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Challenges in the Characterizing Fractured Rock
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Challenges in the Characterizing Fractured Rock

Complex distribution of recharge




Challenges in Characterizing Fractured Rock

Granite and schist
Mirror Lake, NH

Complex fracture connectivity

Enormous range of hydraulic
properties
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Challenges in the Interpretation of Age-Dating Tracers
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Hydraulic Conductivity
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Ground-Water Flow Iin Unconsolidated Porous Media
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Ground-Water Flow in Fractured Rock
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Regional Ground-Water
Flow in Fractured Rock
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Regional Ground-Water
Flow in Fractured Rock

Glacial drift e R
(2 model layers) :

Granite and schist
(3 model layers)

Models of ground-water flow are water balances over a
volume of the formation

Reproduce fluxes (e.g., discharges to streams) and the gradients
in hydraulic head for a distribution of hydraulic properties

Residence time and flow directions may not be accurately
represented by the ground-water flow (water balance) model



Characterizing Flow Paths in Fractured-Rock Aquifers
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Geologic characterization and a hydrogeologic conceptual model
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Characterizing Flow Paths in Fractured-Rock Aquifers
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Interrogating the subsurface. . .
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Characterizing fluid movement and chemical transport in fractured rock
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Rdcut near
Mirror Lake watershed,
New Hampshire
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Estimating hydraulic properties over 10s of meters

Depth below Acoustic  Transmissivity

top of casing log (logsq T (m?/s)) FSE well field
(meters)  televiewer _i19 8 5 -4 .
| 1| | Distance (m)

i

/|

30—

R/
' S
' [

\
‘r

7\
AT

N

ones of high
ransmissivity

—

i Detection limit



Hydraulic testing over tens of meters
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Hydraulic testing over tens of meters

5 120 —
10" i
Drawdown N Distance 0 e
(feet) 10°— 1A, 4A WEES

10_1__ 1B, 4B, 5 .

02 10 10 100 102 (l) | 610 | 12|0

Time (hours) Distance (meters)

4 9 9 6

== Pumping
Packers



Hydraulic testing over tens of meters
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Chemical transport in a porous medium is controlled by
fluid velocity (advection)
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Fracture connectvity is complex and yields a complex
distribution of chemical constituents in ground water

Roadcut from Mirror Lake

Section of roadcut mapped for iron
hydroxide staining along fractures

Iron-hydroxide
: | stained fracture




A single fracture has complex paths of fluid movement

Highly transmissive paths
of fluid movement in a fracture

Fracture surface




A single fracture has complex paths of chemical migration

Advection of chemical constituent

Diffusion of
chemical constituent

High permeability

Fracture surface

= Stagnant water




The porosity of rock offers a volume of water
Into which chemicals can diffuse
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Rock samples from the
Mirror L. watershed,
New Hampshire Wood et al, 1996
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Matrix diffusion has mixed blessings

8  Human intrusion scenario

Plug Rustler formation A BLESSING
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Interpreting controlled tracer tests
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Interpreting controlled tracer tests
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Interpreting controlled tracer tests

Injection at x=0m
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Tracer Tests in Fractured Rock

Trend line slope = -1.5
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Granite and schist - Mirror Lake, New Hampshire

FSE well field
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Granite and schist - Mirror Lake, New Hampshire

Trend line slope = -2
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The large “effective” matrix diffusion is an artifact
of fluid advection

TIME 1

Fast path
of tracer
movement

Tracer in
fast path has
moved on

Slow path
of tracer

movement Tracer in slow path
slowly re-emerges into
fast path




Hydraulic conductivity in fractures in granite and schist
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Breakthrough as the summation of
transport along multiple pathways
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slope = -2

Concentration

[ I T TTTTIT] [ I T TTITT] I [ 1
Time

\ Sum of breakthrough from all pathways
|

Breakthrough from an individual pathway

aUSGS




Chemical Transport in Fractured-Rock Aquifers

Madison Aquifer (Limestone) Silurian dolomite
(~10 km)

Granite & Schist
(~100 m)

Maryville Limestone
(~300 m)

Controlled tracer tests in different geologic settings
and over distances from meters to kilometers. . .
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Granite and schist - Mirror Lake, New Hampshire

Trend line slope = -2
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Biscayne Aquifer, Miami - Limestone - ~100 m
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Maryville Limestone, Alcoa, Tennessee - ~300 m

(courtesy of Gareth Davies,
Cambrian Ground Water,

Oak Ridege, TN)
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Breakthrough as the summation of
transport along multiple pathways

Trend line
slope = -2
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Chemical Transport in Fractured-Rock Aquifers

Dissolved constituents will move rapidly through the
most permeable fractures. . . .

Chemical retention in fractured-rock aquifers over
extremely long time frames. . .

Advection through fractures of low permeability. . .

Diffusion into the primary porosity of the rock. . .
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Conclusions

Characterizing ground-water
_ _ flow and chemical transport
@ in fractured rock is not an
¥ insurmountable task . . .




Conclusions
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Conclusions
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Detailed characterization is
needed to identify flow paths
for chemical migration in
fractured-rock aquifers . . .




Conclusions
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Fractured-rock aquifers have
P the capacity to retain chemical

constituents over extremely
e long time frames . . .




