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Two Significant Assumptions for Two Significant Assumptions for 
EPANET Water Quality ModelEPANET Water Quality Model

At present, prevailing network water quality models 
are based on two major simplifications.

First, longitudinal dispersion of the solute mass along 
the pipe axis is ignored, and “plug flowplug flow”” is assumed 
to prevail.

Second, solute mixing is assumed to be “complete
and instantaneous” at the pipe junctions. 

Recent investigations suggest that these assumptions 
may NOT be valid in real pipe networks.
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Why Axial Dispersion?Why Axial Dispersion?

Turbulent Flow Velocity Profile

Contaminant travels fast along the centerline
(Umax = 2Uave; i.e., Umax >> Uave)

Contaminant lags behind along the pipe wall

Contaminant travels somewhat fast along the centerline
(Umax > Uave)

Contaminant lags behind along the pipe wall

Contaminant travels at the same speed along 
the pipe cross section (Umax = Uave)

Laminar Flow Velocity Profile

Plug Flow Velocity Profile

Averaged Velocity Profile, Uave

(b)

(c)

(a)

r

r

r
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Typical tracer dispersion 
along the pipe wall

(Moran et al. 2003)
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Experimental SetupExperimental Setup
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Axial dispersion & tailing of microorganisms:Axial dispersion & tailing of microorganisms:
Detection limits, sampling frequency, sensor locationsDetection limits, sampling frequency, sensor locations



Examination of Existing ModelsExamination of Existing Models

ADRNET (Buchberger and Li)/IMTARED (TzatchkovADRNET (Buchberger and Li)/IMTARED (Tzatchkov)/In/In--House Code House Code 
(Kang and Lansey)/Experimental Data (Choi)(Kang and Lansey)/Experimental Data (Choi)



Real Time Biosensor ResearchReal Time Biosensor Research

Courtesy of Professor Yoon
The Univ. of ArizonaUniv. of Arizona
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Mixing patterns along the interfaceMixing patterns along the interface

Velocity vectors at a cross junction, when ReS = ReW = ReE = ReN = 44,000 
(ReS/W = 1, ReE/N=1), and Sct = 0.1875



Mixing patterns along the interfaceMixing patterns along the interface

Dimensionless NaCl Concentration contours at a cross junction, when ReS = ReW
= ReE = ReN = 44,000 (ReS/W = 1, ReE/N=1), and Sct = 0.1875



Mixing patterns along the interfaceMixing patterns along the interface

Simulation Video ClipSimulation Video Clip




A schematic of the experimental setup



Representative Junction TypesRepresentative Junction Types



Flow VisualizationFlow Visualization




X, T, Y junctions for Scenario 1X, T, Y junctions for Scenario 1
ReReEE == ReReWW == ReReSS == ReReNN
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Development of Development of AZREDAZRED
(with Perfect Mixing Model)(with Perfect Mixing Model)




Development of Development of AZREDAZRED
(Improved Water Quality Model)(Improved Water Quality Model)




Comparison

Existing Model 
based on 

Perfect Mixing

AZREDAZRED



5x5 Network Establishment5x5 Network Establishment



EPANET Hydraulic ModelEPANET Hydraulic Model
(Experimentally Validated)(Experimentally Validated)

Reynolds Numbers



R² = 0.932

R² = 0.372
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Corresponding Risk Microbial Risk Assessment  & ConsequencesCorresponding Risk Microbial Risk Assessment  & Consequences
Based on Perfect Based on Perfect 

Mixing AssumptionMixing Assumption
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The total number of sensors and their locations change based on 
AZRED water quality data.

Perfect Mixing AZRED

Minimum Hazard Levels (MHL) = 1 mg/L
Level of Services (LOS) = 25 m^3

Optimal Sensor PlacementOptimal Sensor Placement

6 sensors 7 sensors



Beyond Water Security:Beyond Water Security:
Water Safety and System DesignWater Safety and System Design
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Microbial Risk AssessmentMicrobial Risk Assessment
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Significance of Modeling for Significance of Modeling for 
QMRAQMRA
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-Three random demands were 
set, one on each “region”

- AZRED simulations generated 
input data for ANN training and 
testing

- ANNs were trained on WQ 
models with both assumptions of 
mixing at junctions

Artificial Neural Networks with Artificial Neural Networks with AZREDAZREDArtificial Neural Networks with Artificial Neural Networks with Artificial Neural Networks with Artificial Neural Networks with Artificial Neural Networks with 
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