

Technical Highlights of EPA's 7th Conference on Air Quality Modeling

Workshop Guide APTI Workshop T-029 DAY 2

Developed by Environmental Programs - North Carolina State University EPA Cooperative Assistance Agreement CT-825724

Industrial Extension Service

College of Engineering

North Carolina State University

This project has been funded wholly or in part by the United States Environmental Protection Agency (U.S. EPA) under Cooperative Assistance Agreement CT-825724 to North Carolina State University. The contents of this document do not necessarily reflect the views and policies of U.S. EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

©2000 North Carolina State University

All rights reserved. State and local air pollution control agencies, U.S. EPA offices, and federal offices designated by EPA are authorized to make royalty-free copies of this document in connection with telecourses. Otherwise, no part of this publication may be reproduced or transmitted in any form or by any means electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose without the express written permission of North Carolina State University.

Printed on recycled paper in the United States of America.

(Revision: 8/00)

Fax Question Sheet					
APTI Workshop T-029 Technical Highlights of EPA's 7th Conference on Air Quality Modeling DAY 2 August 2, 2000					
Voice: (800) 742-9813	Fax: (800) 553-7656				
Please write your question and direct it to t	he appropriate presenter if possible.				
Question for:					
Question from:					
City/State:	Office Phone Number: ()				

KeyPoint Services International, Inc. Trouble Line: (800) 231-8945

(This page intentionally left blank.)

APTI Workshop T-029

Technical Highlights of EPA's 7th Conference on Air Quality Modeling

Presented by OAQPS

Broadcast Agenda				
August 2, 2000 1:00pm ET DAY 2				
SECTION		ТОРІС		
1		Introduction Jim Dicke		
2		Alternative ModelsADMSDavid Carruthers, Ph.D.CAMxRalph MorrisSCIPUFFIan Sykes		
	10 MIN.	BREAK		
3		Alternative Models HYROAD Introduction <i>Edward Carr</i> HYROAD Intersection Model <i>Robert Ireson</i> UAM-V <i>Edward Carr</i>		
4		Summary Joe Tikvart		
	10 MIN.	BREAK		
		Questions and Answers and Wrap up		

Technical Highlights of EPA's 7th Conference on Air Quality Modeling Presenters

Edward Carr ICF Consulting San Francisco, CA edcarr@icfconsulting.com

Dr. David J. Carruthers Cambridge Environmental Research Consultants, Cambridge, UK <u>David.Carruthers@cerc.co.uk</u>

Alan J. Cimorelli Regional Modeler, EPA Region III Philadelphia, PA <u>cimorelli.al@epa.gov</u>

Julie Ann Draper Federal Aviation Administration Washington, DC julie.draper@faa.gov

Chuck Hakkarinen EPRI Palo Alto, CA <u>chakk@epri.com</u>

Robert Ireson ICF Consulting San Francisco, CA rireson@ix.netcom.com

John S. Irwin Meteorologist, NOAA Air Quality Modeling Group, EPA <u>irwin.john@epa.gov</u>

Ralph E. Morris ENVIRON International Corp. Arlington, VA <u>rmorris@environ.org</u>

Robert J. Paine

ENSR Corporation Acton, MA <u>Bpaine@ensr.com</u>

Warren D. Peters Environmental Engineer Air Quality Modeling Group, EPA peters.warren@epa.gov

Joseph S. Scire Vice President, Earth Tech, Inc. Concord, MA JSS@src.com

R. Ian Sykes ARAP Group Titan Corporation isykes@titan.com

Theodore G. Thrasher CSSI, Inc. Washington, DC <u>tthrasher@cssiinc.com</u>

Joe Tikvart Leader, Air Quality Modeling Group, EPA Research Triangle Park, NC <u>tikvart.joe@epa.gov</u>

John Vimont National Park Service Denver, CO jcv@aqd.nps.gov

Roger L. Wayson, Ph. D. University of Central Florida and Visiting Scientist, DOT wayson@mail.ucf.edu

Jeffrey C. Weil CIRES, University of Colorado Boulder, CO weil@mmm.mmm.ucar.edu

Rob Wilson Regional Modeler, EPA Region 10 Seattle, WA wilson.rob@epa.gov

ADMS Atmospheric Dispersion Modelling System

Dr. David J Carruthers Cambridge Environmental Research Consultants

ADMS

- Development commissioned in 1988 following a CERC report to regulatory authorities in the UK
- The CERC report highlighted the advantages of the use of surface/boundary layer scaling over Pasquill Gifford stability categories

ADMS

 Sponsors include UK's Environment Agency, UK Health and Safety Executive, major power and chemical companies

ADMS

- Development by:
 - CERC (including Prof. Julian Hunt, Dr. David Carruthers, Dr. Christine McHugh, Dr. Rex Britter)
 - University of Surrey (Prof. Alan Robins)
 - UK Meteorological Office (Dr. David Thomson)

ADMS

- ADMS is the leading European Short Range Air Dispersion Model and is used extensively in the UK and across Europe
- ADMS has featured in all 6 European Workshops on Harmonisation of Dispersion Models (1991-present)

Key Features of ADMS

- Continuous or discrete releases
- Point, line, area, volume and jet sources
 - treatment depends on receptor location

Key Features of ADMS

- Skewed-Gaussian model using local boundary layer variables
- Meteorological preprocessor
- Integral plume rise model

Key Features of ADMS

- Building effects
- Complex terrain
- Coastline
- Wet and dry deposition
- Chemical transformation

Key Features of ADMS

- Radioactive decay & gamma dose
- Jets and directional releases
- Concentration fluctuations module
- Condensed plume visibility module

Regulatory Applications

- Multiple buoyant or passive industrial emissions
- Surface, near surface or elevated releases
- Urban or rural areas
- Short (seconds) to long (annual) term averaging times

Flat Terrain Validation

Summary Scores for ISC3, ADMS and AERMOD (Different model input parameters)

	ISC3	ADMS	AERMOD
Best	5	19	6
Middle	2	5	11
Woret	17	0	7
WOISt	17	v	,
Table 2	ISC3	ADMS	AERMOD
Table 2 Best	ISC3 4	ADMS 8	AERMOD 10
Table 2 Best Middle	ISC3 4 10	ADMS 8 15	AERMOD 10 11

Table 1 from Hanna et al, $6^{\rm th}$ Workshop on Harmonisation, France Oct 1999 Table 2 from Hanna et al, AWMA Meeting, US, June 2000

Power Station Comparison Typical input data

Typical input data		and Annual Mean Concentration		
Stack height (m)	200		ADMS 3	AERMOD
Stack diameter (m)	13	100 th	398	681
Exit velocity (m/s)	22	99.99 th	310	669
Temperature (°C)	130	99.9 th	188	521
80. emission rate (g/s)	5000	99 th	97	180
30 ₂ emission rate (g/s)	5000	98 th	51	127
		95 th	3.9	54
Meteorological data: 1 year of hourly sequential data		90 th	0.2	3.2
		Annual mean	2.6	7.5

Summary

 ADMS includes in one model all the features of AERMOD (except input of observed boundary layer profiles), ISC-PRIME and CTDM PLUS – potential difficulties arising as to whether to use AERMOD or ISC-PRIME avoided (e,.g, at site with buildings and tall stacks)

Summary

 Additionally ADMS includes concentration fluctuation, plume chemistry and condensed plume visibility algorithms

Summary

- ADMS-Urban includes capabilities of CALINE, most features of EDMS and other features
- The costs of ADMS are similar to commercially available versions of AERMOD and ISC

Summary

- ADMS was first released in 1993 and has been used in many critical applications
- There are over 500 licenses worldwide

http://www.cerc.co.uk

Comprehensive Air-quality Model with extensions (CAMx)

Ralph E. Morris ENVIRON International Corp.

CAMx Version 2.00

- 3-D Eulerian tropospheric photochemical transport model
 - treats emissions, chemistry, dispersion, removal of gaseous and aerosol air pollution
 - scales range from individual point sources (< 1 km) to regional (>1000 km)

CAMx Version 2.00

- Combines features required of "state-of-the-science" models
 - new coding of several industryaccepted algorithms
 - computationally and memory efficient
 - easy to use

CAMx Version 2.00

- modular framework permits easy substitution of revised and/or alternate algorithms
- publicly available (www.camx.com)

CAMx Version 2.00

- Technical Features:
- Grid nesting
 - two-way horizontal and vertical nesting
 - supports multiple levels
 - variable meshing factors

CAMx Version 2.00

- ◆ Plume-in-Grid (PiG) sub-model
- Multiple, fast and accurate chemical mechanisms
- Mass conservative and mass consistent transport scheme

CAMx Version 2.00

- Multiple map projections
 - curvi-linear latitude/longitude
 - Universal Transverse Mercator
 - Lambert Conformal (MM5)
 - Rotated Polar Stereographic (RAMS)

CAMx Version 2.00

- Ozone Source Apportionment (OSAT)
 - tracks source region/category contributions to receptor ozone concentrations
 - indicates if ozone formed in NO_x or VOC-limited conditions

CAMx Version 2.00

- Ability to use historical air quality model databases developed for other models
 - OTAG, LMOS, COAST/Houston, Atlanta, Northeast Corridor

Key Technical Components

- Overview
 - solves continuity equation for each species
 - time splitting operation
 - each process solved individually for each grid, each time step
 - time step size maintains stable solution of transport on each grid

- multiple transport steps per master grid step required for
- nested grids
- multiple chemistry steps
 per transport step required
- model developed to run on meteorological modeling grid
 - reduces error due to interpolation and averaging
 - multiple map projections available

- ♦ Transport
 - advection and diffusion solvers are mass conservative
 - horizontal and vertical advection linked through the divergent compressible atmospheric continuity equation
 - mass consistency

Key Technical Components

- order of east-west and north-south advection alternates each master grid step
- three options available for horizontal advection solvers:
 - Smolarkiewicz (1983): diffusioncorrective forward-upstream scheme
 - Bott (1989): area-preserving flux-form solver
 - Piecewise Parabolic Method (PPM)

- Transport (concluded)
 - vertical transport and diffusion solved with an implicit scheme
 - dry deposition rates are used as the surface boundary condition
 - horizontal diffusion solved with an explicit scheme in two directions simultaneously

- Pollutant Removal
 - dry deposition velocities for each species determined using resistance approach (Wesely, 1989)
 - dependent upon: season, land cover, solar flux, near-surface stability, surface wetness, species solubility and diffusivity
 - for aerosols: size spectrum dictates sedimentation velocity

Key Technical Components

- wet scavenging based on Maul (1980) as implemented in CALPUFF (EPA, 1995)
 - exponential decay
 - decay rate dependent upon: rainfall rate, species solubility
 - species removed from entire grid column (all layers)

- Photochemistry
 - CBM-IV (Gery et al., 1989)
 - 3 variations available
 - SAPRC97 (Carter, 1990)
 - chemically up-to-date
 - tested extensively against environmental chamber data
 - uses a different approach for VOC lumping

- all mechanisms are balanced for nitrogen conservation
- photolysis rates derived from TUV preprocessor
 - generates lookup table over: zenith angle, altitude, ozone column, albedo, turbidity
 - first two determined for each grid cell internally
 - last three provided by input files

Key Technical Components

photolysis rates affected by clouds

- UAM-V approach: rates scaled by fractional cloud coverage only
- RADM approach: rates scaled by optical depth and cloud coverage

- Chemistry Solver
 - most "expensive" component of photochemical grid simulations
 - CAMx solver increases efficiency and flexibility
 - adaptive hybrid approach:
 - radicals (fastest reacting species) solved using implicit steady state approximation

- fast state species solved using second-order Runge-Kutta method
- slow state species solved explicitly
- "Adaptive" = number of fast state species changes according to the chemical regime

Key Technical Components

- Plume-in-Grid (PiG)
 - fine resolution needed for nearsource chemistry/dispersion of large NO_x plumes
 - tracks stream of plume segments (puffs) in a Lagrangian frame
 - each puff moved by winds in host cell
 - puff growth (dispersion) determined by diffusion coefficients in host cell

- GREASD PiG: faster, conceptually simpler
 - reduced NO_x chemistry set (NO-NO, NO_x/ozone equilibrium, HNO₃ production)
 - cross-sectional Gaussian
 pollutant distribution

- puffs leak mass according to growth rates and grid cell size
- puffs terminated due to age or sufficiently dilute NO_x

- Ozone Source Apportionment (OSAT)
 - determines source area/category contributions to ozone anywhere in the domain
 - uses tracers to track precursor emissions and ozone production/destruction

- also tracks contribution of initial and boundary conditions
- estimates whether ozone is produced under NO_x- or VOC-limited conditions

Key Technical Components

- removes need to run model repeatedly to understand:
 - chemical regime
 - influences of various sources
- HOWEVER: cannot quantify ozone response to NO_x or VOC controls

- CAMx Version 2.00 PM Treatment
 - Primary Particulate Matter (PM)
 - Secondary Organic Aerosols (SOA) treated using aerosol yield approach in photochemistry
 - Sulfate/Nitrate/Ammonia equilibrium aerosol thermodynamics using empirical UAM/LC approach
 - Empirical aqueos-phase (Sulfate)

CAMx Version 3 Attributes Coming Summer 2000 (www.camx.com)

- ♦ Flexi-nesting
 - Ability to add/delete nested-grids during a simulation
 - Real time interpolation of fine-grid inputs from next coarser grid

CAMx Version 3 Attributes Coming Summer 2000 (www.camx.com)

- Decoupled Direct Method (DDM)
 - Sensitivity coefficients provides information on the relationship of CAMx-estimated ozone (or other species) and sources of precursors (emissions, boundary conditions, and initial concentrations)

CAMx Version 3 Attributes Coming Summer 2000 (www.camx.com)

- Information is useful for
 - Control Strategy Development
 - Model performance evaluation
 - Diagnostic analysis

CAMx Version 3 Attributes Advanced PM Treatment Gas-Phase 1) SAPRC97 Chemistry: 2) Enhanced CBM-IV

Size Section:

Mass Transfer:

1) Equilibrium

1) Fixed Section 2) Moving Section

(monoterpines)

- 2) Hybrid
- 3) Dynamic

CAMx Version 3 Attributes Advanced PM Treatment

erosol	1) LCAERO (parameterized RFM)
hermo-	2) SCAPE2 (full science)

Thermodynamic:

Aqueous-1) Bulk

- Phase 2) Size Resolved Chemistry:
 - 3) Empirical (existing)
- Secondary 1) SOAM2
 - 2) Aerosol Yields (existing)
- Organic Aerosol:

3) ISORRPIA (significantly faster)

CAMx Version 3 Attributes Advanced PM Treatment

Coagulation:	
Nucleation:	
Dry	
Deposition:	
Wet	

- CMU algorithm
 CMU algorithm
 - 1) Wesley gaseous (existing)
 - 2) AERO particle dry deposition
- Wet1) Rainout and washout as partDeposition:of aqueous-phase module
 - of aqueous-phase module 2) Existing gaseous wet deposition interface with aqueous-phase module

CAMx Postprocessing and Analysis Tools

- CAMxtrct
 - Extracts and reformats CAMx output for multiple grids (Fortran)
- SURFER (by Golden Software)
 - Visualization (PC based)

CAMx Postprocessing and Analysis Tools

- MAPS (by Alpine Geophysics)
 - Model evaluation and visualization (Fortran/NCAR graphics)
- ◆ PAVE (by MCNC)
 - Visualization (Unix/LINUX)

CAMx Postprocessing and Analysis Tools

- ♦ VIS5D
 - Visualization (various)
- CAMxDESK (by EnviroModeling)
 - Visualization and analysis software (PC based)

Second-order Closure Integrated Puff (SCIPUFF)

> R. Ian Sykes ARAP Group Titan Corporation

Overview

- Modeling Approach
- Graphical User Interface
- Input/Output
- Model Evaluation Studies

Lagrangian Puff Model

- Concentration field collection of overlapping puffs with Gaussian distributions
- Concentration given by sum over all puffs
- Solve ODE's for puff moments

Lagrangian Puff Attributes

- Arbitrary range of scales without numerical grid and associated diffusion errors
- Arbitrary time-dependent, spatially inhomogeneous conditions
- Multiple sources with arbitrary time-dependence

Turbulent Dispersion

- Closure model gives direct relationship between turbulence quantities and diffusion rates
- Provides single diffusion model framework for a wide range of atmospheric scales

Model Efficiency

- Puff splitting allows accurate treatment of wind shear
- Puff merging minimizes number of puffs
- Efficient adaptive time-step algorithm
- "Static" puffs for steady-state section of plume

Concentration Fluctuations

- Turbulent dispersion implies a random concentration field
- ◆ 2nd-order closure model gives both fluctuation variance, c², and c
- The probability distribution of *c* is then modeled by the clipped normal distribution

Plume Rise

- Associate dynamic vertical momentum and temperature perturbation integrals with each puff
- Add evolution equations for puff dynamics based on conservation of momentum and temperature

Model Input

- Source Data
 - Pollutant physical and chemical properties
 - Release type

Model Input

- Meteorological Data
 - Fixed winds
 - Observational Input (surface and/or profile)
 - Time-dependent 3-dimensional gridded

Model Input

- Terrain for mass consistent wind field
- Turbulence Data
 - Planetary boundary layer
 - Large scale variability

Model Input

- Boundary layer turbulence
 - Profiles based on wind speed, roughness, and surface heat flux calculation

Model Output

- Sampler file
 - Time history at receptor locations
- ♦ GUI plots
 - Horizontal slices
 - Vertical slices
 - Integrated surface deposition and dose
 - Probability

Model Evaluation Studies

- PGT curves
- Instantaneous dispersion data
- Lab dispersion and fluctuation data
- Continental-scale ANATEX field experiment
- EPRI PMV&D tallstack emissions
- CONFLUX (short range, fluctuations)
- Dugway field tests
- Model Data Archive
- ♦ ETEX

Model Availability

Available for downloading from the Titan website: www.titan.com/systems/prod.htm

The Hybrid Roadway Intersection Model: HYROAD

Edward Carr and Robert Ireson ICF Consulting

Contact Information

Crawford Jencks, P.E. Program Officer, NCHRP 202-334-2379 / cjencks@nas.edu

Edward L. Carr, CCM Project Manager, ICF Consulting 415-507-7186 / ecarr@icfconsulting.com

Robert G. Ireson, Ph.D. Principal Investigator 415-925-1440 / rireson@ix.netcom.com

Overview

- ♦ Background
- Scientific basis and model formulation
- Model application resource needs

Overview

- Model sensitivity and performance
- Proposed applications
- Project status and next steps

Background

- SIP, conformity, and EIS "Hot-Spot" analysis for carbon monoxide (CO)
- Sponsorship: NCHRP, FHWA

Background

- Four phase study:
 - Problem assessment -Site Monitoring Plan (1993-1995)
 - Site monitoring and evaluation -Data Collection & Analysis (1993-1997)
 - Model development -Evaluation & Testing (1997-2000)
 - Development GUI & user guide (2000-2001)

Primary Objectives of Research

- Assemble a comprehensive national database
 - Model testing and evaluation

Primary Objectives of Research

- Developed an improved fully integrated roadway intersection model
 - Dispersion
 - Emissions
 - Traffic

Approach to Model Development

- Analysis of field program data to characterize dynamic processes
 - Assess those elements most important and incorporate into model framework
- Develop model based on understanding of key processes

Scientific Basis and Model Formulation

- Intersection model components
- Limitations of existing models
- Field study design and findings
- HYROAD formulation

Intersection Dynamics

- ♦ Traffic
 - Queuing
 - Acceleration, deceleration, and cruise
 - Non-steady state

Intersection Dynamics

- Emissions and dispersion
 - Modal effects (e.g., power enrichment)
 - Buoyancy and vehicle wake turbulence
 - Short transport distances

Limitations of Existing Models

- CAL3QHC simplifications
 - Two emission states -- idle or cruise
 - Steady state meteorology (PG sigma-y and sigma-z)
 - Queuing based on quality of progression

Limitations of Existing Models

- ♦ CALINE4 approaches
 - Empirical emission adjustment for acceleration
 - Roadway turbulence and buoyancy
 - Use of sigma-theta in place of sigma-y

Field Study Elements - Continuous (15 minute average)

- Traffic approach volume and signal timing
- Meteorology
 - 3 m and 10 m wind speed and direction
 - Temperature, RH, sigma-theta, stability

Field Study Elements - Continuous (15 minute average)

- ♦ CO and CO₂ at 16+ locations
- Sonic anemometers (2- and 3-axis)

Field Study Elements --Short-term Studies

- Floating car runs
 - Time-distance data (1 second resolution)
- Coldstart survey (distance from trip origin)

Field Study Elements --Short-term Studies

- Tracer study (SF6)
 - Light wind periods
 - 15-minute averages at multiple receptors

Field Study Findings --Flows and Turbulence

- Induced flows of 3+ m/s at roadside
- Induced flows and enhanced turbulence observable at >25 m from roadside

Field Study Findings --Flows and Turbulence

- Observed vertical dispersion rate exceeds both PG and CALINE3/CAL3QHC
- SF6 tracer observed >100 m 'upwind' of release point due to induced flows

Field Study Findings --Traffic and Emissions

- Speed/acceleration distributions do not resemble any emission test cycles
- Power enrichment occurs on depart legs

Field Study Findings --Traffic and Emissions

- Constant g/gal emission rates observed at all locations for high concentration periods
- Enrichment does NOT appreciably contribute to high concentrations

Traffic Module -Micro-simulation

- Based on TRAF-NETSIM simulation of vehicle movements at 1 second resolution
- Explicit treatment of traffic patterns
 - Turn lanes, signal phases, queuing
 - Coordination of upstream signals

Traffic Module -Micro-simulation

 Output: Speed/acceleration distribution by 10 m roadway segment and signal phase

Emission Module

- Objective: make the best possible use of cycle-based emission factors
- Core rates from MOBILE5 for the speeds of the speed correction cycles

Emission Module

 Multivariate regression weights speed correction cycles to match non-idle speed distribution from NETSIM

Emission Module

- Total emissions calculated from weighted average g/mi rate plus excess idle (idle time not explained by weighted cycles)
- Speed/acceleration distributions used to calculate fuel consumption by 10 m roadway segment and signal phase

Emission Module

 Fuel consumption used as a surrogate to spatially and temporally allocate emissions

Induced Turbulence and Flow Fields

- Based on ROADWAY (Eskridge, 1987)
- Turbulence and induced flow calculated for each 10 m roadway segment using traffic volume and speed

Induced Turbulence and Flow Fields

 Output for each signal phase: Gridded wind speed and eddy diffusivity for a 2.5 x 2.5 km grid of 10 m cells

Dispersion Module

- Gaussian model (moderate wind)
 - Uses CALINE4 mixing zone, sigma-z, sigma-theta
- Puff model
 - 1 puff per second per 10 m roadway segment
 - Puff transport with gridded winds by phase

Dispersion Module

- Puff growth based on local stability from gridded eddy diffusivity
- Domain wind and stability used after 1 cycle

Model Formulation -Conclusions

- HYROAD integrates accepted modeling approaches to treat important processes affecting intersection CO concentrations
 - Induced flows and turbulence
 - High spatial and temporal variability of emissions

Model Formulation -Conclusions

 Modular design allows updating (e.g., for modal emissions)

Model Application -Resource Needs

- Standard inputs
 - Intersection geometry (lanes, medians, etc.)
 - Traffic (volume, turns, signal cycles, speeds, coordination)

Model Application -Resource Needs

- Meteorology (wind speed, direction, stability, temperature, optional sigma-theta
- Emission factors by temperature (constant cold-start), or hour-specific

Model Application -Resource Needs

- Input preparation time
 - Geometry and NETSIM: 8 hours
 - Emissions and Dispersion: 12 hours

Model Application -Resource Needs

- Run time (500 MHz Pentium, 128 Mb)
 - Netsim: 30 sec / simulation hour
 - Dispersion: 4 min / simulation hour
 - Optimization possibilities

HYROAD Sensitivity and Performance

- Sensitivity analyses
 - Nominal intersection with grid of receptors in NW quadrant
 - Modeling with both Gaussian and puff models
 - Results for wind speed, wind direction, and stability

HYROAD Sensitivity and Performance

- Performance evaluation data sets
 - Intensive data sets for three intersections
 - 528 hours with 15 minute data (6000 available)
 - 10 or more receptor locations

HYROAD Sensitivity and Performance

- 8 SLAMS/NAMS sites
 - 1728 hours (75,000 available)
 - Uncertain background concentrations

HYROAD Sensitivity and Performance

- Performance evaluation approach
 - Concurrent evaluation of HYROAD (Gaussian and puff) with CAL3QHC without regulatory constraints (D, 1 m/s)

HYROAD Sensitivity and Performance

- Scatterplots, stratified by receptor, wind speed, and wind direction
- Standard statistics
 - All data
 - Max 25 paired
 - Max 25 unpaired

Preliminary Performance Results

- HYROAD produces more accurate robust high concentration than CAL3QHC
- Performance differences observed between receptor locations
- HYROAD appears to provide improved treatment of problematic worst-case conditions

Preliminary Performance Results

- Performance evaluation for other intersections is under way
- Screening methodology using HYROAD will be developed and evaluated

Proposed Applications

- Refined CO Applications
 - SIPs
 - Conformity
 - EIS/EIR
- Particulate matter "hot-spots" assessment
- Air toxic risk assessment

Project Status

- Current Status
 - Select transition from puff to line-segment
 - Complete model performance evaluation
 - Completed Tucson
 - Virginia & Denver plus 8
 SLAMS/NAMS sites

Project Status

 Present Evaluation and Recommendations to NCHRP panel

Next Steps

- Develop Graphical User Interface
 - Facilitate communication between modules
 - Ease burden for user in developing inputs
- Update Draft User Guide
 - Reflect changes

Next Steps

- Schedule for Completion
 - Complete Evaluation (August 2000)
 - Develop GUI and Beta Testing (Fall 2000)
 - Update User Guide (Winter 2000-2001)

The Variable Grid Urban Airshed Model (UAM-V, UAM-VPM)

Edward Carr

Overview of the Variable-Grid Urban Airshed Model (UAM-V)

- Simulates the physical and chemical processes governing the formation and transport of ozone in the troposphere
 - three-dimensional, Eulerian (grid-based) model

Overview of the Variable-Grid Urban Airshed Model (UAM-V)

- requires specification of meteorological, emissions, land-use, and other geographic inputs
- output includes hourly concentrations of ozone and precursor pollutants for each grid cell within a (three-dimensional) modeling domain

Overview of UAM-V

- Core model, supporting software, user's manuals, and example modeling database available from SAI at no charge
- www.uamv.saintl.com

Overview of UAM-V

- Version 1.24 OTAG version
 - Updated isoprene chemistry (1996)
- Version 1.30 Latest version
 - Toxics chemistry, process analysis

UAM-V Modeling System Features

- Carbon-Bond-IV chemical mechanism with enhanced isoprene and toxics chemistry
- Two-way interactive nested-grid capabilities
- Plume-in-grid (P-i-G) treatment

UAM-V Modeling System Features

- Accepts output from a variety of dynamic meteorological models (e.g. MM5)
- Contains "process analysis" capabilities

Treatment of Processes in UAM-V

- Advective pollutant transport
 - Smolarkiewicz scheme
- Turbulent diffusion
 - Dispersion proportional to concentration gradient – K Theory

Treatment of Processes in UAM-V

- Surface removal
 - Uptake of pollutants by various surface features - land use
- Chemistry
 - Carbon Bond IV chemical mechanism with updated isoprene chemistry and toxics mechanism

UAM-V Modeling System

- Core model and input processing software
- Emissions Preprocessing System (EPS2.5) to prepare ozone and particulate emission inventories
- UAM-V Postprocessing System (UPS)

UAM-V Modeling System

- Process analysis modeling system software
- Model Output Visualization and Input Evaluation Software (MOVIES) – Color animations

UAM-V Input File Requirements

- Meteorological input files
 - wind
 - temperature
 - water-vapor concentration
 - pressure

UAM-V Input File Requirements

- vertical diffusivity (effective mixing height)
- cloud cover
- rainfall rate

UAM-V Input File Requirements

- Emissions input files
 - low-level anthropogenic emissions
 - point sources
 - area sources
 - motor-vehicles
 - elevated point source emissions
 - biogenic emission estimates

UAM-V Input File Requirements

- Air quality related input files
 - initial conditions
 - boundary conditions
- Chemistry input files
 - chemical reaction rates
 - photolysis rates

UAM-V Input File Requirements

- Geographic/other input files
 - Iand-use
 - albedo, turbidity, and ozone column

UAM-V Process Analysis Capabilities

- UAM-V process analysis provides detailed information on the physical and chemical simulation processes
- Process-level information includes
 - photochemical production/consumption

UAM-V Process Analysis Capabilities

- horizontal advection/diffusion
- vertical advection
- vertical diffusion
- deposition
- emissions (for precursor pollutants)

- Over 60 registered users worldwide (Version 1.30), unknown number of unregistered users
 - U.S. EPA, state/local agencies, and industry
 - Environment Canada

UAM-V Users/Applications

- European research and regulatory agencies
- European and Japanese automakers; European oil companies

UAM-V Users/Applications

- Registered users
 - Research and regulatory groups in Central and South America, Australia, New Zealand, and several Asian countries including
 - China
 Philippines
 - Taiwan India
 - South Korea
 Thailand (AIT)

UAM-V Users/Applications

- Some completed applications
 - Numerous U.S. regions/cities
 - OTAG, Atlanta, Houston, Baton Rouge, Chicago
 - Vancouver, B.C.
 Milan
 - U.K.
 - Paris
- Mexico CityAthens

Presentation 5 8

Current Applications

 Gulf Coast Ozone Study (GCOS) – Assessment of ozone formation and transport processes affecting 1- and 8-hour ozone along the U.S. Gulf Coast

Current Applications

- Arkansas-Tennessee-Mississippi Ozone Study (ATMOS) – Assessment of potential 8-hour ozone issues for Memphis, Nashville, Knoxville, Tupelo, Chattanooga, and Little Rock
- Mexico City Demonstration for a new area/preliminary emissions sensitivity analysis

Overview of the UAM-VPM

- UAM-V photochemical model (CB-2000)
- Particulate matter (PM) stand-alone box model employing hybrid modal-sectional approach to PM representation
- Gas-phase chemical mechanism generator for the UAM-V

Structure of the UAM-VPM

- Features of PM dynamics that can be well characterized by known algorithms are hard coded
- Features which are not well known are user inputs or dynamically selected
- Allows for the best research grade algorithms to be used in a regulatory and planning platform

PM Processes in UAM-VPM

- 1) Modal discretization (new)
- 2) Nucleation (Fitzgerald, Hoppel, Gelbard, 1998)
- 3) Coagulation (Jacobson, 1994, 1999)
- 4) Condensation (Jacobson, 1997, 1999)

PM Processes in UAM-VPM

5) Dissolution (Jacobson, 1997, 1999)

- 6) Reversible chemistry (various)
- 7) Sectional remodalization (new)

Example UAM-VPM Species			
Chemical Formula	Chemical Name	Chemical Formula	Chemical Name
H ₂ O(aq)	water	Na⁺	sodium ion
H ₂ SO ₄ (aq)	sulfuric acid	CI	chloride ion
HNO ₃ (aq)	nitric acid	Na ₂ SO ₄ (s)	sodium sulfate
NH ₃ (aq)	ammonia	NaHSO ₄ (s)	sodium bisulfate
HCI(aq)	hydrochloric acid	NaCI(s)	sodium chloride
H⁺	hydrogen ion	NaNO ₃ (s)	sodium nitrate
OH-	hydroxy ion	$(NH_4)_2SO_4(s)$	ammonium sulfate
NH₄⁺	ammonium ion	NH ₄ HSO ₄ (s)	ammonium bisulfate
NO ₃ -	nitrate ion	NH₄CI(s)	ammonium chloride
HSO₄-	bisulfate	NH₄NO₃(s)	ammonium nitrate
co 2.	aulfata		

Status of UAM-VPM: Plans
for 2000 and beyond

- Rigorous testing of box model
- Testing of full modeling system
- Complete initial application to Vancouver for a 10-day 1993 episode
- Initiate application to Alberta

7th Conference on Air Quality Modeling: Prepared Comments on the Second Day - June 29

Joseph A. Tikvart

AMS Committee Perspective J. Weil AWMA Committee Perspective R. Paine Prognostic Meteorological Model Panel R. Schulze STAPPA/ALAPCO Agencies P. Hanrahan Department of Energy P. Lunn Gas Research Institute D.Blewitt

American Petroleum Institute H. Feldman K. Steinberg Utility Air Regulatory Group A. Field R. Paine Southern Company S. Vasa Trinity Consultants R. Schulze Personal Statement M. Sharan

7th Conference on Air Quality Modeling

Questions EPA Asked on New Modeling Systems

- Q1. Scientific Merit
- Q2. Model Accuracy
- Q3. Appropriate Regulatory Applications

7th Conference on Air Quality Modeling

Questions EPA Asked on New Modeling Systems

Q4. Implementation Issues

- **Q5. Resource Constraints**
- Q6. Additional Analyses

Notes on Summary of Comments

- Public comment period is open until 8/21/00
- Summary is for oral comments only

Notes on Summary of Comments

- No responses have been formulated at this time
- Comments on the scientific merit of AERMOD, CALPUFF, and ISC-PRIME were generally favorable

Notes on Summary of Comments

- Summary of comments is based on the previous 6 questions
 - AERMOD
 - CALPUFF
 - Numerical Grid Models
 - Data from Meteorological Models
 - General Comments

Notes on Summary of Comments

 There were no specific oral comments on other models

AERMOD

Q1, Q2. Scientific Merit & Model Accuracy

 Improvements over ISC, especially regarding PBL dispersion and complex terrain, are desirable

AERMOD

- Q3. Appropriate Regulatory Applications
 - Add PRIME and deposition algorithms to AERMOD
 - Develop AERSCREEN

AERMOD

Q4, Q6. Implementation Issues & Additional Analyses

- Define separate uses of AERMOD and ISC-PRIME
- Expand period for transition to AERMOD (>12 months)

AERMOD

Q5. Resource Constraints

- Application of PRIME -- separate from AERMOD or included with AERMOD
- Use of electronic terrain data -need more training
- Additional EPA support

CALPUFF

- **Q1. Scientific Merit**
 - Significant advancement as State-of-Practice for long range transport
 - Model flexibility provides room for growth

CALPUFF

Q2. Model Accuracy

- Testing is adequate for inclusion in the Guideline
- More testing for short-range applications is desirable

CALPUFF

- Q3. Appropriate Regulatory Applications
 - Appropriate for long range transport (50 - 200km)
 - Need more specific guideline language for other applications
- Q4. Implementation Issues
 - Clarify user's guide and default options

CALPUFF

Q5. Resource Constraints

- Computer requirements
- User skills
- Additional EPA support

CALPUFF

Q6. Additional Analyses

- Requirement for 5 years of meteorological data
- Dispersion coefficient treatment
- Example protocol
- Better chemistry for SO_x/NO_x
- Overall experience of dispersion model community

Numerical Grid Models for Urban/Regional Scales

- Q1. Scientific Merit
 - Support removal of old grid model from guideline
- Q6. Additional Analyses
 - Need more testing of Models-3/CMAQ
 - Insure that models are in the public domain

Data from Meteorological Models

Q1, Q2. Scientific Merit & Model Accuracy

> Use of data from meteorological models (e.g., RUC, MM5) is desirable and meets needs

Data from Meteorological Models

- Q3. Appropriate Regulatory Applications
 - Applications need a resolution finer than 80 km

Data from Meteorological Models

Q4. Implementation Issues

- Need detailed resolution of terrain and meteorological data
- CALMET can be used in conjunction with MM5 data
- What are the consequences of using these data bases in regulatory programs

Data from Meteorological Models

Q5. Resource Issues

 Need more modelers using RUC & MM5 meteorological model products and greater exposure to data bases

Data from Meteorological Models

- Need a repository of routine and easily accessible prognostic meteorological data (NCEP,RUC)
- Need training for MM5 and similar meteorological models

General Comments

Summary

- Public comment period is open until 8/21/00
- No responses have been formulated at this time
- Comments on the scientific merit of AERMOD, CALPUFF, and ISC-PRIME were generally favorable -implementation / resource issues

Summary

- There were no specific comments on other models
- Next steps