Biomarkers and Risk Assessment for Chromium(VI)

Qingshan Qu, MD (PI)
Roy Shore, PhD (Co-I)
Dept. of Environmental Med.
NYU School of Medicine
Background

Toxicity of oxidation states of Chromium (Cr)

- Cr(III) is relatively nontoxic, poorly absorbed, little crosses cell membranes, & may be an essential element

- Cr(VI) is strong oxidizing agent: toxic and carcinogenic; crosses cell membranes
Public Health Risks

- Cr(VI) is public health concern: Superfund site contaminant
- Current Risk Assessments based on extrapolations: high-to-low concentrations and/or animal-to-human
Study Approach

- Measure exposure levels, internal dose, markers for biologically effective dose & genotoxicity.

- Ultimate goal: determine which biomarkers are useful quantitative indicators of Cr(VI) exposure at low levels for future epidemiology or surveillance.
Intermediate Objectives for Biomarker Validation & Utility

- Examine the reproducibility of each biomarker (intraindividual vs. interindividual variability)

- Measure sensitivity of biomarker at progressively lower levels

- Examine the specificity of the biomarker (? affected by smoking, diet, age, other metal exposures?)
Exposure Biomarkers

- Plasma Cr – Cr(III), some Cr(VI)

- Erythrocyte or Lymphocyte Cr – source mainly Cr(VI) [but is reduced to Cr(III) within the cell]

- Dose-response may be affected by plasma reduction capacity
Markers of Biological Effects or Susceptibility

- DNA-protein cross-links (DPC) in leukocytes (assess biologically effective dose?)

- Comet assay - detects DNA single-strand breaks or incomplete repair, alkali-labile sites, DNA-DNA or DNA-protein cross-linking

- Susceptibility markers of extracellular reduction capacity
 - Ratio of Cr in erythrocytes to that in plasma
 - Plasma ascorbate levels
 - Plasma oxidative status
Methods & Procedures – I.

- Identified factories with Cr exposure
- Conducted walk-throughs to select factories
- Talked with management & then employees about the study
- Administered questionnaire re: smoking, health status, etc. so as to select subjects
Methods & Procedures – II.

- Physical exam
- Personal exposure monitoring – one 8 hr shift
 - Used personal monitor with pump
- Urine sample at end of workday – for cotinine & creatinine
- 10 ml blood sample – separated into plasma, lymphocytes & erythrocytes
- For 8 subjects monitored & blood on 3 successive Mondays
Methods & Procedures – III.

- In year 1, obtained 25 exposed & 25 unexposed (farmers >50 miles away)
- In year 2, just completed obtaining exposure & bloods on another 125 exposed & 30 unexposed
- Subjects in year 1 were mostly highly exposed, those in year 2 have a broad range of lower exposures
- Each year spent >1 mo. in China collecting data
Principal Statistical Analyses

- Examine reproducibility of biomarker
- Determine initial sensitivity of biomarker assay to detect high-exposure effects
- Examine slope & shape of exposure-response curve
- Evaluate sensitivity of biomarker at lower exposure levels
Statistical Analyses – Other Considerations

- Control for possible confounding variables: age, sex, smoking

- For Cr(VI), evaluate & adjust for exposures to Cr(III) & to nickel

- Is Cr(VI) exposure-response relation modified by plasma reduction capacity, serum vitamin C or oxidative status?
Fig. 1 Correlation between personal exposure and Cr levels in RBC
Fig. 3 Correlation between comet scores and personal exposure to Cr(VI)
Fig. 4 Correlation between comet scores and Cr levels in RBC
8-OHdG [log(x ug/g creatinine)]

Cr in RBC [log(x ug/10^{12} RBC)]

y = 1.5366x + 1.4265
R = 0.8085
P<0.0001

Fig. 6 Correlation between urinary 8-OHdG and Cr levels in RBC
Biomarkers and Risk Assessment for Chromium(VI)

Qingshan Qu, MD (PI)
qingshan@env.med.nyu.edu
Dept. of Environmental Med.
NYU School of Medicine