NanoFe™
Supported Zero-Valent Nanoiron

Insitu Groundwater Treatment Using Nanoiron: A Case Study

PARS Environmental Inc.
Outline

■ OVERVIEW OF PARS
■ INTRODUCTION
■ TECHNOLOGY OVERVIEW
■ CASE STUDY
■ SUMMARY
■ RECENT PROJECT EXPERIENCE
OVERVIEW OF PARS

- Established in 1984
- PARS focus is innovative technologies
- PARS provides engineering, environmental, and health & safety services
- New Jersey Technology Council selected PARS as “Environmental Technology Company of the Year” in May 2004
Introduction

- Nanoiron will remediate recalcitrant contaminants in soils and groundwater
- Sub-micron ($<10^{-6}$m) particles of Fe^0 with a noble metal catalyst
- Based on proven redox processes
- Very flexible and destroys contaminants rapidly *in-situ* or *ex-situ*
Treatable by Nanoiron Technology

- **Contaminants:**
 - Halogenated aliphatics (PCE, TCE, 1,1,1-TCA, 1,1,2,2-TeCA)
 - Halogenated aromatics
 - PCBs
 - Halogenated herbicides & pesticides
 - Nitroaromatics
 - Metals (e.g. Cr\(^{+6}\), As)

- **Geologic Conditions:**
 - Sand
 - Silt
 - Fractured rock
 - Landfills
 - Fill materials
 - Sediments
Nanoiron Dehalogenation Schematic

Noble Metals
- forms galvanic cells
- catalyze hydrogenation

Base Metal
- Electron donor

Noble Metal
(Pd, Pt, Ag, Ni, etc)

Base Metal
(Fe, Zn, Al, etc)

C₂Cl₄ → C₂H₆ + Cl⁻
NanoFe™

- Major process variables:
 - Fe⁰ surface area
 - BET Surface Area 30 m²/g
 - Presence of a noble metal catalyst
 - Nanoiron can be injected by gravity or under pressure
A Case Study

- Landfill site located adjacent to a Switchyard
- Soil and groundwater contaminated with chlorinated solvents (1,1,1-TCA, TCE, PCE, 1,1-DCE, 1,1-DCA) and metals (Al, Pb, Ni)
- >$1.0 million has been spent on natural attenuation
- Active remedy required
 - Excavate the Fill Area
 - Use Nanoiron technology to treat chlorinated solvent contaminants in ground water
Full-Scale Nanoiron Remediation

The remedial goal - inject Nanoiron slurry into the most contaminated portion of the plume to significantly reduce the contaminant concentrations

Nanoiron injection in two phases:
- Phase 1 - 3,000 pounds of Nanoiron were injected over 20 days
- Phase 2 – 1,500 pounds of Nanoiron were injected over 10 days

Nanoiron was applied in an injection grid
Schematic of Field Application Set-up

injection and transport of nanoparticles in aquifers

- Pump
- Metal Particle Suspension
- Monitoring Well
- Waste Well
- Injection Well
- In Situ Reactive Zone
- Control Volume
- Aquifer Solids
- Deposition
- Attachment
- Flow
- Detachment
The Field Application Set Up
NanoFe™ Application

NanoFe™ = Fe⁰ with Pd⁰ (catalyst)
Nanoiron Field Application
(Landfill Site, New Jersey) – CVOCs Trends

Chlorinated Compound Concentrations (ug/L)

Date

1st Nanoiron Injection

2nd Nanoiron Injection

Copyright © 2005 PARS Environmental, Inc.
Nanoiron Field Application
(Landfill Site, New Jersey) – ORP and pH Trends
Nanoiron Field Application (Landfill Site, New Jersey) – Ethane and Ethene Trends

<table>
<thead>
<tr>
<th>Date</th>
<th>Ethane</th>
<th>Ethene</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6/10</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>6/17</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>6/24</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>7/1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>7/8</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>7/15</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>7/22</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>7/29</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>8/5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8/12</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>8/19</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>8/26</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>9/2</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>9/9</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>9/16</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>9/23</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>9/30</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>10/7</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>10/14</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10/21</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>10/28</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>11/4</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Copyright © 2005 PARS Environmental, Inc.
Total VOCs Plume - Baseline
Total VOCs Plume – After First Nanoiron Application
Total VOCs Plume - After Second Nanoiron Application
Total VOCs Plume - Third Post-Injection Monitoring
Summary

- Dissolved chlorinated groundwater contaminants degraded significantly

- Positive remedial effects of the Nanoiron injection activities are still occurring throughout the Perched Water zone
Summary - Nanoiron Technology

- Treats dissolved plume and source area(s)
- No depth limitations
- Highly reactive – rapid degradation & no toxic intermediates
- Portable – low capital + O&M costs
- Easily injected, Nanoiron flows with groundwater
- Low Nanoiron /contaminant ratios required
Recent Project Experience

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Principal Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Plant</td>
<td>Trenton, New Jersey</td>
<td>TCE, cis-DCE, Vinyl Chloride</td>
</tr>
<tr>
<td>Former Electronics Manufacturing Plant</td>
<td>Titusville, Pennsylvania</td>
<td>PCE, TCE, cis-DCE</td>
</tr>
<tr>
<td>Plating Facility / Superfund Site</td>
<td>Franklin Square, New York</td>
<td>PCE, TCE, 1,1,1-TCA, Cr (VI)</td>
</tr>
<tr>
<td>DOD Facility</td>
<td>Lakehurst - 1, New Jersey</td>
<td>TCE, cis-DCE, Vinyl Chloride</td>
</tr>
<tr>
<td>DOD Facility</td>
<td>Lakehurst- 2&3, New Jersey</td>
<td>TCE, cis-DCE, Vinyl Chloride</td>
</tr>
<tr>
<td>Former Electrical Distribution Facility</td>
<td>New Brunswick, New Jersey</td>
<td>TCE, 1,1,1-TCA, 1,1-DCA, 1,1-DCE</td>
</tr>
<tr>
<td>Manufacturing Plant</td>
<td>Newfield, New Jersey</td>
<td>TCE, cis-DCE, Cr (VI)</td>
</tr>
<tr>
<td>Landfill Site</td>
<td>Hamilton, New Jersey</td>
<td>1,1,1-TCA, 1,1-DCA, 1,1-DCE, Pb, Ni</td>
</tr>
<tr>
<td>Chromium Ore Landfill</td>
<td>Kearny, New Jersey</td>
<td>Cr (VI)</td>
</tr>
<tr>
<td>Former Chemical Manufacturing Plant</td>
<td>Salem, Ohio</td>
<td>TCE, cis-DCE, Vinyl Chloride</td>
</tr>
<tr>
<td>DOD Facility</td>
<td>Dover, New Jersey</td>
<td>CT, CF, TCE, PCE, 1,1-DCE</td>
</tr>
<tr>
<td>DOD Facility</td>
<td>Aberdeen, Maryland</td>
<td>1,1,2,2-TeCA, 1,1,1-TCA, TCE</td>
</tr>
<tr>
<td>Chromium Ore Landfill</td>
<td>Jersey City, New Jersey</td>
<td>Cr (VI)</td>
</tr>
<tr>
<td>DOD Facility</td>
<td>Jacksonville - 1&2, Florida</td>
<td>TCE, cis-DCE, Vinyl Chloride</td>
</tr>
</tbody>
</table>
For further information, please contact:

PARS Environmental, Inc.
TEL: 609-890-7277
FAX: 609-890-9116
Web: www.parsenviro.com

Harch Gill, hgill@parsenviro.com