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Goals and Objectives

« Use modern classification and regression
trees and hierarchical Bayesian techniques
to link multiple environmental stressors to
biological responses and quantify
uncertainty in model predictions and
parameters.



Guidance for TMDL model
selection (NRC 2001)

e report prediction uncertainty

e be consistent with the amount of data
avallable

o flexible enough to permit updates and
Improvements
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Methods

 Classification And Regression Trees (CART),
 It’s Bayesian analogue, BCART

 arecently developed enhancement to the
BCART procedure, which includes BCART as a
model subclass, known as Bayesian Treed
(BTREED) models, and

» Bayesian Hierarchical Models



Tree based methods

o are a flexible approach useful for variable
subset selection,

* when the analyst suspects global non-
linearity,

 and cannot (or does not want to) specify the
functional form of possible interactions a

prioril.



Bayesian Treed models

* Bayesian Hierarchical model to:
— Select subsets on X — X,
— Fit linear models to these subsets X
e Tree structured models
— “ANOVA In Reverse”

o “Leaves” contain linear models, not just a
mean (like iIn CART models)



Bayesian Treed model search

e MCMC used to stochastically search for
high posterior probability trees T.

e Metropolis —Hastings algorithm simulates a
Markov chain with limiting distribution
p(TIY,X)

e Chipman, George and McColloch, 2000, JASA.

http://gsbwww.uchicago.edu/fac/robert.mcculloch
[research/papers/index.html



BTREED Models

* \Were used by Lamon and Stow, 2004,
Water Research, 38(11): 2764-2774.

e Used with EPA Nutrient Criteria Database
Freeman et al, 2005, in Review,
Environmetrics

e Used with Finnish Lakes data, Lamon and
Malve, 2005, In prep.




Data

e Response variables may be

— either continuous (such as biological indices of
abundance) or

— discrete (such as designated use attainment
classes).

EPA NCD: response variable is log,, Chlorophyll
a concentration.



Data

Predictor variables In tree based methods may also
be continuous or discrete, and may include :

source agency, basin, sub-watersheds, states, EPA
regions, latitude and longitude, and many
continuous predictors related to water chemistry,
water use, discharges or pollutant loading.

For the NCD, we are using ecoregion, waterbody
type (lake or res.), Month, TNsrc, Chlasrc in the
tree, and

log,, TP and log,, TN in the endnode LM’s



Aqgareqgate Ecoreqgions

.

1= Willamette and central valley — m |x . Southeastern Temperate Forested Plains and Hills
M || - Western Forested Mountains @ X - Texas-Louisiana Coastal &Muississippi All. Plains

® ||l - Xeric west B XI - Central and Eastern Forested Uplands
B 1V Great Plains Grass & Shrublands m  XI1I - Southern Coastal Plain

m V South Central Cult. Great Plains g vy} _ soythern Florida Coastal Plain
m VI Corn Belt & N. great plains W XIV - Eastern Coastal Plain

m VIl - Mostly Glaciated Dairy Region

® VIl - Nutrient Poor Largely Glaciated Upper Midwest and Northeast


http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=1
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=6
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=11
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=2
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=7
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=12
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=3
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=8
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=13
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=4
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=9
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=14
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=5
http://oaspub.epa.gov/nutrient/query.eco_form?tab_eco=10

Data

e > 656,000 observations in the NCD (!)
98,169 have non-missing TP measurements

* For these observations, four methods of chlorophyll
determination were used (STORET 32211, 32209,
32210, 32230)

» Three methods of nitrogen determination existed
for these observation (TKN 00625, TN 00600 and
NO2NO3+TON 00630+00605)



Data

* The different methods were combined Into
one variable while creating new categorical
variables to keep track of the source
method.

e Chlsrc = afor STORET 32211

b 32209
c 32210
d 32230

e TNsrc =a for TKN
b TN
c NO2NO3+TON



CHLA Source
¢  CHLAphyt
4  CHLA
= CHLAti
¢ CHLAspec

Figure 1 Geographical distribution of Chlorophyll by source type, CHLAphyt, n = 18968; CHLA, n =
10945; CHLAtri, n = 62363; CHLAspec, n = 5691 (total n = 98167)



Nitrogen Source
®  TKN
a TN
B NOZNO3

Figure 2 Geographical distribution of Nitrogen by source type, TKN, n = 46241; TN, n = 49792;
NO2NO3, n = 2134 (total n = 98167)
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Preliminary Findings

Freeman, Lamon and Stow, 2005. Regional
Nutrient-Chlorophyll Relationships in Lakes and
Reservoirs: a Bayesian TREED Model
Approach, in review, Environmetrics.
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Figure 5 Surface plot of alpha, beta versus log-likelihood (alpha grid from 0.2 to 1.0, step 0.1, beta
grid from 0.4 to 2.0, step 0.4). Maximum L.og-I.ikelihood of 105044.6025 at alpha = 0.6, heta = 0.4,
tree size 103. Second highest L.og-Likelihood of 105041.4123 at alpha = 0.8, beta = 0.8, and at alpha =
0.8, beta = 1.2, both tree size 119.
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Figure 6 Surface plot of alpha, beta number of end nodes in TREE (alpha grid from 0.2 to 1.0, step
0.1, beta grid from 0.4 to 2.0, step 0.4)




Lake

Reservoir
. Water Body Type
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Figure 7 Dendrogram of BTREED Highest Log-Likelihood Model (alpha = 0.6, beta = 0.4, Log-Likelihood = 105044.6). Zero nodes removed in plot; the
number of observations are given below each terminal node
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Model fit and “out of sample

predictive ability

Table 4 Mean squared error (MSE) and median absolute deviation (MAD) of training data and test
data fits, and Relative Efficiency for four highest log-likelihood Bayesian TREED models

MAD MAD MSE MSE
Log- Error Error Error Error Relative
Alpha | Beta | Likelihood | Training Test Training Test Efficiency
06] 04 105044.6 (0.20873 0.21207 0.12478 0.12751 1.02196
081 08 105041.4 (0.20954 (.21253 0.12498 0.12776 1.02223
(0.8 1.2 105041.1 0.20954 (0.21253 0.12498 0.12776 1.02223
0.4] 08 104990.4 0.20765 (0.21230 0.12527 0.12795 1.02140
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Geomorphological typology of Finnish Lakes
Finnish Environment Institute (SYKE)

Lake

Type Name Detalls

| Large, non-humic lakes SA > 4000 Ha, color < 30

Il Large, humic lakes SA > 4000 Ha, color > 30

11 Medium and small, non-humic lakes SA: 50 — 4000 Ha, color < 30

IV Medium Area, humic deep lakes  SA: 500 — 4000 Ha, color: 30-90, D >3 m
V  Small, humic, deep lakes SA: 50 - 500 Ha, color: 30-90, D >3 m
VI Deep, very humic lakes Color>90,D>3m

VIl Shallow, non-humic lakes Color<30,D<3m

V11 Shallow, humic lakes Color: 30-90, D <3 m

X Shallow, very humic lakes Color>90,D<3m



Finnish Lake Data

The response variable is chlorophyll a (ug L1), a surrogate for
algal biomass.
The tree portion includes the variables :

altitude (m),

latitude (decimal degrees),

surface area (km?),

mean depth (m), and

color (mg Pt L-1).
Predictor variables used in the endnode models were :

total nitrogen (TN, ug L) and

total phosphorus (TP, ug L1).
We log (base e) transformed TP, TN and Chla for use in fitting
the endnode regressions, then took the annual averages by
lake, providing 280 growing season lake-wide averages.



Model 2
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Model 1 Depth

InChla ~
>16.3m MSE = 0.1368
MAD =10.2166
LIL = 484.66

Dgpth -0.129 + 0.657 InTN + 0.012 InTP
n =124
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0.074 + 0.646 InTN + 0.417 InTP -0.002+0.131 InTN + 0.622 InTP
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Next Steps



Next Steps

More predictor variables for endnode models

Use resultant tree structures to identify important
hierarchical structure (Ecoregion, Chlasrc and
TNsrc, seasonality, etc.)

Explore these structures with other Hierarchical
Bayesian methods

Non-linear specification? Spline basis functions
(HBM), or in leaf model or inclusion of all
predictors In tree

Tools
Collaborations
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Results using new scale prior

a P LIL msetr madtr msetest madtest leaves Rel.Eff.
0.50 1.50 104012.5 0.1290 0.2123 0.1305 0.2154 59 1.012
0.65 1.00 104050.1 0.1291 0.2115 0.1303 0.2154 56 1.009
0.85 2.00 104027.9 0.1298 0.2130 0.1313 0.2177 48 1.012
0.90 0.50 104013.5 0.1295 0.2121 0.1300 0.2155 76 1.004
0.90 1.00 104043.4 0.1289 0.2128 0.1302 0.2150 61 1.010




Bayesian TREED Model search
(specifics)

p(Y [ X, T)=| p(YIX, 6,T)p(6,T)d6

=HJH p(y; |%;.6,)p(6,)d6,

Eq (1)



Bayesian TREED Model search
(specifics)

Start with initial tree T, iteratively simulate
the transitions from T' to T'* by two steps:

1. Generate a candidate value T* with
probability distribution g(T', T*).
2. Set T = T* with probability

a(TM,T*):min{ q(T*,T)p(Y | X, T*)p(T™) }

A, T*)p(Y [ X, T)p(T)

Else set TH1=T!



Results using new scale prior
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Results using new scale prior
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LLakes and ponds, water body type = 5
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coastal plains dairy region glaciated upper MW and NE
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1, 1 mTONn o N e E ] [ Y o -~
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MS Alluvial Plains month
ecoregion 10,13 2-6,9 n =657 |1, 78,10
11, |12
One model
n = 1882 gg} ;26;
Node 12, 24 in output

24




	Bayesian Methods for Regional Eutrophication Models using the Nutrient Criteria Database
	Goals and Objectives
	Guidance for TMDL model selection (NRC 2001)
	Overview
	Approach
	Methods
	Tree based methods
	Bayesian Treed models
	Bayesian Treed model search
	BTREED Models
	Data
	Data
	Data
	Data
	Preliminary Findings
	Model fit and “out of sample” predictive ability
	Next Steps
	Next Steps
	Thanks!
	Bayesian TREED Model search (specifics)
	Bayesian TREED Model search (specifics)

