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Appendix C: Supplemental Information for 
Analyses in the Air Quality Chapter  

This appendix describes methods, data sources, and assumptions for the air quality 
analyses presented in Chapter 4 of the main report. First is the information for the detailed analysis 
of children’s health outcomes linked with exposure to fine particulate matter (PM2.5) and ground-
level ozone (O3). Second is information required for the discussion of emerging literature linking 
wildfire smoke and fetal health outcomes.   

Detailed Analysis of Air Quality and 
Children’s Health  

This section includes details of the air quality and children’s health analysis: a summary 
of climate studies used in the analysis, a summary of air quality epidemiological studies used in the 
analysis, analysis steps, detailed results, and limitations of the approach.  

SUMMARY OF CLIMATE STUDIES USED IN THIS ANALYSIS  

This analysis considers pollutant sources linked to climate change that result in heightened levels of 
PM2.5 and O3. These include the following: 

• Climate penalty, which refers to changes in air quality resulting from climate-induced 
changes in temperature humidity, precipitation, and wind patterns, which all increase the 
secondary formation of O3 and PM2.5.  

• Southwest dust, which refers to changes in ambient dust levels associated with increasing 
aridity and is restricted to four southwestern U.S. states: Utah, Colorado, Arizona, and New 
Mexico. 

• Wildfires, which herein refers to nationwide changes in pollutant concentrations and 
associated health impacts attributable specifically to wildfire activity in the western U.S.  

The following studies are those used to quantify health effects in children, associated with these 
sources of pollutants: 

CLIMATE PENALTY: FANN ET AL. (2021)1 

Fann et al. estimated mortality risk associated with changing air quality; specifically, O3 and PM2.5 
concentrations. The authors show that changes in climate increase the population-weighted O3 and 
PM2.5 concentrations throughout the U.S. This analysis uses the Fann et al. air quality surfaces (i.e., 
changes in concentrations of pollutants in response to changes in meteorology and emissions) to 
quantify health effects attributable to exposures to PM2.5 and O3. The underlying study modeled 
future pollutant concentrations using two GCMs (CanESM2 and GFDL-CM3) and two alternative 
simulated air pollutant emissions scenarios, one which uses a 2011 inventory that estimates pollution 
burden from all sources as of that year, and an alternative 2040 dataset that accounts for the 
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implementation of a suite of regulatory policies on stationary and mobile emissions sources. The 
analysis completed in this EPA report considers the average of health impacts across both GCMs, 
under the 2011 emissions scenario. Health impacts associated with the alternative 2040 emissions 
inventory are estimated to be approximately 40% lower than health impacts associated with the 
2011 inventory used in this analysis.  

SOUTHWEST DUST: ACHAKULWISUT ET AL. (2019)2  

Achakulwisut et al. estimated the health burden resulting from changes in fine and coarse airborne 
dust exposure due to climate change in the Southwest. They found that, by the end of the century, 
climate change could lead to fine dust levels increasing by 57%, and coarse dust levels increasing by 
38%. This analysis used projected PM2.5 concentrations for six GCMs (CanESM2, CCSM4, GFDL-CM3, 
GISS-E2-R, HADGEM2, and MIROC5) derived from a network of 34 monitors from the underlying 
study, spanning Arizona, Colorado, New Mexico, and Utah.  

WILDFIRES: NEUMANN ET AL. (2021)3  

Neumann et al. estimated health impacts from wildfire emissions of black carbon and organic carbon 
by modeling changes in wildfire activity for the western region of the contiguous U.S. They found 
that climatic factors increase wildfire pollutant emissions by an average of 0.40% to 0.71% per year, 
and these emissions result in spatially weighted wildfire PM2.5 concentrations more than double for 
some climate model projections by the end of the 21st century. Future concentrations of PM2.5 from 
western wildfires were projected for five GCMs (CanESM2, CCSM4, GISS-E2-R, HADGEM2, and 
MIROC5) and extend nationwide, as emissions associated with wildfires typically travel eastward 
across the country.  

SUMMARY OF AIR QUALITY EPIDEMIOLOGY STUDIES USED IN 
THIS ANALYSIS  

Numerous epidemiological studies document the relationship between degraded air quality and 
human morbidity or mortality. This analysis draws on evidence from seven studies that identify the 
magnitude of these relationships for children specifically (summarized below). These studies have 
been parameterized for use with the U.S. EPA’s Environmental Benefits Mapping and Analysis 
Program (BenMAP, https://www.epa.gov/benmap), a tool that estimates the human health impacts 
of air quality changes at a refined spatial scale. BenMAP is used to determine the change in ambient 
air pollution based on user-specified air quality data and relates the change in pollution 
concentrations with certain health effects using concentration-response functions derived from 
epidemiology studies. BenMAP applies that relationship to the population experiencing the change in 
pollution exposure to calculate health impacts. Table 1 maps the studies described above to their risk 
measures and includes age groups, BenMAP surfaces, and pollutants. The studies described below 
are listed in the same order as they appear in Table 1. Note that these studies calculate outputs such 
as hazard ratios, rate ratios, relative risks, or odds ratios, which are alternative measures of 
association between an exposure (in this case, to air pollution) and the incidence of a specific 

https://www.epa.gov/benmap
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adverse health effect. Some studies instead statistically estimate a regression function, where the 
relevant coefficient on the exposure variable provides the estimate of the association between 
exposure to air pollution and incidence. 

INCIDENCE OF ASTHMA: TETREAULT ET AL. (2016)4 

Tétreault et al. investigated the relationship between childhood asthma onset and long-term 
pollution exposure (PM2.5, O3, and NO2). The authors followed a cohort of 1,200,000 children born in 
Quebec, Canada, from 1996 to 2011, from birth to approximately age 6, and mapped asthma 
incidence with residential exposures to air pollutants. The study defined the onset of asthma as a 
hospital-discharged diagnosis of asthma or two reports of asthma from two separate physicians 
within a two-year period. The authors used Cox proportional hazard models to estimate the 
association between asthma onset and pollution exposure, controlling for demographics and 
socioeconomic status. The coefficient and standard error for PM2.5 were estimated from a hazard 
ratio of 1.33 (95% CI 1.31-1.34) for a 6.53 µg/m3 increase in annual PM2.5 concentration. The 
coefficient and standard error for O3 were estimated from a warm-season hazard ratio of 1.07 (95% 
CI 1.06-1.08) for a 3.26 ppb increase in annual O3 concentrations. 

INCIDENCE OF HAY FEVER: PARKER ET AL. (2009)5  

Parker et al. investigated the associations between long-term O3 exposure and respiratory allergies 
(defined as hay fever or respiratory allergy symptoms) among 73,000 children nationwide aged 3-17, 
between 1999 and 2005. The analysis was conducted using logistic regression models, adjusted for 
demographic and socioeconomic factors. The coefficient and standard error for PM2.5 are based on 
the odds ratio of 1.29 (95% CI 1.07-1.56) for a 10 µg/m3 increase in PM2.5 concentration. The 
coefficient and standard error for O3 are based on the odds ratio of 1.18 (95% CI 1.09-1.27) for a 10 
ppb increase in warm-season daily mean O3. 

SCHOOL DAYS LOST: GILLILAND ET AL. (2001)6  

Gilliland et al. examined the association between air pollution and school absenteeism among fourth 
grade children (aged 9-10) in twelve southern California communities in 1996. The relationship is 
applied here to all school-age children (aged 5-17). The authors used school records to collect daily 
absence data and parental telephone interviews to identify causes. Using an average length of 
absence at baseline, they determined how this could relate to limiting new absences in the future. 
The authors used 15- and 30-day distributed lag models to quantify the association between O3 and 
school absences. O3 levels were positively associated with all school absence measures. The 
coefficient and standard error are based on a percent increase of 16.3% (95% CI -2.6%-38.9%) 
associated with a 20 ppb increase in 8-hour average O3 concentration. 

EMERGENCY DEPARTMENT VISITS FOR ASTHMA: ALHANTI ET AL. (2016)7  

Alhanti et al. studied the relationship between daily PM2.5 concentrations and emergency 
department (ED) visits for asthma among residents of all ages (patient-level data) in Atlanta (1993–
2009), Dallas (2006–2009), and St. Louis (2001–2007). The authors ran city-specific daily time-series 
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Poisson regression models by age group (0-4, and 5-18 were included in this analysis) and performed 
additional analyses stratified by race and sex. The coefficient and standard error for PM2.5 are 
estimated from rate ratios of 1.01 (95% CI 1.00-1.02) and 1.02 (95% CI 1.01-1.04) associated with an 
8 µg/m3 increase in PM2.5 concentration for children aged 0-4 and 5-18, respectively.  

EMERGENCY DEPARTMENT VISITS FOR ASTHMA: MAR AND KOENIG (2009)8  

Mar and Koenig studied the relationship between O3 exposure and asthma hospitalizations in the 
Seattle area from 1998 to 2002. The authors used hospital data on daily asthma cases with local 
monitored O3 concentrations to assess the association between asthma visits to the ED and air 
pollution. The coefficient and standard error are estimated from a relative risk of 1.11 (95% CI 1.02-
1.21) for a 10 ppb increase in daily 8-hour maximum summer O3 concentration. 

HOSPITAL ADMISSIONS FOR RESPIRATORY ISSUES: OSTRO ET AL. (2009)9  

Ostro et al. estimated the association between ambient PM2.5 and respiratory diseases in children 
aged 5 to 19 in California. Hospital admission data was aggregated for all respiratory diseases to the 
county level to create a daily time series of admissions for each county. Authors analyzed data using 
a Poisson regression with time, day of the week, temperature, relative humidity, and pollutant as 
explanatory variables. They controlled for seasonality and time dependent effects by including a 
natural spline smoother for the daily time trend and meteorology. The coefficient and standard error 
are estimated from an excess risk of 4.1% (95% CI 1.8%-6.4%) for a 14.6 µg/m3 increase in daily mean 
PM2.5 concentration. 

INFANT MORTALITY: WOODRUFF ET AL. (2008)10  

Woodruff et al. examined the relationship between long-term exposure to PM2.5 air pollution and 
postneonatal (i.e., from 28 days through the first year of life) infant mortality in 3,600,000 live births 
from 96 counties across the U.S. between 1999 and 2002. They used logistic regression models that 
incorporated generalized estimating equations to estimate odds ratios for all-cause and cause-
specific postneonatal mortality as a result of exposure to air pollution. The coefficient and standard 
error are estimated from an odds ratio of 1.04 (95% CI 0.98-1.11) associated with a change of 
7µg/m3 in mean PM2.5 exposure level. 

ANALYSIS STEPS  

Chapter 4 of this report quantifies the effects of pollutant exposures on children’s health. This 
analysis relies on pollutant source information from Fann et al. (2021), Achakulwisut et al. (2019), 
and Neumann et al. (2021) and effect estimates from numerous epidemiological studies, as 
summarized above. Table 2 details the analytic steps, data sources, and assumptions used to project 
the various measures of children’s health impacts resulting from air quality degradation linked to 
climate change. As described in the table, this analysis summarizes impacts by degree of global 
warming. For more information on how the analysis applies thresholds of degrees of global warming, 
see methods described in Chapter 2 of the main report and Appendix A. This analysis considers all 
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geographies in the contiguous United States, except for the Southwest dust pollutant source, which 
is limited to four southwestern states (UT, CO, AZ, NM).  
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Table 1:  Risk Measures, Studies, Age Groups, and BenMAP Surfaces Considered for Each Pollutant Source   

Risk Measure Study 
Age 

Range 

Pollutant Source 

Climate Penalty          Southwest Dust 
(PM2.5)  

Wildfire            
(PM2.5) PM2.5 O3 

Incidence of asthma Tétreault et al. (2016) 0-17 x x x x 

Incidence of hay fever 
(rhinitis) 

Parker et al. (2009) 3-17 x x x x 

School days lost, all cause Gilliland et al. (2001) 5-17  x   

ED visits associated with 
asthma 

Alhanti et al. (2016)                    
Mar and Koenig (2009) 

0-18 x x x x 

Hospital admissions for 
respiratory issues  

Ostro et al. (2009) 0-18 x  x x 

Infant mortality  Woodruff et al. (2008) 0-0* x  x x 

* Infant mortality estimated for postneonatal infants (i.e., those aged 28-365 days) 
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Table 2: Analytic Steps in Climate Change Impacts on Air Quality and Children’s Health Analysis   

Step Data Methods, Assumptions, Notes 
Ba

se
lin

e 
 

Ri
sk

s  
1. Identify baseline incidence of health and 
well-being impacts under baseline climate 
and population 

County- or national-level 
incidence by health effect 
obtained from BenMAP 
 

This analysis used the finest scale data where available. 
Specifically, county-level baseline incidence data for lost school 
days, asthma ED visits, infant mortality, and respiratory hospital 
admissions were used. This analysis includes national-level 
baseline incidence data for new cases of asthma and incidence of 
hay fever (allergic rhinitis).  

Fu
tu

re
 C

lim
at

e 
St

re
ss

or
 

2. Utilize projected PM2.5 and O3 
concentrations related to climate penalty, 
southwest dust, and wildfires   

Present and future pollutant 
concentrations:  
• Climate penalty: Fann et 

al. (2021)  
• Southwest dust: 

Achakulwisut et al. 
(2019)  

• Wildfires: Neumann et al. 
(2021) 

Pollutant data is available at different spatial scales and for 
different geographic regions. Different climate models are utilized 
within a set of six CMIP5 scenarios for each analysis, and results 
are binned based on 21st century arrival times for each GCM.  
• Climate Penalty: Nationwide analysis, using climate data at 

36-km scale. Two GCMs: CanESM2, GFDL-CM3 
• Southwest dust: Analysis limited to four southwestern states 

(UT, CO, AZ, NM). Baseline pollutant concentrations from 34 
monitor sites. Six GCMs: CanESM2, CCSM4, GFDL-CM3, GISS-
E2-R, HADGEM2, and MIROC5 

• Wildfires: Nationwide analysis, using climate data at 0.25 x 
0.25-(latitude/longitude) degree scale. Five GCMs: CanESM2, 
CCSM4, GISS-E2-R, HADGEM2, and MIROC5. PM2.5 air quality 
outputs generated at 0.5 x 0.625 (latitude/longitude) degree 
grid scale. 

Fu
tu

re
 E

ffe
ct

s o
n 

Ch
ild

re
n 

3. Estimate the increase in incidence of 
health effects associated with each degree-C 
increase in global mean temperatures   
  

Health impact functions are 
derived from epidemiological 
studies described previously, 
parameterized in BenMAP 
 
See Chapter 2 of the main 
report and Appendix A for 
details on population 
methods and data sources 
used throughout the 
analysis.  

The health impact functions used in this analysis are specific to 
children of different age ranges, presented in Table 1. These 
represent the best available studies with effects specific to 
children used in other EPA analyses. This analysis excludes health 
impacts to children outside of these age ranges (e.g., it does not 
quantify incidence of hay fever/rhinitis among those younger 
than three years old).  
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PROJECTIONS OF PM2.5 AND O3 

Figure 1 shows the change from 2000 baseline levels of PM2.5 associated with a 2°C (top panel) and 
4°C (bottom panel) increase in global mean temperature, based on projections used in Fann et al.  
Figure 2 shows the change from 2000 baseline levels of O3 associated with a 2°C (top panel) and 4°C 
(bottom panel) increase in global mean temperature, based on projections used in Fann et al.  

Figure 1: Future PM2.5 Concentrations at 2°C and 4°C Increase in Global Mean Temperature 

2°C of Global Warming 

 
4°C of Global Warming 

 
Source: USEPA (2021)11
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Figure 2: Future O3 Concentrations at 2°C and 4°C Increase in Global Mean Temperature 

2°C of Global Warming 
 

 
4°C of Global Warming 

 

 
 

Source: Fann et al. (2021) and USEPA (2021)12
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EFFECTS ON CHILDREN RESULTS    

Table 3 presents the results of the analysis assuming population growth (see Chapter 2 and Appendix A). The analysis estimates additional 
health impacts attributable to climate change relative to the baseline period and sums the impacts for each health effect across the three 
pollutant sources (climate penalty, southwest dust, and wildfire). Table 4 provides the same estimates but assumes population remains 
constant at 2010 levels, isolating the influence of climate change specifically. 

Table 3: Projected Annual Risks to Children’s Health Associated with Future PM2.5 and O3 (with Population Growth)  

Degree of Global 
Warming (°C) 

(1) 

New Cases of 
Asthma           

(Aged 0-17) 

(2) 

Incidence of Hay 
Fever/Rhinitis  

(Aged 3-17) 

(3) 

School Days Lost 
from All Causes  

(Aged 5-17) 

(4) 

ED Visits for 
Asthma          

 (Aged 0-18) 

(5) 

Hospital Admissions for 
Respiratory Illness  

(Aged 0-18) 

(6) 

Infant 
Mortality 
(Aged 0-0) 

1°C  
19,200 
(14,400 to 
24,800)  

126,000 
(92,000 to 159,000) 

1,270,000 
(960,000 to 580,000) 

3,450 
(2,560 to 
4,370) 

173 
(117 to 224) 

4 
(2 to 6) 

2°C 
34,500 
(27,900 to 
42,800) 

228,000 
(179,000 to 276,000) 

2,240,000 
(1,850,000 to 
2,630,000) 

6,240 
(5,210 to 
7,330) 

332 
(230 to 430) 

7 
(4 to 10) 

3°C 
57,900 
(51,400 to 
66,600) 

367,000 
(318,000 to 418,000) 

3,590,000 
(3,570,000 to 
3,610,000) 

10,300 
(9,930 to 
10,800) 

537 
(292 to 782) 

11 
(5 to 16) 

4°C 
89,600 
(74,100 to 
108,000) 

554,000 
(447,000 to 662,000) 

5,480,000 
(5,170,000 to 
5,790,000) 

15,800 
(14,500 to 
17,200) 

785 
(353 to 1,220) 

15 
(6 to 25) 

5°C  134,000 771,000 7,630,000 22,400 1,160 24 
Notes: All estimates presented in the table are incremental relative to baseline risks and convey impacts per year: (1) 841,000 new asthma cases, (2) 11.9 
million incidences of hay fever/rhinitis, (3) 183 million school days lost from all causes, (4) 733,000 ED visits for asthma, (5) 429,000 hospital admissions for 
respiratory illness, and (6) 8,960 infant deaths. The table displays the average and range across climate models; a range for 5°C is not feasible because only 
one climate model reaches this temperature threshold before 2100. See Table 2 for analytic details.  
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Table 4: Projected Annual Risks to Children’s Health Associated with Future PM2.5 and O3 (2010 Population)   

Degree of Global 
Warming (°C) 

(1) 

New Cases of 
Asthma           

(Aged 0-17) 

(2) 

Incidence of Hay 
Fever/Rhinitis  

(Aged 3-17) 

(3) 

School Days Lost from 
All Causes  

(Aged 5-17) 

(4) 

ED Visits for 
Asthma          

 (Aged 0-18) 

(5) 

Hospital Admissions for 
Respiratory Illness  

(Aged 0-18) 

(6) 

Infant 
Mortality 
(Aged 0-0) 

1°C 
18,600 
(13,700 to 
23,400) 

112,000 
(81,900 to 141,000) 

1,150,000 
(867,000 to 1,440,000) 

3,180 
(2,340 to 
4,010) 

143 
(95 to 187) 

6 
(3 to 8) 

2°C 
32,200 
(25,500 to 
39,000) 

194,000 
(152,000 to 235,000) 

1,950,000 
(1,600,000 to 
2,300,000) 

5,510 
(4,550 to 
6,470) 

258 
(178 to 338) 

11 
(7 to 15) 

3°C 
49,300 
(43,600 to 
55,100) 

294,000 
(255,000 to 333,000) 

2,940,000 
(2,930,000 to 
2,960,000) 

8,460 
(8,210 to 
8,710) 

393 
(204 to 586) 

17 
(8 to 25) 

4°C 
72,900 
(60,200 to 
85,500) 

431,000 
(351,000 to 510,000) 

4,360,000 
(4,160,000 to 
4,560,000) 

12,600 
(11,600 to 
13,500) 

561 
(231 to 890) 

24 
(9 to 38) 

5°C 100,000 585,000 5,880,000 17,100 840 36 
Notes: See Table 3. 
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Figures 3 and 4 show the estimated change in childhood asthma diagnoses per 100,000 children 
aged 0-17 at 2°C and 4°C of global warming at the county level. For each figure, the top panel shows 
the combined impacts across pollution sources, which are split out by source below. The five states 
with largest impacts per 100,000 children are outlined in black for each pollutant source and listed 
below each map.  

Tables 5 and 6 then follow with the number of cases per 100,000 children for each state at 2°C and 
4°C of global warming specifically to provide perspective on the range of impacts across states, 
although there can be considerable heterogeneity within states (see Figures 3 and 4). 

Figure 5 shows the change in total childhood asthma diagnoses for children aged 0-17 at 2°C and 4°C 
of global warming at the county level. Impacts are generally highest in areas with the large children’s 
populations. The five states with largest total impacts are outlined in black and listed below each 
map. The relevant quantities or rates presented in each figure are provided in parentheses after the 
state name in the lists of top 5 states. 

Figure 6 then shows the county-level impacts across pollutant sources for another impact of air 
quality on children’s well-being: the number of annual school days lost. This additional endpoint 
demonstrates that the spatial distribution is fairly consistent across impacts considered in this 
analysis.  
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Figure 3: Estimated Change in New Annual Asthma Diagnoses Per 100,000 Children (Aged 0-17) at 
2°C Global Warming (with Population Growth)  

All Pollution Sources 

 
Top five states (rate/100,000 in parentheses): D.C. (90), OH (83), WA (81), KY (80), MD (80) 

Climate Penalty, PM2.5 Climate Penalty, O3 

 
Top five states: SC (33), NC (31), GA (30), AL (29), WV (23)  

Top five states: IL (88), OH (87), D.C. (77), IN (73), MD (68) 

Southwest Dust Wildfire 

 
Top four states: NM (13.0), AZ (13.0), UT (12.9), CO (12.9) 

 
Top five states: MT (35), OR (31), ID (21), WY (19), CA (16) 

 

Note: These maps describe the projected change in new annual asthma diagnoses per 100,000 children at 2°C of 
global warming relative to the baseline (1986-2005). Darker shading conveys larger increases while lighter shading 
conveys small increases. The five states with the largest increases on average are outlined in black.  
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Table 5: Estimated New Annual Asthma Diagnoses Per 100,000 Children by State with 2°C Global 
Warming (with Population Growth) 

State 
Incidence Per 100,000 
Children 

State 
Incidence Per 100,000 
Children 

Washington, DC 90 Rhode Island 40 

Ohio 83 Alabama 40 

Washington 81 Oregon 39 

Kentucky 80 Wyoming 37 

Maryland 80 Iowa 36 

Virginia 77 Arkansas 36 

West Virginia 76 Montana 34 

Delaware 72 Connecticut 31 

Colorado 70 New Mexico 30 

Illinois 70 Nevada 29 

New Jersey 65 South Dakota 29 

Tennessee 61 Michigan 26 

Indiana 61 Mississippi 25 

North Carolina 60 Idaho 24 

Pennsylvania 57 Wisconsin 24 

Arizona 52 Minnesota 24 

Kansas 52 Georgia 20 

New York 51 Louisiana 13 

South Carolina 50 North Dakota 10 

Utah 48 Texas 8 

Missouri 46 Florida 0 

Nebraska 46 New Hampshire -4 

Massachusetts 46 Maine -14 

Oklahoma 46 Vermont -16 

California 45 --  

Notes: This table describes the projected new annual diagnoses per 100,000 children at 2°C of global 
warming using the methods described in Table 2 averaged to the state level. States are listed from 
largest to smallest impacts. 
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Figure 4: Estimated Change in New Annual Asthma Diagnoses Per 100,000 Children (Aged 0-17) at 
4°C Global Warming (with Population Growth)  
 

Note: These maps describe the projected change in new annual asthma diagnoses per 100,000 children at 4°C of 
global warming relative to the baseline (1986-2005). Darker shading conveys larger increases while lighter shading 
conveys small increases. The five states with the largest increases on average are outlined in black. 

All Pollution Sources 

 
Top five states (rate/100,000 in parentheses): D.C. (214), OH (205), WA (203), MD (178), IL (169) 

Climate Penalty, PM2.5 Climate Penalty, O3 

 
Top five states: AL (59), GA (54), SC (54), NC (50), WV (46) 

 
Top five states: OH (200), IL (189), DC (186), WA (158), IN (155) 

Southwest Dust Wildfire 

 
Top four states: NM (21.5), AZ (21.4), CO (21.4), UT (21.2) 

 
Top five states: OR (44), MT (40), WY (29), ID (28), CA (21) 
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Table 6: Estimated New Annual Asthma Diagnoses Per 100,000 Children by State with 4°C Global 
Warming (with Population Growth) 

State 
Incidence Per 100,000 
Children 

State 
Incidence Per 100,000 
Children 

Washington, DC 214 Michigan 91 

Ohio 205 South Carolina 89 

Washington 203 Georgia 88 

Maryland 178 California 83 

Illinois 169 Alabama 83 

West Virginia 168 Iowa 74 

Delaware 162 Arkansas 72 

Virginia 162 Oregon 71 

New Jersey 160 Wyoming 70 

Kentucky 156 Wisconsin 68 

Pennsylvania 143 Minnesota 65 

Indiana 142 New Mexico 61 

New York 141 South Dakota 58 

Massachusetts 136 Mississippi 52 

Colorado 133 Montana 47 

Rhode Island 122 Idaho 43 

Kansas 110 Nevada 40 

Tennessee 109 Louisiana 39 

North Carolina 106 North Dakota 32 

Arizona 105 Texas 26 

Missouri 100 New Hampshire 22 

Utah 99 Florida 2 

Connecticut 98 Vermont -9 

Nebraska 97 Maine -11 

Oklahoma 95 --  

Notes: This table describes the projected new annual diagnoses per 100,000 children at 4°C of global 
warming using the methods described in Table 2 averaged to the state level. States are listed from 
largest to smallest impacts. 



Climate Change and Children’s Health and Well-Being in the United States 

 

April 2023 
 

17 

Figure 5: Estimated Change in Total New Annual Asthma Diagnoses Among Children Aged 0-17 
(with Population Growth)  

2°C of Global Warming 

 
Top five states (excess diagnoses in parentheses): CA (3,640), NY (2,740), IL (2,570), OH (2,280), NJ (1,710) 

  4°C of Global Warming 

 
Top five states: CA (9,490), NY (8,760), IL (7,050), OH (5,430), NJ (5,200) 

 

Note: These maps describe projected total change in new annual asthma diagnoses at 2°C and 4°C 
of global warming relative to baseline (1986-2005). The five states with the highest impacts are 
outlined in black. See Table 2 for analytic details. 
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Figure 6: Estimated Change in Annual Lost School Days Due to Climate Change Per 100,000 
Children (Aged 5-17) (with Population Growth) 

Note: These maps describe projected change in annual school days lost due to climate change-induced changes in 
air quality at 2°C and 4°C of global warming relative to baseline (1986-2005). The five states with the highest 
impacts are outlined in black. See Table 2 for analytic details. 

2°C of Global Warming 

 
Top five states, excess incidence in parentheses: IL (9,430), OH (9,350), D.C. (8,410), IN (7,950), MD (7,360) 

4°C of Global Warming 

 
Top five states: OH (20,800), IL (19,620), D.C. (19,550), MD (16,410), IN (16,390) 
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Figures 7 and 8 present the results of the social vulnerability analysis (see Chapter 2 and Appendix A 
for methods, data sources, and assumptions). These results are presented separately for PM2.5 
(Figure 7) and O3 (Figure 8). The estimated risks for each socially vulnerable group are presented 
relative to each group’s “reference” population, defined as all individuals other than those in the 
group analyzed. Positive numbers indicate the group is disproportionately affected by the referenced 
impact. Negative numbers indicate the group is less likely to live in the areas with the highest 
projected impacts. 
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Figure 7: Social Vulnerability Analysis Results for PM2.5 and New Asthma Diagnoses Among 
Children  

 

Figure 8: Social Vulnerability Analysis Results for O3 and New Asthma Diagnoses Among 
Children 
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LIMITATIONS  

Below are several limitations of the analysis. See Fann et al. (2021), Achakulwisut et al. (2019), and 
Neumann et al. (2021) for additional limitations of the underlying sectoral impact models. 

1. There is limited epidemiological literature specifically on children’s health effects of air 
pollution. This analysis relies on standard health functions used by the U.S. EPA for regulatory 
impacts analyses that are relevant to children. This set of functions focuses on respiratory 
morbidity effects, and mortality effects are restricted to the postneonatal population. 
Children are likely to experience additional morbidity and mortality effects that are not 
quantified by this analysis.  

2. Impacts of coarse particulate matter on children’s health are omitted from this analysis. The 
quantitative air quality analyses in this report focus on the impacts of PM2.5 and O3 on 
children’s health. As noted in the main text of the report, additional impacts may be 
associated with other air pollutants. In particular, there is epidemiological evidence that 
exposure to coarse particulate matter (PM10-PM2.5) is associated with emergency department 
visits for asthma.13 Coarse particle exposure among children is expected to increase as a 
result of both wildfire smoke exposure and increased levels of airborne fugitive dust. As 
described in Achakulwisut et al., while it is common to assume that impacts attributable to 
fine and coarse PM fractions are additive because there is technically no overlap in the 
diameter range of the two PM fractions, in practice, this issue is still up for debate owing to 
uncertainties in separating the health impacts attributable to fine and coarse PM in 
epidemiological studies. To avoid the potential for double-counting, we therefore omit 
quantitative consideration of coarse particulate matter on children’s health – in the process 
we may underestimate the full impact of particulate matter of all size fractions on the health 
endpoints we assess.  

3. The connection between climate change and air quality, particularly particulate matter, 
remains uncertain and is currently characterized by relatively few lines of evidence. As noted 
in the above-cited literature used in this report and in Dawson et al. (2014)14, connections 
between climate change and air quality are complex, particularly with respect to particulate 
air quality. The modeling work utilized here (Fann et al. 2021) represents an important step 
forward in modeling finer scale meteorology which affects air quality, making use of state-of-
the-art meteorological down-scaling and air quality models. The complexity of the 
relationship is illustrated by the finding in Fann et al. that some areas of the U.S. could 
experience improvements in air quality as a result of climate change, while most of the U.S. is 
expected to experience a decline in air quality. The Fann et al., work has not yet been 
supported by additional lines of evidence, and as a result may be subject to additional 
uncertainty.  

4. Results of this analysis are available at the county level as the finest spatial scale. The 
BenMAP analysis was run using county-level baseline incidence and population data, which 
limits the geographic level to which health impacts associated with pollutant changes can be 
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specified. As a result, results may underrepresent the spatial precision of the gridded air 
quality data from underlying climate studies summarized at the beginning of this Appendix. 

5. This analysis does not capture fine-scale health effects of populations that may be at greater 
risk of exposure or disproportionate impacts, including BIPOC children, low income 
individuals, children with housing uncertainty, and children with various comorbidities. This 
analysis estimates health effects at the county-level using 36-km-squared air quality 
concentrations and may not capture localized health effects experienced by fenceline and 
near-road children, who are likely disproportionately vulnerable. 

6. The airborne dust component of this analysis is limited to the southwestern region of the U.S. 
While dust exposures are known to be large in the southwestern U.S., this analysis does not 
consider health effects from dust in other regions of the U.S., which are likely smaller than 
those in the Southwest but nonzero.  

7. Respiratory health may degrade for other climate-related reasons. The health effects 
presented in this chapter are associated with changes in air quality linked with O3 and PM2.5. 
Respiratory health is likely to worsen among children for other climate-induced reasons, 
including changes and shift in plant pollen production (see Chapter 5 and Appendix D).   

DATA SOURCES 

Table 7: Summary of Data Sources Used in the Air Quality and Children’s Health Analysis 

Data Type Description Data Documentation and Availability 
Climate 
modeling 

See Appendix A for data sources.  

Air quality 
modeling 

Climate Penalty: The Community Multiscale 
Air Quality (CMAQ) model estimated air 
quality over the conterminous US for five 
11-year periods centered on 2000, 2030, 
2050, 2075, and 2095. 
 
Southwest Dust: Seasonal mean 
concentrations of PM2.5 measured at 35 
monitoring sites and projected for 20-year 
periods centered on 2030, 2050, 2070, and 
2090. 
 
Wildfires: Estimated PM2.5 concentrations 
over the coterminous US for all years 2006-
2100 using GEOS-Chem chemical transport 
model. 

U.S. Environmental Protection Agency. 
(2020). 
CMAQ (Version 5.3.2). Available from 
https://doi.org/10.5281/zenodo.4081737 
 
Climate penalty PM2.5 and O3 air quality 
results by degree of warming estimated from 
U.S. Environmental Protection Agency. 2021. 
“Climate Change and Social Vulnerability in 
the United States: A Focus on Six Impacts.” 
EPA 430-R-21-003. 
 
Achakulwisut, P., Anenberg, S.C., Neumann, 
J.E., Penn, S.L., Weiss, N., Crimmins, A., Fann, 
N., Martinich, J., Roman, H. and Mickley, L.J., 
2019. Effects of increasing aridity on ambient 
dust and public health in the US Southwest 
under climate change. GeoHealth, 3(5), 
pp.127-144. 
https://doi.org/10.1029/2019GH000187 
 

https://doi.org/10.5281/zenodo.4081737
https://doi.org/10.1029/2019GH000187
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Data Type Description Data Documentation and Availability 
GEOS-Chem chemical transport model 
(Version 12.6). Available from 
http://acmg.seas.harvard.edu/geos/ 

Emissions 
inventory 
estimates 

Climate Penalty: CMAQ was run using two 
emission inventory estimates: 

• The 2011 National Emissions 
Inventory which estimates the level 
and distribution of pollutants 
emitted from all sources  

• A 2040 emissions inventory which 
accounts for the implementation of 
a suite of Federal, state, and local 
air quality regulations on stationary 
mobile sources. 

US Environmental Protection Agency. 2011 
National Emissions Inventory, Version 2: 
Technical Support Document. US 
Environmental 
Protection Agency; 2015. Available from 
https://www.epa.gov/air-
emissionsinventories/2011-national-
emissions-inventorynei-data 
 

Baseline health 
effect incidence 
rates 

Mortality incidence rates projected from 
2000 through 2060 were obtained from 
BenMAP-CE for one age group (postneonatal 
infants). 
 
Incidence rates for new cases of asthma 
were obtained from BenMAP-CE for three 
age groups (0-4, 5-11, and 12-17). 
 
Asthma prevalence rates were obtained 
from BenMAP-CE for two age groups (0-4 
and 5-17). 
 
Asthma-related ED morbidity incidence rates 
were obtained from BenMAP-CE for one age 
group (0-17). 
 
Incidence rates for respiratory-related 
hospital admissions were obtained from 
BenMAP-CE for two age groups (0-1, 2-17, 
and 18-24). 
 
Prevalence rates of hay fever/rhinitis were 
obtained from BenMAP-CE for one age 
group (3-17). 
 
Baseline school days lost were obtained 
from BenMAP-CE for one age group (5-18). 

U.S. EPA. (2023). Environmental Benefits 
Mapping and Analysis Program: Community 
Edition (BenMAP-CE) User Manual and 
Appendices. 
Washington, DC. 

Future 
population of 
children 

See Appendix A for data sources  

Demographics 
for social 
vulnerability 
analysis 

See Appendix A for data sources  

http://acmg.seas.harvard.edu/geos/
https://www.epa.gov/air-emissionsinventories/2011-national-emissions-inventorynei-data
https://www.epa.gov/air-emissionsinventories/2011-national-emissions-inventorynei-data
https://www.epa.gov/air-emissionsinventories/2011-national-emissions-inventorynei-data
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Wildfire Smoke and Fetal Health 

Chapter 4 features research on wildfire smoke exposure and risk of preterm births, a 
maternal health effect that may be exacerbated by climate change. This analysis 

estimates an additional 7,700 and 13,600 premature births per year at 2°C and 4°C of 
global warming, respectively, attributable to wildfire annually based on findings from Heft-Neal et al. 
(2022)15, information on singleton births in 2010 from CDC16, and population-weighted PM2.5 
concentrations associated with western wildfire smoke from Neumann et al. (2021).17 Heft-Neal et 
al. estimated that 3.7% of preterm births in California were attributable to wildfire smoke exposure 
during the study period (2007-2012). This percentage is applied to the total number of singleton 
births in the continental U.S. from CDC in 2010 to estimate the number of births attributable to 
wildfire nationally in the baseline period. Total premature births associated with wildfire in the 
baseline period were multiplied by a ratio of change in wildfire-attributable PM2.5 concentrations at 
2°C and 4°C of global warming to estimate additional premature births associated with wildfire 
smoke with global warming. Finally, baseline wildfire-attributable premature births were subtracted 
from projected premature births to estimate the incremental number of premature births presented 
above and in Chapter 4. 

DATA SOURCES 

Table 8: Summary of Data Sources Used in the Wildfire Smoke and Fetal Health Analysis 

Data Type Description Data Documentation and Availability 
Number of 
premature 
births 

National count of singleton births 
in 2010 and preterm singleton 
birth rate for 2010. 

Centers for Disease Control and Prevention. 2012. 
“Births: Final Data for 2010.” National Vital Statistics 
Reports (NVSS), 61(1). Available at: 
https://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_01.
pdf 

Future 
wildfire-
attributable 
PM2.5 

Change in population-weighted 
wildfire-attributable PM2.5 
concentrations by degree used to 
scale the number of preterm 
births attributable to wildfire in 
the baseline period. 

Neumann, J.E., Amend, M., Anenberg, S., Kinney, P.L., 
Sarofim, M., Martinich, J., Lukens, J., Xu, J.W. and Roman, 
H., 2021. Estimating PM2. 5-related premature mortality 
and morbidity associated with future wildfire emissions 
in the western US. Environmental Research Letters, 16(3), 
p.035019.  

Wildfire-
attributable 
preterm 
births 

Baseline count of premature 
births estimated from percentage 
of premature births attributable 
to wildfire (2007-2012). 

Heft-Neal, S., Driscoll, A., Yang, W., Shaw, G. and Burke, 
M., 2022. Associations between wildfire smoke exposure 
during pregnancy and risk of preterm birth in California. 
Environmental Research, 203, p.111872.  
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