

RIVER BOTTOM CONTOURS: (1 FT. INTERVAL, 2 FT. LISTED BELOW)

 118	 102
116	 100
 114	 98
 112	 96
 110	 94
 108	92
 106	 90
 104	 88

UPLAND CONTOURS:

LEGEND:

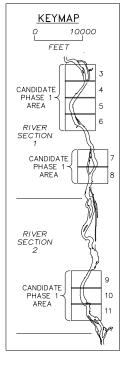
B-001-(194.2W) ∎	PROPOSED 25-FT. DEEP TEST BORING LOCATION
B−002−(194.1W)∆	PROPOSED 10-FT. DEEP TEST BORING LOCATION
· · · · · · · · · · · · · · · · · · ·	SHORELINE STABILITY TEST BORING LOCATION
	POTENTIAL FINAL CANDIDATE SITE (FCS) AREA TEST BORING LOCATION
· · · · · · · · · · · · · · · · · · ·	SPUDDING/SHEETING/DREDGE PRISM STABILITY TEST BORING LOCATION
48 📾	SEDIMENT SAMPLING AND ANALYSIS PROGRAM SAMPLE LOCATION AND PROBED DEPTH (INCHES)
	SHORELINE
	EXISTING FEATURE
194.1	APPROXIMATE RIVER MILE

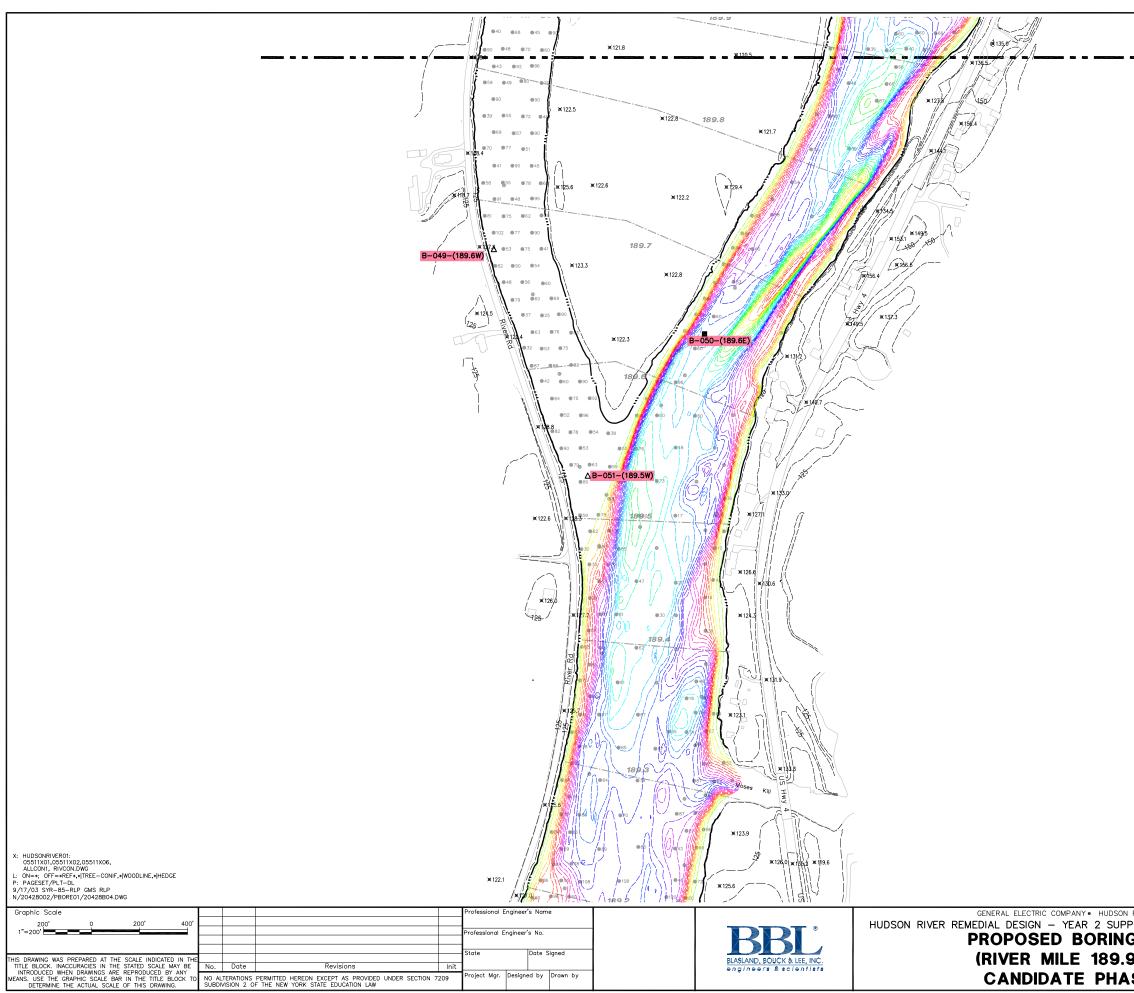
NOTES:

1. BASEMAP PHOTOGRAMMETRY, INCLUDING SHORELINE AND UPLAND FEATURES, IS BASED ON AERIAL MAPPING PERFORMED BY CHAS H. SELLS, INC. IN THE SPRING OF 2002. HORIZONTAL DATUM: NAD 1983 NY EAST ZONE; VERTICAL DATUM: NAD 1988.

2. "SEDIMENT SAMPLING AND ANALYSIS PROGRAM SAMPLE LOCATIONS AND PROBING DEPTHS" PROVIDED BY ESI ON JUNE 17, 2003.

3. ALL LOCATIONS ARE APPROXIMATE.


4. APPROXIMATE RIVER MILE MARKERS WERE PROVIDED BY QEA ON A CD ENTITLED "2002 SIDE SCAN SONAR DATA 2001 BAITYMETRIC DATA JUNE 2003". RIVER MILE MARKERS SHOWN IN PARENTHESIS WERE APPROXIMATED BY BBL.


5. RIVER BOTTOM CONTOURS ARE 1 FOOT INTERVALS. UPLAND CONTOURS ARE 5 FOOT INTERVALS.

6. RIVER BOTTOM CONTOUR SOURCE: OCEAN SURVEYS, SPRING 2002.

CONTINUED ON SHEET 8

RIVER PCBS SUPERFUND SITE	BBL Project No. 20428.002	
LOCATIONS	Date SEPTEMBER 2003	7
5 TO 189.9 -	Blasland, Bouck & Lee, Inc. Corporate Headquarters 6723 Towpath Road	-
SE 1 AREA)	Syracuse, NY 13214 315-446-9120	

CONTINUED ON SHEET 7

RIVER BOTTOM CONTOURS: (1 FT. INTERVAL, 2 FT. LISTED BELOW)

 118	 102
116	 100
 114	 98
 112	 96
 110	94
 108	92
 106	 90
 104	 88

UPLAND CONTOURS:

— — — — INDEX (25 FT. INTERVAL)
– — — — INTERMEDIATE (5 FT. INTERVAL)

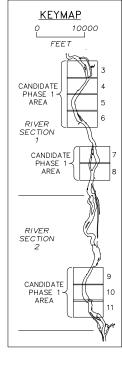
LEGEND:

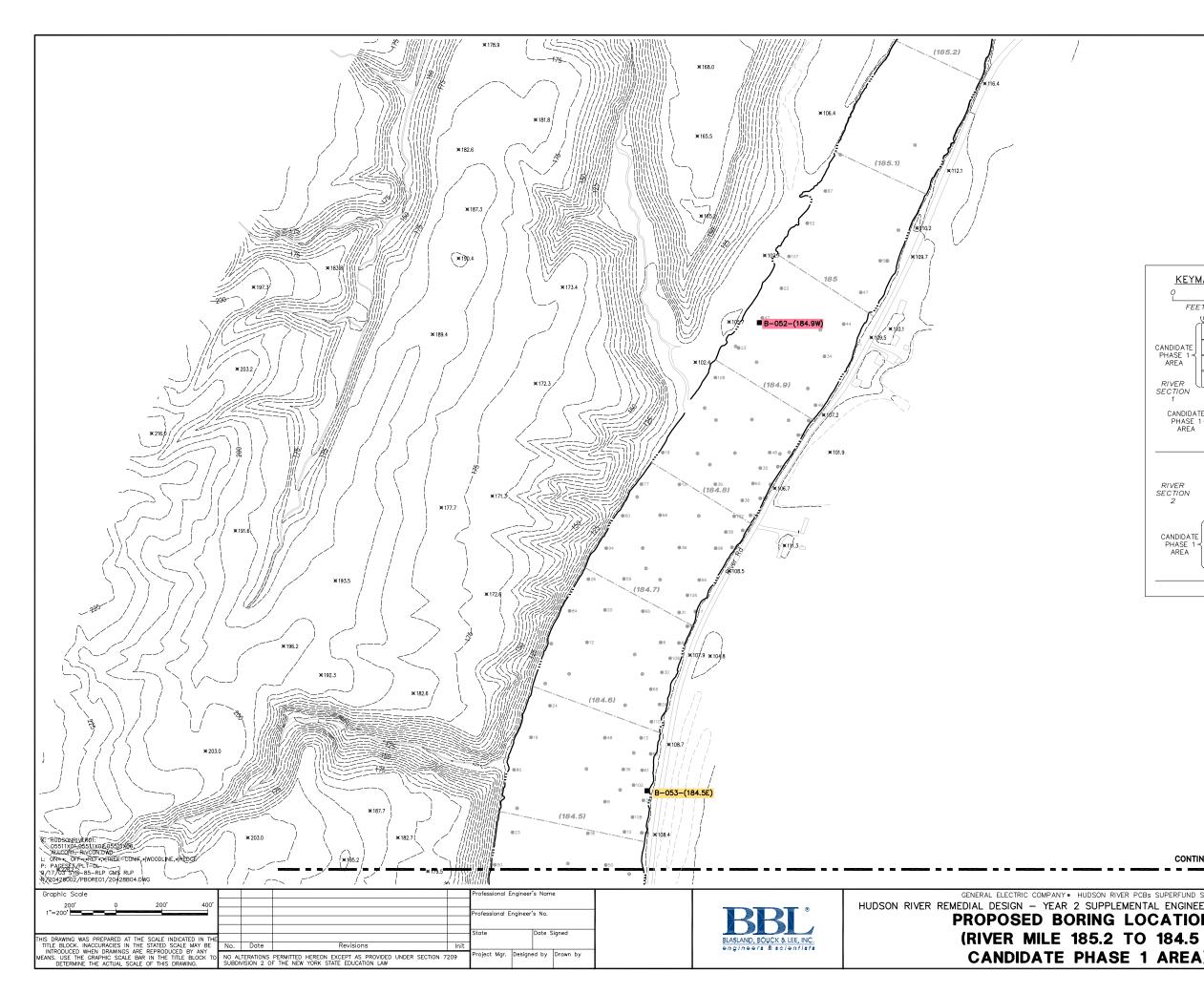
B-001-(194.2W) ■	PROPOSED 25-FT. DEEP TEST BORING LOCATION
B−002−(194.1W) ∆	PROPOSED 10-FT. DEEP TEST BORING LOCATION
	SHORELINE STABILITY TEST BORING LOCATION
	POTENTIAL FINAL CANDIDATE SITE (FCS) AREA TEST BORING LOCATION
	SPUDDING/SHEETING/DREDGE PRISM STABILITY TEST BORING LOCATION
48 🏾	SEDIMENT SAMPLING AND ANALYSIS PROGRAM SAMPLE LOCATION AND PROBED DEPTH (INCHES)
	SHORELINE
	EXISTING FEATURE
194.1	APPROXIMATE RIVER MILE

NOTES:

1. BASEMAP PHOTOGRAMMETRY, INCLUDING SHORELINE AND UPLAND FEATURES, IS BASED ON AERIAL MAPPING PERFORMED BY CHAS H. SELLS, INC. IN THE SPRING OF 2002. HORIZONTAL DATUM: NAD 1983 NY EAST ZONE; VERTICAL DATUM: NAD 1988.

2. "SEDIMENT SAMPLING AND ANALYSIS PROGRAM SAMPLE LOCATIONS AND PROBING DEPTHS" PROVIDED BY ESI ON JUNE 17, 2003.


3. ALL LOCATIONS ARE APPROXIMATE.

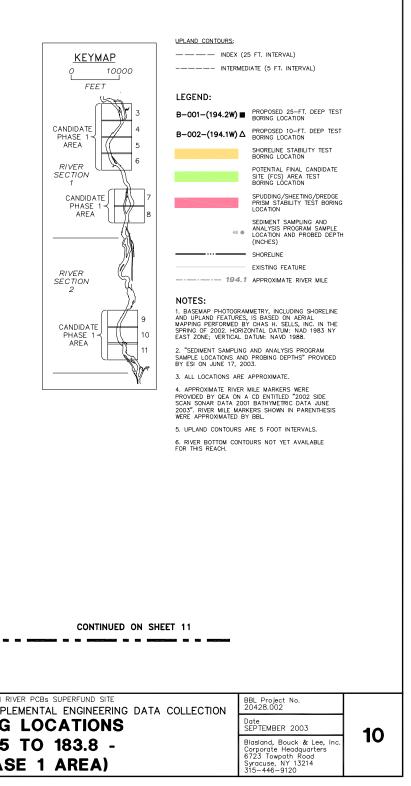

4. APPROXIMATE RIVER MILE MARKERS WERE PROVIDED BY OEA ON A CD ENTITLED "2002 SIDE SCAN SONAR DATA 2001 BATHYMERTIC DATA JUNE 2003", RIVER MILE MARKERS SHOWN IN PARENTHESIS WERE APPROXIMATED BY BBL.

5. RIVER BOTTOM CONTOURS ARE 1 FOOT INTERVALS. UPLAND CONTOURS ARE 5 FOOT INTERVALS.

6. RIVER BOTTOM CONTOUR SOURCE: OCEAN SURVEYS, SPRING 2002.

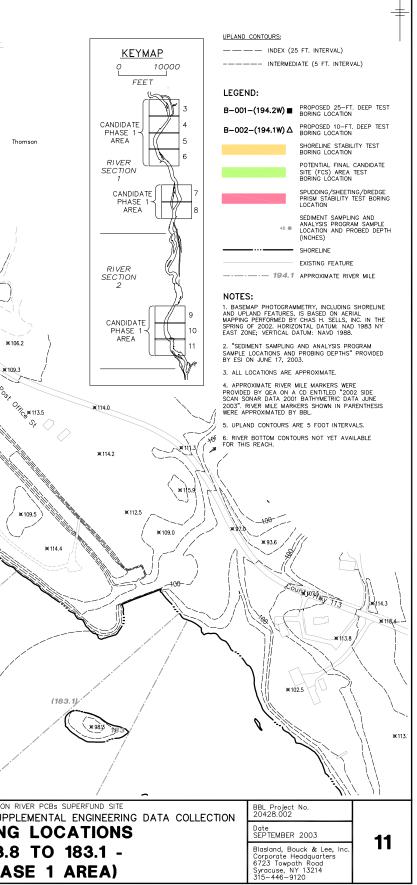
PLEMENTAL ENGINEERING DATA COLLECTION	BBL Project No. 20428.002 Date SEPTEMBER 2003	0
9 TO 189.2 - SE 1 AREA)	Blasland, Bouck & Lee, Inc. Corporate Headquarters 6723 Towpath Road Syracuse, NY 13214 315-446-9120	8

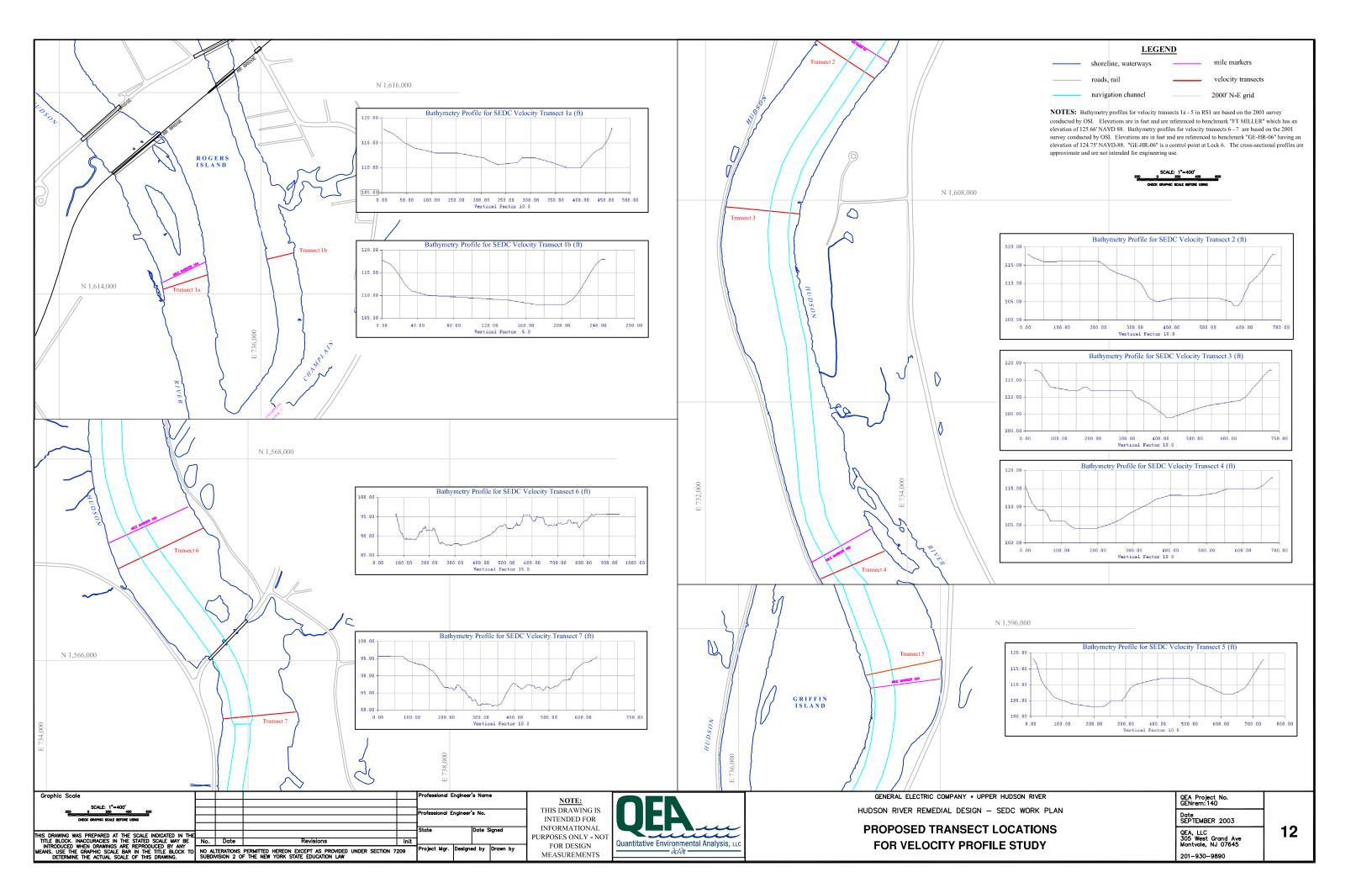
	UPLAND CONTOURS:		
KEYMAP	INDEX (2	5 FT. INTERVAL)	
0 10000	INTERMED	IATE (5 FT. INTERVAL)	
FEET	LEGEND:		
3	B-001-(194.2W) ■	PROPOSED 25-FT. DEEP TEST BORING LOCATION	
CANDIDATE 4 PHASE 1 4 AREA 5	B−002−(194.1W)∆	PROPOSED 10-FT. DEEP TEST BORING LOCATION	
		SHORELINE STABILITY TEST BORING LOCATION	
RIVER SECTION		POTENTIAL FINAL CANDIDATE SITE (FCS) AREA TEST BORING LOCATION	
CANDIDATE PHASE 1 - 8	·····	SPUDDING/SHEETING/DREDGE PRISM STABILITY TEST BORING LOCATION	
	48 🌑	SEDIMENT SAMPLING AND ANALYSIS PROGRAM SAMPLE LOCATION AND PROBED DEPTH (INCHES)	
<i>J9</i> 1		SHORELINE	
RIVER (EXISTING FEATURE	
SECTION	<u>-</u> 194.1	APPROXIMATE RIVER MILE	
CANDIDATE PHASE 1 AREA 11	2. "SEDIMENT SAMPLING SAMPLE LOCATIONS AND BY ESI ON JUNE 17, 201 3. ALL LOCATIONS ARE		
	SCAN SONAR DATA 200 2003". RIVER MILE MARK WERE APPROXIMATED BY	MILE MARKERS WERE CD ENTITLED "2002 SIDE I BATHYMETRIC DATA JUNE KERS SHOWN IN PARENTHESIS BBL.	
	5. UPLAND CONTOURS A		
	6. RIVER BOTTOM CONTO FOR THIS REACH.	DURS NOT YET AVAILABLE	
CONTINUED ON SHEE	т 10		
PCBs SUPERFUND SITE	T		
		BL Project No. 0428.002	


SITE ERING DATA COLLECTION	BBL Project No. 20428.002
NS	Date SEPTEMBER 2003
- .)	Blasland, Bouck & Lee, Inc. Corporate Headquarters 6723 Towpath Road Syracuse, NY 13214 315-446-9120

9

	×237.8	× 218.7	×167.0 •48 •49 •95 •17 •167.0 •48 •49 •95 •12 •18 •19 •10 •11	108 018 021 043 184 047 064 031 044 042 050 056 084 0 023 050 074 0108 0 078 052 052 064 038 0 113 048 066 036 043 020 042 047 0108 0 052 014 0108 0108 03 0 052 014 0108 0108 0108 03 0 052 014 0108 0108 0108 0108 03 0 052 014 0108 0108 0108 0108 0108 0108 0108	× 108.3	
	× 237.8	×22.8	× 167.0 • 48 • 49 • 96 • 42 • 108	184 -46 -51 -38 -34 -64 -31 -44 -42 -50 -36 -84 -23 -50 -74 -108 -78 -52 -52 -64 -38 -13 -48 -66 -38 -413 -20 -42 -47 -108 -952 -14 -108 -108 -108 -108 -915 -66 -660 -660 -29 -66		
	(240.2	(xtro.5) (25) (xtro.5) (25) (xtro.5) (xtro.5) (xtro.5) (xtro.5) (xtro.5) (x	• (184,1) •19	€6 €10 15 €44 €42 ● €41 15 €44 €42 ● €41 15 €2 €5 €45 €35 €20 €33 €47 €27		
		x191.0)	■ 1775 ■ 055-(184.2E) ■ 055-(184.2E) ■ 055 ■	• • • • • • • • • • • • • • • • • • •		


	С	ONTINUE	D	ON	SHEET	9		
100	100		100	100		100	100	


±

				860 010 873066 848 033	(183.8)	10 10 10 10 10 10 10 10 10 10	x 102.0 x 109.4	
					• 35 1 1	●96 ●元 ●96 ●90 ●96 ▲ <mark>B=058=(</mark> ●96 ●44 ●96	95	
					2	•36 •66 •96 •80 •96 (183.7) ••••71		× 111,8
				× 109.2	× 110.9 0 052 052 084 042	 Ø \$57 \$48 \$72 \$56 \$23 \$56 	× 103.6	
					×10.3 ×10.3 ×10.2 96 96	eco 55 032 01 48 B-059-(183.	●42 ●84 ×112.1	×113.6
					€30 €64 €72 €66 €21 B−060−(18		●30 ●23 ★111.8	
					■50 €60 ¥1097 €44 €45 ●55 ●42 ● ⊕8		×114.1	* 15.6 COUNTS H
						(183.5)	XIIA	¥111.7
							× 112.7 × 112.0	11 11 24
					*11.5	(183.4)	2)	×116.5
					Allos - Le		(183.3)	
					KI19.6	XII44	(183	.2)
						And a second		
X: HUDSONRIVER01: 05511X01,05511X02,05511X06, ALLCON1, RIVCON.DWG						*11.0 *11.0	K V	
L: ON=*, OH=*, HEL=*(IIRE=CONF,*(WOODLINE,*(HELDGE P: PACEST/PLT=OL 9/17/03 SYR=85-RLP GMS RLP N/20428002/PBORE01/20428B04.DWG Graphic Scale			Professional Engineer's Name		``````````````````````````````````````		GENERAL ELECTRIC C	OMPANY • HUDSON
THIS DRAWING WAS PREPARED AT THE SCALE INDICATED IN TH TITLE BLOCK. INACCURACIES IN THE STATED SCALE MAY BE INTRODUCED WHEN DRAWINGS ARE REPRODUCED BY ANY MEANS. USE THE GRAPHIC SCALE BAR IN THE TITLE BLOCK T	E No. Date Rev No ALTERATIONS PERMITTED HEREON EXCEP	/isions Init T AS PROVIDED UNDER SECTION 7209	Professional Engineer's No. State Date Signed Project Mgr. Designed by Drawn by		BLASLAND, BOUCK & LEE, INC. engineers & scientists	HUDSON KIVE	R REMEDIAL DESIGN - PROPOSEI (RIVER M CANDIDA	D BORING
DETERMINE THE ACTUAL SCALE OF THIS DRAWING.	D NO ALTERATIONS PERMITTED HEREON EXCEP SUBDIVISION 2 OF THE NEW YORK STATE E	DUCATION LAW						

CONTINUED ON SHEET 10

