Development of Advanced Factor Analysis Methods for Carbonaceous PM Source Identification and Apportionment

Philip K. Hopke

Center for Air Resources Engineering and Science
Clarkson University
Investigators

• This project represents a collaboration among
 • Pentti Paatero, University of Helsinki
 • Ron Henry, University of Southern California
 • Cliff Spiegelman, Texas A&M University
• Work was conducted by
 • Eugene Kim, Weixiang Zhao, Jong Hoon Lee, David Ogulei, and Ramya Sunder Raman
Objectives

• The objective of this project was to combine the best features of the two advanced factor analysis models, UNMIX and Positive Matrix Factorization (PMF), and to test the effectiveness of this improved factor analysis methodology by analysis of the data developed in the various supersites with an emphasis on data from the New York City Supersite and other data from New York State.
Methodological Research

• Part of the effort in the project was methodological studies.
 • Duality of Solutions
 • Singular value decomposition of the data leads to two sets of eigenvectors. One set of eigenvectors spans a space in which source compositions are points and source contributions are hyperplanes. This space is shown to be dual to the space spanned by the second set of eigenvectors of the data in which source compositions are hyperplanes and source contributions are points. The duality principle has been applied to greatly increase the computational speed of the Unmix multivariate receptor model.
Methodological Research

• G-Space Edges
 • Scatter plots are created of pairs of source contribution factors. When factors are plotted in this way, unrealistic rotations appear as oblique edges that define the distribution of points away from one (or both) of the coordinate axes. With a correct rotation, the limiting edges usually coincide with the axes or lay parallel with them. Inspection of the plots helps one in choosing a realistic rotation.
G-Space Edges

- If the two factors are independent of one another, then the resulting contribution values should completely fill the scatter plot and there should be no correlation between them.
G-Space Edges

![Graph showing the relationship between biomass burning and motor vehicles.](image-url)
G-Space Edges

![Graph showing the relationship between 2-stroke engines and road dust.](image)
G-Space Edges

G-Space Edges

Metal smelter

Biomass burning
G-Space Plots

• Obviously there is an edge in this plot.

• Does it make sense that these two factors are correlated?

• If not, it suggests the need for a rotation.
G-Space Edges

[Graph showing a scatter plot with two axes: Metal smelter on the y-axis and Motor vehicles on the x-axis. The plot includes a dashed line and various data points.]
G-Space Edges

- Note that there can be points outside the apparent edge.

- These points should be checked to be sure they belong. However, it may be necessary to ignore them.
G-Space Edges

![Graph showing the relationship between biomass burning and metal smelter emissions.](image)
G-Space Edges
G-Space Edges

• Even after rotation, edges can persist.
G-Space Edges

Motor vehicles vs. Biomass burning
Applications

- Particle Composition Data
 - Use of IMPROVE carbon fractions
 - Use of STN data
Gasoline Vehicles

Atlanta

Washington, DC

Brigantine

Concentration (μg/μg)
IMPROVE

Diesel Vehicles

Concentration (μg/μg)

Atlanta

Washington, DC

Brigantine
STN-NYC

Gasoline Vehicles
STN-NYC

Diesel Vehicles
Gasoline – Diesel Split

• Can gasoline vehicular emissions be separated from diesel emissions?
 • Shah et al. (*Environ. Sci. Technol.* 38 (9), 2544-2550, 2004) show that stop and go and creeping diesel vehicles emit roughly 50:50 OC/EC as measured with the NIOSH protocol.
 • Problems of “smokers” looking like “diesel” emissions
Gasoline – Diesel Split

• Thus, the “diesel” profile tends to reflect the emissions from vehicles moving at highway speed (i.e., min OC/EC ratio)

• “Gasoline” reflects the maximum OC/EC ratio

• However, the oil additive trace elements tend to go into the “diesel” profile.
Gasoline – Diesel Split

- Does the choice of IMPROVE or NIOSH protocols affect the apportionment and the assignment of mass to “diesel,” “gasoline,” and other major carbonaceous aerosol sources like biomass burning.

- We have an opportunity to make such a comparison using data from the St.Louis-Midwest Supersite.
Comparison of PMF using either IMPROVE or NIOSH Data

- Using daily integrated PM2.5 samples obtained at the St. Louis-Midwest Supersite, OC/EC analyses were performed by the two protocols:
 - OC-EC were originally analyzed at UW-Madison with the ACE-Asia variant of the NIOSH protocol
 - Subsequently, the same samples were analyzed at DRI using the IMPROVE protocol
Comparison of PMF using either IMPROVE or NIOSH Data

• Analysis was undertaken for three sets of PM2.5 speciation data at the St. Louis-Midwest Supersite in which each set differs only in the carbon concentrations.

• The first set (679 samples for 31 species) has eight carbon fractions (OC1 to OC4, OP, and EC1 to EC3) from the IMPROVE protocol.

• The second set (679 samples for 25 species) included only the total IMPROVE OC (TOC = OC1 + OC2 + OC3 + OC4 + OP) and EC fractions (TEC = EC1 - OP + EC2 + EC3), respectively.

• The last set (679 samples for 25 species) contains OC and EC concentration obtained by the NIOSH analysis.
Comparison of PMF using either IMPROVE or NIOSH Data

- Solutions with 11 factors, 10 factors, and 10 factors were obtained by IMPROVE carbon fractions, IMPROVE TOC-TEC values, and NIOSH OC-EC values, respectively, for the St. Louis Supersite PM2.5.
Comparison of PMF using either IMPROVE or NIOSH Data
Comparison of PMF using either IMPROVE or NIOSH Data

Gasoline

[Graph showing comparison between IMPROVE and NIOSH data for various elements such as OC, EC, SO4, NO3, NH4, Al, As, Ba, Ca, Co, Cu, Fe, K, Mn, Ni, Pb, Rb, Se, Si, Sr, Ti, Zn, Zr, with bars depicting concentrations.]
Comparison of PMF using either IMPROVE or NIOSH Data

Diesel
Comparison of PMF using either IMPROVE or NIOSH Data

Biomass Burning
Comparison of PMF using either IMPROVE or NIOSH Data

Mass Reconstruction

- **IMPROVE OC-EC**
 - $y = 0.92x + 0.95$
 - $R^2 = 0.93$

- **IMPROVE C fractions**
 - $y = 0.91x + 1.13$
 - $R^2 = 0.92$

- **NIOSH OC-EC**
 - $y = 0.95x + 0.64$
 - $R^2 = 0.94$
Comparison of PMF using either IMPROVE or NIOSH Data

Contribution Comparisons

- Gasoline
- Diesel
- Wood smoke

ACE-Asia/NIOSH ECOC (μg m^{-3})

Summed Fractions
C-Fraction
Publications

Publications

QUESTIONS?