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Overall Goal:
• Improve the simulation of secondary organic aerosol (SOA) 

formation through cloud processing

Approach:

• Conduct aqueous experiments ± HNO3 (glyoxal/ methylglyoxal
+ OH) and at lower concentrations

• Refine aqueous chemical mechanisms; update the cloud 
chemistry model 

• Add in-cloud SOA formation to CMAQ

• Begin to explore the magnitude of in-cloud SOA formation and 
role of NOx/HNO3 in SOA formation from isoprene through 
cloud processing

Improved Prediction of In-Cloud Biogenic SOA



� Organic gases are oxidized (e.g., in interstitial spaces 
of clouds) to water-soluble compounds.

� Water-soluble gases partition into cloud droplets and 
oxidize further (e.g., by ·OH formed
photochemically). 

� Low volatility products remain in the particle phase 
upon cloud evaporation, contributing secondary 
organic aerosol (SOA), especially in FT

(Blando and Turpin, 2000; Gelencser and Varga, 2005)

organic gases, 
NOx…

Cloud 
evaporation SOA

In-cloud 
chemistry

In-Cloud SOA Formation
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• Demonstrate feasiblity using available kinetics 
- Warneck, 2003; Ervens et al., 2004; Lim et al., 2005 – zero-dimensional, cloud chemistry, 
cloud parcel modeling
- Chen et al. 2007 – chemical transport modeling

• Look for atmospheric evidence
- Sorooshian et al. 2007(MACE); 2006 (ICART); Heald et al., 2006 (ICART); 2005 (ACE-
Asia); Yu et al., 2005; Crahan et al., 2004; Chebbi and Carlier, 1996; Kawamura et al., 1993

• Conduct key experiments
- Carlton et al., 2006 (pyruvate→oxalate); Altieri et al., 2006 (pyruvate→ oligomers); 
Carlton et al., 2007 (glyoxal→oxalate); Altieri et al., 2008 (methylglyoxal→oligomers by 
esterification)

• Validate/refine kinetics and incorporate into chemical 
transport models

Aqueous phase products 
were assumed

In-Cloud SOA Formation – Is it an important process?
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Glycolaldehyde (70%)

Glyoxal (20%)

Isoprene (468 Tg C/yr)

Methyl vinyl ketone
(32%)

Spaulding, et al JGR 2003, 108.

Methylglyoxal (30%)

Gas phase

SOA

Low volatility
organic acids

•Glycolic acid
•Oxalic acid
•Higher MW     
species

Aqueous phase Particle
phase

OH
OH

OH

OH

Isoprene to SOA
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Aqueous phase
Reactions with ·OH

HOCH2CHO                  

(glycolaldehyde)

(glyoxal - hydrated) 

HOCH2CH(OH)2             (OH)2CHCH(OH)2

HOCH2COOH                                                            

(glycolic acid)

(OH)2CHCOOH   

(glyoxylic acid - hydrated) 

HOOCCOOH              

(oxalic acid)                  

CO 2                          

HCOOH

(formic acid) 

CO 2                          

CHOCHO        

(glyoxal) 

Large 
multifunctional 
alcohols/acids

Large 
multifunctional 
compounds

(Carlton et al., 2007; Perri in prep.)

Our Previous Experiments
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glyoxylic acid
formaldehyde

measured in pyruvic acid experiments

formic acid

acetic acid

proposed by Stefan et al., 1996; 
Stefan and Bolton, 1999; measured here

glycolic acid

succinic acid

measured by Wang et al 2001 

proposed  here (similar to SB for PA)

malic acid

hydroxypyruvate

hydracrylic acid

lactic acid

Oligomers:  
hydroxy acid addition 
to org acid parent 

Our Previous Experiments

(Altieri et al., 2008)



EPA STAR 2008
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3-(2-oxopropanoyloxy)propanoic acid

+

-H2O 

+ 
HO

O

OH

hydracrylic acid
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3-(3-(2-oxopropanoyloxy)propanoyloxy)propanoic acid

O

OH

C6H8O5 
m/z 159 
DBE=3 

C9H12O7 
m/z 231 
DBE=4 

pyruvic acid hydracrylic acid

hydracrylic acid
3-(2-oxopropanoyloxy) propanoic acid

3-(3-(2-oxopropanoyloxy) propanoyloxy) propanoic acid

Oligomer Formation:

acid catalyzed 
esterification 

addition of a hydroxy
acid (C3H6O3) to each 
organic acid parent

(> MW by 72.0213 g/mol 
with each add’n; 
replicates series)

loss of water – lowers 
OM/OC

·OH involved in hydroxy
acid formation

Example

(Altieri et al., 2008)

Our Previous Experiments
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Roles of NOx in In-cloud SOA from Isoprene: 

1.  Gas phase formation of atmospheric oxidants

2.  Gas phase formation of water soluble carbonyls

3.  Aqueous NO3- → ·OH, ·NO2, organonitrates?, acid 
catalyzed reactions (?)

Project Experiments

Modeling

This Project
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Experiments 

1 mM methylglyoxal 

5 mM    H2O2+hν� ·OH

4.2-4.5  pH

1mM methylglyoxal

5 mM    H2O2+hν� ·OH

1.5 mM  HNO3

2.7-3.8   pH

Controls 
MG+UV

MG +HNO3

MG+H2O2

MG+H2O2 + HNO3

UV+H2O2

Catalase to stop reactions; Samples frozen   
ESI-MS; FT-ICR MS; ESI-MS-MS, 

IC for organic acids, DOC for mass balance, H2O2

Batch Aqueous-Phase Reactions to Simulate Cloud 
Chemistry 

Repeat with glyoxal, 
and at lower 
concentrations
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ICS-3000 with 
conductivity and 
UV/vis; IonPac 
AS11-HC column

Now: 
3 mM, 300 µM, 
30 µM Glyoxal  

Atmospheric 
aqueous glyoxal
concentrations   
5 – 300 µM 

Experimental progress:   ICS-3000
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glycolaldehyde

glyoxal

glyoxylic 
acid

oxalic acid

glycolic acid

formic acid

CO2
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glyoxylic acid
oxalic acid
m/z 103
m/z 117

m/z 103, 117 are two of the 
many unpredicted products

Experimental progress:   On-line ESI-MS Measurements
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Methylglyoxal + �OH + NO3
-
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Measure products 
in reaction vessel

Form/evaporate 
droplets from reaction 
vessel samples to 
measure yieldsPredict 

concentrations of 
key products in the 
reaction vessel

Incorporate 
chemistry into 
cloud chemistry/ 
parcel models to 
develop yields or 
to simplify the 
chemistry

Incorporate in-cloud SOA formation 
using a yield-based approach

Incorporate in-cloud SOA 
formation using simplified 
chemistry

CMAQ

Modeling Strategy

Aqueous Photooxidation Experiments

C
lo

ud
 m

od
e l

s

Modeling Collaborators: 
Annmarie Carlton (NOAA/EPA Cooperative Agreement)
Barbara Ervens, Sonia Kriedenweis, Graham Feingold, UCBoulder/NOAA

Yields: Key variables
product yields:
•Cloud contact time,             
VOC/NOx, LWC
Partitioning:
• RH, T

SOA yields
from wso
precursor

Product yields
from wso
precursor

Simplified 
aqueous chem



EPA STAR 2008
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Time (min)

3 mM Glyoxal + ·OH  (15 mM H 2O2 + UV)

model fit

Reaction Vessel Model – Example, prediction of oxalic acid from glyoxal

(model of Carlton et al., 2007; modified, now captures pH change)

Example of modeling strategy – Prediction of oxalic acid 
from glyoxal
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� 5 days in equatorial Amazon;  5 days in marine area

� Intermittent clouds between 13:00–16:00 daily

� Fair weather cumulus, 1 km, LWC=0.5 g/m3, T=285K, 
pH=4.5

� Semi-sinusoidal change of photolysis between 06:00-18:00 
with a peak at noon and no nighttime photolysis

� 1-Box model (gas- and aqueous-phase chemistry, phase 
transfer, emission, dry deposition)

� Over 300 reactions: HOx-NOy-CO-CH4-Isoprene-S-Metal-Cl-
Organics

� Model predicts aqueous phase organic acids

Example: Simulating oxalic acid from isoprene for 
Amazon: Previous (Lim et al, 2005) and updated glyoxal
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NOTE: about 2/3rds of ·OH is from gas phase.  (Aqueous ·OH 
formation is often neglected in cloud chemistry models)

Model improvements did not effect �OH predictions



EPA STAR 2008Model improvements approx. doubled oxalic acid

Note: Still must incorporate refinements for methylglyoxal, glycolaldehyde
including prediction of large multifunctional or oligomeric products.  
Note glycolic acid is also an important contributor to in-cloud SOA.
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Cloud parcel model of in-cloud SOA from isoprene

Note:  higher SOA 
yields with higher
NOx because more 
gas phase production 
of water soluble 
carbonyls

(Ervens et al., 2008)

Yield (%) = 
mass C in SOA
mass isoprene C 

Feingold microphys. 
cloud model

•multiple cycles 
•stratocumulus
•partitioning of wsoc
•gas+aq chem
•Ervens aq chem 
•altered Gly, PA chem
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Where CMAQ did not predict a cloud 
encountered by the NOAA-P3 near the 
domain boundary: predicted OC did not 
differ between simulations and both 
predictions for this were biased low.

urban plume

o – OC prediction including SOAcld

o – OC prediction without SOAcld

-o- WSOC measurements
Solid line is aircraft altitude; secondary y-axis
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Where CMAQ did not predict a cloud 
encountered by the NOAA-P3 near the 
domain boundary: predicted OC did not 
differ between simulations and both 
predictions for this were biased low.

urban plume

o – OC prediction including SOAcld

o – OC prediction without SOAcld

-o- WSOC measurements
Solid line is aircraft altitude; secondary y-axis
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CMAQ with fixed yields from aqueous-phase aldehydes

ICART – Aug 14th – “cloud flight”
Yields – 4% molar (SOA from glyoxal, methylglyoxal, 10 min cld contact time)
Range of yields – 1-10% 
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Layer-avg conc.
Aug 14, 2004
“cloud exp”

(simulations
Aug 1-31)

In-cloud SOA 
ranged from 
0-5 µg/m3

Secondary Organic Aerosol 

NOAA P3
WSOC

CMAQ
OC

CMAQ with fixed yields from aqueous-phase aldehydes
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1. Experiments at lower precursor concentrations

2. Experiments with/without HNO3 

3. Model methylglyoxal in reaction vessel

4. CMAQ Rosenbrock solver  - for more detailed aq. 
Chemistry

Next Steps
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