

Pisces Foundation Objectives Access: Public has access to data collection tools to supplement government data with their own.

Share: Data collectors (governmental, academic and citizen science) can share and understand each other's data.

Use: Tools are available to turn data into *actionable* decision making to protect and restore freshwater resources.

Beginning with the End in Mind: Tools from the Water Data Collaborative for Effective Program Planning from the Water Data Collaborative

Samantha Briggs Izaak Walton League of America sbriggs@iwla.org

The Typical Problems for Volunteer Monitoring Groups:

- Effective/complete Study Design
- Choosing the correct protocol for your needs
- Navigating data solutions and data sharing

Module 1: Evaluating Where You Are

What have you documented?

What pieces are missing?

Module 2: Program Design: the who and the why

<text>

An online platform that connects monitoring groups nationwide with a streamlined study design process

Frankfor

Water Data		HOME	ABOUT	STEERING COMMITTEE	RESOLIRCES	NEWS	CONTACT	0
Collaborative		TIOME	70001	STEERING COMMITTEE	RESOURCES	HEVIS	CONTACT	~
Contact								
Stay in touch with us and or Name •	ur efforts!							
First			Last					
rinat.								
Email *	Organization *			State *				
Email •	Organization •			State *				
Email *	Organization •			State *				

Watershed Academy Webcast | 5.9.19

Sensor Integration

Increasing the quantity and quality of our monitoring network.

Emily Wiggans, GIS Analyst

Precision Conservation

at the right scale, and making sure they are working"

Case Study: South River, Anne Arundel County, Maryland

- Existing relationship; high-quality monitoring program with standardized data
- https://southriverdata.net
- Concerns: dissolved oxygen levels, bacteria, and water clarity especially for SAV!

Clarity in the South River

- Measured with Secchi disk at 21 stations by the now-Arundel Rivers Federation
- EPA's WQP has... 1!
- What story do the 21 sites tell that the EPA's does not?

Water Data Collaborative

Working Smarter with **R**

- Why R? The benefits!
 - Open-source
 - · Resources and tutorials available online
 - Built for statistical analysis
 - Handles spatial data well
- Use USGS' dataRetrival function package to read in Secchi disk data for the site of interest through the EPA's WQP
- 3 Scenarios for use:
 - All WQX data Use R!
 - Some WQX data, some of your own Use R! Import your own as a .CSV (this example!)
 - All your own data use R from a CSV or Excel file!

1 2 3 4 5 6 7 8 9 10	Set up tools needed for analysis: specific functions for analysis						
11 12	.0. [] 2. \$PA_wqksite ← readwqPqu("CBP_wqk+wTB_1","")						
13 14 15 16 17 18	Specify Secchi data from WQP – site name from prior data exploration						
20 21 22 23 24 25	Over 54,000 records for this site – just want Clarity (Secchi depth) and Date fields!						
26 27 28 30 31 32 33 34 35 36	Bring in South River data from CSV file, light clean up for columns we don't want and formatting to match the WQP data						
37 38 39 40	names(SMF_data_Secchi_cleared) <c("station","clarity","date") SMF_data_Secchi_cleared(Stat <dyt(smf_data_secchi_cleared(state) SMF_data_Secchi_cleared < na.omit(SMF_data_Secchi_cleared, invert = FALM)</dyt(smf_data_secchi_cleared(state) </c("station","clarity","date") 						
43 42 43 44 45	Combine WQP data and South River data for one analysis; more data standardization						
46 47 48 49 50	<pre>station_count <- dplyr::count(secch1_combined_df, station) #globaref only has one record, remove it# Secch1_combined_df <- filter(secch1_combined_df, secch1_combined_dfistation:="globareef") </pre>						
51 52 53 54 55 56	Plot the combined datasets – can iterate with different filters as needed						

Next Steps: Scaling Nationally

- Web App for Analysis
- Story Map for data sourcing
 - Land cover, watersheds, tree canopy, and more!
 - What do you need? Let us know!
- R analysis/data integration connected to GIS analysis process
- Full process shared: Web App, code on Github, ArcGIS Toolbox for download – stay as <u>transparent</u> as possible!

Water Data

Speaker Contact Information

Dwane Young, Chief, Water Data Integration Branch, Environmental Protection Agency, <u>young.dwane@epa.gov</u>

Samantha Briggs, Acting Clean Water Program Director, Izaak Walton League of America (IWLA), <u>sbriggs@iwla.org</u>

John Dawes, Executive Director, Chesapeake Commons, dawes@chesapeakecommons.org

Emily Wiggans, GIS Analyst, Chesapeake Conservancy, ewiggans@chesapeakeconservancy.org

Watershed Academy Webcasts

More webcasts coming soon!

www.epa/gov/watershedacademy

The slides from today's presentations are posted. A recording will be posted within the next 2-3 weeks.

