

25th ANNUAL NATIONAL CONFERENCE ON
MANAGING ENVIRONMENTAL QUALITY

SYSTEMS

APRIL 24-27, 2006

Marriott Renaissance, Austin, Texas

Technical Papers

Best Practices in Information Quality Improvement

• L.Petterson, ORD's Scientific Office of the Future - 8:30 AM
• R.Wright, Application of Software QA Concepts and Procedures to

Research Involving Software Development - 9:00 AM
• C. Mallory, The Emergent Data Steward - 9:30 AM

Best Practices in Information Quality Improvement

1

TECHNICAL SESSION:
Best Practices in Information Quality Improvement

ORD’s Scientific Office of the Future

Lynne Petterson, U.S. EPA

EPA research is becoming increasingly collaborative with multi-discipline research teams
located in geographically distributed sites. Scientific requirements necessitate the
creation and implementation of “collaboratories” or virtual science laboratory/centers
without walls, in which Agency researchers and their partners can conduct their science
without regard to geographical location. As a first step in this vision, ORD is creating the
Scientific Office of the Future (SoF). The SoF consists of dual processor scientific
workstations with 64-bit architectures (with 32-bit backward compatibility) and multiple
monitors. SoF workstations allow the Agency to take advantage of cost effective, high-
end workstations to balance its scientific computing load across its administrative
desktop systems, SoF workstations, and high performance computing (HPC) platforms.

In 2004, ORD tested the new architectures with applications in the following areas:
Geospatial Analysis/Remote Sensing; Computational Methods including Computational
Toxicology, Computational Chemistry, and ‘Nomics; Modeling/Simulation, and;
Statistics. Preliminary testing created excitment among researchers evaluating the SoF
workstations. For example, a computational chemist found he could run 95% of his
research on the SoF workstation, replacing 3 Silicon Graphics workstations and 20% of
his allocation at EPA’s National Environmental Sciences Computing Center (NESCC).

In 2005, ORD researchers and IT staff collaborated on identifying a single, standard
configuration for the SoF workstation that could meet most scientific computing needs in
ORD. The group also created an in-depth analysis demonstrating that it was more cost
efficient to purchase the systems rather than to lease them.

With Management Council approval, 67 SoF workstations were acquired in November
2005 for an SoF Pilot that begins in March 2006. The purpose of the SoF Pilot is to
determine whether recipients experience a reduction in processing time for their current
scientific applications/models, increase the size and complexity of their scientific
applications/models, and run jobs that were not possible on their current
PCs/workstations. The SoF Pilot will also assess the ability of SoF researchers to reduce
their reliance on the central HPC platform and save HPC cycles for large production jobs
by moving appropriate, smaller jobs to SoF systems. A subset of the SoF workstations
will be involved in a proof-of-concept that demonstrates cycle sharing and remote access
to unused cycles.

A final goal of the SoF Pilot is to identify and track the costs needed to support the SoF
workstations. This information is needed for senior management to decide on next steps.

Best Practices in Information Quality Improvement

2

Application of Software Quality Assurance Concepts and Procedures to
Environmental Research Involving Software Development

Robert S. Wright, Mail Code E343-03
U.S. Environmental Protection Agency

National Risk Management Research Laboratory
Air Pollution Prevention and Control Division

Research Triangle Park, NC 27711

As EPA’s environmental research expands into new areas that involve the development of
software, quality assurance concepts and procedures that were originally developed for
environmental data collection may not be appropriate. Fortunately, software quality assurance
is a well-developed technical field in software engineering and its concepts and principles can be
applied to software that is developed for environmental research. There are significant parallels
between the two types of quality assurance and it should not be difficult to incorporate software
quality assurance concepts and procedures into the EPA Quality System. This paper compares
these two types of quality assurance and highlights their similarities and differences. Even
readers who are not familiar with software quality assurance can use the concepts and
procedures described in this paper to improve the quality of software developed for
environmental research.

INTRODUCTION

EPA Order 5360.1 A2 establishes policy and program requirements for the mandatory
Agency-wide quality system. Its scope includes the collection, evaluation, and use of
environmental data as well as the design, construction, and operation of environmental
technology. In the past, EPA’s quality assurance activities have focused largely on
environmental data collection. Increasingly, the uses of environmental data in databases
and other information systems have become an area of concern. Quality assurance
principles and procedures are needed for these information systems. The concepts and
procedures that have been developed for environmental data collection do not apply well
to information systems. Software quality assurance has developed in parallel with EPA’s
quality system and can be applied in those instances in which environmental research
includes the development of software. This paper describes software quality assurance
concepts and procedures that can be useful in those instances.

SYSTEMATIC PLANNING

The development of software begins with the systems analysis and design process, which
is analogous to the systematic project planning process (see Table 1). This process is a
direct application of the Shewhart cycle (plan-do-check-act). In broad terms, problems
and solutions are identified, goals are established, software quality criteria (metrics) are
set to gauge performance, software development is implemented, and progress is assessed
during development and at its completion. The software is documented during the
analysis phase in software requirements, which describe the purpose and desired
functions of the software, and in functional specifications, which are a formal description
of the software and which is the blueprint for developing the software. Based on these

Best Practices in Information Quality Improvement

3

documents, the design phase establishes the proposed structure of the software, which is
documented in a high-level, architectural design for the overall system structure and in a
detailed design that includes the design of specific program details. During this phase,
testing procedures are developed to determine if quality metrics are being attained.
During the development phase, testing and corrective action occur as needed.
Additionally, the software is assessed in informal and formal reviews. A software quality
plan is prepared to document how quality assurance activities support the development
and to answer questions such as: what are the quality metrics?; what testing and
assessment will be done?; and how are uncovered problems corrected? The plan may
contain the following sections: purpose; reference documents; management;
documentation; standards, practices, conventions, and metrics; assessments; software
configuration management; problem reporting and corrective action; tools, techniques,
and methodologies; code control; media control; supplier control; records collection,
maintenance, and retention; and testing methods.

THE GRADED APPROACH

Some software quality assurance procedures may not be appropriate for a specific
software development project. As is the case for environmental data collection projects,
a graded approach can be used to apply an appropriate level of software quality assurance
for a project. Argonne National Laboratory’s Decision and Information Sciences
Division (ANL DISD) has three quality levels for its software development projects (see
Table 2). The quality assurance procedures that must be followed at each level are
dependent on factors such as criticality, external impact, development effort, security
impact, and cost of failure.

QUALITY METRICS

Quality metrics, such as reliability, usability, maintainability, and adaptability, are more
appropriate for software development projects than are the data quality indicators
applicable to environmental measurements, such as precision, bias, and
representativeness (see Table 3). Quality metrics can be divided into (1) process metrics
which are used to improve the software development and maintenance process, (2)
product metrics which describe the characteristics of the software itself, and (3) project
metrics which describe the project and its execution (Ginac, 1998). There should be a
correlation between the product metrics and the software requirements.

SOFTWARE TESTING

Software testing procedures fill the same role in software development projects as quality
control checks do in environmental data collection projects. Various manual and
automated techniques are available to test software inputs and outputs (black box testing)
or to test the internal structure of software (white box testing) at various stages of its
development. One model of software testing is a “V” in which software requirements,
functional specifications, architectural design, and detailed design move down the left
side while unit testing, integration testing, system testing, and acceptance testing move up

Best Practices in Information Quality Improvement

4

the right side. The expected output or result of each stage of the testing is defined in the
documentation that is opposite it on the “V.” Testing should not be done by the individual
who prepared the software and, where feasible or necessary, an organization should not
test its own software (Myers et al., 2004). Independent verification and validation of
software is a quite formal testing process that reserved for important, large, and complex
projects, such as in the aerospace industry, for which it is critical that the software
perform successfully. It is performed by an organization not involved in developing the
software. The purpose of independent verification and validation is to ensure that the
software design, implementation, and documentation meet requirements. Verification
addresses “Am I building the product right?” and validation addresses “Am I building the
right product?” The expected benefits are increased objectivity, earlier detection of
errors, reduced effort and costs of removing detected errors, enhanced operational
correctness, and a more consistent testing. It establishes traceability between the
software and the requirements.

SOFTWARE DOCUMENTATION

The documentation that is needed for a software development project should be defined
in the design phase. It may be embedded in the software itself or it may be in hard-copy
or on-line documents. The documentation requirements for ANL DISD projects include
a software quality assurance plan, a configuration management plan, a test plan, and test
documentation/results (see Table 4), which parallel EPA’s documentation requirements.
In addition to development-related documents, other documents that may be written for
the software include code documentation, user documentation, and guides for installation,
operation, and maintenance.

SOFTWARE ASSESSMENT

The assessment function can be performed by peer reviews that are performed at various
stages of the development process and with various degrees of formality as follows
(Wiegers, 2002):

• Inspection is the most systematic and rigorous of the assessments and it is the
software industry’s best practice. It has procedures that are similar to a technical
systems audit. A group of people, including a moderator and a recorder, conduct
an inspection to review a document, such as a functional specification or test plan.
The goal is to find problems with the document, not to fix them. A formal report
of the inspection will be prepared.

• Team review is planned and structured, but less formal and rigorous than
inspections

• Walkthrough is an informal review in which the software author describes the
software to a group of peers and solicits formal comments. The author takes the
dominant role.

• Pair-programming is when two developers work on the same software
simultaneously at the same workstation. The synergy of two focused minds
creates superior software.

Best Practices in Information Quality Improvement

5

• Peer-deskcheck is a detailed self-review of software by the programmer to find
errors.

• Passaround is when a programmer solicits informal comments from peers about
software.

• Ad hoc review is a spur-of-the-moment review within the software team.

Table 1. Comparison of Systematic Planning Process and Software Analysis Process

Systematic Planning Process
(after EPA, 2000)

 Software Analysis Process
(after Satzinger et al., 2004)

Step 1: identify project manager and staff Step 1: research and understand problem
Step 2: identify project schedule,

resources, milestones, and
requirements

 Step 2: verify that the benefits of solving
the problem outweigh the costs of
the solution

Step 3: describe the project goals and
objectives

 Step 3: define the requirements for
solving the problem

Step 4: identify the types of data needed Step 4: develop a set of possible
solutions (alternatives)

Step 5: identify constraints to data
collection

 Step 5: decide which solution is best and
make a recommendation

Step 6: determine the needed data quality Step 6: define details of chosen solution
Step 7: describe how, when, and where

the data will be obtained
 Step 7: implement the solution

Step 8: specify QA and QC activities to
assess the performance criteria

 Step 8: monitor to make sure that you
obtain the desired results

Step 9: describe methods for data analysis,
evaluation, and assessment against
the intended use of the data

Table 2. Argonne National Laboratory Graded Approach to Software Quality Assurance
Quality level Level C+ (low) Level B (medium) Level A (high)
Consequence of
failure

Negligible Moderate to severe Unacceptable, major
losses

External impact and
visibility

Few external users,
proof of concept

Limited
distribution,

prototype or beta

Wide distribution
and visibility

Complexity and
technical risk

Few modules,
moderate

complexity

Several modules
and libraries

Many complex
components

Development effort
(person-years)

Less than 1 1 to 2.5 More than 2.5

Customization Minimal Moderate Significant
Security impact and
proprietary impact

None Moderate Significant

Cost of failure Loss less than
$100k

Loss $100k to $1m Loss more than $1m

REFERENCES

Argonne National Laboratory, 2003. Appendix B to Software Quality Assurance

(Argonne National Laboratory, Decision and Information Sciences Division)
R.H. Dunn, 1990. Software Quality Concepts and Plans (Prentice Hall)
R.H. Dunn and R.S. Ullman, 1994. TQM for Computer Software, Second Edition

(McGraw-Hill)
G.M. Gelston et al., 1998. An Approach to Ensuring Quality in Environmental Software

(Pacific Northwest National Laboratory Publication No. PNNL-11880)
T. Gilb and D. Graham, 1993. Software Inspection (Addison-Wesley)
F.P. Ginac, 1998. Customer Oriented Software Quality Assurance (Prentice Hall)
D. Ince, 1994. An Introduction to Software Quality Assurance and its Implementation

(McGraw-Hill)
W.E. Lewis, 2000. Software Testing and Continuous Quality Improvement (Auerbach,

2000)
M. Luna, Systems Analysis and Design I (York University)

(http://www.math.yorku.ca/Who/Guests/mluna/2010/ITEC-2010-2.html)
G.J. Myers et al., 2004. The Art of Software Testing, Second Edition (John Wiley &

Sons)
J.W. Satzinger et al., 2004. Systems Analysis and Design in a Changing World, Third

Edition (Course Technology)
U.S. Environmental Protection Agency, 2000. Guidance for the Data Quality Objectives

Process- EPA QA/G-4 (EPA Publication No. EPA/600/R-96/055,)
U.S. Environmental Protection Agency, 2002. Guidance for Quality Assurance Project

Plans- EPA QA/G-5 (EPA Publication No. EPA/240/R-02/009)
K.E. Wiegers, 2002. Peer Reviews in Software (Addison-Wesley)

The Emergent Data Steward

Cheri Mallory, Data Quality Consultant, Firstlogic, Inc.

Who in your agency knows enough about the data to support enterprise data management
goals? In any data management effort, there must be recognition and acknowledgment of
the data steward, the person who understands the complexities and abstractions of its
data.

In this presentation, participants will hear how the data steward’s responsibilities are
moving from a single application to enterprise, collaborative change management and
how agencies should leverage this growth going forward.

As agencies pursue new goals, such as master data management (MDM), data migrations
and compliance issues, one thing becomes very clear. These are more than technology
issues. These efforts will not succeed without an in-depth personal understanding of data.

From data management and data quality perspectives, agencies need to understand

• who the data steward is, both past and present,
• what are the boundaries (if any) of this newly evolving role, and
• how to leverage this growth going forward.

Attendees that join this session will learn the critical activities every federal agency and
its supporting business partners must be doing now to improve their ability to manage
enterprise data as valued assets.

	Best Practices in Information Quality Improvement
	ORD's Scientific Office of the Future
	Application of Software QA Concepts and Procedures to
	The Emergent Data Steward

