Integrated Source/ Receptor-Based Methods for Source Apportionment and Area of Influence Analysis

U.S. EPA STAR PM Source Apportionment Progress Review Workshop

June 21, 2007

Jaemeen Park, Talat Odman, Yongtao Hu, Florian Habermacher, and Ted Russell

Georgia Institute of Technology
Overview

• Introduction

• Source apportionment of PM2.5
 - Primary PM2.5 using CMAQ
 - Regional/Secondary PM2.5 using CMAQ-DDM
 - Improving emission inventories
 • Using metal tracer species
 • Inverse modeling using CMAQ-DDM

• Area of Influence Analysis
Objectives

• Extend a recently developed source apportionment (SA) method for ozone to PM2.5/coarse
• Inter-compare results from source-apportionment methods (receptor and source-oriented approaches).
• Identify strengths and limitations of the approaches, focusing on the reasons for disagreement.
• Quantify uncertainties involved in the application of the various source apportionment methods.
• Refine and apply inverse modeling to improve emissions and source apportionment determinations.
• Develop the Area-of-Influence analysis technique.
• Assess the relative strengths of using Supersite data vs. routine monitoring data for SA applications.
• Provide source apportionment results to air quality managers and epidemiologic researchers.
Approach

- Apply various modeling tools to conduct source apportionments
 - CMAQ-DDM3D
 - CMB
 - Regular, Molecular Marker, LGO w/gases
 - PMF
 - Inverse modeling (CMAQ-DDM-FDDA)
- Use the extensive data from the Supersites, SEARCH, ASACA and STN
 - Focus on SE, particularly Atlanta:
 - Atlanta Supersite: Extensive PM and gaseous data in summer 1999
 - SEARCH: SE, detailed PM and gaseous data since 1998
 - ASACA: Atlanta, daily PM composition since 1999
 - Larger scale focus using ESP data (July-August, 2001; January, 2002)
- Conduct uncertainty assessments
Study Area and Periods

Modeling periods:
- August 1999
- July 2001
- January 2002
- July 2005
- January 2006

Base inventories
- EPA NEI

Point sources in Georgia
- EPA NEI 2002 (draft), CEM data

Forest fire, land clearing debris in 2002
- VISTAS, 2005

Residential meat cooking
- New emissions were added

SEARCH monitoring sites
- Urban sites: Atlanta, Jefferson St. (JST), Birmingham (BHM), Gulf port (GFP), Pensacola (PNS)
- Suburban sites: Pensacola (OLF)
- Rural sites: Oak Grove (OAK), Centreville (CTR), Yorkshire (YRK)

ASACA
DDM-Sensitivity analysis based Source Apportionment

• Given a system, find how the state (concentrations) responds to incremental changes in the input and model parameters:

\[\frac{\partial C_i}{\partial P_j} \]

If \(P_j \) are emissions, \(S_{ij} \) are the sensitivities/responses to emission changes, e.g., the sensitivity of ozone to Atlanta NOx emissions.
Sensitivity Analysis with Decoupled Direct Method (DDM):
The Power of the Derivative

• Define first order sensitivities as \(S_{ij}^{(1)} = \frac{\partial C_i}{\partial E_j} \)

• Take derivatives of
 \[
 \frac{\partial C_i}{\partial t} = -\nabla (u C_i) + \nabla (K \nabla C_i) + R_i + E_i
 \]

• Solve sensitivity equations simultaneously

\[
\frac{\partial C_i}{\partial t} = -\nabla (u S_{ij}) + \nabla (K \nabla S_{ij}) + JS_j + \delta_{ij} E_i
\]
DDM compared to Brute Force

\[S_{ij} = \frac{\partial C_i}{\partial \varepsilon_j} \]

\[S_{ij} \approx \frac{C_A - C_B}{\varepsilon_A - \varepsilon_b} \]
Consistency of first-order sensitivities

Brute Force (20% change) vs. DDM-3D

R² > 0.99
Low bias & error

August 15, 2000 23:00:00
Min = -0.034 at (30,34), Max = 0.034 at (35,35)

August 15, 2000 23:00:00
Min = -0.040 at (30,34), Max = 0.033 at (65,27)
Advantages of DDM-3D

• Computes sensitivities of all modeled species to many different parameters in one simulation
 - Can “tell” model to give sensitivities to 10s of parameters in the same run

• Captures small perturbations in input parameters
 - Strangely wonderful

• Avoids numerical errors sometimes present in sensitivities calculated with Brute Force

• Lowers the requirement for computational resources
Evidence of Numerical Errors in BF

\(\text{NH}_4 \) sensitivity to domain-wide \(\text{SO}_2 \) reductions

\(\text{NO}_x \) reductions at a point

In recent study, brute force led to multiple maxima and minima being due to noise.
Efficiency of DDM-3D

![Graph showing the efficiency of DDM-3D with linear equations for BF+1 and DDM.]

- BF+1: $y = 3.184x + 3.184$
- DDM: $y = 1.279x + 6.246$
- $R^2 = 0.997$
Regional Source Apportionment of PM 2.5
Using Direct Sensitivity: Application to Georgia
Intercomparison of Source Apportionment Methods

• Apply a variety of methods to relatively rich data base of PM in the SE
 – Supersite, SEARCH, ASACA, STN

• Methods
 – CMAQ-DDM
 – PMF
 – CMB-Regular (typical analysis using STN-type data)
 – CMB-Molecular Marker (using organic molecular speciation)
 – CMB-LGO (optimized, using gas phase species, w/wo re-optimization of source profiles)

 • Adding gaseous species really helps: Don’t stop monitoring CO, SO2 and NOx!
 • Re-optimization of profiles made smaller difference
Source apportionment of PM2.5 OC from different models

- **Air quality model**: CMAQ/DDM3D-PM
- **Receptor models**: CMB, PMF

N.b. Not all sources are common to all methods
Looking at Uncertainties: Monte Carlo Analysis of CMB with Latin Hypercube Sampling (LHS)

- Assume log-normally distributed variables in source profiles and ambient data
 - PM$_{2.5}$ data from Atlanta, GA (EPA STN): Jan 02 ~ Nov 03 (# of data points: 212)

- Construct CDF for each variable using uncertainties
 - Divide into 500 equal probable intervals

- Sample from each variable PDF 500 times
 - Constrain source profiles ($\sum_{i=1}^{n} f_i \leq 1$)

- 500 simulations using CMB

Cumulative Probability

random variable, x
Uncertainty vs. Source Contribution

If $S_j < \sigma_{S_j}$ non-detectable source
Uncertainty vs. Source Contribution

If $S_j < \sigma_{S_j}$ non-detectable source
Daily Variation: PMF vs. CMB-LGO

CMB Source Apportionment

PMF

Note daily variability in relative source contributions
Mass contributions to PM2.5: Comparison of CMB-MM and CMAQ

Averaged contribution over the eight SEARCH stations for July 2001 and January 2002

- Average of source contributions looks pretty good, particularly just looking at source impacts, but…

\[r = 0.74 \]
\[\text{CMB} = 1.04 \times \text{CMAQ} \]
Disaggregated some: not so good

- If we look at the results by specific source at individual stations, not quite so good, and further, look at daily agreement...
Daily average mass contributions to PM2.5 in July 2001

CMB-MM and CMAQ (left to right)

Diesel
Gasoline
Power Plant
Road Dust
Wood Burning
Meat Cooking
Natural Gas
Other organic mass
Other mass

[Graph showing daily average mass contributions to PM2.5 in July 2001 for different sources such as Diesel, Gasoline, Power Plant, Road Dust, Wood Burning, Meat Cooking, Natural Gas, Other organic mass, and Other mass.]
Daily Variation is Important!

- Health associations are derived from how concentrations/outcomes deviate from the norm on a daily basis
 - Too little or too much (or wrong) will inhibit identification of outcomes and exposure-response relationship
- Bias to the null and loss of power
Cautionary notes on receptor and emissions-based air quality models

- Both approaches
 - Tend to agree relatively well on average
 - (usually) identify large vs. small sources
 • Sometimes by their absence
- Receptor models
 - Methods, based on largely the same data, give different results
 • Significant uncertainties
 - Gives more temporal variation in source impacts at a specific receptor site
 • Too much? (reasons to think so)
 - Not apparent how to conduct thorough evaluation and uncertainty analysis for all methods
- Emissions-based models
 - Propagate uncertainties in variety of inputs and process descriptions
 - Have less day-to-day variability (probably too little)
 • Meteorological models and inventories do not capture temporal variability well
 • May be more spatially representative
 - Can have obvious disagreements with the data
 • At least we know there is a problem!
Application to Health Effects Associations

- Used CMB-LGO and PMF*
- Applied in an emergency department time-series study (Rollins School of Public-Health, Emory University)
- Relative Risks (RRs) associated with change in inter-quartile-range of 3-day moving averages of PM$_{2.5}$ levels were estimated using Poisson generalized linear models.

* - Kim et al., Atm Env 38, 3349-3362, 2004
Source-specific RRs: Mobile sources

All respiratory (263 daily ED visits) All cardiovascular (86 daily ED visits)
Source-specific RRs: “Other” OC

Preliminary results... further analysis appears to reduce other OC association
Analysis of Area of Influence (AOI)

- To identify which sources or regions might impact a specific receptor
- Uses source based sensitivity and AOI to determine the spatial distribution of emission influences
 - Evaluate the impact of specific existing sources
 - Predict the impact of future sources
- Uses source based sensitivity fields to generate receptor-based sensitivity fields
- Method is based on the DDM-3D functionality in CMAQ
- Computationally less intensive than adjoint modeling for multiple receptors
AOI Development – Reverse Fields

- Using the complete set of forward sensitivities (at each point in the domain), receptor oriented fields can be computed at any point using an inverse transformation:

\[z_{ij}^*(\overline{x}, \overline{x}_r, t) = \sum_{k=1}^{N} w_k(\overline{x}) * s_{ij,k}^*(\overline{x}_l, t) \]

Forward sensitivity field for a source at \(k \)

Reverse sensitivity for receptor located at \(\overline{x}_r \)
AOI Development - Forward Fields/Back Inversion

1. Choose a receptor

2. Calculate forward sensitivities of pollutants to emissions

3. Estimate backward sensitivities

4. Final AOI
Inversion

• The receptor based sensitivity field is known automatically after the interpolation

\[Z_{ij,r}(\bar{x}_k, t) = S_{ij,k}(\bar{x}_r, t) \]
Forward Field k_1

Influence of k_1 on \star

S_{k1}

$Z_{\star}(k_1)$
Forward Field k_2

Influence of k_2 on $Z(k_2)$
Forward Field k_3 Influence of k_3 on $Z^{*}(k_3)$
Forward Field k_4

Influence of k_4 on $Z_{\star}(k_4)$
AOI at ★
AOI at ★
Application – Atlanta, GA

• Episode: August 1-10, 1999
 – High PM2.5 and ozone
 – Stagnant air trapped by a high pressure system directly over the southeast
 – Low wind speeds, high temperatures

• Domain: 12km resolution
• Nested in a larger 36km grid

• Meteorology: MM5

• Emission: SMOKE

• AQM: CMAQ w/DDM-3D
Modeled PM$_{2.5}$* Levels

*Aitken and Accumulation Modes of Sulfate, Nitrate, Ammonium, EC, OC, and “unspecified”
Calculated Sensitivities

- **Emissions**
 - SO_2
 - NO_x
 - NH_3
 - anthropogenic VOC
 - elemental carbon

- **Endpoint Pollutants**
 - Total PM$_{2.5}$
 - Sulfate
 - Nitrate
 - Ammonium
 - EC
 - Anthropogenic SOA
 - Ozone
AOI – EC from primary EC emissions

EC Area of Influence

(ug/m^3*sec EC emissions)
24-hour average

Min= 0.0 at (57.39), Max= 5.5 at (25.35)

EC Area of Influence

(ug/m^3*sec EC emissions)
24-hour average

Min= 0.0 at (57.46), Max= 5.4 at (25.35)
AOI – Sulfate from SO$_2$ Emissions

Sulfate Area of Influence
(1 mole/sec SO$_2$ emissions)
24-hour average

Sulfate Area of Influence
(1 mole/sec SO$_2$ emissions)
24-hour average
HYSPLIT Trajectories

PM2.5 Area of Influence
(1 mol/sec NH3 emissions)
24-hour average

August 2, 1999 0:00:00
Min = -1.0e-05 at (2,7), Max = 2.0e-04 at (25,35)

August 9, 1999 0:00:00
Min = -2.1e-05 at (36,42), Max = 2.3e-04 at (25,35)
Research Papers

• Source apportionment of PM2.5 using different models (A. Marmur, 2006; S. Lee, 2007; J. Baek, 2007)
 – CMAQ, CMB-MM, CMB-RG, CMB-LGO, PMF
• Improving emission inventories using tracer species (J. Baek, 2007)
• Regional source apportionment (S. Napelenok, 2006)
• Improving emission inventories using inverse modeling (S. Park, 2006; J. Baek, 2007; Y. Hu, 2007)
• Use of SA results in Epidemiologic Studies (A. Marmur, 2006; J. Sarnet, 2006, 2007)
Summary

• Sensitivity analysis based source apportionment fast
 – Reduces numerical noise issues
• No one source apportionment technique is a winner
 – Too many reasons to list
• Application of SA to epidemiologic studies has a number of model-dependent issues
 – Capturing diurnal, day-to-day and spatial variability/representativeness
• Area of Influence (AOI) approach is a computationally effective method to get complete fields of both reverse and forward sensitivities
 – Extensible to other models and planning (prescribed fires)
• Inverse modeling using, metals, ions and EC/OC suggests major biases in inventories
 – Need to be investigated… don’t take as truth
One issue:

Daily variation of fraction of major PM$_{2.5}$ sources at JST
Inverse Modeling Using STN Tracer Species

Source apportionment using CMAQ

Multiplication

Tracer species concentration

Regression analysis

Observations

Potassium(K) concentration

CMAQ

Scaling factors

Improved CMAQ simulations

Source profiles Used in CMB

Source profiles

- wood burning
- vehicles
- road dust
- cement kiln
- Coal combustion

PM2.5 source contributions (Jul., 2001)

Source profiles

- others
- natural gas combustion
- industrial processes
- other dust
- road dust
- fuel combustion
- meat cooking
- other wood burning
- forest fire
- breezeline
- vehicles

Scaling factors

$y = 0.76x$

$R^2 = 0.60$

Improved CMAQ simulations

obs

before

after
Quantitative Analysis: Regression analysis using tracer species

• Assumptions
 – Tracer species such as trace metals are non-reactive and conservative in the atmosphere

• Advantages
 – Require less resources
 • Combined with CMAQ Tracer & DDM methods
 – Site specific information
 – Source specific information
 • Mobile sources: EC, OC and Zn
 • Wood combustion: K, EC
 • Road/soil dust: Al, Si, Ca
Regression analysis using tracer species – each species

- Representative tracers such as
 - EC
 - Silicon
 - Potassium
 - Zinc
 - Aluminum

- Can be used as a guideline to scaling factors of each source categories

![Graph showing measured and simulated trace metals (Urban sites, July 2001)]