
tion after day 30 (Fukuda and Greer, 1978), an
increasethat isparalleled by concentrationswithin
the pituitary. At birth, T4 and T3 arevery low. T4
then undergoes a marked rise between days 4 and
16, while T3 levelsremain low until about day 10
before reaching a maximal concentration by day
30 (Dussault and Labrie, 1975; Fukudaand Greer,
1978).

The presence of increased concentrations of
TSH in the anterior pituitary and serum at the
onset of puberty suggest that the thyroid may also
mediate the process of sexual maturation in the
femalerat (Simpkins et al., 1976). As mentioned
above, TSH regulates the synthesis of T4 and T3
and stimulates their release into the circulatory
system, where they bind to transporting proteins
(albumin and prealbumin (transthyretin)) that dis-
tribute the hormonesto peripheral tissues(Larsson
et a., 1985). There, T4 is converted to the active
T3 form, which binds to its intracellular nuclear
receptor and stimul ates gene transcription (April etti
et a., 1998). Together, these hormones are critical
for regulating normal growth and development in
the young (Griffin, 1988).

To assesstherole of thyroid hormones during
the onset of puberty, Tamura et al. (1998a) mea-
sured plasma serum estradiol, progesterone, and in-
hibin concentrations during gonadotropin-induced
ovarian development in 26-day-old thyroid-defi-
cient female rats. Elevated serum concentrations
of estradiol and inhibin, but not progesterone, were
observed 24 and 48 h after equine chorionic gona-
dotropin (eCG) treatment in the thyroidectomized
animals. The number of large healthy folliclesand
ovarian weight were also increased in this group
when compared with controls. Daily administra-
tion of T4 following thyroidectomy prevented these
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eCG-induced changesin ovarian hormone concen-
trationsand follicular development. Thyroidectomy
without eCG treatment did not increase either of
the hormones. These results suggest that an inter-
action may exist between thyroid hormone and
gonadotropin, which influences the fate of devel-
oping ovarian follicles in the immature rat. Sub-
sequent studies have shown that hypothyroidism
can block gonadotropin-induced first ovulationin
immature rats by decreasing FSH and LH serum
concentrations (Tamura et al., 1998b). Ovulation
and serum LH concentrations in the thyroidecto-
mized animal s were restored to control levelswith
co-administration of GnRH.

F. Additional Influences on Sexual
Maturation

Two additional factors whose role in female
pubertal development has received attention are
growth hormone (GH) and the pineal secretory
product melatonin. GH implants placed in the hy-
pothal amic median eminencewill result in anega-
tive feedback inhibition of GH secretion and retard
sexual maturation for afew days, but not prevent
it (Advis et al., 1981b). Also, daily injections of
large doses of GH (13.6 or 68 mg/kg body weight
[bw]) beginning on day 26 lowered pituitary GH
by up to 58% and caused similar delays (Groesbeck
et al., 1987). However, apassive immunization of
immature female ratsfrom day 15 onward with an
antibody against rat growth hormone-releasing hor-
mone (GHRH) resulted in significant depletions
of circulating GH and IGF-I, but did not affect
VO (Gruaz et al., 1994). This work also showed
that the maturational recovery that occurs when
food-restricted rats are returned to normal diets
was not prevented by GH deprivation, implying
that GH is not an essential participant in the re-
covery process. Moreover, it could be that the
above influence of GH on the sexual maturation
may well be mediated by reported rolesof NMDA
receptor activation (Veneroni et al., 1990; Cocilovo
et a., 1992) or leptin (Aubert et a., 1998; Carro et
al., 1999) asregulators of GH release viaan effect
on GHRH. It is also possible that other GH regu-
latory factors play a maturational role. For exam-
ple, anewly discovered orphan G-protein-coupled
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receptor triggers an episodic release of GH when
activated by synthetic ligands. It apparently func-
tions independently of GHRH or the GH inhibi-
tory factor somatostatin (Smith et a., 1997, 1999)

Theindoleamine melatonin isasecretory prod-
uct of the pineal gland. Attempts to determineits
involvement in femal e pubertal development have
generated contradictory results. A rolefor melato-
ninismore strongly supported in those speciesthat
display a seasona reproductive cycle. In the rat,
even though it isaphotosensitive species, seasonal
cyclesare at best aminor component of reproduc-
tive activity, and no relationship appears to exist
in humans. Experimentsin laboratory rodentshave
demonstrated that melatonin can both suppress
sexual activity in adult males (Kinson, 1976) and
delay puberta development in immature ones
(Lang et al., 1985; Kennaway and Rowe, 1997).
Datain theimmaturefemale areinconsistent (e.g.,
Sizonenko et a., 1985; Badawi and Wilkinson,
1988), and the results of exogenoudy administered
melatonin may depend on the stage of postnatal
development (Batmanabane and Ramesh, 1996)
and the point in the photoperiod (Sizonenko et a.,
1985) when the exposures take place. Neverthe-
less, endogenous melatonin may have some role
in shaping the final pattern of LH secretion that
emerges during puberty (Rivest, 1987).

[ll. EXOGENOUS INFLUENCES
ON THE ONSET OF PUBERTY

In keeping with the present focus on the puber-
tal assessment of toxicant exposure, thefollowing
section considers those forms of chemical insult,
both environmental and pharmacological, to the
maturing female reproductive system that take
place during the 7- to 10-day prepubertal interval.
Perinatal and early postnatal exposures, while no
less important within the context of reproductive
impact, broaden the scope of such insult to in-
clude earlier developmental processes that pre-
cede those events critical to the postweaning
emergence of sexual maturity. In this section, the
material is partitioned into (1) sex steroid-related
and (2) non-steroid-rel ated toxi cant-induced alter-
ations, and (3) induced aterations in thyroid end-
points. However, it should be understood at the



outset that because puberty isthe result of aseries
of interrelated processes, such partitioning should
be viewed simply as a matter of convenience.

A. Steroids: Agonistic, Antagonistic,
or Direct Effects on Steroid-Related
Processes

1. Exogenous Estrogen Exposure

While all gonadal and adrenal steroids areim-
portant for the development and function of the fe-
mal e reproductive system throughout her life span,
it is estrogen that plays the key role in the initia-
tion of sexua maturation. Ovariectomy prior to
the onset of puberty prevents further maturation
of the reproductive system (Critchlow and Bar-
Sela, 1967) and exogenous estrogenswhen admin-
istered around the time of weaning can advance
the onset of puberty (see Table 4 for summary).
The first experiments that demonstrated such an
advancement were reported by Allen and Doisy
(1924) describing an induction of VO following
theinjection of follicular extracts from adult ova-
rian homogenates into immature rats. Subsequent
studies demonstrated that the active hormone in
the follicular extracts was 173-estradiol (E2; for
review see Goldzieher, 1994), and that daily injec-
tions of 17B-estradiol benzoate (E2B) beginning
on postnatal days 5 or 26 caused an advancement
in VO when compared with controls (Ramirez and
Sawyer et al., 1965). In addition, increased plasma
LH concentrations, along with aninitiation of estrous
cycles, indicated the induction of true precocious
puberty in the E2B-treated animals. A generd
summary of these effectsis presented in Table 5.

Edgren et a. (1966) and Odum et al. (1997)
have evaluated the effects of a variety of estro-
genson VO in rodents. When initiated on day 25,
the effective doses of E2 and 18-homoestradiol
(18-methylestra-1,3,5(10)-triene-3, 17p3-diol) that
advanced VO in 100% of rats by 30 days of age
were0.03 pg/rat and 0.3 pug/rat, respectively (Edgren
et al., 1966). Odum et al. (1997) compared the
ability of E2, E2B, and ethynyl estradiol (EE) to
induce VO in immature mice following 3 days of
exposure by oral gavage or subcutaneousinjection.
Of these estrogens, lower doses of EE (2 pg/kg,
s.c.) induced VO in 100% of the animals when

compared with higher concentrations of E2 (E2;
20 pg/kg, s.c.; 66% VO) or E2B (10 pg/kg, s.c.;
35% VO). In addition, exposure by ora gavagewas
less effective when compared with a subcutaneous
route for all three estrogens.

2. Steroid Receptors

Data describing reproductive effectsin the fe-
mal e following prepubertal exposuresto environ-
mental toxicants have primarily focused on those
compounds that have been demonstrated to affect
steroid receptor binding or steroidogenesis. Many
of the physiological processes regulated by estro-
gen, progesterone, and testosterone during devel-
opment and reproductive function are mediated
through intracellular receptors. These receptors,
after binding to their respective ligands, then un-
dergo structural modificationsthat permit an inter-
action with the steroid binding element of specific
steroid-regulated genes (see Jensen, 1996 for re-
view). It is the interaction of the ligand-receptor
complex, along with the association of additional
coactivators, which stabilize the DNA and alows
gene transcription to occur resulting in the syn-
thesisof new proteinswithin several hours (Shibata
et a., 1997).

In vitro tests have demonstrated that many
chemicals can bind to intracellular steroid recep-
tors(Kelceet al., 1995; Shelby et al., 1996; Danzo,
1997; Bolger et a., 1998; Kuiper et a., 1998).
They can mimic steroid activity in vivo and in-
duce agonistic or antagonistic cellular responses
by binding to the steroid receptor (Shelby et al.,
1996; Nimrod and Benson, 1996; Kelce et al.,
1997; Ostby et ., 1999), or by activating/inhibit-
ing steroid receptor function via phosphorylation
or modificationsinthe action of receptor coactiva-
tors (Aronicaand Katzenellenbogen, 1993; Jenster
1998; Macgregor and Jordan, 1998). Similarly, in
vitro studies using mammalian or yeast cell sys-
tems transfected with steroid receptor expression
vectorsand steroid receptor-linked reporter genes
have demonstrated that environmental chemicals
can induce steroid-regulated gene transcription
(Tran et al., 1996; Gaido et a., 1997; Kelce and
Wilson, 1997).

Multipleisoformsof both estrogen and proges-
terone receptors have been identified (e.g., Kato
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etal., 1994; Wen et a., 1994; Kuiper et al., 1996,
1997; Paech et al., 1997; Petersen et al., 1998) and
providefor thepossibility that environmental chemi-
cals may cause subtle alterations in steroid recep-
tor function. Inthisregard, thea and 3 forms of the
estrogen receptor show similar binding affinities
for various compounds, but can be dissimilar in
their ability to bind to some environmental chemi-
cals(Kuiper etal., 1998). In addition, resultsfrom
invitro studies suggest that modificationsin tran-
scriptional activity may occur through distinct sig-
naling pathways, depending on the formation of
homo- or heterodimers of the receptor isoforms
(Wenetadl., 1994; Cowley et al., 1997; Giguére et
al., 1998). Whilethebiological significanceof these
receptor isoforms is not totally understood, their
distribution has been shown to vary with tissue
(Kuiper et a., 1997; Shughrue et al., 1997) and
endocrine status (Camacho-Arroyo et a., 1998;
Sharma et a., 1999; Szabo et al., 2000).

In addition to the classic intracellular steroid
receptors, estrogen and progesterone receptors asso-
ciated with the cell membrane have been identified
(seeGoldenet a., 1998 or Watson and Gametchu,
1999 for reviews). Membrane steroid receptors me-
diaterapid cellular changes, occurring within sec-
onds to minutes, and initiate nongenomic cellular
changes. Typical changesincludeionfluxes, glucose
transport, activation of second messenger systems,
and an altered firing of neurons.

3. Environmental Estrogens

There has been a growing body of literature
showing that plant estrogens are capable of bind-
ing to the estrogen receptor (e.g., Martin et a.,
1978; Nelson et a., 1984; Hopert et al., 1998) and
exerting weak estrogenic responses in mammals.
For example, coumestrol (Medlock et al., 1995;
Baker etal., 1999), equol (Tang and Adams, 1980),
and genistein (Santell et al., 1997) have been found
to increase uterine weight. Moreover, genistein has
been reported to affect the development of the sex-
ually dimorphic nucleus of the brain media pre-
optic area (Faber and Hughes, 1993) and alter the
GnRH-induced release of LH in ovariectomized
rats (Hughes, 1987). However, inconsistenciesin
the data do exist that have been influenced by such
thingsasage (Levy et a., 1995), dosing regimen,

the relationship between times of exposure and as-
sessment, and the route of exposure (Whittenet dl.,
1994; Baker et al., 1999). Also, adirectional differ-
ence hasbeen reported between estradiol and at least
one phytoestrogen (coumestrol) intheregional CNS
expression of ER subtype mRNA (Patisaul et a.,
1999). Whether such an effect has some func-
tional significance remains to be demonstrated.

At present, the great bulk of those studies ex-
ploring an effect of the phytoestrogens on reproduc-
tive maturation have employed gestational or early
neonatal exposures. Whitten and Naftolin (1992)
did investigate the influence of prepubertal dietary
exposuresto coumestrol (0.01% concentration, d21-
24 or d22-60) and found a 4-day acceleration of
VOfor thelonger exposures(Table4). Estrouscycles
began once VO had occurred, and in the longer-
treated animals did show some irregularities by
about 17 weeks of age. Baker et al. (1999) have
also reported that oral administration of this com-
pound (5 to 80 mg/kg) on days 22 to 24 caused
significant elevationsin uterine weight at concen-
trations of 20 mg/kg and above.

The organochlorine pesticide methoxychlor
(2,2-bis(4-methoxyphenyl)-1,1,1- trichloroethane)
stimulates estrogenic activity presumably through
the ability of at least one of its metabolitesto bind
to the intracellular estrogen receptor (Bulger et
al., 1978a, 1978c). The principal active metabo-
lite is 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloro-
ethane (HPTE), which is rapidly formed from
methoxychlor by o-demethylation. Methoxychlor
(25 mg/kg/d) administered by gavage beginning
at weaning was found to advance VO by an aver-
age of 6 days, along with corresponding shiftsin
the appearance of first estrus and the onset of
estrous cycles (Gray et al., 1988, 1989). In fe-
males receiving higher doses of methoxychlor
(50 to 100 mg/kg/d), VO was advanced by 7 days
and the length of the estrous cycleswasincreased.
In addition to exhibiting a comparable shortening
of the time to VO, continued treatment with the
highest dose of methoxychlor (200 mg/kg/d) in-
duced a persistent cornification in the vaginal
smear that continued through a 9-week period of
observation (Gray et a., 1989). In these studies,
significantly lower body weights were observed
with all doses of methoxychlor, an effect consis-
tent with estrogenic activity. A comparison of the
effects of methoxychlor on uterine weight and VO
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following a3-day oral or subcutaneous dosing regi-
men was reported by Odum et al. (1997). Meth-
oxychlor was uterotrophic following both oral or
subcutaneous exposures (500 mg/kg/d for 3 days),
although an advancement in VO (60% of the ani-
mals) occurred only in the oral treatment group.

Bisphenol A (BPA) isaplasticizer with estro-
genic properties that is used in the production of
epoxy resinsand polycarbonate. It has been found
to compete with estradiol for binding to estrogen
receptors and can induce the synthesis of proges-
terone receptors in human mammary cancer cell
(MCF-7) culture (Krishan et al., 1993). BPA also
has been reported to increase prolactin secretion
and gene expression (Steinmetz et al., 1997) and
trigger a uterotrophic response in rats. Ashby et
al. (1998) and Laws et al. (2000) observed in-
creased uterine weights in immature rats follow-
ing three doses of BPA (200 to 800 mg/kg/d)
when administered by oral gavage or subcutane-
ous injection. However, no change in VO was
detected following three doses of 400 to 800 mg/
kg/d by oral gavage (Ashby and Tinwell, 1998) or
continuous treatment with 100 to 400 mg/kg/d
from weaning until 34 days of age (Laws et dl.,
2000). An advancement in VO was, however,
observed in four of seven animals in response to
subcutaneousinjections of concentrations between
600 and 800 mg/kg/d (Ashby and Tinwell, 1998).
Interestingly, Gould et al. (1998) reported an in-
crease in progesterone receptors (an estrogen-in-
duced alteration), but no uterotrophic responsein
immature female rats given 5 to 150 mg/kg/d
BPA for 3 days by ora gavage. Together these
data suggest that in addition to a differential ef-
fectiveness seen with particular routes of expo-
sure, the observed effects of BPA may be medi-
ated not only through the classi ¢ estrogen receptor
pathway, but could involve aternate pathways as
well.

A number of other compoundsin the environ-
ment have been reported to affect estrogenic ac-
tivity. The akylphenol 4-tert-octylphenol was
found to increase uterine weight in prepubertal
rats (10 mg/d, s.c., Bicknell et a., 1995; 100 to
400 mg/kg, oral, Gray and Ostby, 1998; Laws et
al., 2000). An advancement in VO (200 mg/kg,
oral, Gray and Ostby, 1998; Lawset al ., 2000) has
also been found, along with disruptions in estrous
cyclicity (20to 40 mg/dose, s.c., Blakeand Ashiru,
1997; 200 mg/kg, Laws et al., 2000), alterations
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in pituitary hormonelevels (80 mg/dose, s.c., Blake
and Boockfor, 1997), and a stimulation of prolac-
tin geneexpression (1to 100 UM, invitro, Abraham
and Frawley, 1997). All of these observationsimply
an estrogen-like mechanism of action. Similarly,
another alkylphenol, p-nonylphenol, has been re-
ported to be uterotrophic in immature rats (Lee
and Lee, 1996; Odum et al., 1997; Laws et d.,
2000) and induce both an increase in mammary
gland development (100 mg/kg, oral, Odum et al .,
1999) and advance the age at VO (50 mg/kg, oral,
Laws et a., 2000). The mycotoxin zearalenone
has also been observed to be uterotrophic under
different treatment paradigms(Mirochaet a., 1978;
Sheehan et a., 1984), but thereisno evidence that
sexual maturation in the femalerat is affected by
prepubertal exposures.

4. Alterations in Steroid Synthesis

In addition to changesin receptor function, it
iswell established that pharmaceutical sand environ-
mental chemicals can disrupt steroidogenesis in
male (e.g., Hirsch et al., 1987a; Gray et al., 1991)
and femalerats (e.g., Leung and Armstrong, 1979;
Cummings et a., 1997). Cholesterol, the precur-
sor for steroid biosynthesis, is converted to estra-
diol and progesterone through a number of enzy-
matic reactions catalyzed by mixed function
oxidasesthat utilize cytochrome P-450, molecular
oxygen, and NADPH along with several dehydro-
genases (Ojeda, 1988). Small amounts of andro-
gens are also synthesized in the female that are
generally aromatized to estrone and estradiol.
Chemicals can disrupt steroid biosynthesis either
by inhibiting any of these enzymatic reactions, or
by altering theintramitochondrial transport of cho-
lesterol. For example, the fungicide fenarimol
(a-(2-chlorophenyl)-a-(4-chlorphenyl)-5-pyrim-
idinemethanol) is a non-steroidal inhibitor of
aromatase activity that will block estrogen synthe-
sis (Hirsch et al., 1987b). Its analog, LY 56110
(a,a-bis(4-chlorophenyl)-5-methylpyrimidine),
has been found to suppress atestosterone-induced
increase in uterine weight (Hirsch et al., 1987hb),
although there has been no evidence that vaginal
opening is affected following prepubertal admin-
istration. Cummings et al. (1997) reported a re-
duction in serum progesterone and the number of
implantation sites in rats following early gesta-



tional exposure to ketoconazole, an antifungal
agent known to inhibit severa enzymatic reac-
tionsinthe steroid biosynthetic pathway. Recently,
Marty et al. (1999) evaluated the effects of
ketoconazole (100 mg/kg, oral) and the aromatase
inhibitor fadrozole (0.6 and 6 mg/kg, oral) on
pubertal development using the EDSTA C-recom-
mended d21-40 exposure paradigm. They ob-
served that both compounds at the administered
concentrations delayed the onset of VO.
Alterationsin estrogen metabolism following
exposure to environmental chemicals may aso
occur. Bradlow et al. (1995) reported an increase
in the ratio of 16 apha-hydroxyestrone to 2-hy-
droxyestrone in MCF-7 cells following exposure
to o,p-DDT and other environmental chemicals.
It has aso been suggested that activation of liver
cytochrome P450 systems involved in estrogen
clearance may be affected by environmental expo-
sures and in some cases may reduce endogenous
serum estrogen concentrations (Welch et a., 1971).
Specifically, these authors have shown that chlor-
dane decreased the concentration of tritiated es-
troneinthe uterus of sexually immaturefemalerats
and reduced the hormone's uterotrophic action.

5. Pharmaceutical and Environmental
Antiestrogens

Pharmaceuticals devel oped for use as antifer-
tility agentsor antiestrogenic cancer treatmentshave
also been tested for their ability to alter sexua mat-
uration (Table 4). The alkanoic acid derivatives,
E696 (3-(3,4-di-hydro-6-methoxy-2napthy)2-dim-
ethyl pentanoic acid) and E785 (3-(3,4-dihydro-
6-methyoxy-2-naphthyl)2-dimethyl hexanoic acid),
wereoriginaly developed asantifertility agentsand
possess estrogenic activity. Both were observed to
induce VO, aswell as vaginal epithelial cell cor-
nification, in immature rats within 5 days of an
oral dose of 5 pg/kg (Singh and Kamboj, 1980).
Antiestrogens possessing partial agonist activity
such as MER-25 (ethamoxytriphetol, 5 mg/kg in
feed, Lerner, 1964), MRL-41 (clomiphene citrate,
0.5 mg/kg, oral), and U1155A (2-[p-(6-methoxy-
2-phenylinden-3-yl) phenoxy]-triethylamine hy-
drochloride) (Coppola and Perrine, 1965) have
been reported to cause premature VO. At lower
doses, the latter two antiestrogens have also been

found to cause a superovulation in juvenile rats
(Coppola and Perrine, 1965).

Thetriphenylethylene antiestrogen tamoxifen
(2.0mg/kg, s.c.) isknown to increase uterineweight
inimmaturerats, although the maximal stimulation
islessthan that observed with estradiol (Wakeling,
1989). The same dose of tamoxifen exerts a par-
tial inhibitory effect on the uterotrophic responseto
estradiol benzoate when the two chemicals are ad-
ministered concurrently. Similarly, tamoxifen treat-
ment (0.1 to 10 mg/kg, 14 days, oral) inintact adult
rats has been found to reduce the effectiveness of
endogenous estradiol, resulting in a decrease in
uterineweight and adisruption of estrouscyclicity
(Wakeling and Bowler, 1988). A partid agonist
effect isevident following neonatal exposure (1 to
25 pg/rat/days 4 to 6, s.c.), when an acceleration
of VO can be observed (Wakeling and Bowler,
1988). Also, a prepubertal exposure (10 pg/rat,
days 20 to 24) has been reported to cause hyper-
trophy of the uterine lumina and glandular epi-
thelium (Branham et al., 1996).

Thetissue-selective estrogen agonist raloxifene
(LY156758; [2-(4-hydroxyphenyl)-6-hydroxy-
benzo [b]thien-3-yl] [4-[ 2-(1-piperidinyl)ethoxy] phe-
nyl]methanone hydrochloride), although observed
to be uterotrophic in rats following a 3-day expo-
sureto 0.1 mg/kg (ora), did not induce VO (Ashby
et al., 1997) within the same dosing period. Ad-
ministration of I1Cl 164,384, an antiestrogen with
negligible agonist activity in vivo, blocked the uter-
otrophic response induced by estradiol benzoate
(0.5 pgirat, s.c.), tamoxifen (1.0 mg/kg, s.c.) or ral-
oxifene (0.1 mg/kg, ord) inimmaturerats (Wakeling,
1989; Ashby et a., 1997).

Lindane (yHCH; 1,2,3,4,5,6-hexachlorocyclo-
hexane), the y-isomer of hexachlorocyclohexane,
is a broad spectrum insecticide that has been ar-
gued to disrupt estrogenic activity. In Y1 mouse
adrenal tumor cells it has been reported to inhibit
steroidogenesis by disrupting the intramitochon-
drial transport of cholesterol (Zisterer et al., 1996).
Cooper and co-workers (1989) have shown that
lindane (10 and 40 mg/kg/d, oral) delayed VO and
the appearance of regular estrous cyclesinimma:
ture ratswhen treatment wasinitiated at 21 days of
age. With continued treatment, none of the lindane
treatment groups (5 to 40 mg/kg/d) displayed regu-
lar estrous cycling patterns. Extended periods of
leukocytic (e.g., persistent diestrus) or cornified
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(e.g., persistent estrus) smearswere observed in all
doses. Additional studies evaluated the short-term
effectsof lindanein prepubertal femal es(dosed from
21 to 27 days of age with 30 mg/kg/d, oral) with or
without E2B (10 pg/kg, s.c.) 6 or 30 h prior to
necropsy. In these animals, lindane significantly
reduced the uterotrophic response to estrogen at
30 hours. Additionally, the E2B-stimulated in-
creases in serum LH and prolactin were dimin-
ished with lindane treatment, suggesting that the
pituitary response to E2B was blocked. These
effects are probably not mediated through an al-
teration of estrogen receptor function, as Laws et
al. (1994) have shown that lindane does not alter
circulating estradiol levels, intracellular estrogen
receptor binding affinity, receptor number, or the
functional response to estrogen measured by the
induction of progesterone receptors.

6. Androgen Aromatization

A physiological role for aromatizable andro-
gens in the onset of puberty has not been clearly
determined, eventhough serumtestosterone concen-
trationsincrease during the onset of puberty inthe
female rat. Mathews et al. (1987) reported that se-
rum testosterone concentrations begin to rise dur-
ing early proestrus and reach a nine-fold increase
at thetimeof thefirst LH surge. Serum androstene-
dione concentrations also increased at the time of
thefirst LH surge, but dehydroepiandrosterone con-
centrations remain undetectabl e throughout the on-
set of puberty. Using steroid implantsin immature
rats (28 daysof age) to approximatethe physiologi-
cal concentrationsof testosteronefound during early
proestrus, these authors reported that testosterone
advanced VO but not first ovulation. Rather, there
wasareduction of LH secretion, resulting in adelay
of first ovulation. These studies are in agreement
with earlier reports demonstrating the ability of tes-
tosteroneto advance VO (Tramezzani et al., 1963;
Zarrow et a., 1969) but differ with regard to its
ability to induce early ovulation. Differences be-
tween the studies may be aresult of variationsin
dose and time of exposure. Zarrow et a. (1969)
observed that while a single dose of 0.1 mg of
testosterone on day 21 failed to ater the age of
puberty onset, the same dose during days 21 to 23
advanced both VO and first estrus. Moreover, a
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10-day exposure (d21 to 30) advanced VO, but ex-
tended the time to the appearance of first estrus
(Table4). Although serum estradiol concentrations
were not increased in intact immature female rats
following an administration of physiological lev-
els of testosterone (Mathews et al., 1987), the ob-
servation that aromatase-like activity increasesin
thevagina epithelium of immaturerats prior to the
onset of puberty suggests that local estrogen pro-
duced by aromatization may mediate changesin
thetiming of VO by acting directly on the vaginal
epithelium (Lephart et al., 1989). Table5includes
a summary of these androgen-associated effects.

Dehydroepiandrosteroneis another aromatiz-
able androgen that has been reported to induce
precocious puberty in female rats. Exposure to
dehydroepiandrosterone for 3 days beginning on
day 27 produced increased uterine weight within
6 h of injection and stimulated gonadotropin re-
leaseand ovulation by day 30 (Knudsen and Mahesh,
1975; Parker and Mahesh, 1977). Conversion of
this androgen to estrogen may be the mechanism
mediating these effects, astreatment with cyanoke-
tone, an inhibitor of 3B-hydroxysteroid dehydro-
genase (which converts dehydroepiandrosterone
to estrogen), blocked the onset of precocious pu-
berty. Additionally, treatment with the nonaroma-
tizable androgen, dihydrotestosteronefailed to ater
the onset of puberty (Knudsen and Mahesh, 1975).
Asconcentrationsof dehydroepiandrosteroneareun-
detectable during pubertal development (M athews
et a., 1987) and are only minimaly atered in im-
mature ratsduring PM SG-induced ovulation (Parker
etd., 1976), the probability that thisandrogen plays
aphysiological rolein the onset of puberty islow.
Nevertheless, these studies suggest that high con-
centrations of aromatizable androgens can alter
puberty onset, which could be of importance dur-
ing toxicological exposures.

7. Postpubertal Effects Following
Peripubertal Exposures

Long-term reproductive effectsfollowing peri-
pubertal exposure to estrogen or aromatizable an-
drogens have been evaluated. Nass et al. (1984)
reported that regular estrous cyclicity isdisrupted
during adulthood following exposure to estrogen,



diethylstilbestrol (DES), or testosterone from day
12 through VO. These authors reported that al-
though V O was advanced with each treatment when
compared with controls, first ovulation did not oc-
cur until after aperiod of 12 to 17 days of diestrus
vaginal smears. Oncefirst ovulation occurred, all
animals began to display regular estrous cycles.
However, within 30 days the percentage of ani-
mal's exhibiting regular cycles had dropped to 59,
0, and 59% for E2, DES, and testosterone-treated
animals, respectively. The number of regular es-
trous cycles in the treated animals continued to de-
clinewith age as many of these animal s displayed
apersistent vaginal estrus. Evaluation of gonado-
tropinrelease at 150 days of agereflected adimin-
ished response to GnRH, which may have been
associated with the alteration in cycling status.
Bloch et al. (1995) have reported that exposure to
testosterone (silasticimplantsto maintain testoster-
one plasma concentrations of 0.66 + 0.04 ng/ml)
during days 15 to 30 in the female rat advanced
VO, with 8 of 10 females showing vaginal estrus
on at least 80% of the days monitored from VO
until 79 days of age. When the animals were ova-
riectomized at 86 days of age, the ovariesfrom the
treated females were reduced in weight and pos-
sessed a pale appearance characteristic of poly-
follicular ovaries. In addition, serum FSH and LH
concentrations were reduced in E2 and progester-
one-primed ovariectomized testosterone-treated
animals. Similar results were reported for imma-
turefemal eratstreated with dehydroepiandroster-
one (Knudsen et al.,1975). Following a precocious
ovulation on day 30, serum prolactin remained
elevated and vagina smears were disrupted.

8. Steroid Metabolites and Derivatives

Theeffects of 5a-androstane-33,17(3-diol (3a-
androstanediol; 3a-diol) on puberty onset have
been evaluated extensively because the serum con-
centration of this steroid decreases around the time
of first ovulation (Ojedaet a., 1984). This, along
with its ability to reduce gonadotropin release
(Krauliset a., 1981), fueled the idea that the onset
of puberty may be partly regulated by areduction
in serum 3a-diol concentrations. An earlier report
had shown that daily subcutaneous injections of

3a-diol sulfate (100 pg/100g bw) from d21 on-
ward could advance VO (Ravid and Eckstein, 1976).
Similarly, Kramer and Meijs-Roel of s (1982) ob-
served that daily exposures to 3a-diol (100 pg)
from 22 to 45 days of age resulted in a‘pinhole
type of VO, athough estrous cyclicity did not be-
gin until 6 days after dosing was discontinued. Sup-
pressed FSH release (Meijs-Roelofs et al., 1982)
and an inhibition of the LH surge (Kraulis et a.,
1981) were also noted following exposure to 3a-
diol. Subsequent studiesby Ojedaet al. (1984) have
demonstrated that administration of physiological
concentrations of 30-diol to juvenilerats does not
alter the age of puberty. Neither theage at VO nor
first ovulation was changed in immature rats after
exposureto the 5a-reductaseinhibitor 4-MA (17p3-
N,N-diethylcarbamoyl-4-methyl-4-aza-5a-an-
drostan-3-one), which caused a premature reduc-
tion in ovarian and serum 3a-diol concentrations.

Danazol, a synthetic derivative of 17a-ethynyl-
testosterone, has been commonly used as athera-
peutic agent for endometriosisand benign fibrocygtic
breast disease. It has been shown to disrupt pitu-
itary gonadotropin secretion (Dmowski, 1979),
inhibit ovarian steroidogenesis (Steingold et al.,
1986), and bind to androgen and progesterone
receptors (Ikegami et al., 1986). Following treat-
ment of PMSG-primed immature females with
750 mg/kg/d from days 24 to 28, there was a re-
duction in the percentage of animals ovulating on
day 29 (Tamura et a., 1991). The magnitude of
the LH surge was al so reduced when evaluated on
day 28. While ovulation was restored with injec-
tions of human chorionic gonadotropin, the num-
ber of oocytes released remained significantly
lower than controls, suggesting that the inhibitory
effects of danazol on ovulation may be mediated
by multiple mechanisms. Both a suppression of
gonadotropin release, aswell asadirect effect on
prostaglandin-mediated ovulatory events appeared
to be contributing factors.

9. Progesterone

Although progesterone is known to enhance
the LH surge in the immature and adult ovariec-
tomized rat (Ramirez et d., 1980; Ying and Greep,
1971), the role of progesterone in the appearance
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of thefirst preovulatory surge appears to be mini-
mal. Serum concentrations of progesterone prior
to the onset of puberty are moderately increased
when compared with serum concentrations asso-
ciated with subsequent LH surges (Dohler and
Wuttke, 1975). Indeed, studiesusing RU-486 have
shown that this progesterone antagonist has no
effect on the age of VO or first estrusinimmature
rats treated from day 21 through puberty (Table
4) (Trimino and Aguilar, 1992). However, interms
of environmental exposures, chemicalsthat mimic
the action of progesterone could possibly have an
effect on the onset of puberty. This has been
demonstrated by Naqgvi et al. (1969), who used
progesterone to block the estrogen-induced ad-
vancement of VO and the onset of regular estrous
cycles in immature rats. Similarly, the early in-
crease in pituitary and plasma LH in prepubertal
ratsfollowing exposureto estradiol can be blocked
by progesterone (Ramirez and Sawyer, 1965).
The inhibitory effects of progesterone on the in-
crease in pituitary FSH (as measured by hCG-
augmented ovarian weight changes) following a
single day 22 dose of estradiol benzoate or testos-
terone propionate were evaluated by Nagvi and
Johnson (1970). In these studies, the administra:
tion of progesterone 1 h prior to estrogen com-
pletely abolished therisein FSH dueto E2 alone.
Progesterone pretreatment in the testosterone
group delayed the effect of the androgen on FSH
for approximately 84 h.

B. Non-Steroid-Related Alterations
or Indirect Effects on Steroid-Related
Processes

A primary site of action for those chemicals
that are ableto affect sexua maturation following
prepubertal administration isthe brain. More spe-
cifically, the target is those hypothalamic regions
responsiblefor generation of the neural signalsthat
control therelease of pituitary hormones. Alterna-
tively, some chemicals are thought to affect one
or more ovarian processes necessary for first ovu-
lation to occur. For those compounds with known
mechanisms of action, the majority can be classi-
fied according to their effects on peptide hormone
releasing factors and/or neurotransmitter regula-
tory mechanisms. A representative summary of these

166

compounds and their effects on measures of pu-
bertal development has been included in Table 6.

1. GnRH Antagonists/Analogs

Because the pubertal process, including first
ovulation, is dependent on the activation of the
GnRH pulse generator, an inhibition of GnRH ac-
tivity will cause a marked developmenta delay.
For exampl e, subcutaneousinjectionsof the GnRH
antagonist, Org. 30276 (100, 250, or 500 pg/100 g
bw) on days 28, 31, 34, and 37 showed adelay in
VO and first ovulation after two exposures at the
highest dose (Meijs-Roelof set .., 1990). Thecircu-
lating levels of gonadotropins were also signifi-
cantly decreased. A continued decrease and longer
delayswere seen with additional injections. Simi-
lar effects are seen when a GnRH analog is ad-
ministered in an extended fashion (as opposed to
apulsatile exposure). For example, VO wasdelayed
and the appearance of estrouscyclicity suppressed
when immature female rats were exposed to €l-
evated concentrations of the GnRH analog [p-L eL,
des-Gly-NH,° Pro-ethylamide®]-GnRH by twice
daily subcutaneousinjections (3 pug x 2) from days
22through 77 (Johnson et a., 1976). In humans, the
GnRH anal og leuprolide acetate (L upron®) has been
used as atreatment for precocious puberty and will
initially result in an increased production of both
LH and FSH for a period of about 7 to 10 days.
Thisis followed by a desensitization of the pitu-
itary to its stimulatory action, causing a dramatic
and sustained drop in the production of biologi-
cally active LH and FSH for as long as treatment
iscontinued. Thisalteration in gonadotropin secre-
tion isthe basisfor those effectson VO seenin the
rat (see Table 5 for genera summary).

2. Effects on Neurotransmitter Activity

As previously mentioned, a number of neu-
rotransmitters are now known to participatein the
onset of puberty in the rat, and a suppression or
augmentation in their activity can alter norma pu-
bertal development. Significant delaysin VO were
observed in response to a single injection of the
catechol aminergic neurotoxicant 6-hydroxydopa-
mine into the brain ventricular system on day 23
(Ruf and Holmes, 1974), underscoring a role for
noradrenergic input during thistime. In contrast, a
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more specific ateration by mediobasal hypothaamic
implants of the dopamine receptor blocker, pimo-
Zide, on day 28 advanced both VO (from day 38 to
day 35) andfirst ovulation (Dockeet d., 1987). This
shift was hypothesized to be due to areductionin
the regional senditivity to the negative feedback
influence of estradiol at thistime. Alternatively, a
similar implantation of the specific dopamine ago-
nist apomorphine enhanced the LH-suppressing
effect of estradiol. Bromoergocryptine, also adopa-
mine receptor agonist, was systemically adminis-
tered in the drinking water (20 and 100 pg/ml)
from day 22 until the appearance of thefirst corni-
fied vaginal smear. It delayed the appearance of
both vaginal opening and first ovulation (Adviset
al., 19814), effects consistent with the findings for
apomorphine and comparable to results reported
by Kawagoe and Hiroi (1989). Such increases in
dopaminergic activity within the hypothalamus
will enhancethetonicinhibitory action of thistrans-
mitter on prolactin secretion, inducing hypopro-
lactinemia in the animals. Because concomitant
subcutaneousinjections of prolactin prevented the
pubertal aterations, it islikely that these effects on
dopaminergic neurotransmission were mediated by
the impact on pituitary release of this hormone.
Additional studies have demonstrated that prolac-
tin administered either directly to the median emi-
nence (day 23) or elevated by sulpiride exposurein
the drinking water (0.5 g/l, days 22 until the first
diestrus after VO) caused a marked advancement
in both VO and first ovulation (Advis and Ojeda,
1978; Adviset a., 1982), emphasizing theinvolve-
ment of this pituitary hormone in the onset of pu-
berty. In this regard, it is also interesting to note
that an increase in prolactin levels by subcutane-
ous injections of ovine prolactin, or by pituitaries
grafted underneath the kidney capsule, caused a
marked rise in circulating leptin concentrations
(Gudillo et al., 1999). While the effect on leptin
appearsto beindirect, it suggestsasupport by other
factors in the pubertal effects seen in response to
prolactin. Furthermore, it indicates that leptin is
regulated by factors other than adiposity.

As mentioned above, there is evidence that
the excitatory amino acids glutamate and aspar-
tate participate in the process of puberty via an
activation of the NMDA receptors. MK-801 ((+)-
5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclo-
hepten-5,10-imine maleate) is a NMDA receptor
antagonist that was ableto delay VO (MacDonald

and Wilkinson, 1990) and first ovulation (Veneroni
et al., 1990; Meijs-Roelofs et al., 1991) when
given by peripubertal subcutaneousinjections (0.1
to 0.2 mg/kg bw). The effects were consistent
with the finding that injections of NMDA (15 or
20 mg/kg) induced an early synchronization of
VO over a24-h period (MacDonald and Wilkinson,
1990; Smyth and Wilkinson, 1994). However, us-
ing an intraperitoneal route of exposure, Mena-
Vadiviaet al. (1995) reported no changesin VO
with 18 mg/kg. The above induced alterationsin
VO appear to be limited to the EAA NMDA re-
ceptors, because kainate and the AMPA/kainate
antagonist DNQX were without effect (Brann et
al., 1993).

3. Leptin, Neuropeptide Y,
and Reductions in Body Weight

At present, thereisstill afair amount of uncer-
tainty about the physiol ogical rolesthat both leptin
and NPY play intheinitiation of pubertal devel op-
ment. A number of research groups have hypoth-
esized that leptin, as a fat-derived hormone, acts
as a permissive signal to the brain that sufficient
energy stores exist to support the demands of the
reproductive process (Ahimaet al., 1997; Cheung
etal., 1997b). In order to addressthisissue, Cheung
and colleagues (1997b) investigated the effects of
exogenousy administered leptin (6.3 pg/g bw twice
daily) inimmature rats, using both ad libitum and
food-restricted/pair-fed controls. The data showed
that while leptin administration could attenuate de-
lays in VO caused by food restriction in control
rats, it could not advance VO beyond that seen for
the ad libitum group. Thisindicatesthat |eptin does
not act as a rate-limiting factor, but only alows pu-
berty to proceed if some threshold concentrations
are available.

Current data indicate that NPY can act to am-
plify GnRH release and serve asan inhibitory meta-
bolic signaling factor during times of restricted
food intake. When given to immature females as
a single intracerebroventricular injection during
the later prepubertal period (Minami and Sarkar,
1992), NPY was observed to advance VO and first
ovulation. However, in food-restricted rats, NPY
was ableto extend the delay in VO even when the
dietary restrictionswere discontinued, unlike con-
trols that were seen to exhibit VO within days of
full dietary restoration (Gruaz et al., 1993).
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Intoxicological studies, arelationship between
aterationsin body weight gain and pubertal devel-
opment is not one that can be characterized by a
simplified rule of thumb. Previous mention has
been made of the fact that food restrictions will
cause awell-documented delay in VO (e.g., Glass
et a., 1976; Holehan and Merry, 1985; Bronson,
1987), and compounds that induce a general sys-
temic toxicity may do the same. However, a de-
crease in weight gain caused by toxicant admin-
istration may have different effects, depending on
the mechanism(s) of action involved. For example,
estrogeni c compounds administered at weaning will
cause reductionsin body weights, while advancing
the day of VO when compared with controls (e.g.,
Marty et a., 1999). Also, a blockade of estradiol
production with an aromatase inhibitor can have
the opposite effect. Using Fadrozole for this pur-
pose, Marty et al. (1999) showed that a delay in
VO wasaccompanied by anincreasein body weight.
Such data clearly indicate that toxicant-induced
restrictions in body weight gain are not in and of
themselvespredictive of delaysin sexua maturation
and that due consideration must be given to mecha-
nisms of toxicant action that can have an overrid-
ing influence on this relationship.

4. Opioids/Cannabinoids

Endogenous opioid peptides are acknowl edged
asimportant components of the brain mechanisms
regulating gonadotropin release (for review see
Grossman, 1983; Pfeiffer and Herz, 1984). Data
have also shown that during puberty there occurs
a change in the sensitivity of the hypothalamic
opioid-responsive neuronsto challenge (Cicero et
al., 1986). Both morphine and fentanyl are ago-
nists at the opioid -receptors, and the administra-
tion of either in the drinking water from day 22
onward causes a delay in VO (MacDonald and
Wilkinson, 1991). Moreover, thereissomeevidence
in rats that the opioid receptor antagonist nal ox-
one administered intraperitoneally (0.5 mg/kg) at
postnatal day 25 was ableto advance VO (Mena-
Valdivia et al., 1995). Also, an advancement in
first ovulation was seen following multiple daily
injections of the antagonist naltrexone (20 mg/kg)
during the prepubertal period (Meijs-Roelofs and
Kramer, 1989), although later prepubertal injec-
tions were more effective that those given a few
days earlier. The effects of these receptor antago-
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nistsare likely associated with an elevationin LH
release (e.g., Blank et al., 1979) via a hypotha-
lamic noradrenergic mechanism (Koh et al., 1983;
Adler and Crowley, 1984).

The psychoactive component of marijuana,
A-9-tetrahydrocannabinol (THC), isknown to de-
crease circulating LH (e.g., Murphy et a., 1990).
In the hypothalamus, it binds to a CB1 receptor,
where the putative endogenous ligand is a long-
chain fatty acid derivative, N-arachidonylethano-
lamine (more commonly known as anandamide).
Prepubertal injections of THC (10 mg/kg, intra-
peritoneal, twice daily) have been observed to de-
lay bothfirst estrusand ovulation (Field and Tyrey,
1984, 1990). Wenger et al. (1988) administered
even lower concentrations (1 g/kg/d) from day 22
up until thetime of VO and reported a 2-day delay
in VO, reductionsin ovareleased at first ovulation,
and subsequent irregularities in estrous cyclicity
over the ensuing 6 weeks. The suppression of LH
by both THC and a stable analog of anandamide
(de Miguel et al., 1998) would seem to explain at
least partly the induced pubertal alterations. The
presence of hypothalamic CB1 receptors suggests
that the LH effect is central in origin; however,
thereisaso evidence for an action at the pituitary
(Murphy et al., 1991).

5. Other Types of Chemical Insult

Groups of immature female rats given single
oral doses of the environmenta toxicant 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD, 0.3-60 pg/kg
on day 22 showed a decrease in the percentage of
animals ovulating in response to priming with
equine chorionic gonadotropin (Li et al., 1995).
The ED50 for this effect was between 3 and
10 pg/kg. The authors also found that the typical
fall in estradiol that accompanies the LH surge
was absent, which would suggest that direct ef-
fects on the ovary caused alterations in the hypo-
thalamic-pituitary regulation of ovulation.

Ethanol exposure has been shown to delay
the onset of puberty in female rats (Bo et al.,
1982; Dees and Skelley, 1990). Dietary admin-
istration delayed VO, prevented the establishment
of estrous cycles, and kept the appearance of the
vagina and uterus comparable to 20-day-old con-
trols. In prepubertal females, ethanol hasbeen found
to diminish the release of GnRH in vitro (Hiney
and Dees, 1991), and it may be that this effect in-



volvesan dterationinthe PGE2 (Hiney and Dees,
1991) or NMDA receptor-associated (Nyberg et
al., 1993) mechanisms of GnRH secretion.

Early developmental exposures to lead fre-
guently have been reported to cause marked alter-
ations in reproductive functions (e.g., Kimmel et
a., 1980; McGivern et a., 1991; Ronis et al.,
1998). However, there is al so some evidence that
female rats exposed to |ead acetatein the drinking
water as late as day 24 exhibited some delay in
VO (Ronis et al., 1996), although subsequent es-
trous cyclicity during extended administration ap-
peared to be unaffected.

The involvement of PGE2 in the feedback
effectsof estradiol on GnRH releasein the peripu-
bertal femal e suggeststhat asuppressionin concen-
trations of this prostanoid may affect the timing
of puberty. Smith et al. (1989) used asemipurified
diet deficient in essential fatty acids to decrease
circulating levels of the prostaglandin precursor
arachidonic acid in prepubertal females. They ob-
served delays in VO and first ovulation, in addi-
tion to impairments in norepinephrine-stimul ated
hypothalamic PGE2 release and in the ability to
generate an LH surge in response to E2-contain-
ing implants. Some evidence of an effect on pu-
berty was aso reported by Zhang et al. (1992),
who made use of the finding that the fatty acid
eicosapentanoic acid competes with the prosta-
glandin precursor arachidonic acid as a substrate
for cyclo-oxygenase. By exposing 22-day-old fe-
mal esto diets containing fish (menhaden) oil high
in eicosapentanoic acid, they reported hypotha-
lamic PGE2 was decreased by about 15% and the
appearance of first estrus delayed, athough VO
was not affected.

C. Induced Alterations in Thyroid
Histology and Endocrine Indices
of Thyroid Function

While the first descriptions of adverse health
effects caused by an underlying alteration in thy-
roid function probably date back to Paracelsus
reports of goitrous cretinism in the sixteenth cen-
tury, it was not until the mid-1800s that the role
of the thyroid in this condition was discovered
(see Welbourn, 1992 for review). By 1915, when
Edward Kendall first purified the thyroid hormone
thyroxine (T4), a Nobel Prize in Medicine had

already been awarded to Swiss physician Emil
Kocher for his work on thyroid physiology, pa-
thology, and surgery. Thus, the medical impor-
tance of physiologically appropriatelevels of thy-
roid hormone activity has long been understood.

Theability of pharmaceuticalsand environmen-
tal chemicalsto disrupt the function of thethyroid
gland by altering the biosynthesis, secretion, or
metabolism of thyroid hormones has been well
documented in humans and rodent animal models
(Capen, 1992, 1997). Such effects can be medi-
ated by alterations in the uptake and iodine trap-
ping mechanism, the organic binding of iodine,
and coupling of iodothyronines to form T4 and
T3, or therelease of the thyroid hormonesinto the
blood as well as their binding to the serum trans-
port proteins (Capen, 1997). Additionally, changes
in the peripheral metabolism of the thyroid hor-
mones can be mediated through chemical-induced
aterations in hepatic microsomal enzyme sys-
tems (Curran and DeGroot, 1991). Many of the
compounds that disrupt the synthesis of T3 and
T4 can be classified into three groups according to
their structure— thioamides (e.g., propylthiouracil
[PTU] and mercaptoimidazole), aminoheterocyclic
compounds (e.g., tolbutamide), and substituted phe-
nols(e.g., resorcinol and salicylamide) (Crispetal.,
1998). Also, calcium channel blockers, steroids,
retinoids, chlorinated hydrocarbons, and polyhal o-
genated biphenyls have been shown to alter the
peripheral metabolism of thyroid hormones
(Capen, 1997). A variety of screening methods
have been used to evaluate alterations in thyroid
function, and these have been reviewed recently
by DeVito et a. (1999).

Because many of the studies of toxicant-in-
duced aterationsin thyroid hormonefunction have
focused on gestational and neonatal exposure, few
examples of studies evaluating only pubertal de-
velopment are available (see Table 7). The effects
of hypothyroidism on the age of puberty onset
were evaluated by Wilen et a. (1981) in immature
ratsfed PTU (0.001, 0.01, or 0.1%) from weaning
through the day of vaginal opening. Asindicated
above, PTU disrupts the synthesis of T4 and T3.
In this study, it reduced the growth rate in all
treatment groups, but delayed the age of vaginal
opening only in the highest group. Similar find-
ings were reported by Marty et a. (1999) using
oral administration (240 mg/kg, d21 to 40). A
second experiment reported by Wilen et al. (1981)
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compared PTU treatment with pair-fed rats re-
ceiving the same amount of food consumed by
the PTU-treatment group. The dose of PTU
(0.01%) employed was sufficient to reduce growth
rate and serum T4 and T3, but not to alter the age
of vaginal opening and first estrus. Although the
growth rates and body weights were similar be-
tween the two groups, vaginal opening was de-
layedinthe pair-fed (undernourished) animalsonly.
These results indicate that PTU may have addi-
tional effects on pubertal development that might
protect against the delay induced by undernour-
ishment or reduced growth rate.

1. Polychlorinated Biphenyls
and Dioxins

Itiswell known that polychlorinated biphenyls
(PCBs) and chlorinated dibenzo-p-dioxins (TCDD)
disrupt thyroid hormone function in the rat by
altering the metabolism (Curran and DeGroot, 1991)
or the serum transport of T3 or T4 (Cheek et a.,
1999). A reduction in circulating levels of T4 and
T3isvery often associated with exposure to these
compounds. Saeed and Hansen (1997) examined mor-
phological changesinthethyroid glands of imma-
turefemal eratsafter short-term exposureto 2,2'4,4'-
tetrachlorobiphenyl (CB 47) and Aroclor 1242.
Daily injectionswere begun at weaning and contin-
ued for 2 or 5 consecutive days. While serum T4
increased in control ratsfrom day 22 to 25, treated
animals showed a suppression in response to both
treatments. Moreover, there were changesin thy-
roid morphology following the 5-day treatment.
Smaller thyroid follicles attributable to a shrink-
age of the colloid area and increased cell height
were present, which is consistent with the move-
ment of stored thyroid hormones from the colloid
region stimulated by TSH in response to low cir-
culating levels of T4 (Capen, 1992). Similar re-
sults were reported by Hansen et al. (1995) when
weanling femal e rats were exposed on day 20 and
21 to arefined extract of subsurface soil containing
2.5% PCBs (trichlorobiphenyls and tetrachl orobi-
phenyls, traces of polychlorinated naphthalenes, 2,2-
bis-p-chlorophenyl-1,1-dichlorethylene (DDE), and
low levelsof chlorinated dibenzofurans). When the
animalswerekilled on day 22, serum total T4 and
thyroid follicle colloid area were decreased (with

aconcurrent increasein cell height) in responseto
36 to 96 mg/kg of therefined extract. A prepuber-
tal intraperitoneal administration of apurified prep-
aration of 2,3,3',4',6'-pentachlorobiphenyl
(CB110, 48 to 96 mg/kg) and 2,3,3,4',5'-pen-
tachlorobiphenyl (CB126) on days 21 and 22 also
decreased serum T4 by the next day and caused
an elevation in liver weight (Li et al., 1998).

IV. SUMMARY

From the foregoing discussion, it is clear that
exposures to a variety of xenobiotics during the
prepubertal period are capable of influencing the
occurrence of those interrelated processes that un-
derliethetransition to sexual maturity. Consequent-
ly, the proposed protocol, which employsan period
of exposure from postnatal day 22 to 42, should
be ableto identify thevast mgjority of environmen-
tal compounds that have an impact on the endo-
crine events underlying sexual maturation, if due
consideration is given to a number of experimen-
tal design issues. Existing data indicate that pu-
bertal development can be readily atered by sub-
stancesthat affect estrogen activity (i.e., synthesis,
receptor binding, and clearance). It is also clear
that agents that influence central nervous system
function will also modify the onset of puberty.
Finally, those compounds ableto cause alterations
inthyroid activity areaso identifiable, if thelimi-
tations for endocrine assessments are understood
(see part V).

While statistically significant effects on sexual
maturation can be determined, the biological signifi-
cance of an alteration in any of the recommended
pubertal endpoints to subsequent adult reproduc-
tive activity isequivocal. A larger magnitude of an
effect at an environmentally relevant level of ex-
posure would, of course, be of increased concern.
However, the weight of evidence from a compre-
hensive assessment of data from the various T1S
protocols should provide sufficient information
to address an dteration in hormonal signaling.
Given that an endocrine-disrupting chemical is
defined according to abroadly based alterationin
hormonal function, the dataargue for inclusion of
an assessment incorporating pubertal endpointsthat
can be combined with other protocols to form a
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comprehensive battery that will identify potentially
adverse endocrine-mediated effects induced by a
diverse assortment of compounds.

V. TECHNICAL CONSIDERATIONS

IN THE CONDUCT OF THE MODIFIED
EDSTAC TIER | FEMALE PUBERTAL
SCREENING PROTOCOL

In order to function as a usable tool for the
assessment of endocrine-disrupting chemicals, the
protocol should be both robust and sensitive. It
should generate resultsthat are comparable within
asingle laboratory and across a number of differ-
ent sites. Moreover, the data should be consistent
over a broad range of compounds. Toward this
end, the following points of discussion are con-
sidered important to the success of the protocol
(Table 2). They are predominantly design issues
that should be addressed in order to reduce those
sources of variance that will affect the collection
and interpretation of the data. An abbreviated
commentary on the individual subsections of the
protocol is also presented in Table 8 that touches
on some of the strengths, uncertainties, and po-
tential weaknesses of the current version.

A. Dietary Phytoestrogens

Recently, a number of independent |aborato-
ries have published data showing that various
commercially availablerodent dietary formulations
contain levelsof isoflavone phytoestrogensin con-
centrations that are sufficient to induce character-
istic estrogenic aterations in uterine weight and
histology (Boettger-Tong et al., 1998; Thigpen et
al., 1999a,b). Moreover, these concentrations can
vary among different milled batchesfrom asingle
supplier, introducing the potential for afurther con-
found in whatever background levels of exposure
are present. Datapresented by Tansey et a. (1998)
indicated that soybean estrogens provided in the
diet could actually diminish the uterine effects of
a pharmaceutical estrogen preparation. In wean-
ling rats, dietary supplementation with a soy ex-
tract was reported to advance VO, but at a level
(2.4% of apreparation containing 12% isoflavones
and 35% saponins) that was well beyond concen-
trations normally present in the diet (Gallo et al.,
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1999). When comparisons were made between the
offsrping of dams maintained either on astandard
NIH rodent diet or one that was soy- and alfafa
free without detectabl e i soflavones, no neonatal or
pubertal differences were noted, with the excep-
tion of apossible effect on female postnatal day 1
anogenital distance (Casanovaet a., 1999). Taken
as awhole, these various findings would suggest
that some consideration be given to the selection
of adiet containing minimal or undetectable lev-
els of phytoestrogenic activity, particularly be-
cause endocrine issues are a principal focus.

B. Route of Exposure

Although the recommended route of expo-
sure for this protocol is by oral gavage, it should
be noted that the effective dosefor each test chemi-
cal may vary depending on the dosing route. Dif-
ferences in absorption, metabolic activation, and/
or elimination of the test chemicals occur follow-
ing exposure by intraperitoneal or subcutaneous
injections or by oral gavage (Klaassen and Eaton,
1991). Odum et a. (1997) have compared the €f-
fectsof 173-estradiol, 17p3-estradiol benzoate, and
ethynyl estradiol on uterine growth and the onset
of vaginal opening in sexually immature rats fol-
lowing exposure by subcutaneous injection and
oral gavage. In each case, the doses required to
induce a uterotrophic response and vaginal open-
ing were higher with exposure by oral administra-
tion when compared with subcutaneousinjection.
For example, adose of 100 ug/kg of 17B-estradiol
was required to induce auterotrophic responsevs.
5 ng/kg by subcutaneous injection. Conversely,
chemicalssuch asmethoxychlor that undergo mete-
bolic activation in the liver (Bulger et a., 1978b)
are generally more toxic following exposure by
oral gavage. Gray et al. (1989) have reported that
methoxychlor (25 mg/kg, oral) advanced vaginal
opening by 6 days when dosing began at 21 days
of ageand continued through vaginal opening. Odum
et a. (1997) have compared oral and subcutaneous
exposure to a much higher dose of methoxychlor
(500 mg/kg) for 3 daysand reported auterotrophic
response in both groups, but vaginal opening was
only observed in the those animal s treated by oral
gavage. Thus, becausethe pharmacokineticsfor each
test chemica will influence the outcome of the end-
points evaluated in this protocol, the selection of



TABLE 8

Protocol for Assessment of Pubertal Development and Thyroid Function in Juvenile Female
Rats: Overview and Comments

Purpose and applicability The current version of the proposed pubertal protocol is intended to detect toxic

Required endpoints

General Conditions
1. Diet

2. Animal Housing
Recommendations

Juvenile Female Rats:
Group Assignment

induced alterations in sexual maturation and thyroid function. Compounds that influ-
ence thyroid activity or alter pubertal development by affecting steroid- or gonadotro-
pin-mediated functions should be identifiable.

« Age and weight at vaginal opening—day of VO (or vaginal patency) is a standard
index of pubertal maturation. It is a straightforward, noninvasive assessment. Differ-
ences in weight may reflect a general toxic effect, or be a consequence of an
estrogen-like action (see section on Technical Considerations).

« Growth—a retardation in weight gain may itself affect VO.

¢ Serum thyroxine (T4) and thyroid-stimulating hormone (TSH)—Indicative of func-
tional status of the hypothalamic-pituitary-thyroid axis. Time of sample collection may
result in some variability in TSH data due to diurnal rhythmicity (see Technical
Considerations).

« Uterine and ovarian weights and histology—can provide some valuable data for
intrepretation of other endpoints. Uterine and ovarian measures require information
about cycling status (see Appendix B). Further descriptions about uterine histological
requirements are needed in the protocol. Ovarian histological evaluations coupled
with cycling data can help characterize the nature of a toxic impact on reproductive
function (see Technical Considerations).

« Liver, kidney, pituitary, and adrenal weights—ancillary measures that can provide
general information about the systemic impact of toxicant exposure. An increase in
pituitary weight can also suggest an estrogenic effect.

« Vaginal cytology—A non-invasive type of assessment that contributes valuable
data about reproductive status in the post-pubertal female.

There is currently an ongoing debate about the influence of the choice of diet on
those endpoints that can be altered by estrogenic activity. The presence of phyto-
estrogenic compounds in a broad range of commercially prepared dietary formula-
tions may represent a confounding factor in the interpretation of test data (see
Technical Considerations).

The currently recommended parameter of room lighting (14 h:10 h light:dark
photoperiod), temperature (20-24°C), and humidity (40-50%) have commonly been
employed for rodent housing in both Toxicology and Reproductive Physiology. The
dosing and necropsy times (0700-0900 h and 1300-1500 h, respectively, can poten-
tially detect alterations in baseline hormonal values, but will not allow evaluation of any
effects on midafternoon preovulatory endocrine events, such as the proestrous
gonadtotropin or prolactin surges (1600-1800 h), if these nonrequired endpoints
should become of concern.

« Both in-house breeding and procurement of timed pregnant dams from a commercial
supplier are listed as options. For each, it is currently recommended that litters be
culled to 8 to 10 pups on postnatal day 3 or 4, but it is not specified how this should
be done. Should the number of females per litter be maximized, reducing the sum total
of litters needed? Currently, the only information provided is that sufficient litters be
produced to ensure that enought females are available for the study. Since interlitter
differences can be a concern, some further guidelines could be provided about the
relationship between the number of treatment groups and the minimum number of
litters.

« Animals are assigned to treatments so that there are similar mean body weights and
variances. A weight-ranked assignment is indicated, with a range limited to 8 g above
or below the group mean. It may well be that this number is based
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TABLE 8 (continued)
Protocol for Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats:
Overview and Comments

on one or more standard deviations from a database mean; however, this is not
clear.

Experimental Design « Two replicate blocks are recommended to assess reproducibility of results. Included
are control and at least one treatment group with dosage levels at or just below the
maximum tolerated dose (MTD). The MTD is broadly defined as the dose that a test
animal can tolerate without any adverse physical effects. The original concept written
in 1976 by the National Cancer Institute involved consideration of a variety of factors,
including weight gain or loss, clinical and biochemical signs of toxicity, organ weights
and function, absorption, distribution, and excretion characteristics. Most studies have
used reductions in body weight (generally a body weight gain that is 10% less than
controls) as a single criterion. However, it is not clear in the present guidelines
whether this is the case. The utility of the MTD in toxicological assessments for
carcinogenic and non-cancer-related endpoints has been the subject of considerable
debate (e.g., Haseman, 1985;2 Weideman, 1993;> Ziegler, 1993¢) and will not be
revisited here. However, the section on technical considerations does reflect on the
influence of estrogenic compounds on food consumption and body weight and the
relevance of such changes to the present experimental design.

« Given that options for the choice of rat strain are included, it is important to know
the strain in which the MTDs were determined. Otherwise, there is the possibility in
selecting dosages that a strain may be exposed at a concentration above its MTD.

Treatment Oral treatments in corn oil are administered (0700—0900 h) from d22 through 42 in a
volume of 2.5 ml/kg body weight. Body weights are recorded daily and dosing volumes
are adjusted accordingly

Vaginal opening The day of complete vaginal opening is recorded, along with the appearance of ‘pin
hole’ openings or vaginal threads. Body weights are also recorded at this time. For
statistical purposes, the day of complete opening is the data point employed, although
the other two measures can suggest alterations in sexual maturation. For a more
extensive discussion of vaginal opening in the rat, the reader is referred to Clark
(1999). After complete VO, vaginal lavages are begun for evaluations of estrous
cyclicity (see Technical Considerations).

Necropsy

1. Euthanasia Alternatives are presented for the method of euthanasia. Decapitation is recom-
mended if pituitary hormone determinations are to be performed. It would preclude
any stress-associated effects on hormonal concentrations as a result of exposure to
inhaled or injected agents. This is critical for measures of prolactin, because it is
promptly responsive to stress. However, it is unlikely that TSH (or T4) would show
such rapid alterations during pharmacological euthanasia. Consequently, if those are
the only assays to be performed, the scientific justification for decapitation is no longer
apparent, and CO2 can be used. Nevertheless, environmental stressors are still of
concern and should be minimized (see Technical Considerations).

2. Blood/Tissue « Serum that is separated from collected blood is stored in siliconized tubes to
Collection prevent steroid adherance to the tube walls. This would be more of a problem if
estradiol (or progesterone) were to be measured.

Weights are taken for ovaries, uterus, liver, kidney, pituitary, and adrenals. It is
assumed that all are to be trimmed of any adhering fat. Weights for both fluid filled and
emptied uteri are recorded to assess potential estrogenic alterations. Also, it is likely
that whole pituitary weights are to be recorded instead of separate anterior and
posterior measures.
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TABLE 8 (continued)

Statistical Analysis

Data Summary

« Ovaries and uteri (along with the thyroid) are then fixed for subsequent paraffin
embedding, sectioning and hemotoxylin-eosin staining. Further information about
section thicknesses and criteria for evaluation would be helpful.

It is recommended that multiple analyses of covariance (MANCOVA) be performed
on the acquired data, using body weight at weaning as the covariate. Because
animals are preselected at weaning for uniformity in body weights, the usefulness of
a covariate analysis is debatable.

« Guidelines specify tabular data displaying the means and standard errors of the
mean for all the obtained endpoints. Additional presentations of covariance adjust-
ments for body weight can be provided. Separate tables for collected raw data are to
be appended.

« A summary of histological findings is also specified, although as mentioned above
no guidance is given for the parameters of concern. Some information should be
provided as to whether histological or histopathological assessments (or both) are to
be performed; in this regard, there should also be some indication of whether the data
presented are to be qualitative or quantitative in nature.

Note: 3Haseman, JK. (1985). Issues in carcinogenicity testing: dose selection. Fund. Appl. Toxicol. 5: 66—78.
b[Weideman, M]. (1993). Toxicity tests in animals. Historical perspectives and new opportunities. Environ.
Hith. Perspect. 101: 222-225. °[Ziegler, J]. (1993). Toxicity tests in animals: extrapolating to human risks.

Environ. Hith. Perspect. 101: 396—406.

dosesfor the protocol should be based on the maxi-
mum tolerated dose (MTD, see Table 8) following
oral doses to minimize the chance of false-nega-
tive results.

C. Changes in Body Weight

One of the endpointsincluded in the protocol
isadetermination of the effects of toxicant admin-
istration on growth. The exposure of a cohort of
ratsto an estrogen presentsan interesting dilemma.
One of the classic effects of estradiol administra-
tionisareduction infood intake and alower body
weight compared with controls (e.g., Reynoldsand
Bryson, 1974; Wade, 1975; Donohoeet a., 1984),
a phenomenon that may in part be a consequence
of an enhancement in leptin concentrations (Brann
etal., 1999). Alternatively, thevirtual elimination
of circulating estradiol by ovariectomy will stimu-
late appetitive behavior and cause an increase in
weight. Consequently, a drop in body weight fol-
lowing dosing with a putative estrogen may not
necessarily represent a general toxic effect. Be-
cause a fall in body weight of 10% or more has
frequently been a criterion for a disinclusion of
subjectsfrom an ongoing study, thisfactor issome-
thing that should be considered in the implemen-
tation of any such protocol.

D. Endocrine Assessment
1. Sample Collection

Along with the nervous system, endocrine fac-
tors serve as an internal communications system
within the body. In this capacity, hormones may
act as inducers or repressors of protein synthesis
and thus regulate the rate of enzyme production
and influence the activity of various metabolic
pathways. They may also affect metabolic activity
by regulating mechanisms of inter- and intracellu-
lar trangport, thereby controlling the availability of
avariety of substrates. Consequently, assessments
of circulating hormonal concentrations can fre-
guently add important information to an evaluation
of toxicant-induced functional alterations. How-
ever, in order to maximize reliability and obtain
hormonal datathat are both valid and useful, anum-
ber of factors must be taken under consideration.

a. The Shifting Endocrine Milieu
in the Post-Pubertal Female

At the present time, measurements of serum
thyroxine (T4) and TSH are the only required hor-
monal endpoints. Thefinal EDSTAC report (U.S.
EPA, 1998c) had further specified that the assess-
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ments of estradiol and prolactin were to be op-
tional. Thisrecommendation received subsequent
concurrence by a joint internal EPA committee
from the Office of Research and Development
and the Office of Pesticide Programs and Toxic
Substances (see Introduction). While the inclu-
sion of various hormonal determinations can of-
ten provide useful information about reproduc-
tive functioning, restricting the required endponts
to T4 and TSH was a reflection of the perceived
relative value of other endocrine measures within
the exposure and sampling parameters established
for the present protocol.

Intoxicologica studies, serum or plasmasam-
ples are typicaly obtained at necropsy, because
multiplein-life blood sampling can be quite labor-
intensive, especially inastudy involving large num-
bers of animals. However, the release of pituitary
peptide hormones throughout the day is pulsatile
in nature and grouped data consisting of single-
point samples always reflect the variability inher-
ent in the peak-to-valley excursionsin circulating
concentrations. The secretion of growth hormone
represents a more extreme example, with recur-
ring peak heightsin the adult mal e often 200-fold
or more over values at the nadir (e.g., Millard et
al., 1981; Miki and Shizume, 1986). Although maxi-
mum el evationsin the female are lower, the peak-
to-valley differences are still large (Terry et al.,
1977). Even in the pubertal female, these peaks
can reach levels well above baseline (Gabriel et
al., 1992). Along with such daily patterns of change
are marked hormonal shifts that occur at specific
timesduring the estrouscycle. The proestrous after-
noon surges of FSH and LH are well-characterized
examples of such aterations that are functional
endocrine events. FSH providesthe hormonal im-
petusfor development of aovarian cohort of arrest-
ed primordial follicles. The surviving members of
this cohort will then be subsequently subjected to
simulation by an LH surgeto trigger thefinal stages
of follicular and oocytic maturation that culminate
in ovulation.

When using single-point endocrine assessments,
it is important to understand the nature of these
cyclicfluctuationsin circulating concentrationsand
how the time/day of sampling may affect thelevels
seen. The current version of the protocol does not
specifiy atime of day at which blood collections
are to be obtained, although earlier iterations in-
dicated a window between 1300 to 1500 h. As a
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required endpoint, TSH concentrations can provide
useful information about the activity of the hypo-
thalamic—pituitary—thyroid axis. However, the hor-
mone does show adiurna rhythm in the rat, with
circulating levels peaking around noon and then
decreasing to anadir around midnight (L eppal uoto
et a., 1974; Fukuda et al., 1975; Jordan et a.,
1980). This peak in TSH is then followed 3 to 4
hlater by aslight risein T3 and T4 concentrations
(Ottenweller and Hedge, 1982). Therefore, single-
point control thyroid hormone samples taken un-
der standardized conditions should be fairly con-
sistent within agroup. However, TSH from blood
collected between 1300 and 1500 h may be more
variable.

As mentioned above, a designation of other
hormonal endpoints as “optiona” in the female
pubertal protocol was areflection of the interpre-
tive value of such measures under the recom-
mended parameters and the understanding that a
variety of measures areinfluenced by factors apart
from adirect effect of toxicant exposure. Estradiol
concentrations, for example, fluctuate over the es-
trouscycle. Consequently, for such datato be mean-
ingful, itiscritical to document whether theanimals
under treatment are in fact cycling and, if so, to
identify the particular stages of the cycle at which
the samples are obtained. Prolactin measurement,
another optional endpoint, presents an additional
problem. Marked elevationsin circulating prolac-
tin concentrations do occur during the estrouscycle
late on the afternoons of proestrusand estrus (Esber
et a., 1976; Goldman et a., 1985; Haisenleder et
al., 1989). It is possible then that blood samples
taken at thetime of necropsy could reflect asurge-
associated elevation, which has been observed in
aproestrous/estrous femal e to range from 1300 to
1900 h. Moreover, prolactin is a hormone that is
very responsive to stress. For this reason, assess-
ments of circulating prolactin concentrations ne-
cessitate that the conditions present around the
time that the animals are killed must be carefully
controlled (see below).

b. Uterine Weights

During the estrouscycle, rising levelsof circu-
lating estradiol will cause a marked elevation in
uterine weight on the day of proestrus. The effect
reflectsincreases in both the fluid content and cel-



lular proliferative activity. A variety of estrogenic
compounds have been found to have similar ef-
fects(e.g., Bulger et ., 1985; Grunert et a., 1986;
Smith and Quinn, 1992; Ashby et al., 1997). Con-
sequently, in obtaining weightsfor both fluid-filled
and empty uteri after the recommended 20 days
of dosing, one must (as with hormonal endpoints)
be cognizant of whether the animals are cycling
and, if so, the particular day on which therats are
killed. Unlike uterotrophic eva uationsin toxicant-
exposed ovariectomized animals, cyclic changes
in uterine weight could cause marked increasesin
the variability within groups that preclude an ac-
curate assessment of any treatment-related uter-
ine alterations.

c. Characterization of the Estrous Cycle

The daily characterization of vagind cytology
intherat isanoninvasive and reliable method for
evaluating estrous cyclicity. In the post-pubertal
female, temporal shifts in the appearance of cells
present in avaginal lavageisadirect reflection of
the changes in circul ating concentrations of estra-
diol and progesterone and may indicate toxicant-
induced alterations in reproductive functioning.
Under commonly employed lighting conditions,
the first 4 to 5-day cycle will occur about 7 to 10
days after vaginal opening. In untreated animals, it
repeats in aregular fashion and reflects the matu-
ration and rupture of successive waves of ovarian
follicles. Cycle length is influenced by the dura-
tion of progesterone secretion from ovarian fol-
licles and corpora lutea (e.g., Sanchez-Criado et
al., 1996). It is generally separated into three dis-
tinct phases, commonly termed metestrus/diestrus
(typicaly 2 to 3 days), proestrus (1 day) and estrus
(1 to 2 days). Ovulation from mature follicles oc-
curs during the early morning hours on estrus in
response to stimulation by the late afternoon pro-
estrous LH surge.

Theidentification of changesin vaginal cytol-
ogy over the cycleisnot difficult, although, aswith
many things, accuracy increases with experience.
Because the epithelial cells respond to cyclic al-
terationsin estradiol levelsthat exhibit arise over
diestrus, it is beneficial to perform daily lavages
at acomparabletime during the day. Lavage sam-
plescan bereadinfresh smearsor fixed and stained,
although for archival purposes the latter method

would be indicated. For areview of vaginal cyto-
logical assessments in toxicology studies, the
reader isreferred to Cooper and Goldman (1999).

d. Stress

The responsiveness of a variety of hormone
to novel and/or stressful situations represents a
major concern for studies in which endocrine
endpointsare of interest. It iswell established that
the adrenal corticosteroids and prolactin undergo
dramatic and rapid increases under stressful con-
ditions. Currently, to address any stress associated
with pharmacological anesthesia prior to eutha
nizing the animals, it is recommended that if pi-
tuitary hormonal assessments are to be performed
animalsbekilled quickly by decapitationin aroom
separate from the housing area. Otherwise, the
females may be euthanized under CO2. While
thereis evidence that stress can alter TSH and the
thyroid hormones (e.g., Riegle and Meites, 1976;
Langer et a., 1983; Armario et al., 1986; Gala,
1990; Wyatt et a., 1995), they are not likely to
respond within such abrief time frame. Neverthe-
less, consideration must be given to those existing
environmental conditionsprior to thetimeat which
blood samples are obtained. For example, cages
should not be schedul ed for changing on the morn-
ing preceding necropsy, or should test animals be
transferred to a holding area during this time. Ex-
posure to such stressors before sample collection
can induce an unwanted amount of variability in
the data, and the chances of making atypell error
(falsely accepting a no-effect) in the statistical
evaluation of the data are markedly enhanced.

2. Conduct of the Immunoassays

Immunoassays should be performed under the
standards of Good L aboratory Practice. Unknown
samples should always be run in duplicate, and it
isadvisableto prepare standardsin triplicate. Mul-
tiple pairs of quality control (QC) samplesfrom a
common pool are run interspersed within each as-
say to establish inter- and intra-assay coefficients
of variation, which for the assays concerned typi-
cally run 10% or less. Compl ete ready-to-use kits
areavailablefor the steroid hormones from anum-
ber of commercial vendors. These generaly have
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yielded compatible results and offer a number of
purchasing options. Materialsfor measurement of
rat pituitary peptide hormones can be commer-
cially obtained, although the large database for
these hormones is almost exclusively generated
from materials supplied by the National Hormone
and Pituitary Program under the auspices of the
Nationa Institute for Arthritis, Diabetes, Digestive
and Kidney Diseases (NIADDKD). Thelatter ma-
terias are avail able to government, university, and
other not-for-profit organizations. Other |aborato-
riesmay haveto acquire assay kits from commer-
cia sourcesfor in-housework. However, it should
be understood that the use of different reference
preparations for assay standards can generate dif-
ferent values for the same QC samples. Moreover,
such assays may have very discrepant sensitivities
for detecting low levels of circulating hormones.
At the very least, such commercial kits should be
revalidated against the NIADDKD materials.

E. Histological Assessments

Typically, toxicological studiesincludeahis-
topathologica examination of the different tissues
and organs of concern. In addition, this protocol ex-
tendsthe evaluationsto include histol ogical assess-
mentsthat may reflect trestment-rel ated functional
changesin uterine, ovarian, and thyroid tissuesim-
posed by varying degreesof hormonal perturbation.

1. Uterus

Uterine histology has been used extensively
to detect estrogenic changesin sexually immature
or adult ovariectomized rats following treatment
with exogenous estrogens, phytoestrogens, and
estrogen agonists (e.g., O’'Conner et a., 1996;
Reel et al., 1996). An induction of uterine growth
isassociated with hypertrophy of the uterine lumi-
nal and glandular epithelium within 12 to 24 h after
exposureto estrogen. During thistime, the epithe-
lium can increaseto six to eight cell layers, when
compared with two to three layersin the unstimu-
lated uterus (Padykula et al., 1981; O’ Conner et
al., 1996). Methods for quantifying epithelial cell
height (Branham et al., 1993, 1996; Sourlaet al.,
1998) and uterine endometrial stromal cell prolif-
eration (Martin and Claringbold, 1958; O’ Conner
et a., 1996) have been well documented.
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Although uterine histology is useful for char-
acterizing estrogenic activity in the absence of
endogenous estrogen, the utility of this endpoint
in cycling females is questionable without con-
sidering the hormonal profile of the animal at the
time of necropsy. Recently, Spornitz et al. (1999)
have provided a detailed summary of histological
changes in the uterine epithelium during the es-
trous cycle and correlated those changes with se-
rum steroid and gonadotropin concentrations. Us-
ing the proposed femal e pubertal protocol, animals
arekilled at agiven agerather than on aparticular
day of the estrous cycle. Therefore, uterine histo-
logical datashould be considered in context of the
cycling status of the animal (i.e., whether estrous
cycles are present, and if so the particular day of
the cycle on which the female is evaluated) and
the levels of circulating sex steroids.

2. Ovaries

Ovarian histological assessments should also
take into account the functional (i.e., cycling)
status at the time of necropsy, because this may
markedly affect the appearance of the ovaries.
Histological evaluations are useful in determin-
ing the extent to which ovarian development has
been affected by treatment and at the same time
contributeinformation on any observed alterations
in cycling status. For example, animals dosed with
a potent estrogen, such as estradiol or diethylstil-
bestrol (DES), would show early vaginal opening
and persistently cornified smears. However, the
ovaries of such animals would be atrophic (e.g.,
Pinilla et a, 1993; Biegel et al., 1998). Alterna-
tively, animals displaying periods of extended
diestrus may be either pseudopregnant or anestrus,
conditions that can be differentiated by histol ogi-
cal examination. Pseudopregnant ovaries will
contain prominent corpora lutea (e.g., Miyagawa
et a., 1975; Smith et al., 1975), while in an per-
sistently anestrous animal the ovaries appear atro-
phic with few primary follicles (Huang and Meites,
1975; Cooper et al., 1993).

3. Thyroid

Morphological changes in the thyroid gland
have been described that are correlated with thy-



roid hormone synthesis and secretion. Reduced
circulating levelsof T4 and T3 following achemi-
cal or physiological insult generally induce acom-
pensatory release of TSH from the pituitary (Capen,
1997; 1998; Kasza et al., 1978). The secretion of
TSH leads to proliferative changes in the thyroid
follicular cells such as hypertrophy and hyperpla-
sia. Prolonged TSH excretion is correlated with an
increased incidence of thyroid tumors in rodents
(Capen, 1992). However, morphological changes
in the thyroid follicular cells can be observed
after short-term exposure, where modest to sub-
stantial reductions in serum T4 have occurred.
Saeed and Hansen (1997) report increased thy-
roid follicular cell height (9 to 10-12 pm) and
decreased colloid area (1100 to 800-900 um?) in
weanling female rats with modest serum T4 con-
centrations following two doses of 2,2',4,4'-
tetrachlorobiphenyl. Thus, an evaluation of these
parameters may be helpful in detecting an early or
transient responseto athyroid toxicant, especially
in cases where a compensatory release of TSH
and stored T4 may have temporarily masked a
reductionin thyroid hormone synthesis at thetime
of necropsy (Saeed and Hansen, 1997; Hansen et
al., 1995; Capen, 1998). For a more comprehen-
sive discussion of toxicant-induced aterationsin
thyroid endpoints, thereader isreferred to DeVito
et a. (1999).
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