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the U.S. EPA. The analysisis useful to derive estimates of air quality, costs, benefits, and/or economic
impacts. However, the analysis inputs and outputs associated with any emissions source, county, or local
area are subject to significant uncertainties and should not be used to predict attainment status, costs,
benefits, and/or economic impacts at this level of detail.
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1 INTRODUCTION

In July 1998, the U.S. Environmental Protection Agency (EPA) submitted a report to Congress on
the potentia need for, and technical feasibility of, more stringent (Tier I1) motor vehicle tailpipe standards.
The Clean Air Act Amendments of 1990 (CAAA) set specific exhaust emission standards, beginning with
the 1994 model year for light-duty vehicles and light-duty trucks. These are Tier | standards. The CAAA
also requires EPA to study whether further reductions in emissions from these vehicles should be required.
These are the Tier 11 standards, which would not take effect before the 2004 model year. A phase-in would
occur between 2004 and 2009, and gradually lead to nearly afull fleet of Tier Il compliant vehiclesin
2030. Thisanalysis presents estimates of the potential benefits from the Tier 11/Gasoline Sulfur rule
occurring in 2030.

Chapter 2 describes the methods used to estimate changes in ozone and particul ate matter (PM)
concentrations and changes in visibility and nitrogen deposition. Chapter 3 describes general issues arising
in estimating and valuing changes in adverse health and welfare effects associated with changes in ozone,
PM, visibility, and nitrogen deposition. Chapter 4 describesin some detail the methods used for estimating
and valuing adverse health effects, while Chapter 5 describes the methods used for welfare effects: crop
damage, visihility, nitrogen deposition, and household soiling. The results of these analyses follow in
Chapter 6.

This document has three appendices. Appendix A presents the physica and monetary benefits
associated with sengitivity calculations for the Tier 11 2030 control scenario not considered in the primary
analysis. Appendix B presents the ozone C-R functions used in this analysis, and Appendix C presents the
PM C-R functions.
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2 DEVELOPMENT OF OZONE AND PM AIR QUALITY INPUTSFOR USE IN
BENEFITSANALYSIS

This chapter describes the methods used to forecast changes in ozone, PM, visibility, and nitrogen
deposition. Severa types of air quality models are used to make these forecasts. In some cases, such as
with nitrogen deposition, the model results are ready to be used in the valuation step.* In other cases, such
asin the case of ozone and PM, we need to carry out a number of steps prior to be able to use these model
results. The following sub-sections summarize how air quality model results are used in conjunction with
the Criteria Air Pollutant Modeling System (CAPMYS) to estimate ozone and PM exposure.

CAPMS is a population-based system for modeling exposures to criteria air pollutants, and is used
to estimate health and visibility benefits. CAPM S divides the United States into eight kilometer by eight
kilometer grid cells, and estimates the changes in incidence of adverse health and welfare effects associated
with given changesin air quality in each grid cell. The national incidence change (or the changes within
individual states or counties) is then calculated as the sum of grid-cell-specific changes.

21 OZONE AIR QUALITY

To develop baseline and control forecasts for ozone, we use the results of the variable-grid Urban
Airshed Model (UAM-V) and observed ozone season data for 1995 and 1996. The modeling data are used
to generate “ adjustment factors’ that quantify the relationship between modeled levels of ozone in the base-
year (1995 for the Eastern U.S. and 1996 for the Western U.S.) and the future-year (2030). The
adjustment factors are combined with actual monitoring data to generate estimates of the future-year levels
of ozone. Note that the modeling data are not used directly (i.e., in an absolute sense) to estimate future-
year ozone levels. Instead, we use them in arelative sense to simply adjust actual monitor levels.

For this study, the U.S. was split into an eastern and awestern UAM-V modeling region. The
eastern region is bounded by longitude -98.5° to -66.5° (roughly east of central South Dakota through
central Texas) and latitude 26.33° to 46.67°. Note that small portions of the Eastern U.S. are not covered
by the UAM-V modeling (e.g., northern Maine). Thus, in these areas, we assume that ozone levelsin the
control scenario are identical with those in the baseline scenario. The two simulation periods for the
eastern U.S. are based on meteorology for June 12-24 and July 7-15, 1995, and are based on an emission
inventory for 1996. The western region is bounded by longitude -126.5° to -98.5° and latitude 26.33° to
51.56°. The two smulation periods for the western U.S. are based on meteorology for July 8-15 and July
21-31, 1996, and are based on an emission inventory for 1996.

We collected ozone monitoring data for the ozone season, defined for this anaysis as May through
September.2 An ozone monitor record was considered complete if data were available for 50 percent of
daysin agiven season. Each of these daysin turn had to have at least nine hourly observations between
8:00am and 7:59pm.

*Pechan-Avanti (1999) discuss the estimation of changesin visibility and nitrogen deposition.

2 EPA has adirect link to the AIRS database: http://www.epa.gov/airs/; however, the data used in this analysis were
downloaded from the (password-protected) mainframe version of AIRS, available at: epaibm.rtpnc.epa.gov. Both sets of dataare
identical; the mainframe allows larger data queries.
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In calculating adjustment factors, the UAM-V modeled hourly values from 8:00 am to 7:59 pm are
sorted by concentration level for the base-year and the future-year.® For each set of modeled data, the
ordered hourly values are split evenly into the ten rank-ordered deciles* The average of hourly valuesin
each decile is selected as the representative value for that decile. This means that the first decile's
representative ozone level is set equal to the average of values within that decile, and so on for the other
deciles. The decile adjustment factors are then calculated as the ratio of the UAM-V future-year scenario's
decile to the corresponding UAM-V base-year's decile. Separate decile adjustment factors are calculated
for the future baseline and the control scenarios.

We use enhanced Voronoi Neighbor Averaging (€VNA) to interpolate air quality at every
population grid cell by first identifying the set of monitors (or pseudo-monitors) that best “surround” the
center of the grid cell. Once this set of neighboring monitorsisidentified for each grid cell, an inverse-
distance weight is estimated for each monitor. Using the inverse-distance weights, decile adjustment factors
and ozone monitoring data, we calculate hourly ozone values at each CAPMS grid cell in the Eastern U.S.
asfollows:

& monh, j k1995 O
CAPMScHll. . =|\UAMV, . ————xd, . =
i,j,k,2030 ( i,] ,2030) ha:.1 UAMVhJ 1005 hij ﬂ
where:
CAPMS céll;j  ,030 = predicted concentration at CAPMS cell i, decile group j, hourly observation k
UAMV;, 05 = average UAMV modeled 2030 concentration in decile group j of model gridcell closest

to CAPMScdl i

N = number of neighboring monitors for CAPMS gridcell i

MONy k 1005 = observed 1995 ozone level at monitor h, decile group j, hourly observation k

UAMV, 1005 = average UAMV modeled 1995 concentration in decile group j of model gridcell closest
to monitor h

;i = inverse-distance weight for cell i to monitor h .

Similarly, we calculate ozone forecasts for CAPMS gridcellsin the Western U.S. The differenceis
that we use values for 1996 for the Western U.S,, rather than the 1995 values used in the Eastern U.S.

After calculating both baseline and control hourly ozone levels at each CAPMS gridcell, we then
calculate the ozone measures that are needed to estimate adverse health effects. For example, a number of
studies use the 24-hour daily average ozone level, so for each CAPMS gridcell we get 2030 baseline and
control estimates for the 24-hour daily average.

To reduce computational time when estimating the change in health effects associated with daily
ozone levels, CAPMS approximates a season's worth of daily ozone measures at each CAPMS gridcell by
20 “bins.” Each bin represents five percent of the daily ozone concentrations, and the value for each binis
set at the midpoint of the percentile range it represents. The first bin represents the first (lowest) five
percent of the distribution of daily ozone values, and is set at the 2.5th percentile value; the second bin

3 The data format of Eastern UAM-V modeled hourly output presents al grid cell data starting at 12:00 am., and the
Western UAM-V output presents all gridcells starting at 12:00am PST. |n processing of data, a correction was encoded to ensure that
calculations were based on 8:00 am to 7:59 pm of the appropriate local time zone of the grid cell.

“The use of more adjustment factorsis generally considered desirable because it provides flexibility; however, it can lead to
unreasonably large adjustment factors for lower ozone values, unless athreshold is used (e.g., one ppb as used in this analysis).
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represents the next five percent of the distribution of daily values, and is set at the 7.5th percentile value,
and so on. Each of the twenty bins therefore represents 7.65 (=153/20) days, since there are 153 days
between May and September.

After generating 20 bins for both the baseline and control scenarios, we take the difference between
these two values at each bin. We subtract the baseline value in the first bin from the control valuein the
first bin, and so on for each of the 20 bins. For each CAPMS gridcell, we then get 20 values representing
the difference between the baseline and control, and we use these to estimate the change in adverse effects
associated with the implementation of the policy. Note that since each value represents 7.65 days, we then
multiply each of the 20 incidence change estimates by 7.65 to reconstruct an entire season's worth of
incidence changesin the CAPMS grid cell.

22 PM AIR QUALITY

We used the results from the Source Receptor (S-R) matrix based on the Climatological Regional
Dispersion Model (CRDM) to forecast changes in the ambient concentration of both PM,, and PM, ; at the
center of each county. Ambient concentrations of PM are composed of directly emitted particles and of
secondary aerosols of sulfate, nitrate, and organics. Relative to more sophisticated and resource-intensive
three-dimensional modeling approaches, the S-R Matrix does not fully account for all the complex chemical
interactions that take place in the atmosphere in the secondary formation of PM.

The SR Matrix consists of fixed coefficients that reflect the relationship between annual average
PM concentration values at a single receptor in each county (i.e., a hypothetical monitor sited at the county
population centroid) and the contribution by PM species to this concentration from each emission source in
all countiesin the 48 contiguous states. The methodology used in thisRIA for estimating PM air quality
concentrations is detailed in Pechan-Avanti (1999). The following sections describe the steps taken to
input these modeled PM levelsinto CAPMS.

221 Forecasting PM Based on CRDM

Pechan-Avanti (1999) use the S-R matrix to estimate the 2030 baseline and control scenario mean
PM levels, and use regional peak/mean ratios to estimate the peak PM levels for each county in the United
States. We then take these mean and peak values to estimate the daily average, annual mean, and annual
median PM concentrations that are used in a number of C-R functions.> These results are then
extrapolated from monitored to unmonitored locations to estimate PM levels at each CAPMS grid-cell
based on Voronoi Neighbor Averaging (VNA).

VNA is somewhat different from the 8V NA method used to interpolate ozone levels. Firgt, the
estimates generated by the S-R matrix are used directly, rather than as a scaling factor that is multiplied
with actual ambient PM measures. Second, the model estimates are for each county center, whereas the
ozone estimates are generated for UAM-V cells. Third, the interpolation of PM levelsto each CAPMS

5 C-R functions are described in detail in later sections.
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gridcell is based on binned data, rather than daily or hourly values.® The value for agiven bin at a CAPMS
gridcell is calculated as follows:

N
O
CAPMScdl; 5030 = ha MO, 1, 2030 XCh;
=1
where;
CAPMS cell; 1,005 = predicted concentration at CAPMS cell i for bin m (out of 20 bins)
N = number of neighboring monitors for CAPMS gridcell i
MON, 1 1005 = observed 1995 ozone level a monitor h for binm
;i = inverse-distance weight for cell i to monitor h .

Once we have estimates for 20 bins for both the basaline and control scenarios, we follow the same
procedure that we used with the binned ozone estimates. We take the difference between the baseline and
control to estimate the impact of the policy. We subtract the baseline value in the first bin from the control
value in thefirst bin, and so on for each of the 20 bins. For each CAPMS gridcell, we then get 20 values
representing the difference between the baseline and control, and we use these to estimate the change in
adverse effects associated with the implementation of the policy. Note that since we are interested in PM
values for the whole year, each binned value represents 18.25 days (365/20). We then multiply each of the
20 incidence change estimates by 18.25 to reconstruct an entire year's worth of incidence changes in the
CAPMS grid cell.

As described below, we develop daily average and the median exposure estimates by first assuming
that agamma distribution is reasonably representative of the PM distribution, and then by using a
maximum likelihood estimation procedure to estimate the gamma distribution parameters for each county
most consistent with the mean and peak values.” A distribution of daily PM valuesis then estimated for
both the baseline and the control scenario in each county, and then the estimated changein PM. This
analysis assumes that the order of PM concentrations across days does not change from the baseline to any
control scenario, so the change in PM on the n™ percentile day equals baseline PM on the n™ percentile day
minus control scenario PM on the N percentile day.

Note that for PM,,, the peak value is defined as the value corresponding to the 99.7"" percentile
value of the distribution of actual daily 24-hour average PM,, values. For PM,, , the peak value is defined
as the value corresponding to the 98" percentile value of the distribution of estimated daily 24-hour average
PM, - values. Also note that daily PM,, and PM, 5 values derived from the gamma distribution generation
procedure are adjusted to reflect the natural occurrence of background concentrations of PM,, and PM, ¢
(the level at which agiven PM constituent exists naturally in the environment). Prior to the distribution
estimation, an assumed background concentration is subtracted from the mean and peak PM concentrations
used to predict the gamma distribution. Once the distribution of daily PM valuesis predicted, the
background concentration is added back to the representative air quaity value that has been estimated. In
instances where the initial mean value is below a given background concentration assumption, estimates of
daily air quality are generated directly from the mean and peak PM values without any background

% Recall that in the eVNA method, hourly values were interpolated to each CAPMS gridcell, and the ozone measures of
interest were calculated (e.g., 24-hour daily average), then the resulting measures were placed into 20 bins.

"We compared a number of different distributions with the distribution of actual PM observations and found the gamma
distribution to be most representative.
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adjustment. Eastern states are assigned a background threshold of 8ug/m® for PM,, and 3.5ug/m?® for
PM,:. Western states are assigned a background threshold of 6ug/m® for PM,, and 2.5ug/m® for PM, ..

Estimating the Par ameters of a Gamma Distribution, Given the Mean and a Peak Value

The gamma distribution has two parameters, which will be denoted as A and r, that must be
estimated for each county in order for the distribution of daily average PM concentrations to be completely
specified. The parameters of a distribution are usually estimated from a random sample drawn from the
distribution. Given a sample from the distribution, one of several possible standard methods (for example,
maximum likelihood estimation or the method of moments) could be used to estimate the parameters, A and
r. Even given only the sample mean and the sample variance, 1 and r could be estimated by the method of
moments.

However, neither the whole sample nor the sample variance are available. Instead, the only
available information about the distribution is the sample mean and a peak statistic (e.g.,the eighth largest
daily average isthe 98" percentile point of 365 daily values). The following method, which combines
aspects of both the method of moments and maximum likelihood estimation, was therefore used to estimate
the two parameters of the gamma distribution from the available statistics.

As in the method of moments, equate the sample mean with the population mean, E(x). The
population mean of agamma distribution is:
E(X) = |L .

Therefore, denoting the sample mean as x, , set:
r
X = E(X) = T

Solving for A asafunction of x; and r yields:

Thefirst piece of information, the sample mean, has been used to reduce the problem from one of
estimating two parameters to one of estimating only one parameter. An estimate of r will yield an estimate
of A, given the sample mean.

In the second step, the peak datistic (e.g., the eighth largest daily average PM concentration) is
used to estimate r. The distribution of the peak can be derived from the distribution of the daily average
PM concentrations.

The peak PM concentration has a probability density function (pdf) that isitself afunction of the

pdf of the daily PM concentration and the corresponding cumulative distribution function (cdf) of the daily
PM concentration. (The cumulative distribution function describes the probability of being less than any
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givenvaue) In particular, if the daily average PM concentration is distributed according to a pdf denoted
asf(x; 4, r), and the corresponding cumulative distribution function (cdf) is denoted as F(x; A, r), then the
probability density function of the peak, denoted asf,, .,(X;4, r), can be shown to be:

[Foal 0] [2- Feel 0™ f(xl ),

fran(1.0) 2 (a - 1)l(n a)!

where n=365 (because there are 365 days in ayear) and « represents the pesak (e.g., «=358 for the eighth
highest PM, - value out of 365 days)®. (Note that the pdf of any order statistic can be derived analogously.)
Because 2 isafunction of r, there is only one unknown parameter that requires estimation.

Maximum likelihood estimation is used to estimate r in the pdf of the peak PM concentration, using
the one observation from that pdf -- the peak PM concentration.

The method described above for estimating A and r has two features that guarantee reasonable
estimates. First, the method constrains the estimation of the two parameters so that the estimated
population mean, which is afunction of both parameters, equals the sample mean. Thisis reasonable,
since the sample mean is the best guess at what the population mean is. Second, this method produces the
“mogt likely” estimate of r, given thisconstraint. That is, it produces the vaue of r that maximizes the
chance of having gotten the particular second daily maximum PM concentration.

To generate 365 daily PM concentrations from the distribution whose parameters are estimated, we
could use Monte Carlo techniques. If the number of iterationsin a Monte Carlo exerciseis large enough,
the frequency distribution of generated observations will approximate the distribution from which the
observations were generated. The smaller the number of iterations, however, the rougher the
approximation. Instead of generating observations by Monte Carlo techniques, values corresponding to
evenly-spaced percentile points of the estimated distribution are used. This guarantees that the sample
distribution will correspond to the assumed distribution. Firgt, the percentile of the eighth highest
concentration (given) is calculated from the estimated distribution. The percentiles of the 364 other
concentrations are evenly spaced around this percentile. The percentile of the highest observation was set
midway between the percentile of the second highest observation and the 100" percentile.

Forecasting PM ., 5

The forecast for daily average coarse PM ., 5 (i.€., PM,;, minus PM, ) is necessary for some C-R
functions. To calculate these forecasts, we simply take the difference between the daily PM,, and daily
PM, ¢ values for both the baseline and control scenarios. To ensure that coarse PM valuesremain
consistent with both the predicted PM,, s and PM,, values, a background concentration adjustment is also
applied to coarse PM, 5 4, levels. Since coarse PM is equal to the difference between PM,, and PM,, 5, the
background threshold for coarse PM is calculated by subtracting PM, 5 background concentrations from
PM,, background concentrations. Eastern coarse PM background is 4.5ug/m3 and Western coarse PM is
3.5ug/m3. Differences between PM,, and PM,, ; that fall below the background concentration are set to the
background level.

8The probability density function of the peak isfrom Mood et a.(1974, p. 254).
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3 GENERAL ISSUESIN ESTIMATING HEALTH AND WELFARE BENEFITS

Changes in ozone, PM, nitrogen oxides, and visibility levels result in changesin a number of hedlth
and welfare effects, or “endpoints,” that society values. This chapter discusses key issues in the estimation
of adverse health effects and in the valuation of health and welfare benefits. Section 1 describes general
issues that particularly affect the estimation of changes in health effects. Section 2 describes general issues
in valuing health and welfare changes. Finally, Section 3 discusses how uncertainty is characterized in this
anaysis.

31 ESTIMATING ADVERSE HEALTH EFFECTS

This section reviews issues that arise in the estimation of adverse health effects. It reviewsthe
derivation of C-R functions, and it reviews how CAPMS combines air quality data.and C-R functions. In
addition, we discuss how we handle overlapping health effects, thresholds, estimating the baseline incidence
rates for the C-R functions, and other issues.

3.1.1 Basic Concentration-Response Model

The methods discussed in this sub-section apply to the estimation of both ozone-related and PM-
related changes in adverse hedth effects. For expository simplicity, the discussion focuses primarily on
PM-related changes. The methods, however, are equally applicable to ozone-related changes in effects.
Similarly, while severa health endpoints have been associated with ozone and PM, the discussion below
refers only to a generic “health endpoint,” denoted asy. Finaly, the discussion refers to estimation of
changes in the incidence of the health endpoint at a single location (the population cell, which is equivalent
to the CAPMS gridcell). Region-wide changes are estimated by summing the estimated changes over all
population cellsin the region.

Different epidemiological studies may have estimated the relationship between PM and a particular
health endpoint in different locations. The C-R functions estimated by these different studies may differ
from each other in several ways. They may have different functional forms; they may have measured PM
concentrations in different ways, they may have characterized the health endpoint, y, in dightly different
ways; or they may have considered different types of populations. For example, some studies of the
relationship between ambient PM concentrations and mortality have excluded accidental deaths from their
mortality counts; others have included al deaths. One study may have measured daily (24-hour) average
PM concentrations while another study may have used two-day averages. Some studies have assumed that
the relationship between y and PM is best described by alinear form (i.e., the relationship between y and
PM is estimated by alinear regression in which y is the dependent variable and PM is one of severa
independent variables). Other studies have assumed that the relationship is best described by alog-linear
form (i.e., the relationship between the natural logarithm of y and PM is estimated by a linear regression).®
Finally, one study may have considered changes in the health endpoint only among members of a particular

9The log-linear form used in the epidemiological literature on PM-related hedth effectsis often referred to as “ Poisson
regression” because the underlying dependent variable is a count (e.g., number of deaths), believed to be Poisson distributed. The
model may be estimated by regression techniques but is often estimated by maximum likelihood techniques. The form of the model,
however, is still log-linear.
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subgroup of the population (e.g., individuals 65 and older), while other studies may have considered the
entire population in the study location.

The estimated relationship between PM and a health endpoint in a study location is specific to the
type of population studied, the measure of PM used, and the characterization of the health endpoint
considered. For example, a study may have estimated the relationship between daily average PM
concentrations and daily hospital admissions for “respiratory illness,” among individuals age 65 and older,
where “respiratory illness’ includes International Classification of Disease (ICD) codes A, B, and C.° If
any of the inputs had been different (for example, if the entire population had been considered, or if
“respiratory illness’ had consisted of a different set of ICD codes), the estimated C-R function would have
been different. When using a C-R function estimated in an epidemiological study to estimate changes in the
incidence of a health endpoint corresponding to a particular change in PM in a population cell, then, it is
important that the inputs be appropriate for the C-R function being used -- i.e., that the measure of PM, the
type of population, and the characterization of the health endpoint be the same as (or as close as possible
to) those used in the study that estimated the C-R function.

Estimating the relationship between PM and a health endpoint, y, consists of (1) choosing a
functional form of the relationship and (2) estimating the values of the parameters in the function assumed.
The two most common functional forms in the epidemiological literature on PM (and ozone) and hedlth
effects are the log-linear and the linear relationship. The log-linear relationship is of the form:

bxPM

y = Be ,

or, equivaently,

In(y)=a +b xPM ,

where the parameter B is the incidence of y when the concentration of PM is zero, the parameter g isthe
coefficient of PM, In(y) is the natural logarithm of y, and « = In(B).** If the functional form of the C-R
relationship islog-linear, the relationship between APM and Ay is:

Dy = yx(eb>DPM ) 1) ’

wherey is the baseline incidence of the hedlth effect (i.e., the incidence before the change in PM). For a
log-linear C-R function, the relative risk (RR) associated with the change APM is:

19 The International Classification Codes are described at the website of the Medical Center Information Systems: Duke
University Health Systems (1999).

1 Other covariates besides pollution clearly affect mortality. The parameter B might be thought of as containing these other
covariates, for example, evaluated at their means. That is, B = B,exp{p.X; + ... + X}, where B, isthe incidence of y when all
covariatesin the model are zero, and x4, ..., X, are the other covariates evaluated at their mean values. The parameter B drops out of
the model, however, when changesin incidences are calculated, and is therefore not important.

Abt Associates Inc. 3-2 December 1999



— APbDPM
RRDPM =€ -

Epidemiological studies often report arelative risk for agiven APM, rather than the coefficient, g, in the C-
R function. The coefficient can be derived from the reported relative risk and APM, however, by solving
for p:

b_lmm@
" DPM

The linear relationship is of the form:

y=a +bxPM ,

where o incorporates all the other independent variables in the regression (evaluated at their mean values,
for example) times their respective coefficients. When the C-R function is linear, the relationship between
arelative risk and the coefficient, g, is not quite as straightforward as it is when the function is log-linear.
Studies using linear functions usually report the coefficient directly.

If the functional form of the C-R relationship is linear, the relationship between APM and Ay is
smply:
Dy = b xDPM .

A few epidemiologica studies, estimating the relationship between certain morbidity endpoints and
PM, have used functional forms other than linear or log-linear forms. Of these, logistic regressions are the
most common. Abt Associates (1999, Appendix A) provides further details on the derivation of dose-
response functions.

3.1.2 Calculation of Adverse Health Effectswith CAPM S

CAPMS is a population-based system for modeling exposure to ambient levels of criteriaair
pollutants and estimating the adverse health effects associated with this exposure. CAPMS dividesthe
United States into multiple grid cells, and estimates the changes in incidence of adverse health and welfare
effects associated with given changesin air quality in each grid cell. The national incidence change (or the
changes within individual states or counties) is then calculated as the sum of grid-cell-specific changes.

To calculate point estimates of the changes in incidence of a given selection of adverse health and
welfare effects associated with a given set of air quality changes, CAPM S goes through the following steps
at each CAPMS grid cell:

. Interpolate the air quality in the baseline scenario and in the control scenario at the CAPMS grid
cell center, as described in Chapter 2. If the daily values have been binned at the monitors from

Abt Associates Inc. 3-3 December 1999



which the interpolation is carried out, the resulting baseline and control scenario air quality data at
the CAPM S grid cell center is also binned.

. Calculate the changesin air quality from baseline to control scenario in the CAPMS grid cell. The
changesin air quality are calculated as the differences between the baseline bins and the
corresponding control scenario bins. The change in the n™ bin concentration is the difference
between the basdline n™ bin concentration and the control scenario n™ bin concentration.

. Access the selected C-R functions being used, and the required baseline incidence rates and grid
cell population.
. Using the above inputs, calculate the change in incidence of each adverse health effect for which a

C-R function has been accessed.

For functions based on changes in daily average pollutant concentrations, estimated incidence
changes corresponding to air quaity changesin each of the 20 bins are summed. This summed incidence,
however, isthe result of 20 representative air quality changes (one for each bin). Recall that each bin
represents 18.25 days for PM (to represent a year’ s worth of exposure) and 7.65 days for ozone (to
represent an ozone season’ s worth of exposure). To adjust the summed incidence estimate, it is multiplied
by either 18.25 to produce an annua change, or by 7.65 to produce a seasonal change. This procedureis
applied to each grid cell in CAPMS. The resulting incidence change is stored, and CAPM S proceeds to the
next grid cell, where the above processis repeated. The national change (or the change in any designated
geographical area) is calculated at the end of the process by summing the grid cell-specific changes.

To reflect the uncertainty surrounding predicted incidence changes resulting from the uncertainty
surrounding the pollutant coefficientsin the C-R functions used, CAPM S produces a distribution of
possible incidence changes for each adverse hedlth, rather than a single point estimate. To do this, it uses
both the point estimate of the pollutant coefficient (g in the above equation) and the standard error of the
estimate to produce a normal distribution with mean equal to the estimate of g and standard deviation equal
to the standard error of the estimate. Using a Latin Hypercube method,*? we take the n™ percentile value of
B from this normal distribution, for n=0.5, 1.5, ..., 99.5, and follow the procedure outlined in the section
above to produce an estimate of the incidence change, given the g selected. Repeating the procedure for
each value of g selected resultsin a distribution of incidence changesin the CAPMS grid cell. This
distribution is stored, and CAPM S proceeds to the next grid cell, where the processis repeated. A
distribution of the national change (or change in a designated geographical ared) is calculated by summing
the n™ percentile grid cell-specific changes, for n=0.5, 1.5, ..., 99.5.

3.1.3 Population Projections
Benefitsfor the Tier Il analysis are based on health and welfare effect incidence changes due to

predicted air quality improvements in the year 2030. Integral to the estimation of such benefitsis an
accurate estimate of future population projections. Though similar benefits analyses have preceded this

2The Latin Hypercube method is used to enhance computer processing efficiency. It is asampling method that divides a
probability distribution into intervals of equal probability, with an assumption value for each interval assigned according to the
interva’s probability distribution. Compared with conventional Monte Carlo sampling, the Latin Hypercube approach is more precise
over afewer number of trials because the distribution is sampled in amore even, consistent manner (Decisioneering, 1996, pp. 104-
105).
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one, using population projections out to various future years, no analysis has been conducted out to the
year 2030. This section describes the method used to estimate county-level 2030 populations.

The underlying data used to create county-level 2030 population projectionsis based on: (1) 1990
county-level population statistics for all U.S. counties collected by the U.S. Census (Wessex, 1994), and
(2) future-year state and metropolitan area population estimates provided by the Bureau of Economic
Analysis (1995). Growth factors are calculated using the BEA data and are applied to the 1990 county-
level populations.

A growth factor is calculated by taking the ratio of an estimated region’s 2030 population divided
by the1990 population for that same area. Population estimates for the years 1990-93, 2000, 2005, 2010,
2015, 2025 and 2045 were collected by the BEA. A 2030 population estimate was not provided. Instead,
2030 state and metropolitan area populations were interpolated linearly using estimates from the years
2025 and 2045.

Growth factors are calculated for both urban areas and rural areas. An urban areais defined as a
county that falls within one of the metropolitan areas for which the beapop file contains population data.
This includes metropolitan statistical areas (MSAS), primary metropolitan statistical areas (PMSAS),
consolidated metropolitan statistical areas (CMSAS), and New England county metropolitan areas
(NECMAS) (as defined by U.S. Census Bureau, 1999).* In this section, however, all metropolitan areas
arereferred to asMAs. A rura areais defined as a county that falls outside the defined metropolitan
areas.

Urban areas grow according to the growth rate calculated for the particular metropolitan area
within which they arelocated. This adjustment is very straightforward, simply taking the ratio of future
year to base year metropolitan area population and multiplying that factor by the base year county
population. The equation is:

2030 MAPaop:
2030CountyPopi = 1990CountyPopi x————————
Hryron Hryron 1990 MAPopi

where:

2030CountyPop; = projected 2030 population in urban county i
1990CountyPop, = actual 1990 population for county i

2030MAPop, = projected 2030 population in metropolitan area for county i
1990MA Pop, = actua 1990 population for metropolitan area for county i.

Rural areas grow according to the growth rate calculated for the particular state within which they
are located, adjusted to subtract out metropolitan area populations. Before the ratio of future year to base
year state population is calculated, the population attributed to all metropolitan areas |ocated within that
dtate is subtracted from the future year and base year population totals. Once this metropolitan area
adjustment has been made, the rural growth factor is multiplied by the base-year population in al non-MA
counties to get future-year population projections. The equation is:

13 The Census Bureau definitions are available at: http://www.census.gov/popul ation/www/estimates/aboutmetro.html .
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(2030SatePop - & 2030MAPop: )
(1990StatePopi - & 1990 MAPop: )

2030CountyPop = 1990CountyPopi

where:

2030CountyPop; = projected 2030 population in rural county i

1990CountyPop, = actual 1990 population for county i

2030StatePop; = projected 2030 population in state where county i is located

1990State Pop, = actual 1990 population for state where county i is located

+2030MAPop; = projected 2030 population in metropolitan areas located in state with county i
+1990MAPop, = actual 1990 population for metropolitan areas located in state with county i .

One problem that exists with this method is that many metropolitan areas cross state boundaries.
To accurately subtract urban populations from state populations, we need to know the urban county
populations for both 1990 and 2030. Using the county populations for 1990, we can estimate the portion
of a particular metropolitan area’ s population that belongs to a given state. However, we do not have 2030
county population projections with which to apportion 2030 metropolitan area populations. To remedy
this, we apply the same percent of the population a given county contributes to a metropolitan areain 1990
to 2030 metropolitan areas when apportioning populations between states.

3.1.4 Overlapping Health Effects

Severa endpoints reported in the health effects literature overlap with each other. Hospital
admissions for single respiratory ailments (e.g. pneumonia) overlap with estimates of hospital admissions
for “all respiratory” ailments.** Similarly, several studies quantify the occurrence of respiratory symptoms
where the definitions of symptoms are not unique (e.g., shortness of breath or upper respiratory symptoms).
In choosing studies to include in the aggregated benefits estimate (discussed below), this analysis carefully
considers the issue of double-counting benefits that might arise from overlapping health effects.

3.1.5 Basdinelncidences

As noted above, most of the relevant C-R functions are log-linear, and the estimation of incidence
changes based on alog-linear C-R function requires a baseline incidence. The baseline incidence for a
given CAPMS population cell isthe baseline incidence rate in that location multiplied by the relevant
population. County mortality rates are used in the estimation of air pollution-related mortality, and al
CAPMS population cells in the county are assumed to have the same mortality rate. Hospital admissions
are only available at the national level, so al areas are assumed to have the same incidence rate for agiven
population age group. For some endpoints, such as respiratory symptoms and illnesses and restricted
activity days, basdline incidence rates are not available even at the national level. The only sources of
estimates of baseline incidence rates in such cases are the studies reporting the C-R functions for those
health endpoints. The baseline incidence rate and its source are given for each C-R function in Appendices
B and C.

““Pneumoniais often classified with the International Classification of Diseases (ICD) codes of 480-486, while dl
respiratory admissions are classified with ICD codes 460-519.
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3.1.6 Thresholds

A very important issue in applied modeling of changesin PM is whether to apply the C-R
functions to dl predicted changes in ambient concentrations, even small changes occurring at levels
approaching the concentration in which they exist in the natural environment (without interference from
humans), referred to as * anthropogenic background.” Different assumptions about whether to model
thresholds, and if so, a what levels, can have a mgjor effect on the resulting benefits estimates.

None of the epidemiologica functions relating PM to various health and welfare endpoints
incorporate thresholds. Instead, al of these functions are continuous and differentiable down to zero
pollutant levels. A threshold may be imposed on these models, however, in several ways, and there are
various points at which the threshold could be set. (A threshold can be set at any point. There are some
points, however, that may be considered more obvious candidates than others.) One possible threshold
might be the background level of the pollutant. Another might be a relevant standard for the pollutant.
Whatever the threshold, the implication isthat there are no effects below the threshold.

A threshold model can be constructed in more than one way. One method isto smply truncate the
C-R function at the threshold (i.e., to not include any physical effect changes associated with PM
concentrations bel ow the designated threshold). This method uses the original C-R function, but calculates
the change in PM as [max(T,baseline PM) - max(T, regulatory aternative PM)], where T denotes the
designated threshold. This threshold model will predict a smaller incidence of the hedlth effect than the
original model without athreshold. Clearly, as T increases, the predicted incidence of the health effect will
decrease.

An dternative method isto replace the original C-R function with a*hockey stick” model that best
approximates the original function that was estimated using actual data. The hockey stick model is
horizontal up to a designated threshold PM level, T, and is linear with a positive slope for PM
concentrations greater than T. Recall the log-linear C-R function:

y=a +hbxPM .

Assuming that the value of the coefficient, g, depends on the level of PM, we get:

In(y)=a¢, for PM£T ,and
In(y) =a ¢+ b¢xPM , for PM > T .

Ideally, the coefficients would be estimated based on the datain the original study —that is, a
hockey stick model would be fit to the origina data, so that the threshold model that is most consistent with
the available information would be chosen. If athreshold model could be estimated from the original data,
itisunlikely that «" would equal « or that p° would equal 8, because such a hockey stick model would be
congistently below the original model, except at PM=0 (where the two models would coincide). If that were
the hockey stick model that best fit the data, then it is unlikely that the best fitting linear model would be
consistently aboveit. Instead, the hockey stick modd that best fits the same data would most likely have
o' >q and B'>p. A graph of this model would therefore cross the graph of the linear model at two points.

BThresholds may also apply to ozone, however, recent RIAs have not explicitly modeled ozone thresholds.
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Whether such a hockey stick threshold model predicted a greater or smaller incidence of the health effect
than the linear model would depend on the distribution of PM levels. It isworth noting that the graph of
the first type of threshold model, in which the C-R function is simply truncated at the threshold, would be
discontinuous at the threshold. Thisis highly unlikely to be a good model of the actual relationship
between PM and any health endpoint.

There is some evidence that, at least for particulate matter, not only is there no threshold, but the
PM coefficient may actualy be larger at lower levels of PM and smaller at higher levels. Examining the
relationship between particulate matter (measured as TSP) and mortality in Milan, Italy during the ten year
period 1980-1989, Ross et a. (1999) fitted a model with one slope across the entire range of TSP and an
additional slope for TSP greater than 200 pg/m* . The second slope was statistically significant
(p<0.0001) and negative, indicating alower slope at higher TSP levels.

3.1.7 Application of a Single C-R Function Everywhere

Whether the C-R relationship between a pollutant and a given health endpoint is estimated by a
single function from a single study or by a pooled function of C-R functions from several studies, that same
C-R relationship is applied everywhere in the benefits analysis. Although the C-R relationship may in fact
vary somewhat from one location to another (for example, due to differencesin population susceptibilities
or differences in the composition of PM), location-specific C-R functions are available only for those
locations in which studies were conducted. While a single function applied everywhere may result in
overestimates of incidence changesin some locations and underestimates of incidence changesin other
locations, these |ocation-specific biases will to some extent cancel each other out when the total incidence
changeis calculated. It isnot possible to know the extent or direction of the bias in the total incidence
change based on application of a single C-R function everywhere.

3.1.8 Estimating Pollutant-Specific Benefits Using Single Pollutant vs. M ulti-Pollutant M odels

Many studies include both ozone and particul ate matter in their final models. 1t is often difficult to
separate out the effect of a single pollutant from the effects of other pollutants in the mix. Multi-pollutant
models have the advantage that the coefficient for a single pollutant in such amodel will be unbiased (so
that the effects of other pollutants will not be attributed falsely to the single pollutant). However, the
variance of the estimator of the coefficient of the pollutant of interest will increase as the correlations
between the other pollutants in the model and that pollutant increase. If the other pollutants in the model
are highly correlated with the pollutant of interest, we would have an unbiased but unstable (high variance)
estimator. However, while single pollutant models have the advantage of more stable estimators, the
coefficient estimate in a single pollutant model could be biased in such amodel. We could consider the
single pollutant as an “indicator pollutant” —i.e., an indicator of a pollution mix — if we use single pollutant
models. However, there is no guarantee that the composition of the pollution mix will remain the same
under a control scenario that targets only a single pollutant.

This analysis uses both single pollutant and multi-pollutant models to derive pollutant-specific
benefits estimates. When more than one study has estimated the relationship between a given endpoint and
agiven pollutant, information from both single-pollutant and multi-pollutant models may be pooled to
derive pollutant-specific benefits estimates. For example, the benefits predicted by a mode with only PM
may be pooled with the benefits predicted by a model with both PM and ozone to derive an estimate of the
PM-related benefits associated with a given endpoint. If the benefits of PM-related and ozone-related
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incidence changes are both being calculated and added together, there is the possibility of overestimating
benefits if some of the studies used are single pollutant models. Suppose, for example, that only ozoneis
actually associated with a given endpoint, but PM appears to be associated only because it is correlated
with ozone. The benefits predicted by a single pollutant PM model would, in that case, actualy reflect the
benefits of reducing ozone, to the extent that PM and ozone are correlated. If those “PM-related” benefits
were then added to the ozone-related benefits calculated from other models, alikely result would be the
overstatement of benefits of reducing ozone. If only one pollutant is being associated with the endpoint in
this analysis (e.g., chronic bronchitis is associated only with PM in this analysis, while chronic asthmais
associated only with ozone), thisis not a problem.

3.1.9 Pooling Study Results

When only a single study has estimated the C-R relationship between a pollutant and a given hedth
endpoint, the estimation of a population cell-specific incidence change, Ay, is straightforward, as noted
above. When several studies have estimated C-R relationships between a pollutant and a given health
endpoint, the results of the studies can be pooled to derive a single estimate of the function. If the
functiona forms, pollutant averaging times, and study populations are all the same (or very smilar), a
pooled, “central tendency” C-R function can be derived from multiple study-specific C-R functions. Even
if there are differences among the studies, however, that make a pooled C-R function infeasible, a pooled
estimate of the incidence change, Ay, and/or the monetary benefit of the incidence change can be obtained
by incorporating the appropriate air quality data into the study-specific C-R functions and pooling the
resulting study-specific predictions of incidence change. Similarly, study-specific predictions of incidence
change can be combined with unit dollar values to produce study-specific predictions of benefits.

Whether the pooling is done in “ coefficient space,” “incidence change space,” or “dollar space,”
the question of the relative weights assigned to the estimates (of coefficients, incidence changes, or dollar
benefits) from each input study must be addressed. One possibility is simply averaging the estimates from
all the studies. This has the advantage of simplicity, but the disadvantage of not taking into account the
measured uncertainty of each of the estimates. Estimates with great uncertainty surrounding them are
given the same weight as estimates with very little uncertainty.

An dternative approach to pooling incidence estimates from different studies isto give more
weight to studies with little estimated variance than to studies with a great deal of estimated variance. The
exact way in which weights are assigned to estimates from different studies in a pooled analysis depends on
the underlying assumption about how the different estimates are related to each other. Under the
assumption that there is actually a distribution of true effect coefficients, or g's, that differ by location
and/or study (referred to as the random effects model), the different coefficients reported by different
studies may be estimates of different underlying coefficients, rather than just different estimates of the same
coefficient. In contrast to the “fixed-effects’ model (which assumesthat there is only one p everywhere),
the random-effects model allows the possibility that different studies are estimating different parameters.®®

18 |n studies of the effects of PM,, on mortality, for example, if the composition of PM,, varies among study locations the
underlying relationship between mortality and PM,, may be different from one study location to another. For example, fine particles
make up a greater fraction of PM,, in Philadelphia County than in Southeast Los Angeles County. If fine particles are
disproportionately responsible for mortality relative to coarse particles, then one would expect the true value of g for PM 4 in
Philadelphia County to be greater than the true value of g for PM 4 in Southeast Los Angeles County. Thiswould violate the
assumption of the “fixed effects’” model. However, applying arandom effects model assumes that the observed set of coefficientsin

the policy region.
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A third approach to pooling studiesis to apply subjective weights to the studies, rather than
conducting a random effects pooling analysis. If the analyst is aware of specific strengths and weaknesses
of the studies involved, this prior information may be used as input to the calculation of weights which
reflect the relative reliability of the estimates from the studies.

In those cases in which pooling of information from multiple studies was an option in this analysis,
pooling was done in both “incidence change space” and “dollar benefit space.” The hypothesis of fixed
effects was tested. If this hypothesis was rejected, an underlying random effects model was used as the
basis for weighting of studies. A more detailed description of the pooling procedure used is given below in
the section on hospital admissions.

3.2 VALUING CHANGESIN HEALTH AND WELFARE EFFECTS

This section discusses a number of issues that arise in valuing changes in health and welfare
effects. The first section provides some background on willingness to pay (WTP). The second section
discusses the possibility that as income changes then WTP would also change. The third section describes
how WTP estimates, that were originally calculated in 1990 dollars, are corrected for inflation to get
estimates in 1997 dollars. In the last section, we briefly review how we aggregate benefits estimates.

3.21 WTP Esimation

WTP isameasure of value an individual places on gaining an outcome viewed as desirable, be it
something that can be purchased in a market or not. The WTP measure, therefore, isthe amount of money
such that the individual would be indifferent between having the good (or service) and having the money.
An dternative measure of economic value is willingness to accept (WTA) a monetary compensation to
offset adeterioration in welfare, such that the individual would be indifferent between having the money
and not having the deterioration. Whether WTP or WTA is the appropriate measure depends on how
property rights are assigned. Consider an increase in air pollution. If society has assigned property rights
so that people have aright to clean air, then they must be compensated for an increase in the level of air
pollution. The appropriate measure of the value of avoiding an increasein air pollution, in this case, would
be the amount people would be willing to accept in compensation for the more polluted air. If, on the other
hand, society has not assigned people the right to clean air, then the appropriate measure of the value of
avoiding an increase in air pollution would be what people are willing to pay to avoid it. The assgnment of
property rightsin our society isunclear. WTP is by far the more common measure used in benefits
analyses, however, reflecting the fact that this is a much more common measure in the empirical valuation
literature. In this analysis, wherever possible, the valuation measures are in terms of WTP. Where such
estimates are not available, aternative measures are used, such as cost-of-illness and wage-risk studies.
These are discussed for each endpoint where applicable.

For both market and non-market goods, WTP reflectsindividuals' preferences. Because
preferences are likely to vary from one individual to another, WTP for both market (e.g., the purchase of a
new automobile) and non-market goods (e.g., health-related improvements in environmental quality) is
likely to vary from one individua to another. In contrast to market goods, however, non-market goods,
such as environmental quality improvements, are public goods whose benefits are shared by many
individuals. The individuals who benefit from the environmental quality improvement may have different
WTPs for this non-market good. The total social value of the good is the sum of the WTPs of all
individuals who “consume” (i.e., benefit from) the good.
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In the case of health improvements related to pollution reduction, it is not certain specifically who
will receive particular benefits of reduced pollution. For example, the analysis may predict 100 hospital
admissions for respiratory illnesses avoided, but the analysis does not estimate which individuals will be
spared those cases of respiratory illness that would have required hospitalization. The health benefits
conferred on individuals by areduction in pollution concentrations are, then, actually reductionsin the risk
of having to endure certain health problems. These benefits (reductionsin risk) may not be the same for all
individuals (and could be zero for some individuals). Likewise, the WTP for a given benefit islikely to
vary from one individual to another. Intheory, the total social value associated with the decrease in risk of
agiven health problem resulting from a given reduction in pollution concentrationsis:

wrR(B) ,

" Qo

i=1

where B; is the benefit (i.e., the reduction in risk of having to endure the health problem) conferred on the i™
individual (out of atotal of N) by the reduction in pollution concentrations, and WTP,(B;) is thei™
individual’s WTP for that benefit.

If areduction in pollution concentrations affects the risks of several health endpoints, the total
health-related social value of the reduction in pollution concentrationsis:

V\rrF?(B.,-) :

J

Qo
Qo

i=1 j=1
where B;; is the benefit related to the j* health endpoint (i.e., the reduction in risk of having to endure the j*

health problem) conferred on the i*" individual by the reduction in pollution concentrations, and WTP,(B;) is
thei™ individual’s WTP for that benefit.

The reduction in risk of each health problem for each individual is not known, nor is each
individual’s WTP for each possible benefit he or she might receive known. Therefore, in practice, benefits
analysis estimates the value of a statistical health problem avoided. For example, although areduction in
pollutant concentrations may save actual lives (i.e., avoid premature mortality), whose lives will be saved
cannot be known ex ante. What is known is that the reduction in air pollutant concentrations resultsin a
reduction in mortality risk. It isthis reduction in mortality risk that is valued in a monetized benefit
analysis. Individual WTPs for small reductions in mortality risk are summed over enough individuals to
infer the value of a statistical life saved. Thisisdifferent from the value of a particular, identified life
saved. Rather than “WTP to avoid adeath,” then, it is more accurate to use the term “the value of a
statistical life.”

Suppose, for example, that a given reduction in PM concentrations resultsin a decrease in
mortality risk of 1/10,000. Then for every 10,000 individuals, one individua would be expected to diein
the absence of the reduction in PM concentrations (who would not die in the presence of the reduction in
PM concentrations). If WTP for this /10,000 decrease in mortality risk is $500 (assuming, for now, that
al individuals WTPs are the same), then the value of a statistical life is 10,000 x $500, or $5 million.
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A given reduction in PM concentrations is unlikely, however, to confer the same risk reduction

(e.g., mortality risk reduction) on al exposed individuals in the population. (In terms of the expressions
above, B; is not necessarily equal to B; , for i »j). In addition, different individuals may not be willing to
pay the same amount for the same risk reduction. The above expression for the total social value
associated with the decrease in risk of a given health problem resulting from a given reduction in pollution
concentrations may be rewritten to more accurately convey this. Using mortality risk as an example, for a
given unit risk reduction (e.g., 1/1,000,000), the total mortality-related benefit of a given pollution
reduction can be written as:

N T

3 Qrarginal WTP(x)dx ,

i1

where margina WTP,(x) is thei™ individual’s marginal willingnessto pay curve, n, is the number of units
of risk reduction conferred on the i™ exposed individua as aresult of the pollution reduction, and N isthe
total number of exposed individuals.

The values of adatisticd life implied by the value-of-life studies were derived from specific risk
reductions. Implicit in applying these values to a situation involving possibly different risk reductionsis
the assumption that the marginal willingness to pay curve is horizontal —that is, that WTP for n units of
risk reduction is n times WTP for one unit of risk reduction. If the margina willingnessto pay curveis
horizontal, the integral in the above expression becomes a simple product of the number of units of risk
reduction times the WTP per unit. The total mortality-related benefit (the expression above) then becomes:

Iy ] ) . e 3] V\/TPI 0
Ei;':[l (nurrber of unitsof risk reducti on)i xg Uit of Tiskreductions
If different subgroups of the population have substantially different WTPs for a unit risk reduction

and substantialy different numbers of units of risk reduction conferred on them, then estimating the total
socia benefit by multiplying the population mean WTP (MWTP) to save a dtatistical life timesthe
predicted number of statistical lives saved could yield a biased result. Suppose, for example, that older
individuals WTP per unit risk reduction is less than that of younger individuals (e.g., because they have
fewer years of expected lifeto lose). Then the total benefit will be less than it would be if everyone sWTP
were the same. In addition, if each older individual has alarger number of units of risk reduction conferred
on him (because a given pollution reduction results in a greater absolute reduction in risk for older
individuals than for younger individuals), this, in combination with smaller WTPs of older individuals,
would further reduce the total benefit.

While the estimation of WTP for amarket good (i.e., the estimation of a demand schedule) isnot a
simple matter, the estimation of WTP for a non-market good, such as a decrease in the risk of having a
particular health problem, is substantially more difficult. Estimation of WTP for decreasesin very specific
health risks (e.g., WTP to decrease the risk of aday of coughing or WTP to decrease the risk of admission
to the hospital for respiratory illness) is further limited by a paucity of information.” Derivation of the
dollar value estimates discussed below was often limited by available information.

7 Some health effects, such as technical measures of pulmonary functioning (e.g., forced expiratory volume in one second)
are frequently studied by epidemiologists, but there has been very little work by economists on valuing these changes (e.g., Ostro et
al., 1989a).
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3.2.2 ChangeOver Timein WTP in Real Dollars

The WTP for health-related environmental improvements (in real dollars) could change between
now and the year 2030. If real income increases between now and the year 2030, for example, it is
reasonable to expect that WTP, in real dollars, would also increase. Below we summarize the evidence
regarding this effect, however we do not adjust our resultsin this analysis, because of the uncertainty
regarding the size of the effect.

Based on historical trends, the U.S. Bureau of Economic Analysis projects that, for the United
States as awhole as well as for regions and states within the U.S., mean per capita real income will
increase. For the U.S. asawhole, for example, mean per capita personal income is projected to increase
by about 16 percent from 1993 to 2005 (U.S. Bureau of Economic Analysis, 1995).

The mean WTP in the population is the correct measure of the value of a health problem avoided,
and that WTP is afunction of income. If the mean per capitarea income rises by the year 2030, the mean
WTP would probably rise aswell. Whilethisis most likely true, the degree to which mean WTP rises with
arisein mean per capitaincome is unclear unless the dagticity of WTP with respect to changes over time
inreal incomeis 1.0.

There is some evidence (Alberini et a., 1997; Loehman and De, 1982; Mitchell and Carson, 1986)
that the elasticity of WTP for health-related environmental improvements with respect to real incomeisless
than 1.0, possibly substantially so. If thisis the case, then changes in mean income cannot be readily
trandated into corresponding changes in mean WTP. Although an increase in mean income islikely to
imply an increase in mean WTP, the degree of the increase cannot be ascertained from information only
about the means.

Several factors, in addition to real income, that could affect the estimated benefit associated with
reductionsin air pollution concentrations could aso change by the year 2030. Demographic characteristics
of exposed populations could change. Technologica advances could change both the nature of precursor
emissions to the ambient air and the susceptibility of individualsto air pollution. Any such changes would
be reflected in C-R functions that differ from those that describe current relationships between ambient
concentrations and the various health endpoints. While adjustments of WTP to reflect changesin red
income are of interest, such adjustments would by no means necessarily reflect all possible changes that
could affect the benefits of reduced air pollution in 2030.

3.23 Adjusting Benefits Estimates from 1990 Dollarsto 1997 Dollars

This section describes the methods used to convert benefits estimates into constant dollars. In past
RIA analyses, cost and benefit estimates have been presented in constant 1990 dollars. Benefits estimates
in this analysis, however, are presented in constant 1997 dollars. To adjust benefits estimates from 1990
dollarsto 1997 dollars, the method of adjustment depends on the basis of the benefits estimates. These
methods are presented below. Four different bases of estimates are delineated in Exhibit 3-1, including that
for agricultural benefits.'®

BAgricultural benefits are discussed in Chapter 3.
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Exhibit 3-1 Basesof Benefits Estimation

Basis of Benefit Estimation Benefit Endpoints

Cost of illness Hospital admissions avoided

Direct estimates of WTP Stetistical lives saved; statisticd life-years saved
Chronic bronchitis; chronic asthma
Morbidity endpoints usng WTP

Vishility -- residentia
Visibility -- recreationa
Consumer cleaning cost savings

Earnings Work loss days (WLDs) avoided
Increased worker productivity
Changesin yields and prices of market commodities Agricultural benefits

Benefits estimates based on cost-of-illness have been adjusted by using the consumer price indexes
(CPI-Us) for medical care. Because increases in medical costs have been significantly greater than the
generd rate of inflation, using a generd inflator (the CPI-U for “all items’ or some other genera inflator)
to adjust from 1990 to 1997 dollars would downward bias cost-of-illness estimates in 1997 dollars.

Benefits estimates based directly on estimates of WTP have been adjusted using the CPI-U for “all
items.” (The CPI-Us, published by the U.S. Dept. of Labor, Bureau of Labor Statistics, can also be found
in Council of Economic Advisers (e.g.1997)) An overview of the adjustments from 1990 to 1997 dollars
for WTP-based and cost-of-illness based valuationsis given in Exhibit 3-2.

Exhibit 3-2 Consumer Price Indexes Used to Adjust WTP-Based and Cost-of-1lIness-Based Benefits
Estimates from 1990 Dollarsto 1997 Dollars

1990 1997 Adjustment Factor 2 Relevant Endpoints
@ @ (GO
CPI-U for “All Items” ® 130.7 160.5 1.228 WTP-based valuation:

1. Statigtica lives saved ©

2. Chronic bronchitis; chronic asthma
3. Morbidity endpoints using WTP¢
3. Vighility -- residential

4. Visbility -- recreationa

5. Consumer cleaning cost savings

CPl-U for Medical Care® 162.8 234.6 1.441 Cogt-of-illness based valuation:
Hospital admissions avoided®

2 Benefits estimates in 1990 dollars are multiplied by the adjustment factor to derive benefits estimates in 1997 dollars.
b Source: Dept. of Labor, Bureau of Labor Statistics; reported in Council of Economic Advisers (1998, Table B-60)
¢ Adjustments to 1990 $ were originally made by Industrial Economics Inc. using the CPI-U for “al items’ (I1Ec1992).

4 Adjustments of WTP-based benefits for morbidity endpointsto 1990 $ were originally made by Industrial Economics Inc. (1993)
using the CPI-U for “al items.”

¢ Adjustments of cost-of-illness based estimates of al hospital admissions avoided to 1990 $ were made by Abt AssociatesInc. in
previous analyses, such asthe NAAQS RIA (U.S. EPA, 1997c).
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Benefits estimates for two endpoints, work loss days (WLDs) avoided and increased worker
productivity, have in past analyses been based on the mean or median daily wage. Consistent with
economic welfare theory, the valuation of benefits associated with increased worker productivity resulting
from improved ozone air quality used the average daily income for outdoor workers engaged in strenuous
activity, reported by the 1990 U.S. Census ($73 per day, in 1990). The valuation of the benefit of avoiding
awork loss day used the median daily income rather than the mean. The income distribution in the United
States is highly skewed, so that the mean income is substantially larger than the median income. However,
the incomes of those individuals who lose work days due to pollution are not likely to be a random sample
from thisincome distribution. In particular, the probability of being drawn from the upper tail of the
distribution is likely to be substantially less than the probability massin that tail. To reflect this likelihood,
we used the median income rather than the mean income as the value of awork lossday. Thisis explained
more fully below in the section on valuing work loss days.

The benefits estimates for WLDs avoided and for increases in worker productivity can be put into
1997 dollarsin several ways. The most straightforward approach for WLDs isto obtain the 1997 median
weekly earnings (and divide by five to derive the median daily earnings) rather than relying on adjustments
from 1990 to 1997 dollars. The median weekly earnings of full-time wage and salary workersin 1997 was
$503 (U.S. Bureau of the Census 1998, Table 696). Thisimplies amedian daily earnings of $100.6, or
rounded to the nearest dollar, $101. Alternatively, we can adjust the median daily wage for 1990 to 1997
dollars, using the CPI-U for “al items.” The result turns out to be the same. The adjustment factor (the
ratio of the 1997 CPI-U to the 1990 CPI-U) is 1.228. Applied to the median daily earnings of $82.4 in
1990, the median daily earningsin 1997 would be $101.2, or rounded to the nearest dollar, $101.

The smplest method to adjust the benefits estimate for increased worker productivity would be to
use the CPI-U for “all items’ to adjust the current estimate of $73 per day, in 1990 dollars, to 1997 dollars.
Thiswould result in an estimate of $73*1.228 = $89.6 per day, or rounded to the nearest dollar, $90 per
day, in 1997 dollars. Alternatively, we could try to obtain an estimate of the average daily income for
outdoor workers engaged in strenuous activity in 1997, as we previously did for 1990. It isnot entirely
clear, however, which categories of workers were included among “ outdoor workers engaged in strenuous
activity” to obtain the 1990 estimate of $73 per day. It is therefore not clear which categories to include to
derive an equivalent figure for 1997.

Finally, agricultura benefits (changes in farm income and consumer welfare) predicted to result in
afuture year have been adjusted to 1997 dollars from 2010 using a GDP price deflator. In thisanalysis,
2010 benefits were adjusted to 1997 dollars by multiplying by 0.6735, the ratio of the 1997 GDP price
deflator (of 112.3 from:Council of Economic Advisers, 1997, Table B-3) to a projected 2010 GDP price
index (of 167.16) forecasted from the trend between 1997 and 2007, obtained from the USDA basdine
projections (U.S. Department of Agriculture, 1988b, electronic file Tab01.wk1).

Abt Associates Inc. 3-15 December 1999



3.2.4 Aggregation of Monetized Benefits

The total monetized benefit associated with attaining a given set of pollution changesin agiven
location is just the sum of the non-overlapping benefits associated with these changes. In theory, the total
health-related social value of the reduction in pollution concentrationsis:

Qo

a

i=1 j

wre(e, ).

1

where B;; is the benefit related to the j* health endpoint (i.e., the reduction in probability of having to endure
the j"™ health problem) conferred on the i™ individual by the reduction in pollution concentrations, and
WTP,(B;) isthei" individua’s WTP for that benefit.

However, the reduction in probability of each health problem for each individua is not known, nor
do we know each individual’s WTP for each possible benefit he or she might receive. Therefore, in
practice, benefits analysis estimates the value of a statistical health problem avoided. The benefit in the k™
location associated with the j™ health endpoint is just the change in incidence of the j™ health endpoint in the
k" |ocation, Ay, times the value of an avoided occurrence of the jth health endpoint.

Assuming that WTP to avoid the risk of a health effect varies from one individua to another, there
isadistribution of WTPs to avoid therisk of that health effect. This population distribution has a mean.
It is this population mean of WTPs to avoid or reduce therisk of the j*" health effect, MWTP, that is the
appropriate value in the benefit analysis.® The monetized benefit associated with the j™ health endpoint
resulting from attainment of standard(s) in the k™ location, then, is:

benefit;, = Dy, xMWTP,

and total monetized benefit in the k™ location (TMB,) may be written as the sum of the monetized benefits
associated with al non-overlapping endpoints:

N
TMB, = & Dy, xXMWTP, .
=1

The location- and health endpoint-specific incidence change, Ay, is modeled as the population
response to the change in pollutant concentrations in the k™ location. The discussion below uses particul ate
matter as an example but is equally applicable to any other pollutant, such as ozone. Assuming alog-linear
C-R function, the change in incidence of the | health endpoint in the k™ location corresponding to a change
in PM, APM,, in the k™ location is:

*The population of interest has not been defined. In alocation-specific analysis, the population of interest is the population
inthat location. The MWTP isideally the mean of the WTPs of al individualsin the location. There isinsufficient information,
however, to estimate the MWTP for any risk reduction in any particular location. Instead, estimates of MWTP for each type of risk
reduction will be taken to be estimates of the MWTP in the United States as awhole, and it will be assumed that MWTP, i=1, ..., N in
each location is approximately the same as in the United States as awhole.
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Dyjk = Yy X(ebjkDPMk i 1) ,

whereyy,, is the baseline incidence of the j" health endpoint in the k™ location and py isthe value of g, , the
coefficient of PM in the C-R relationship between PM and the j™ health endpoint, in the k™ location.

This approach assumes that there is a distribution of p;'s across the United States, that is, that the
value of p; in one location may not be the same as the value of B; in another location. The value of g; in the
k™ location is denoted as f -

The total PM-related monetized benefit for the k™ location can now be rewritten as:

N
TMB, = & y, {e"™™ - )xMwTP,
j=1

The total monetized PM-related benefit to be estimated for alocation is thus afunction of 2N parameters:
the coefficient of PM, By , in the C-R function for the j™ health (or welfare) endpoint, for j=1, ..., N,
specific to the k™ location, and the population mean WTP to reduce the risk of the | health endpoint,
MWTP,, j=1, ..., N.

The above model assumes that total monetized benefit is the sum of the monetized benefits from all
non-overlapping endpoints. 1f two or more endpoints were overlapping, or if one was contained within the
other (as, for example, hospital admissions for Chronic Obstructive Pulmonary Disease - COPD - is
contained within hospital admissions for “all respiratory illnesses’), then adding the monetized benefits
associated with those endpoints would result in double (or multiple) counting of monetized benefits. If
some endpoints that are not contained within endpoints included in the analysis are omitted, then the
aggregated monetized benefits will be less than the total monetized benefits.

The total monetized benefit (TMB) isthe sum of the total monetized benefits achieved in each
location:

K
TMB = § TMB,

k=1

where TMB, denotes the total monetized benefit achieved in the k™ location, and K is the number of
locations.

Theoretically, the nation-wide analysis could use location-specific C-R functions to estimate
location-specific benefits. Total monetized benefits (TMB), then, would just be the sum of these location-
specific benefits:

K K N
TMB=8 TMB =& & y,[e"™" - 1)xmwp
k=

k=1 1=t
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There are many locationsin the United States, however, and the individual |ocation-specific values of p;
(the,’s) arenot known.”® Since the national incidence of the j*" health endpoint attributed to PM, |;, isa
continuous function of the set of p,’s, that is, since:

K
]

=4
k=

1

_ & b jDPMy
Dy, = & v, {e"™™ - 1) ,
k=1

is a continuous function of the set of py,’s, there is some value of p; , which can be denoted ;*, that, if
applied in all locations, would yield the same result as the proper set of location-specific g;’s. This
follows from the Intermediate Vaue Theorem. While g* will result in overestimates of incidence in some
locations, it will result in underestimates in others. If ;* isapplied in all locations, however, the total
regional change in incidence will be correct. That is,

]

OK *
Dyjk =a yjk >{eb] DPM 1) ’
k=1

T Dox
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The total regional monetized PM-related benefit can now be rewritten as:

N K .
T™B, = & & v, {e"™™ - Jxmwrp, .
k=

j=1 k=1

The total regional monetized (PM-related) benefit is thus a function of 2N population means: the g* for the
j"™ health (or welfare) endpoint (8;* , for j=1, ..., N) and the popul ation mean WTP to reduce the risk of the
j™ health endpoint (MWTP, , j=1, ..., N).

The above formulation of the total monetized benefits associated with a given set of changesin PM
across K locationsis applied to ozone aswell. The set of health and welfare endpoints may be different for
ozone, but the calculation of benefitsis the same, with Aozone, substituted for APM, everywhere.

Both the endpoint-specific coefficients (the yj ’s) and the endpoint-specific mean WTPs (the
MWTP;’s) are uncertain. One approach to estimating the total monetized benefit isto smply use the mean
values of the endpoint-specific coefficients and mean WTPs in the above formula. We term this approach
the“simple mean.” Alternatively, we can characterize not only the mean total monetized benefit but the

*Thismay aso betrue of they;’s. It may be desirable to apply the uncertainty analysis used for the p's to these population
parametersaswell. In the current discussion, however, it is assumed that the location-specific incidences are known and therefore
have no uncertainty associated with them. It isalso assumed that MWTP, isthe samein all locations.
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distribution of possible values of total monetized benefit, using a Monte Carlo approach. The Monte Carlo
approach has three steps. First, in each of 5000 iterations, we randomly select a value from the distribution
of (nationd) incidence change of the hedlth or welfare effect. Second, we randomly select a vaue from the
distribution of unit dollar values for that health or welfare effect. And third, we multiply the two values.
Theresult isadistribution of (5000) monetized benefits associated with the given health or welfare effect.
From this distribution, we present the mean as well as the 5" and 95" percentiles. We discuss the
background of the Monte Carlo in the following sub-section.

3.3 CHARACTERIZATION OF UNCERTAINTY

In any complex analysis using estimated parameters and inputs from numerous different models,
there are likely to be many sources of uncertainty. Thisanalysisis no exception. There are many inputs
that are used to derive the final estimate of benefits, including emission inventories, air quality models (with
their associated parameters and inputs), epidemiological estimates of C-R functions, estimates of values
(both from WTP and cost-of-illness studies), population estimates, income estimates, and estimates of the
future state of the world, i.e. regulations, technology, and human behavior. Each of these inputs may be
uncertain, and depending on their location in the benefits analysis, may have a disproportionately large
impact on final estimates of total benefits. For example, emissions estimates are used in the first stage of
the analysis. As such, any uncertainty in emissions estimates will be propagated through the entire
analysis. When compounded with uncertainty in later stages, small uncertainties in emissions can lead to
much larger impacts on total benefits.

Exhibit 3-3 summarizes the wide variety of sources for uncertainty in thisanalysis. Some key
sources of uncertainty in each stage of the benefits analysis are:

* gapsin scientific data and inquiry

* variability in estimated relationships, such as C-R functions, introduced through differencesin
study design and statistical modeling

* errorsin measurement and projection for variables such as population growth rates

* errors due to misspecification of model structures, including the use of surrogate variables, such
as using PM,, when PM,, ¢ is not available, excluded variables, and simplification of complex
functions

* biases due to omissions or other research limitations.

Our approach to characterizing model uncertainty in the estimate of total benefitsisto present a
primary estimate, based on the best available scientific literature and methods, and to provide estimates of
the effects of uncertainty about key analytical assumptions. However, in some cases, it was not possible to
guantify uncertainty. For example, many benefits categories, while known to exist, do not have enough
information available to provide a quantified or monetized estimate. The uncertainty regarding these
endpoints is such that we could determine neither a primary estimate nor a plausible range of values. To
the extent possible, we address uncertainty by presenting alternative calculations, supplemental calculations
sensitivity analyses, and probabilistic assessments. We discuss each approach in turn.
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Exhibit 3-3 Key Sources of Uncertainty in the Benefit Analysis

1. Uncertainties Associated With Concentration-Response Functions

-The value of the ozone- or PM-coefficient in each C-R function.

-Application of asingle C-R function to pollutant changes and populationsin all locations.

-Similarity of future year C-R relationships to current C-R relationships.

-Correct functional form of each C-R relationship.

-Extrapolation of C-R relationships beyond the range of ozone or PM concentrations observed in the study.

2. Uncertainties Associated With Ozone and PM Concentrations

-Estimating future-year baseline and hourly ozone and daily PM concentrations.
-Estimating the change in ozone and PM resulting from the control policy.

3. Uncertainties Associated with PM Mortality Risk

-No scientific literature supporting a direct biological mechanism for observed epidemiological evidence.

-Direct causal agents within the complex mixture of PM responsible for reported health effects have not been identified.
-The extent to which adverse hedlth effects are associated with low level exposures that occur many timesin the year
versus peak exposures.

-Possible confounding in the epidemiological studies of PM, ¢, effects with other factors (e.g., other air pollutants,
weather, indoor/outdoor air, etc.).

-The extent to which effects reported in the long-term studies are associated with historically higher levels of PM rather
than the levels occurring during the period of study.

-Reliability of the limited ambient PM, ; monitoring datain reflecting actual PM, ¢ exposures.

4. Uncertainties Associated With Possible Lagged Effects

-What portion of the PM-related long-term exposure mortality effects associated with changes in annual PM levels would
occur in asingle year, and what portion might occur in subsequent years.

5. Uncertainties Associated With Baseline Incidence Rates

-Some basdline incidence rates are not |ocation-specific (e.g., those taken from studies) and may therefore not accurately
represent the actual location-specific rates.

-Current baseline incidence rates may not well approximate what baseline incidence rates will bein the year 2030.

-Projected population and demographics -- used to derive incidences— may not well approximate future-year population
and demographics.

6. Uncertainties Associated With Economic Valuation

-Unit dollar values associated with health and welfare endpoints are only estimates of mean WTP and therefore have
uncertainty surrounding them.

-Mean WTP (in constant dollars) for each type of risk reduction may differ from current estimates due to differencesin
income or other factors.

7. Uncertainties Associated With Aggregation of Monetized Benefits

-Hedlth and welfare benefits estimates are limited to the available C-R functions. Thus, unquantified benefit categories
will cause total benefits to be underestimated.
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3.3.1 Alternative and Supplementary Calculations

The dternative calculations included in this analysis are based on relatively plausible alternatives
to the assumptions used in deriving the primary benefit estimates. We do not attempt to assign
probabilities to these dternative calculations, as we believe this would only add to the uncertainty of the
analysis or present a false picture about the precision of the results*’. Instead, the reader isinvited to
examine the impact of applying the different assumptions on the estimate of total benefits. Whileitis
possible to combine all of the alternative cal culations with a positive impact on benefits to form a*high”
estimate or al of the aternative calculations with a negative impact on benefitsto form a*low” estimate,
we do not recommend this because the probability of al of these alternative assumptions occurring
simultaneoudly is likely to be very low. Instead, the dternative calculations are intended to demonstrate the
sengitivity of our benefits results to key parameters which may be uncertain. Exhibit 3-4 summarizes the
aternative calculations included in this analysis.

Exhibit 3-4 aso summarizes supplemental calculations prepared for this analysis. Supplemental
calculations are intended to provide additiona information about specific health effects, but are not suitable
for inclusion in the primary or alternative estimates due to concerns about double-counting of benefits or
the high degree of uncertainty about the estimates. Results from the supplemental calculations can be
found in Appendix A.

Alternative Calculations

The Dockery et al. (1993) estimate of the relationship between PM exposure and premature
mortality is a plausible alternative to that based on the Pope et al. (1995) However, the Dockery et al.
study had a more limited geographic scope (and a smaller study population) than the Pope et a. study. The
Dockery et a. study also covered a broader age category (25 and older compared to 30 and older in the
Pope et al. study) and followed the cohort for alonger period (15 years compared to 8 years in the Pope et
al. study). For these reasons, the Dockery et a. study is considered to be a plausible aternative estimate of
the avoided premature mortality incidences.

The value of statistical life years alternative calculation recognizes that individuals who die from
air pollution related causes tend to be older than the average age of individualsin the VSL studies used to
develop the $5.9 million value. To employ the value of statistical life-year (VSLY) approach, we first
estimated the age distribution of those lives projected to be saved by reducing air pollution. Based on life
expectancy tables, we calculate the life-years saved from each statistical life saved within each age and
gender cohort. To value these dtatisticd life-years, we hypothesized a conceptual model which depicted the
relationship between the value of life and the value of life-years. The average number of life-years saved
across al age groups for which data were available is 14 for PM-related mortality. The average for PM, in
particular, differs from the 35-year expected remaining lifespan derived from existing wage-risk studies.
Using the same distribution of value of life estimates used above, we estimated a distribution for the value
of alife-year and combined it with the total number of estimated life-years lost.

2 Some recent benefit-cost analysesin Canada and Europe (Holland et al., 1999; Lang et al., 1995) have estimated ranges
of benefits by assigning ad hoc probabilities to ranges of parameter values for different endpoints. Although this does generate a
quantitative estimate of an uncertainty range, the estimated points on these distributions are themselves highly uncertain and very
sensitive to the subjective judgements of the analyst. To avoid these subjective judgements, we choose to alow the reader to
determine the weights they would assign to aternative estimates.
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Reversals in chronic bronchitis incidences are defined as those cases where an individual reported
having chronic bronchitis at the beginning of the study period but reported not having chronic bronchitisin
follow-up interviews at alater point in the study period. Since, by definition, chronic diseases are long-
lasting or permanent, if the disease goes away it is not chronic. Inthe primary analysis, these reversals are
given avaue of zero. Asan dternative calculation, we estimate reversals and value each as a case of the
mildest form of chronic bronchitis.

The dternative calculation for residential visibility is based on the McClelland et al. (1991) study
of WTP for visibility changes in Chicago and Atlanta. The residential visibility estimates from the
available literature have been determined by the SAB to be inadequate for use in aprimary estimate in a
benefit-cost analysis, because they have not undergone rigorous peer review (EPA-SAB-COUNCIL-ADV-
00-002, 1999). However, residential vishility islikely to have some value and the McClelland et a. study
is probably the best in estimating the likely magnitude of the benefits of residential visibility improvements.
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Exhibit 3-4 Alternative and Supplemental Benefits Calculations for the Tier 11 2030 Control

Scenario

Alternative/Supplemental
Calculations

Description

Alternative Calculations

PM-related premature mortality
based on Dockery et al. (1993)

The Dockery,et a. study provides an dternative estimate of the relationship between
chronic PM exposure and mortality.

Value of avoided premature mortality
incidences based on stetigtical life
years.

Calculate theincremental number of life-yearslost from exposure to changes in ambient
PM and use the value of adtatistical life year based on a $5.9 million value of a statitical
life.

Reversalsin chronic bronchitis
treated as lowest severity cases

Instead of omitting those cases of chronic bronchitis that reverse after a period of time, they
are treated as being cases with the lowest severity rating.

Value of visibility changesin Eastern
U.S. residential areas

Value of visibility changes outside of Class| areas are estimated for the Eastern U.S. based
on the reported values for Chicago and Atlanta derived from McClelland et a. (1991).

Household soiling damage

Value of decreases in expenditures on cleaning are estimated using values derived from
Manuel et d. (1982).

Avoided costs of reducing nitrogen
loadingsin East coast estuaries

Estuarine benefitsin 12 East coast estuaries from reduced atmospheric nitrogen deposition
are approximated using the avoided costs of removing or preventing loadings from
terrestrial sources.

Uncertainty bounds of aggregate
benefit totals

5 and 95" percentile values of the distribution of total estimated benefits for ozone, PM,
and ozone + PM.

Supplemental Calculations

Short-term mortality

The Schwartz et a. (1996) study provides an estimate of the relationship between acute
PM exposure and mortality.

Post-neonatal mortality

The Woodruff et al. (1997) study provides an estimate of the relationship between chronic
exposure and infant mortality.

Ozone mortality

Ozone-related mortality benefits estimated using a pooled analysis based on four U.S.
studies.

Asthma Attacks Dueto the potential for overlap with health effects covered in the pooled estimate of
MRADs and Any-of-19 Respiratory Symptoms, cases of PM-related moderate or worse
asthma (Ostro et al. (1991)) and cases of both PM- and Ozone-related asthma attacks
(Whittemore and Korn (1980)) are presented separately.

Restricted activity days Restricted activity days are presented separately because they overlap with work loss days

and minor restricted activity days.

Ozone-related cardiovascular disease

Burnett et al. (1997) provides an estimate of cardiovascular-related hospital admissions.

The dternative calculation for household soiling is based on the Manuel et a. (1982) study of
consumer expenditures on cleaning and household maintenance. However, the data used to estimate
household soiling damages in the Manuel et a. study isfrom a 1972 consumer expenditure survey and as
such may not accurately represent consumer preferencesin the future.
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The aternative calculation for the avoided costs of reductions in nitrogen loadings is constructed
by examining the avoided costs to surrounding communities of reduced nitrogen loadings for three case
study estuaries (Albemarle-Pamlico Sounds, Chesapeake Bay, and Tampa Bay). The three case study
estuaries are chosen because they have agreed upon nitrogen reduction goals and the necessary nitrogen
control cost data. The estimated costs for these three case-study estuaries are then averaged and applied to
nine other estuaries, chosen for their prominence in the eastern U.S.

Uncertainty bounds are provided as an alternative calculation for aggregate totals of benefits. The
5 and 95™ percentile alternative cal culations are estimated by holding air quality changes, population
estimates, and other factors constant and determining the distribution of total benefits that would be
generated by alarge number of random draws from the distributions of C-R functions and economic
valuation functions. These alternative calculations thus show how the primary estimate of benefits changes
in response to uncertainty in the measurement of C-R and valuation functions.

Supplemental Calculations

Studies examining the relationship between short-term exposures and premature mortality can
reveal what proportion of premature mortality is due to immediate response to daily variationsin PM.
There is only one short-term study (presenting results from 6 separate U.S. cities) that uses PM, 5 as the
metric of PM (Schwartz et a. (1996)). As such, the supplemental estimate for premature mortality related
to short-term PM exposures is based on the pooled city-specific, short-term PM,, ; results from Schwartz et
al.

The estimated effect of PM exposure on premature mortality in infants (post-neonatal) is based on
asingle U.S. study (Woodruff et al. (1997)) that, on recommendation of the SAB, was deemed too
uncertain to include in the primary analysis. Adding this endpoint to the primary benefits estimate would
result in an increase in total benefits.

In previous regulatory analyses, estimated incidences of ozone-related premature mortality have
been estimated as a primary endpoint. Based on recent advice from the Science Advisory Board (SAB)
(EPA-SAB-Council-ADV-99-012, 1999), however, we have converted this endpoint to a supplemental
estimate to avoid potential double-counting of benefits captured by the Pope et al. PM premature mortality
endpoint. There are many studies of the relationship between ambient ozone levels and daily mortality
levels. The supplemental estimate is calculated using results from only four U.S. studies (Ito and Thurston
(1996), Kinney et al. (1995), Moolgavkar et a. (1995), and Samet et a. (1997)), based on the assumption
that demographic and environmental conditions on average would be more similar between these studies
and the conditions prevailing when this regulation is implemented.

Due to the potentia for overlap with health effects covered in the pooled estimate of MRADs and
Any-of-19 Respiratory Symptoms, cases of PM-related moderate or worse asthma (Ostro et al. (1991)) and
cases of both PM- and ozone-related asthma attacks (Whittemore and Korn (1980)) are presented
separately as supplemental calculations. To include them would lead to a potential double-counting of
benefits related to the avoidance of asthmarrelated health effects.

Restricted activity days (Ostro, 1987) is another health effect that overlaps with endpoints included
in the primary analysis. Restricted activity days are defined as work loss days, missed school days, days
spent in bed, and other restricted activity days (Adams and Benson, 1992, p. 4). Hedlth effectsincluded in
this definition overlap with health effects included in both measures of work loss days and minor restricted
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activity days. To include both of these endpoints along with restricted activity days would lead to a double-
counting of benefits, therefore restricted activity days are presented as a supplementa calculation.

The last supplemental calculation is an aternative measure of ozone-related cardiovascular
disease. There are only two studies that are relevant for this endpoint, Burnett et a. (1997) and Burnett et
al. (1999). Burnett et al. (1997) givesimplausibly large estimates of cardiovascular disease. Thelink
between ozone and cardiovascular problems is not as well established as that between ozone and
respiratory problems. Other studies have not found a link between ozone and cardiovascular problems, and
instead have found associations with other pollutants, like PM. Acknowledging the uncertainty in our
estimate, we use only the results of the Burnett et al. (1999) study that focused on a narrow subset of
cardiovascular problems, the relationship between ozone and abnormal heart rhythms or * dysrhythmias.”

3.3.2 Sendgtivity Analyses

In addition to aternative cal culations and supplementary calculations, we will perform sengitivity
analyses, briefly described in Exhibit 3-5. Sensitivity analyses, as opposed to alternative calculations,
examine the sengitivity of estimated benefits results to less plausible alternatives to the assumptions used in
the primary analysis. Sensitivity calculations also demonstrate the sensitivity of our benefits results to key
analytical parameters. The sensitivity analyses calculated for this analysis will include the impact of a
threshold assumption on Pope et a. (1995) mortality, alternative lag structures when valuing mortality, and
the extrapolation of benefits from reduced nitrogen loadings to all East coast nutrient-sensitive estuaries.
Results from the sensitivity analyses are presented in Appendix A.

Exhibit 3-5 Sengtivity Analysesfor the Tier 11 2030 Control Scenario

Sensitivity Analysis Description

Threshold assumptions Calculate the impact varying threshold assumptions have on the estimation of mortality
incidence based on the Pope et al. (1995) study.

Alternative mortality lag structures | Calculate the impact different lag structures have on the estimation of benefits associated
with avoided mortality incidence.

Avoided costs of reducing nitrogen | Estuarine benefits attributed to 12 nutrient-sensitive East coast estuaries extrapolated to
loadings in East coast estuaries represent benefits associated with reductions in nitrogen at al nutrient-sensitive East coast
estuaries.

3.3.3 Statistical Uncertainty Bounds

Although there are several sources of uncertainty affecting estimates of endpoint-specific benefits,
the sources of uncertainty that are most readily quantifiable in this analysis are the C-R relationships and
uncertainty about unit dollar values. The total dollar benefit associated with a given endpoint depends on
how much the endpoint will change due to the final standard (e.g., how many premature deaths will be
avoided) and how much each unit of change is worth (e.g., how much a premature death avoided is
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worth).?? Based on these distributions, we provide estimates of the 5" and 95™ percentile values of the
distribution of estimated benefits. However, we hasten to add that this omits important sources of
uncertainty, such as the contribution of air quality changes, baseline population incidences, projected
populations exposed, transferability of the C-R function to diverse locations, and uncertainty about
premature mortality. Thus, a confidence interval based on the standard error would provide a mideading
picture about the overall uncertainty in the estimates. The empirical evidence about uncertainty is
presented where it is available.

Both the uncertainty about the incidence changes and uncertainty about unit dollar values can be
characterized by distributions. Each “uncertainty distribution” characterizes our beliefs about what the
true value of an unknown (e.g., the true change in incidence of a given health effect) is likely to be, based
on the available information from relevant studies® Unlike a sampling distribution (which describes the
possible values that an estimator of an unknown value might take on), this uncertainty distribution
describes our beliefs about what values the unknown value itself might be. Such uncertainty distributions
can be constructed for each underlying unknown (such as a particular pollutant coefficient for a particular
location) or for afunction of severa underlying unknowns (such as the total dollar benefit of a regulation).
In either case, an uncertainty distribution is a characterization of our beliefs about what the unknown (or
the function of unknowns) islikely to be, based on al the available relevant information. Uncertainty
statements based on such distributions are typically expressed as 90 percent credible intervals. Thisisthe
interval from the fifth percentile point of the uncertainty distribution to the ninety-fifth percentile point.
The 90 percent credible interval is a“credible range” within which, according to the available information
(embodied in the uncertainty distribution of possible values), we believe the true value to lie with 90
percent probability.

The uncertainty about the total dollar benefit associated with any single endpoint combines the
uncertainties from these two sources, and is estimated with a Monte Carlo method. 1n each iteration of the
Monte Carlo procedure, avalue is randomly drawn from the incidence distribution and a value is randomly
drawn from the unit dollar value distribution, and the total dollar benefit for that iteration is the product of
thetwo.?* If thisis repeated for many (e.g., thousands of) iterations, the distribution of total dollar benefits
associated with the endpoint is generated.

Using this Monte Carlo procedure, a distribution of dollar benefits may be generated for each
endpoint. The mean and median of this Monte Carlo-generated distribution are good candidates for a point
estimate of total monetary benefits for the endpoint. As the number of Monte Carlo draws gets larger and
larger, the Monte Carlo-generated distribution becomes a better and better approximation to the underlying
uncertainty distribution of total monetary benefits for the endpoint. In the limit, it isidentical to the
underlying distribution.

2 Because thisis aregional analysisin which, for each endpoint, asingle C-R function is applied everywhere, there are two
sources of uncertainty about incidence: (1) statistical uncertainty (due to sampling error) about the true value of the pollutant
coefficient in the location where the C-R function was estimated, and (2) uncertainty about how well any given pollutant coefficient
approximates p*.

2 Although such an “uncertainty distribution” is not formally a Bayesian posterior distribution, it is very similar in concept
and function (see, for example, the discussion of the Bayesian approach in Kennedy1990, pp. 168-172).

2 This method assumes that the incidence change and the unit dollar value for an endpoint are stochastically independent.
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3.3.4 Unquantified Benefits

In considering the monetized benefits estimates, the reader should remain aware of the limitations.
One significant limitation of both the health and welfare benefits analysesis the inability to quantify many
of the PM and ozone-induced adverse effects. For many health and welfare effects, such as PM-related
materials damage, reliable C-R functions and/or valuation functions are not currently available. In general,
if it were possible to monetize these benefits categories, the benefits estimates presented in this RIA would
increase. In addition to unquantified benefits, there may also be environmental costs that we are unable to
quantify. Several of these environmental cost categories are related to nitrogen deposition, while one
category isrelated to the issue of ultraviolet light. The net effect of excluding benefit and disbenefit
categories from the estimate of total benefits depends on the relative magnitude of the effects.
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4 HEALTH BENEFITS

The most significant monetized benefits of reducing ambient concentrations of PM and ozone are
attributable to reductions in health risks associated with air pollution. This Chapter describes individual
effects and the methods used to quantify and monetize changes in the expected number of incidences of
various health effects.

We estimate the incidence of adverse health effects using C-R functions based on PM and ozone.
The changes in incidence of PM-related and ozone-related adverse hedlth effects and corresponding
monetized benefits associated with these changes are estimated separately. The PM- and ozone-rel ated
health endpoints for which C-R functions are estimated are shown in Exhibits 4-1 and 4-2, respectively.
The unit monetary values for each of these endpoints, and associated uncertainty distributions, are
presented in Exhibit 4-3. In some cases there are alternative and/or supplemental endpoints, studies, or unit
dollar values that could be used in calculating the benefits of a change in pollution. These dternatives are
presented where appropriate in Exhibits 4-1, 4-2, and 4-3 in italics to indicate that they are not used in the
primary analysis but may be used in aternative analyses or used to supplement the existing analyses.
Appendices B and C present the functional forms for each C-R function and how they were derived.

Issues relating to the calculation of changes in incidence and the monetization of these changes are
discussed below for each endpoint. For some of the endpoint-pollutant combinations, there are severa
epidemiologica studies that have estimated C-R functions. In these cases, the information in the multiple
studies is pooled, so that the estimation of the change in incidence and the corresponding monetized value
of that change is based on a synthesis of the information in all the available studies. A genera discussion
of pooling issues is provided above. A detailed description of the method used to pool multiple studiesin
this analysisis given below for those endpoints for which pooling was used.
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Exhibit 4-1 PM-Related Health Endpoints

Endpoint Population to Which PM Study
Applied Indicator
Mortality
Associated with long-term exposure Ages 30+ PM,5 Pope et al. (1995)
Associated with long-term exposure 2 All ages PM, 5 Dockery et al. (1993)
Chronic lliness
Chronic Bronchitis varies by study variesby | Multiple studies®
study
Hospital Admissions
Respiratory varies by study variesby | Multiple studies®
study
Cardiovascular varies by study variesby | Multiple studies®
study
Asthma-related ER visits <65 PM 4 Schwartz et al. (1993)
Respiratory Symptoms/llInesses Not Requiring Hospitalization
Acute bronchitis Ages8-12 PM, 5 Dockery et al. (1989)
Lower respiratory symptoms (LRS) Ages7-14 PM, 5 Schwartz et al. (1994)
Upper respiratory symptoms (URS) Asthmatics, ages 9-11 PM 4 Popeet al. (1991)
Shortness of breath (days with) African-American PM 4 Ostro et al. (1995)
asthmatics, ages7-12
Minor restricted activity day (MRAD)/ Any Ages 18-65 variesby | Ostro and Rothschild (1989b), Krupnick
of 19 respiratory symptoms © study et a. (1990)
Work loss days (WLDs) Ages 18-65 PM, 5 Ostro (1987)
Asthma Asthmatics, all ages PM,s, |Ostroetal. (1991), Whittemore and
PM,, Korn (1980)
Restricted Activity Days (RADS) Ages 18-65 PM, ¢ Ostro (1987)

® The incidence changes, and the associated monetized benefits, predicted by several studies are pooled. The separate studies and

the method of pooling are described below.

2 Italicized entries are either aternative or supplemental calculations to the endpoints and/or studies used in the primary analysis.

° The incidence changes, and the associated monetized benefits, from these two related endpoints are pooled.
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Exhibit 4-2 Ozone-Related Health Endpoints

Endpoint Population to Which Study
Applied
Chronic lliness
Chronic asthma non-asthmatic males, age 27+ McDonnell et al. (1999)

Hospital Admissions

Respiratory varies by study Multiple studies?
Cardiovascular varies by study Multiple studies?
Asthma-related ER visits varies by study Multiple studies?

Symptomg/I lInesses Not Requiring Hospitalization

Minor restricted activity day (MRAD) / Any of 19 Ages 18-65 Ostro and Rothschild (1989b), Krupnick et
respiratory symptoms® al. (1990)

\Worker productivity Working population Crocker and Horst (1981) and EPA (1994)
Asthma attacks © Asthmatics, all ages Whittemore and Korn (1980)

2 The incidence changes, and the associated monetized benefits, predicted by several studies are pooled. The separate studies and
the method of pooling are described below.

® The incidence changes, and the associated monetized benefits, from these two related endpoints are pool ed.

¢ Italicized entries are alternative or supplementd calculations to the endpoints and/or studies used in the primary analysis.
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Exhibit 4-3 Unit Valuesfor Economic Valuation of Health Endpoints (1997 $)

Health Endpoint

Mean Estimate ?

| Uncertainty Distribution 2

Mortality

Value of adtatistica life

$5.9 million per statistical life

Weibull distribution, mean = $5.9 million;
std. dev. = $3.98 million.

Value of a statistical life
year °

$2.8 million per statistical life
(mean of 24 years of life saved)

Based on the Weibull distribution for the value of a statistical
life, from which the value of a statistical life year is derived.

Chronic Bronchitis

\WTP approach $319,000 per case A Monte Carlo-generated distribution, based on three underlying
distributions.

Chronic Asthma

$31,000 per case Triangular distribution centered at $31,000 over the interval

[$23,000, $37,000].

Hospital Admissions

Respiratory —° —°

Cardiovascular —¢ —¢

Asthma-related ER visits | $279.55 per visit Triangular distribution centered at $280 over the interval

[$207.50, $387.63].

Respiratory Ailments Not Requiring Hospitalization

Acute bronchitis

$55.26 per case

Continuous uniform distribution over [$15.96, $94.56].

Lower resp. Symptoms

$14.74 per symptom-day

Continuous uniform distribution over [$6.14, $23.33].

Upper resp. Symptoms

$23.33 per symptom-day

Continuous uniform distribution over [$8.60,$40.52].

Any of 19 acute
respiratory symptoms/
minor restricted activity
day (MRAD) ¢

Any of 19 symptoms: $22.10 per
symptom-day

MRAD: $46.66 per day

Any of 19 symptoms: Continuous uniform distribution over the
interval [$0,$45.44].

MRAD: Triangular distribution centered at $46.66 over [$19.65,
$74.91].

Shortness of breath

$6.51 per symptom-day

Continuous uniform distribution over [$0, $13.02]

Work loss days

$101.92 per day

None available

\Worker productivity

Changein daily wages adjusted by
regiona variationsin income

None available

Asthma - acute

$39.30 per symptom-day

Continuous uniform distribution over [$14.74, $66.31]

Asthma — moder ate or
worse

$39.30

Continuous uniform distribution over [$14.74, $66.31]

Restricted activity day
(RAD)

Based on MRAD valuation

Values based on MRAD valuation

2The derivation of each of the estimatesis discussed in the text. All WTP-based dollar values were obtained by multiplying rounded
1990 $ values used in the §812 Prospective Analysis by 1.228 to adjust to 1997 $. Entriesin italics are not used in the primary
benefits analysis.

® Based on a5 percent discount rate, a value of $360,000 (rounded from $359,981) per life year (in 1997 $), afive-year lag
structure, 1997 life expectancies, and 22,837 implied deaths (derived from the number of estimated life yearslost). Thisis explained
in greater deta