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TECHNICAL SESSION: 
Methodological Advances in Quality Measurement and Assessment 
 
 
 

Confidence Intervals Revisited 
 

Dr Pepi Lacayo. U.S. EPA 
 
Confidence intervals (CI's) are so basic to most sciences that some times they are not 
treated with the proper care.  This most often occurs when CI's are estimated from small 
sample sizes. This paper discusses an approaches to reporting nominal and actual cover. 
Also discussed are confidence intervals vs tolerance intervals, vs prediction intervals. The 
paper is expository. 

 
________________________ 
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Monitoring the Long-Memory Air Quality Data Using ARFIMA Model 

 
Su-Tsu Chen 

Department of Statistics, National Cheng-Kung University, Tainan, Taiwan, R.O.C. 70101 
Science Education Center, Fooyin University, Kaohsiung Hsien, Taiwan, 

R.O.C. 831  
Jeh-Nan Pan  

Department of Statistics, National Cheng-Kung University, Tainan, Taiwan, R.O.C. 70101 
 

Abstract 
Control chart is commonly used in the industry to help ensure stability of manufacturing 

process and quality of products. Control chart is also used to monitor the environmental data, 
such as industrial waste or effluent of manufacturing processes, however, it has to be modified if 
the environmental data exhibit the property of long memory. In this paper, the control chart for 
fractionally integrated autoregressive moving-average (ARFIMA) model is proposed to monitor 
the long-memory air quality data. In addition, empirical examples of control chart using 
autoregressive integrated moving-average (ARIMA) and ARFIMA models are compared. The 
result shows that control charts using ARFIMA model could be more appropriate than those 
using ARIMA model. 

Keywords: long-memory, control chart, ARFIMA model, ARIMA model. 
 
 
 
 

1. Introduction 
Control chart is a useful statistical tool in quality control and improvement to 

monitor the variation of the key characteristics of products and to detect assignable 
causes that affect manufacturing or other environmental process. By applying control 
charts to environmental data, the change of the model of air quality can also be studied. 
Unlike the traditional control charts in which observations are assumed to be 
independent, observations of air quality usually have autocorrelations. Therefore, 
control charts should be used with modifications. Pan and Chen (2004) found that 
PM10 and O3 of air quality in the Taipei city follow ARIMA models and then compared 
the performance of four control charts for monitoring autocorrelated air pollution data to 
select the most appropriate one.  

When applying control charts to autocorrelated data, it is assumed commonly 
that the data could be approximated by a statistical model and white noises. After 
fitting appropriate model to the data, the residuals are calculated. If the model is 
suitable, residuals should be independently and identically normally distributed and 
control charts can be applied to residuals then. If the control charts give a signal, the 
process will be intervened and necessary corrective actions need to be taken.  

According to Chan and Hwang (1996), PM10 is the most important pollutant that 
deteriorates the air quality in Taiwan. Therefore, PM10 with long memory is the main 
pollutant discussed in this paper. The objective of this study is to develop a procedure 
of applying ARFIMA models to monitor long-memory air quality data. We show that 
natural logarithm of PM10 in southern Taiwan follows ARFIMA models instead of 
ARIMA models. Comparison of the suitability of applying ARIMA and ARFIMA models 
to air quality data are also conducted. 
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.  
2. Development of Control Charts for Long- Memory Data 

If data are not independent, data are fitted with a suitable model before control charts 
are used. ARIMA models are commonly used to fit autocorrelated data. Because of their 
simplicity and flexibility, they became very popular in applied time series analysis 
(Beran, 1994). The definition of ARIMA process is as following:  
Definition 2.1 Let Zt be a process such that  

d
p t 0 q t(B)(1 B) Z (B)aΦ − = θ +Θ                      (1) 

where d is positive integer or zero, B is the backshift operator (BZt=Zt-1), tε  is white 
noise, and p

p 1 p(B) (1 B B )Φ = −φ − −φL  and q
q 1 q(B) (1 B B )Θ = −θ − −θL  share no 

common factors. Then Zt is called an ARIMA(p, d, q) process.  
 

If a process is not stationary, some order of difference of the process is usually 
taken to make it stationary before control charts are applied.  

Although ARIMA models are popular, they are not suitable to model data with long 
memory. ARFIMA models was proposed by Granger and Joyeux (1980) and Hosking 
(1981) to fit long-memory data, it is similar to Equation (1) except d is a real number 
between –0.5 and 0.5. There are several possible definitions of the property ‘long 
memory.’, for example, any discrete time series process with autocorrelation function 

(ACF), ρ(h), at lag h possesses long memory if the quantity 
n

n h n
lim | (h) |
→∞

=−

ρ∑  is nonfinite.  

When time series data have long memory, control charts for ARFIMA models are 
needed. The residual control charts of ARFIMA models are proposed in this study. 
Processes are modeled by ARFIMA model first, control charts are applied to the residuals 
then. There are Phase I and Phase II of constructing control charts. Phase I of 
constructing control charts for ARFIMA models are as follows: 
1. Collect historical air quality or environmental data.  
2. Fit the data collected in step 1 with an appropriate model. Check the suitability of the 

model. After a proper model is selected, residuals can be calculated. 
3. Establish control limits for the residuals. 
4. Delete any residuals fallen beyond the control limits and estimate parameters of 

control charts again. 
5. Reestablish control limits for the residuals again.  
6. Repeat step 4 and step 5 until there are no outliers/out-of-control signals. 

If models and parameters of processes are known in advance, then the control limits 
could be calculated and one can bypass the Phase I. The control limits established in 
Phase I are used to monitor processes in Phase II. Most control charts for autocorrelated 
processes do not follow the procedures mentioned above. A literature survey would 
undoubtedly reveal that distinction between these two phases is lacking in most papers 
(Faltin et al., 1997). There seems to be a tendency to focus on Phase I, although this is 
usually not explicitly stated.  

If a control chart can detect the change of parameters earlier than other control charts, 
it will be a better choice. Generally speaking, X  chart would be a better choice if the 
larger mean shift is concerned. If the smaller mean shift is to be detected, then either 
EWMA or CUSUM chart can do the job well. 
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3. Comparison of ARFIMA and ARIMA Models 
3.1 Example of Using the PM10 Data of Nantsz  

Nantsz station is a surveillance stations located in the southern Taiwan where is 
known for a long history of public protest for pollution. The hourly air quality data of 
PM10 collected by Nantsz station between 1999 and 2002 is discussed and a total 725 
observations were recorded during 1999 to 2000 and 712 observations were recorded 
between 2001 and 2002.  

In Phase I, the 725 observations gathered during 1999 and 2000 are treated as 
historical data. A natural logarithm of PM10, denoted by ln(PM10), has successfully 
achieved the goal of stabling the variance without deseasonalizing and detrending the raw 
data. It is found that ARFIMA(0,d,1) is suitable for ln(PM10). After model fitting, a 
diagnostic of residuals are performed to check the suitability of residual control chart.  

To monitor the change of residuals, EWMA chart is suggested to be used since it is 
known for its sensitivity to detect small sustained shift of process and its robustness to 
non-normal data. Assume residual at t-th time is rt. The control statistic of EWMA 
residual control chart can be written as Equation 2.  

t t 1 tY (1 )Y r−= −λ + λ                           (2) 
When EWMA chart is used, the parameter λ and the in-control ARL should be 

decided first. A different size of mean shift needs different λ. If a smaller mean shift is 
concerned, a smaller λ needs to be used. The parameterλof residual EWMA chart is set to 
be 0.1 and control limits are set to have in-control ARLs 370.8 according to Montgomery 
(2001). With applications of EWMA statistics in Phase I, the appropriate model can be 
written as Equation (3):  

(1-B)0.47 (ln(PM10 t) - 4.34) =(1+ 0.16B) tε .                 (3) 
In Phase II, EWMA residual control chart constructed in Phase I is applied to the 

residuals as shown in Fig. 1.  
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Figure 1. EWMA chart for the 
residuals of Nantsz’s ln(PM10) 
data in Phase II using ARFIMA 
model. 

Figure 2. EWMA chart for the 
residuals of Nantsz’s ln(PM10) 
data in Phase II using ARIMA 
model. 

Fig. 1 indicates that no residual is out of control, which implies that ln(PM10) data in 
Phase II is likely to follow the similar pattern of Phase I. Thus, we may conclude that 
there is no evidence that the air quality of PM10 at Nantsz in Phase II is different from 
Phase I. This means that the air quality in Nantsz area has not been improved from 1999 
to 2002 period. Further corrective actions need to be done. 
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If the long-term autocorrelations were ignored, then the most commonly used models 
to fit time series are ARIMA models. In contrast with the ARFIMA model, ARIMA 
model is compared for assessing the suitability of model selection. It is found that 
ARIMA (0, 1, 2) model could fit the air quality data of Nantsz from 1999 to 2000. With a 
proper Box-Cox transformation(λ=2 ) the residuals are normally distributed, then 
EWMA control chart is applied to these transformed residuals. After performing the 
procedures in Phase I, the appropriate model can be written as Equation (4). 

            (1-B) ln(PM10t)= -.0003 +(1-0.4031B -0.2883B2) tε .             (4) 
In Phase II, we use Equation (4) to fit ln(PM10) of Nantsz collected between 2001 to 

2002. Despite of the fact that residuals could not been transformed to be normally 
distributed with Box-Cox method, EWMA control charts shown in Fig. 2 are applied to 
monitor the residuals without transformation. Fig. 2 indicates that there are two points out 
of control and its pattern is different from Fig. 1. This Nantsz example demonstrates that 
the ARFIMA model is more appropriate than ARIMA model. False alarms would occur 
if one selects a wrong ARIMA model instead of using ARFIMA model. 
 
3.2 Example of Using the PM10 data of Tsoying 

For comparison with Nantsz’s data, the PM10 data collected by Tsoying station, 
which is near Nantsz station, is discussed. A total 729 observations were recorded during 
1999 to 2000 and 717 observations were recorded between 2001 and 2002.All the 
procedures are similar to Nantsz example. It is found that at the end of Phase I, the 
appropriate model can be written as Equation (5):           

 (1- 0.17B+0.17 B2) (1-B)0.49 (ln(PM10 t) - 4.27) = tε .        (5) 
In Phase II, EWMA control chart, shown in Fig. 3, indicates that one residual is out 

of control, which implies that ln(PM10) data in Phase II is likely to follow the similar 
pattern of Phase I except one day, in that day air quality of Tsoying has abruptly changed. 
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Figure 3. EWMA control chart for the 
residuals of Tsoying’s data in Phase II 
using ARFIMA model 

Figure 4. EWMA control chart for the 
residuals of Tsoying’s data in Phase II 
using ARIMA model 

If the long-term autocorrelations were ignored, then the most commonly used models 
to fit time series are ARIMA models. At the end of Phase I the appropriate model can be 
written as Equation (6). 

 (1-B) ln(PM10t)= -.0002 +(1-0.6855B +0.1171B2) tε .          (6) 
In Phase II, EWMA control chart, shown in Fig. 4, indicates that there are two points 

out of control and its pattern is different from Fig. 3. This demonstrates that the ARFIMA 
model is more appropriate than ARIMA model and false alarms would occur if one 
selects a wrong ARIMA model instead of using ARFIMA model. 
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4. Conclusion 
    In this paper control charts using ARFIMA model are used to monitor long-memory 
air quality data. The proposed procedures of applying ARFIMA models to monitor air 
quality data can also be used for monitoring other long-memory environmental data. 
Through two empirical examples of air quality of southern Taiwan, one set of ln(PM10) 
data follows ARFIMA(0, 0.47,1) model while another one follows ARFIMA(2, 0.49,0) 
model, we have demonstrated that control charts using ARFIMA models are more 
appropriate than control charts using ARIMA models in monitoring long-memory air 
quality data. When monitoring autocorrelated data, the meaning of “out-of-control” 
indicates not only the residuals of processes may deviate from what are assumed, but also 
the underlying model of the process might be changed.  
    Due to the complexity of the ARFIMA model, procedures for constructing an 
appropriate control chart especially in Phase II is more difficult than the traditional 
autocorrelated control charts. To ensure the efficiency and effectiveness of monitoring 
environmental data with long memory, it is suggested that an on-line analyzer of the 
residual control chart using ARFIMA model be developed to help practitioners 
understand the quality change of the environment, so a timely corrective action can be 
made. 
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Abstract 
 

In a continuing effort to better collect and analyze speciated particulate matter in ambient air, a 
chemical Speciation Trends Network (STN) of 54 sites was implemented to characterize the 
primary chemical components of mass in urban areas and to provide data for trends across the 
United States.  The Interagency Monitoring of Protected Visual Environments (IMPROVE) 
program, established in 1985, supports the Regional Haze Rule and serves  as a rural companion 
network to the STN for urban versus rural comparison purposes.  
 
Data from both the urban STN and rural IMPROVE networks are often used together to help 
assess urban excess emissions, track trends, and assess improvements in air quality. There are 
some differences in the sampling and analysis protocols used by these two networks; therefore, it 
is important for data users to understand the differences and similarities in the data generated.  
Furthermore, it is important to use this information to gain the knowledge needed to make 
program improvements. To aid in this understanding, the EPA launched a small network of 
collocated STN and IMPROVE comparison sites in a few urban/rural areas. Data from these 
comparison sites has been evaluated in the past to begin exploring the differences, improve our 
understanding, and educate the data use community.1 This paper takes a different approach to 
the data exploration and statistical analysis of the comparison data to further explore differences. 
 
The first step of the analysis process was to validate the intercomparison study carbon data. For 
quality assurance purposes, the Mahalanobis’ distance was calculated for both elemental and 
organic carbon at each site to identify bivariate outliers that were consequently excluded from 
the analysis. After the data validation process, Deming regression was used to evaluate the 
relationship between STN and IMPROVE concentrations at each specific site for both carbon 
types. Deming Regression is a method used for evaluating a relationship between two variables 
(x and y), allowing error in both. This method develops a proportional relationship between 
errors and concentration to reasonably estimate the slope and intercept, which proves beneficial 
as it depresses the dominance of both very high values as well as very low values (below MDL -- 
where the ratio of uncertainty vs. concentration is high). The Bootstrap re-sampling technique is 
used to estimate the standard error of the slope and intercept, to test slope and intercept 
hypotheses, and to assess differences among urban and rural sites. 
 
Graphical examples and results from the study at the six locations are presented for comparison 
of the two networks. Results show a unique look at the STN versus IMPROVE intercomparison 
carbon data through data validation and the use of a regression technique that accounts for 
bivariate uncertainty  
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Introduction 
 
A national monitoring program was implemented by the United States Environmental Protection 
Agency (EPA) to support the PM2.5 National Ambient Air Quality Standard (NAAQS) for 
gravimetric mass in 1997. In a continuing effort to better collect and analyze speciated 
particulate matter in ambient air, a chemical Speciation Trends Network (STN) of 54 sites was 
implemented to characterize the primary chemical components of mass in urban areas and to 
provide data for trends across the United States.  The Interagency Monitoring of Protected Visual 
Environments (IMPROVE) program, established in 1985, supports the Regional Haze Rule and 
serves  as a rural companion network to the STN for urban versus rural comparison purposes. 
The IMPROVE network consists of 110 sites put in place to support assessment and tracking of 
visibility impairment in Class I areas. 
 
Data from both the urban STN and rural IMPROVE networks are often used together to help 
assess urban excess emissions, track trends, and assess improvements in air quality. There are 
some differences in the sampling and analysis protocols used by these two networks; therefore, it 
is important for data users to understand the differences and similarities in the data generated.  
Furthermore, it is important to use this information to gain the knowledge needed to make 
program improvements. To aid in this understanding, the EPA launched a small network of 
collocated STN and IMPROVE comparison sites in a few urban/rural areas. Data from these 
comparison sites have been evaluated in the past to begin exploring the differences, improve our 
understanding, and educate the data use community.1 This paper takes a different approach to 
the data exploration and statistical analysis of the comparison data to further explore differences 
in carbon. 
 

Inherent Network Differences and Initial Study Design 
  

The study design covered three independent geographic regions with six sites. Two sites were 
established in each geographic area; one in a city and one in a more remote setting, with 
collocated STN and IMPROVE samplers to monitor both the urban and rural behaviors. The 
geographic areas covered in the study were the northeast (Washington, D.C.), the northwest 
(Washington state), and the southwest (Arizona). Each of these geographic regions has a unique 
pollutant “thumbprint” that is based on its own particular sources and meteorology. While the 
urban-based sites were located in a major metropolitan area, their rural counterparts were located 
in a national park or other remote setting. The urban-rural pairing was set in place to allow for an 
interesting look at urban versus rural concentration levels and aerosol types. 
 
With regard to the measurement of carbon particulate matter, differences in sampling procedures 
or methods can have an effect on the resulting measurements. The first difference between the 
STN and IMPROVE sampling protocols is the nominal flow rate and filter diameter, or filter 
face velocity. The STN samplers use 46.2-mm filters and operate in a range from 6.7 to 16.7 
L/min, depending on sampler type. The IMPROVE samplers use a 25-mm filter for carbon and 
operate around 22.8 L/min. Both programs use quartz filters for collecting carbon. In this 
intercomparison study, the STN had an Andersen sampler located in the northeast (Haines Point, 
MD and Dolly Sods, WV), a MetOne sampler in the southwest (Phoenix and Tonto, AZ), and a 
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URG sampler in the northwest (Beacon Hill and Mt. Rainier, WA). The Andersen had a flow 
rate of 7.3 L/min, while the MetOne had a flow rate of 6.7 L/min, and the URG sampler had a 
flow rate of 16.7 L/min. Another innate difference between the two networks is the temperature 
in which the sampled filters are shipped to the lab for analysis. STN filters are shipped overnight 
in coolers with a reusable ice substitute, while IMPROVE filters are shipped via standard postal 
service under ambient conditions. While both networks collected and analyzed field and trip 
blanks, only the IMPROVE program actually “corrected” the raw carbon measurement data for 
artifacts using the blank analyses. This correction makes the data not comparable because the 
correction for blanks on only one side of the study causes a negative bias in the IMPROVE data 
versus the STN raw data. There is also an argument against using results from blank analysis as a 
correction at all because of the high level of uncertainty and the scientific disagreement on the 
procedures that should be used to estimate sampling artifacts. In addition, the procedures for 
collecting blank samples for artifact assessment differ between the programs; therefore, “blank-
correcting” the STN data to try to reconcile artifacts could be problematic. Of the procedural 
inconsistencies between the STN and IMPROVE programs, the area that has received the most 
attention is the difference between the STN and IMPROVE organic carbon (OC) and elemental 
carbon (EC) measurements as defined by the differing thermal optical analysis protocols.  The 
STN and IMPROVE network use different thermal profiles and optical correction techniques to 
define the OC and EC split.  
 
The only factor 
that remained 
constant in the 
study design was 
the species to be 
collected and 
measured (see 
map to the right). 
An important  
variable in the 
intercomparison 
study was the 
geographic 
differences (both 
meteorological 
and varying PM 
characterization 
profiles) in the 
six locations in 
which the study 
took place.  
 

Data Treatment and Validation 
 

 

STN/IMPROVE Monitoring Intercomparison  
Sites:Oct. 2001 – Dec. 2003 
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Monument

Haines  
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Wash. DC

Official or designated STN site, host to IMPROVE sampler 
Official IMPROVE site, host to STN sampler

Anderson RAAS 401 
STN Samplers 

Met One SASS STN 
Samplers 

URG MASS STN 
Samplers 

Seattle 
Beacon Hill

USDA FS Dolly Sods 
Wildersness 

Operated According to Each Network’s Protocols 
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The database used for the STN/IMPROVE intercomparison analysis was built by the EPA’s 
Office of Research and Development. The database consisted of all data readings, including 
those below the method detection limit (MDL). This inclusion of data below the MDL is 
important as it minimizes the introduction of bias into the system. However to properly assess 
differences, one must begin with the raw data. The calculated blank value that was previously 
subtracted from the IMPROVE readings (page 3 of this document) was added back onto each 
datapoint to regain the original “raw data” from which to work. For quality assurance purposes, 
the Mahalanobis’ distance was calculated for each parameter and site to identify bivariate 
outliers that were consequently excluded from the analysis. The Mahalanobis distance is one of 
many methods to detect bivariate outliers, and uses the variable populations’ covariance matrix 
to calculate a Mahalanobis distance from the mean of the data. The region of constant 
Mahalanobis’ distance around the mean forms an ellipse in two dimensions in which the most 
“representative” data points are contained (see figure below). This method proves useful for data 
filtering, especially when x and y are highly correlated, however one of its assumptions is that 
the data are normally distributed. Because the distributions of the parameters at each site 
appeared to be lognormally distributed, the data were log-transformed to improve linearity.  
 
The decision between using a robust or 
classical Mahalanobis’ distance is 
subjective and depends on the nature of 
the data and the level of strictness. The 
more “outliers” identified and excluded, 
the higher the correlation between x and y 
becomes. The robust correlation will 
always be higher than the classical 
correlation, however choosing a robust 
Mahalanobis’ fitting strictly based on this 
characteristic may not always achieve the 
most reasonable result. 
Careful consideration was given to the 
robust Mahalanobis’ elliptical region, 
however the classical Mahalanobis’ fitting 
was more conservative and allowed for 
more uncertainty in STN and IMPROVE 
data values, which is best in terms of the 
highly variable nature of speciated 
ambient particulate matter.  

 
 
 

The data from each parameter and site combination was filtered for significant bivariate outliers 
by calculating the classical Mahalanobis’ distance, excluding data at the α=.01 rejection level. 
This method and rejection region results in a very conservative filter that allows for more natural 
variability while avoiding artificial improvement of the correlation and unnecessary data loss.  
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Deming Regression and the Estimation of Two-Dimensional Error 
 

After the data validation process, Deming Regression was used to evaluate the relationship 
between STN and IMPROVE concentrations at each specific site for each pollutant. Deming 
Regression is a method used for evaluating a relationship between two variables (x and y), 
allowing error in both.2 
 
As Deming Regression is based on error in both variables, an appropriate two-dimensional error 
structure needed to be created to best calculate the linear x-and-y fit. A function was created to 
best approximate the actual measurement error for both IMPROVE and STN, and consisted of an 
artifact (intercept) variability along with a reasonable estimate of proportional error due to 
concentration (slope). The artifact variability component of the error was based on the estimation 
of the standard deviation of the trip and field blank values. The variability of the blank values 
provides a good idea of “intercept error” while the median of relative percent differences (RPD) 
of collocated measurements within sampler type provides a representative and feasible slope-
related error.  
Based on the individual behaviors of method measurements, IMPROVE and STN should ideally 
have unique error structures. A personalized error structure for IMPROVE was not possible 
however, because of the lack of availability of variability data for IMPROVE. This resulted in 
the decision to use the standard deviation of the blank value for the STN samplers as a surrogate 
for the error associated with the IMPROVE blank. The substitution of the standard deviation 
from the STN blanks for the standard deviation from the IMPROVE lab blanks proved to be the 
best estimation of IMPROVE blank variability because the STN blank value incorporated error 
from both the lab and sampling (field) setting (field and trip blanks). In addition, collocated 
measurements were only available for STN samplers. The “within method” variability procured 
from the collocated STN data was used to approximate the “within method” variability for 
IMPROVE. The error structure for IMPROVE and STN is defined below: 
 
error(y) = std(STN blank value by area) + median(RPD of colloc STN monitors by param)*x 
error(x) = std(STN blank value by area) + median(RPD of colloc STN monitors by param)*y 

 (where y is the IMPROVE concentration and x is the STN concentration) 
The slope and intercept was calculated 
for each parameter and site 
combination (with 99% confidence 
intervals on both) using the Deming 
Regression method with error in both x 
and y estimated by the specified 
functions above (see figure at left for 
the resulting Deming fit). Setting both 
x and y to follow the same error 
structure results in the standard error 
ratio of the Deming Regression to be 
1. This causes neither STN nor 
IMPROVE to hold more precedence as 
the independent variable. 
The Bootstrap technique was then used 
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to appropriately estimate the standard error of the slopes and intercepts to come up with the most 
reasonable slope and intercept estimates. Bootstrapping is a re-sampling technique that was run 
500 times for each parameter and site combination. The results of the Bootstrapping produce the 
standard error estimate to which one can use in order to test slope and intercept hypotheses, and 
to assess differences among urban and rural sites. 

 
Organic Carbon and Elemental Carbon Results and Explanations 

 
The table below displays results from slope hypothesis testing and assessments of rural vs. urban 
differences for organic carbon and elemental carbon from the initial intercomparison study data. 
 

    Arizona -- slope Washington D.C. -- slope Washington State -- slope 
Category Parameter Urban Rural SE t-value Urban Rural SE t-value Urban Rural SE t-value 
Carbon EC 0.937 1.249 0.14 -2.18 1.020 1.062 0.08 -0.54 1.037 1.863 0.11 -7.70
  OC 0.861 0.742 0.04 2.83 0.757 0.804 0.04 -1.09 1.088 0.915 0.04 4.86
Total PM2.5 1.025 1.147 0.05 -2.36 0.967 0.935 0.01 2.23 1.039 0.922 0.03 3.80
 Legend:                           
Value:  slope was found to be significantly different from 1 (based on a null hypothesis test: slope is equal to 1) 
Value:  rural/urban differences were found between species at an area (based on a null hypothesis test: both slopes are equal) 

 
Organic Carbon (OC) is a difficult species to quantify due to positive and negative sampling 
artifacts, lack of thermal optical analysis method consistency, and lack of method calibration 
materials. The STN and IMPROVE quartz filters are analyzed by different thermal optical 
methods, which differ in temperature profile, analysis time, laser correction for char, and artifact 
correction procedures. The two programs also face differing sampling method flow rates and 
subsequent filter face velocities which consequently affect the negative artifact. In addition, 
neither program addresses positive artifacts through the use of gas-phase organic denuders. 
Significant urban/rural slope differences were not apparent for OC for sites in Arizona (Phoenix 
and Tonto) and Washington D.C. (Haines Point and Dolly Sods), however these slopes were all 
below one, indicating that IMPROVE consistently measures lower OC than STN. This 
discrepancy is likely a result of the differing flow rates/filter face velocities of the sampler types. 
Because IMPROVE’s flow rate is higher, a negative bias is created on OC when compared to 
lower flow rate samplers. This flow rate difference is not present in Washington state (Seattle 
and Mt. Rainier) which is most likely due to the STN URG sampler flow rate of 16.7 L/min, 
which is more equivalent to that of the IMPROVE method (22 L/min).  
 
Elemental Carbon (EC) is similarly difficult to quantify depending on the source profile for the 
area in which the particulate is measured. No significant slope differences are seen for EC in 
urban areas, as these sources are mainly suspected to be composed of diesel and gasoline 
emissions (where EC concentrations are larger). The only significant slope difference occurs in 
Mt. Rainier, in urban Washington State, where the slope is ~1.86. Other scientists have identified 
a factor of 2 difference for IMPROVE EC.3,4 The proposed theory behind this difference is the 
contribution of woodsmoke in this area and low values of elemental carbon.   
 
The results from this and other studies were used to further understand differences between STN 
and IMPROVE carbon measurements and to support decisions made regarding the institution of 
a consistent sampling and analysis method for OC and EC in the EPA Speciation network. 
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