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INTRODUCTION 
 
 When models are applied in decision-making processes an evaluation of the uncertainty 
of the model predictions is of importance.  The decision maker needs to know whether or not the 
level of uncertainty in modeled results are acceptable in the context of the decisions to be made.  
Without some knowledge of the uncertainty, the model essentially lacks useful predictive power. 
 In practice it is difficult, if not impossible, to gain a complete understanding of all of the sources 
of model uncertainty and take them into account.  However, it is incumbent on modelers to 
assess and report model uncertainty to the extent that it is feasible. 
 
 At the time the 1996 Ozone Criteria Document was published, available information 
indicated that only 40 percent of the variability in personal exposures was explained by exposure 
models (US EPA, 2006a, Appendix AX3, page 162).  Since that time there have been 
considerable improvements in population exposure models and data for these models.  However, 
a comprehensive evaluation of population exposure models for ambient air pollutants has never 
been performed, and significant uncertainties in the predictions of these models remain. 
 
 The importance of specific limitations of exposure models is application- and pollutant-
specific. For example, the distribution of air exchange rates is one of the more important model 
input data for exposure modeling of particulate matter.  For some air toxics, uncertainties in the 
emissions and air concentrations of the pollutant will be the overriding limitation.  For pollutants 
where time spent outdoors is an important parameter (for example, ozone), activity diary 
construction may be a significant source of uncertainty. 
 
 The analysis of model uncertainty described in this report has been performed as part of 
the exposure modeling conducted in support of EPA’s ozone NAAQS review, described in 
Chapter 4 of the Ozone Staff Paper (US EPA, 2007a) and the Exposure Analysis Technical 
Support Document (US EPA, 2007b).  The exposure model, APEX, is documented in a user’s 
guide and technical document (US EPA, 2006b,c).  We will refer to these four documents in the 
remainder of this report as the Staff Paper, the Exposure Analysis TSD, the APEX User’s Guide, 
and the APEX TSD.  We refer to the Ozone Criteria Document (US EPA, 2006a) as the CD. 
 
 In the remainder of this section, we cover some of the basic concepts of model variability 
and uncertainty.  The next section gives an overview of our approach for quantitatively 
characterizing the uncertainty of the exposure modeling performed as part of the ozone NAAQS 
review, followed by sections on estimation of the uncertainty of the inputs to the exposure model 
APEX and treatment of the uncertainty of the formulation of the APEX model.  Results of the 
uncertainty analysis for the 2002 Boston base case scenario are presented in the final section. 
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Concepts 
 

Uncertainties arise from errors in the values of data and parameters input to the model 
and the necessarily simplified representation by the model of complex physical and human 
behavioral processes.  The model inputs are intended to be representative of the area being 
modeled, and many of them are (e.g., population demographics, air quality and meteorological 
data).  However, some of the inputs are derived from data collected at locations and/or time 
periods that differ from those being modeled, and these can contribute to the uncertainty of the 
model results.  It is difficult to judge the significance of these different sources of uncertainty 
without conducting a thorough assessment of the uncertainties and also of the variability of the 
model inputs and results.  The distinctions between uncertainty and variability and between 
sensitivity and uncertainty analyses are fundamental to this discussion.  These are defined as 
follows. 
 
Uncertainty refers to the lack of knowledge of the actual values of physical variables (parameter 
uncertainty) and of physical systems (model uncertainty).  For example, parameter uncertainty 
can result when non-representative sampling (to measure the distribution of parameter values) 
gives sampling errors.  Model uncertainty results from simplification of complex physical 
systems.  Uncertainty can be reduced through improved measurements and improved model 
formulation. 
 
Variability represents the diversity or heterogeneity in a population or property, and is an 
inherent property of a physical property or population characteristic.  This is sometimes referred 
to as natural variability.  Examples are the variation in the heights of people and the variation of 
temperature over time.  Variability cannot be reduced by using more measurements or 
measurements with increased precision (taking more precise measurements of people’s heights 
does not reduce the natural variation in heights).  Inter-individual (between-individual) 
variability refers to the differences in a property between individuals in a population.  The 
variation of a property for one individual over time is intra-individual (within-individual) 
variability. 
 
Sensitivity Analysis assesses the effect of changes in individual model input parameters on 
model predictions.  This is often done by systematically varying one or more parameters at a 
time and recording the associated changes in model response.  One primary objective of a 
sensitivity analysis is to rank the input parameters on the basis of their influence on model 
output. 
 
Uncertainty Analysis involves the propagation of uncertainties and natural variability in a 
model’s inputs to calculate the uncertainty and variability in the model outputs.  It can also 
involve an analysis of the uncertainties resulting from model formulation.  The contributions of 
the uncertainty and variability of specific model inputs to the uncertainty and variability of the 
model predictions can in some cases be explicitly quantified. 
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Data Uncertainty and Model Uncertainty 
 
 In general, limitations and uncertainties result from erroneous or uncertain inputs, errors 
in coding, simplifications of physical, chemical, and biological processes to form the conceptual 
model, and flaws in the conceptual model.  One important class of deficiencies in a conceptual 
model is due to variability not modeled or modeled incorrectly.  Sources of uncertainty in 
exposure modeling can be classified into two primary areas: errors in the model input data and 
parameters, and errors in the formulation of the model itself (structural uncertainty). 
 
Parameter or Input Data Uncertainty.  When parameters or input data are estimated from 
measurements or samples from within a larger population, uncertainties can arise from: 

• small sample sizes 
• imprecise measurements (systematic and random errors) 
• non-representative samples, extrapolation errors 
• temporal period and/or spatial extent too limited to detect trends 
• flawed study design (systematic errors in the data collection process) 
• flawed statistical estimation method 
• the use of surrogate measures 

 
Model Formulation or Structural Uncertainty.  Model uncertainty can result from: 

• simplifying assumptions 
• incorrect assumptions 
• incomplete knowledge of the physicochemical processes 
• not accounting for important variables 
• variability not modeled 
• temporal and spatial aggregation errors 
• mis-specification of the problem 
• applying a model in a situation for which it was not designed 

 
 A simple example which illustrates the difference between model input uncertainty and 
structural uncertainty is modeling the distribution of heights in a population by a normal 
distribution, parameterized by the mean and variance.  Estimates of the mean and variance are 
the “model input data.”  The uncertainty which results from the difference between the shape of 
the true distribution and the normal distribution leads to structural uncertainty.  The parameters 
of the distribution are estimated by measuring a sample of the population, and thus are subject to 
sampling errors, which result in the model inputs uncertainty.  Increasing the sample size will 
reduce these errors and the associated uncertainty of the modeled distribution.  However, if the 
form of the distribution is incorrect, increasing the sample size will help only up to a point, and 
then model uncertainty will dominate.  The only way to reduce the uncertainty further would be 
to improve the model by finding a distribution whose shape more accurately reflects the true 
distribution of heights. 
 
 Note that an input value can be very uncertain and yet have little contribution to the 
uncertainty of the model results.  This depends on the degree of leverage or influence the 
particular model input has.  Thus the most uncertain inputs do not necessarily contribute the 
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most to the uncertainty of the model results.  To further complicate matters, in some cases the 
amount of influence that a parameter has can depend on values of other parameters.  For 
example, the number of houses with air conditioning may be an influential model input when 
temperatures are high, but not when temperatures are low. 
 
 The primary difficulty in performing an uncertainty analysis is the quantitative 
characterization of the uncertainties of the model inputs and model formulation.  We often have 
information about the variability of model inputs, and sometimes the variability and uncertainty 
combined, but it is usually difficult to estimate the uncertainty separately from the variability.  
We seldom know the quantitative uncertainty resulting from model formulation, except in cases 
where a model evaluation has been performed. 
 

The Uncertainty of Uncertainty Analysis 
 
 If all of the important sources of uncertainty are not taken into account, an analysis of 
uncertainty will give a misleading picture.  Unfortunately, the major sources of uncertainty tend 
to be the most difficult to characterize, since if we have data for good quantitative 
characterization of uncertainty, these data can often then be used to reduce the uncertainty.  
Thus, estimates of uncertainty are themselves uncertain.  Model evaluation, where model 
predictions are compared with measured values for a specific model application, can give useful 
insights in this context. 
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APPROACH FOR ASSESSMENT OF EXPOSURE MODELING UNCERTAINTY 
 
 The goal of this uncertainty analysis is to quantify the overall uncertainty in the APEX 
model output, resulting from uncertainty in the model inputs and uncertainty due to the model 
itself. 
 
 There are two general methods used here to assess the uncertainty due to uncertain model 
inputs.  The primary method involves first quantifying the uncertainties of each of the model 
inputs, and then propagating those uncertainties through the model to estimate the resulting 
uncertainty of the model results.  We do this using the Monte Carlo method, which has the 
advantage of being very flexible and comprehensive (Morgan and Henrion, 1990; Vose, 1996). 
 
 The second method involves sensitivity analyses.  Certain model inputs are very complex 
and difficult to treat with a Monte Carlo approach, and we conduct sensitivity analyses to 
quantify their effect on uncertainty. 
 
 APEX is a probabilistic model which uses Monte Carlo simulation to explicitly 
incorporate the inherent variability of the modeled population and physical processes leading to 
exposures.  The majority of the inputs to APEX are distributions characterizing the natural 
variability of model inputs.  For example, instead of using a single decay rate for the decay of 
ozone indoors, a distribution of hourly decay rates is input to APEX, specified by its form 
(lognormal) and parameters (a geometric mean (GM) of 2.5 and geometric standard deviation 
(GSD) of 1.5), as shown in Figure 3.  The development of the distributions representing 
variability which are input to APEX is described in the Exposure Analysis TSD (US EPA, 
2007b). 
 
 The Monte Carlo approach to quantification of uncertainty entails performing many 
model runs with model inputs randomly sampled from distributions reflecting the uncertainty of 
the model inputs.  For example, for ozone decay rates, we are assuming that the form of the 
distribution is approximately correct, but realize that the GM and GSD are not known precisely.  
Suppose we estimate that the errors of the GM are normally distributed with mean 0 and 
standard deviation 0.18 (Figure 1), and that the errors of the GSD are normal with mean 0 and 
standard deviation 0.05 (Figure 2).  Then we run APEX numerous times, and for each run we 
randomly select values from these error distributions, add them to the GM (2.5) and GSD (1.5) 
of the decay rates, and use these for model inputs.  Figure 4 illustrates six decay rate 
distributions that result from adding these uncertainty terms (randomly selected from the 
distributions depicted in Figure 1 and Figure 2) to the GM and GSD of the base distribution.  
These six distributions would be used as input to six separate APEX runs.  If APEX is run 500 
times in this way, we then have 500 values of any measure calculated from the APEX model 
results.  This collection of values would quantitatively indicate the extent of the uncertainty in 
the APEX results due to the uncertainty in the decay rates input to the model. 
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Figure 1.  The distribution of the uncertainty of the GM (normal, mean=0, stdev=0.18) 

 
 

 
Figure 2.  The distribution of the uncertainty of the GSD (normal, mean=0, stdev=0.05) 
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Figure 3.  The base decay rates variability distribution (lognormal, GM=2.5, GSD=1.5) 

 
Figure 4.  Six realizations of the combined variability and uncertainty distribution 
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 Our approach to the assessment of the uncertainty resulting from model formulation and 
structure primarily involves a careful review of the scientific basis of the algorithms that make 
up APEX.  We have also conducted a limited evaluation of APEX by comparing its predictions 
to 6-day average personal exposure measurements of ozone (see the Exposure Analysis TSD).  A 
diagnostic evaluation with personal exposure monitors (PEMs), indoor, and outdoor 
measurements of ozone with shorter averaging times (1 hour or less) would be very informative, 
if the data were available. 
 
 The primary obstacle to performing an acceptable uncertainty analysis for this type of 
modeling is the quantitative characterization of the uncertainties of the model inputs.  
Developing appropriate distributions representing variability and uncertainty in various model 
inputs (e.g., air exchange rates, ozone decay rates, physiological parameters) is a key part of this 
modeling effort. 
 
A Note About the Lognormal Distribution 
 
 Most of the inputs to APEX which have population variability are best fit with a 
lognormal distribution, and in some cases only the parameters of lognormal fits to data are 
reported in the literature.  Typically there are not much data or information available for 
estimating the uncertainty of the distributions representing variability which are input to APEX, 
and a decision must be made about the distributional form of the uncertainty.  Given an estimate 
of the uncertainty of an unbiased estimate of the GM, the question arises whether the uncertainty 
interval for the GM should be symmetric about the GM (e.g., [GM–Δ, GM+Δ]) or symmetric in 
the data space (symmetric about the GM multiplicatively, e.g., [GM/Δ, GM·Δ]), and whether or 
not the GSD should be varied concurrently with the GM.  Changing the GM (or the GSD) 
changes both the mean and the standard deviation of a distribution, so care must be exercised 
when varying one or the other of these to ensure that the GM,GSD pair is valid.  For example, if 
the estimate of the mean of a lognormal distribution is unbiased, then the GM and GSD must be 
varied concurrently (not independently, as in the decay rate example above) in the Monte Carlo 
simulations in such a way that the average of the means of the Monte Carlo distributions is 
approximately equal to the original estimate of the mean. 
 

QUANTIFYING THE UNCERTAINTY OF APEX MODEL INPUTS 
 
 In this section we describe how the distributions of uncertainty were developed for this 
assessment of uncertainty of our application of APEX to model population exposures to ozone 
pollution for the 2002 Boston base case scenario.  The APEX inputs for this base case are 
described in the Staff Paper and in the Exposure Analysis TSD. 
 

Ambient Air Quality Concentrations 
 
 Hourly ambient concentrations are input to APEX, accounting for temporal variability.  If 
concentrations from only one monitor are used, then spatial variability is not accounted for and 
cannot be properly modeled.  If multiple monitors are used, then spatial variability is accounted 
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for, but some uncertainty remains for concentrations at locations distant from monitors.  The 
uncertainties associated with these concentrations in relation to spatial representativeness can be 
significant.  For this modeling analysis, there is reasonable spatial coverage of the areas 
modeled. Table 1 lists the numbers of monitoring sites in the study areas for the years modeled.  
Using Boston as an example, the placement of monitors for the Boston greater metropolitan area 
is shown in Figure 5 (the monitoring sites are indicated by squares and the modeled region, the 
combined statistical area (CSA), by the heavy black lines).  However, spatial variations in ozone 
concentrations can be considerable, resulting in uncertainty if these are not accounted for by the 
model (CD, Section 3.3). 
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Figure 5.  Boston CSA with ozone monitoring sites 
 
 
 If a single ozone season is modeled, another source of uncertainty results from the year-
to-year variability of ozone concentrations, meteorology and NOx and VOC emissions.  We have 
modeled the 2002, 2003, and 2004 ozone seasons, which have different ozone concentrations 
due to a combination of different weather patterns and emissions of ozone precursors.  In this 
way we account for the sensitivity of the exposure modeling results to year-to-year variability of 



 10 

air quality and meteorology.  Modeling additional years might give a more complete picture of 
year-to-year variability, but we want the model results to represent recent air quality, and these 
three years provide a good range of weather patterns, which we feel is sufficient for this analysis. 
 

 
Table 1.  The number of ozone monitors in each of the study areas 

Number of monitors Study Area (CSA) 2002 2003 2004 
Atlanta-Sandy Springs-Gainesville, GA-AL 13 12 12 

Boston-Worcester-Manchester, MA-NH 17 19 15 

Chicago-Naperville-Michigan City, IL-IN-WI 32 30 27 

Cleveland-Akron-Elyria, OH 11 11 11 

Detroit-Warren-Flint, MI 10 10 10 

Houston-Baytown-Huntsville, TX 21 23 21 

Los Angeles-Long Beach-Riverside, CA 45 43 44 

New York-Newark-Bridgeport, NY-NJ-CT-PA 30 30 29 

Philadelphia-Camden-Vineland, PA-NJ-DE-MD 18 17 16 

Sacramento--Arden-Arcade--Truckee, CA-NV 21 22 22 

St. Louis-St. Charles-Farmington, MO-IL 18 18 17 

Washington-Baltimore-N. Virginia, DC-MD-VA-WV 28 28 26 
 
 
 In addition to modeling exposures for three years, we are modeling exposures for 
scenarios of attainment of the current ozone standard and a number of potential alternative 
standards.  For areas which do not meet these standards for these modeled years, attainment of 
these hypothetical scenarios would occur in the future.  Modeling exposures for future years 
under different emission control strategies has, in addition to the uncertainties involved with 
modeling historical scenarios, the uncertainties of the complex process of projecting to future 
years air quality, population demographics, activity patterns, and other parameters which change 
over time.  We employ a quadratic rollback technique to estimate ozone concentrations for these 
scenarios.  This technique and the rationale for using it are described in the draft Staff Paper. 
 

The primary uncertainties in the air quality data input to the model, discussed in the 
remainder of this section, result from: 

• Instrument measurement error 
• Estimation of missing data (temporal interpolation) 
• Estimation of neighborhood-scale concentrations at locations which are not close to 

monitoring sites (spatial interpolation) 
• Estimation of micro-scale outdoor concentrations (e.g., near-roadway) 
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• Adjustment of concentrations to reflect attainment of alternative standards (rollback) 
 

Uncertainty Due To Measurement Error 
 
 The Federal reference method (FRM) for measuring concentrations of ambient ozone is 
based on chemiluminescence.  However, chemiluminescence has not been widely used in 
instrumentation since the mid-1980s.  Most instruments in use today employ ultra-violet (UV) 
absorption, a Federal equivalent method (FEM) (CD, Section 2.6).  Federal reference and 
equivalent ozone monitoring methods are required to have a lower detectable limit of 0.01 ppm 
and precision of 0.01 ppm for 1-hour average concentrations (40 CFR Ch. 1, §53.21).  
Interference with other pollutants and humidity can lead to errors in measurements.  This does 
not seem to be well quantified (CD, pages 2-25 to 2-26).  
 
 For this uncertainty analysis we estimate distributions of errors of hourly average 
measurements from the site-specific single point precision and bias estimates from the 2003 
Criteria Pollutant Quality Indicator Summary Report (Battelle, 2004) and the 2004 Single Point 
Precision and Bias Graphics for Criteria Pollutants (US EPA, 2005a,b).  Figure 6, taken from 
the Battelle report, illustrates these errors for some of the Massachusetts monitors.  The “Bias” is 
the 95% confidence upper limit on the mean of the absolute values of relative percent differences 
for the monitoring season, and the “CV” is the 90% confidence upper limit of the coefficient of 
variation (CV) of relative percent difference values for the monitoring season.  A positive bias 
means that the monitor readings are too high.  Table 2 lists the available 2003 and 2004 values 
for monitors in the Boston CSA.  Note that the 2003 and 2004 values do not correlate well, 
which indicates that the bias may be random for a given monitor.  We estimate the measurement 
error uncertainty as normally distributed, with mean and CV taken to be the overall average of 
the bias and precision values.  The values in Table 2 give an average bias of 1.2% and an 
average CV of 4.4%.  Note that this will tend to overestimate the mean and CV of the 
measurement errors, since these are upper confidence limits. 
 
Table 2.  2003 and 2004 Single Point Precision and Bias for Boston Monitors 
 2003 2004 

AQS ID Bias (%) CV (%) Bias (%) CV (%) 
250090005-1 -2.71 0.90 +2.66 2.55 
250092006-1 +3.73 3.74 -5.70 5.71 
250094004-1 +3.89 4.96 +2.49 2.28 
250095005-1   +0.72 0.81 
250171102-1 -5.86 0.91 -5.73 6.23 
250213003-1 -2.41 3.21 -2.82 2.89 
250250041-1 -7.35 7.87 -4.01 1.66 
250250042-1 -1.07 0.94 3.54 4.51 
250270015-1 -2.63 3.37 +4.09 2.40 
330012004-1 +5.23 7.32   
330110020-1 +3.4 4.26   
330111010-1 3.05 4.47   
330115001-1 3.83 4.18   
330130007-1 -3.38 3.98   
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 2003 2004 
AQS ID Bias (%) CV (%) Bias (%) CV (%) 

330150012-1 -2.38 2.93   
330150013-1 +11.28 14.29   
330150015-1 9.28 11.90   
330173002-1 -5.36 6.79   

Average     
 
 

Uncertainty in Estimation of Missing Data 
 
 Missing air quality data were estimated by the following procedure.  If there were 
consecutive strings of missing values (data gaps) of less than 6 hours, missing values were 
estimated by linear interpolation between the valid values at the ends of the gap.  Remaining 
missing values at a monitor were estimated by fitting linear regression models for each hour of 
the day, with each of the other monitors, and choosing the model which maximizes R2 for each 
hour of the day, subject to the constraints that R2 be greater than 0.5 and the number of 
regression data values is at least 50.  If there were any remaining missing values at this point, for 
gaps of less than 9 hours, missing values were estimated by linear interpolation between the 
valid values at the ends of the gap.  Any remaining missing values were replaced with the 
regionwide mean for that hour. 
 
 The uncertainty of this method for filling in missing data was estimated by a jackknife-
type approach where subsets of the data are randomly designated as “missing,” then these 
missing values are filled in using the above procedure, and the filled in values are compared with 
the original values to see how well they are estimated.  Since longer gap lengths generally 
engender more uncertainty, we calculate the frequencies of different gap lengths in the original 
data and set data to missing in such a way that these frequencies are reproduced.  These errors 
turn out to be generally less than 0.004 ppm.  Table 3 shows that replacement of missing data for 
the Boston CSA had little effect on the mean and standard deviation of the hourly ozone 
concentrations at each monitor.  The root mean square error (RMSE) was generally less than 
0.004 ppm, with insignificant bias, and the distribution of errors can be reasonably approximated 
by a normal distribution with mean zero and standard deviation 0.004 ppm. 
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Figure 6.  2003 Precision and Accuracy for Massachusetts Monitors 
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Table 3.  Effect of missing data replacement on the distribution of 2002 hourly ozone for 
monitors in the Boston CSA (ppb) 

Monitor 

# of 
hours 

missing 

Mean of 
original 

data 
Mean of 

filled data Difference

St. dev. of 
original 

data
St. dev. of 
filled data Difference

2500900051 290 0.0296 0.0292 0.00042 0.0188 0.0187 0.00009

2500920061 171 0.0369 0.0368 0.00013 0.0197 0.0195 0.00014

2500940041 141 0.0375 0.0374 0.00010 0.0178 0.0178 -0.00001

2501711021 483 0.0360 0.0362 -0.00016 0.0199 0.0199 -0.00004

2502130031 143 0.0427 0.0425 0.00015 0.0204 0.0203 0.00012

2502500411 157 0.0366 0.0365 0.00019 0.0187 0.0186 0.00009

2502500421 353 0.0258 0.0263 -0.00053 0.0165 0.0174 -0.00091

2502700151 1723 0.0431 0.0446 -0.00151 0.0179 0.0178 0.00014

3300120041 49 0.0373 0.0373 0.00001 0.0149 0.0149 0.00004

3301100201 47 0.0311 0.0311 -0.00001 0.0177 0.0176 0.00007

3301110101 47 0.0334 0.0334 0.00002 0.0195 0.0195 0.00007

3301150011 2634 0.0464 0.0479 -0.00145 0.0186 0.0158 0.00288

3301300071 50 0.0282 0.0283 -0.00008 0.0188 0.0188 0.00002

3301500121 39 0.0343 0.0344 -0.00003 0.0171 0.0170 0.00002

3301500131 141 0.0332 0.0333 -0.00011 0.0193 0.0192 0.00012

3301500151 162 0.0315 0.0316 -0.00010 0.0184 0.0181 0.00027

3301730021 40 0.0339 0.0339 -0.00005 0.0167 0.0167 0.00001

 

Uncertainty in Spatial Interpolation 
 
 The ambient ozone concentrations were interpolated from the monitoring sites to each 
Census tract by assigning the concentration at the monitor closest to each tract (“nearest 
neighbor” interpolation).  We employed two approaches to estimate the impacts of the errors of 
spatial interpolation of ozone concentrations, jackknife estimation and a sensitivity analysis 
varying the radius of influence of the monitors. 
 
 
Jackknife Estimates of Uncertainty 
 
 We estimate the errors of spatial interpolation using the jackknife method (Efron, 1980; 
Stone, 1974), in which we drop out one monitor, use the spatial interpolation method to estimate 
concentrations at the location of that monitor (not using nearby monitors), and compare the 
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predicted to the observed values for each hour, giving a distribution of errors for that monitor.  
We do this for every monitor in the study area, thereby characterizing the errors of spatial 
interpolation in that area by a single distribution.  This method tends to overestimate the size of 
the errors, because all monitors are used in the actual interpolation, reducing the interpolation 
errors to zero at the locations where the errors are estimated. 
  
 For each site, we calculate the observed/predicted ratio for each hour, and the 25th and 
75th percentiles of these ratios.  For the Boston 2002 measurements, the means (over all sites) of 
these site-specific quartiles are 0.94 and 1.2, with a central value of 1.06, and we approximate 
the uncertainty of the spatial interpolation by a normal distribution of observed/predicted ratios 
with quartiles 0.94 and 1.2, giving a standard deviation of 0.2.  Although it may appear that the 
interpolation generally underpredicts in this case (ratio > 1), we cannot conclude this with 
confidence since all sites are used in the interpolation, which acts to correct this bias.  If a bias 
remains, we do not know whether it is positive or negative; therefore, we assume that the 
interpolation is unbiased. 
 
 
Decreasing Radius of Representativeness of Monitors 
 
 In general, the closer a location is to a given monitoring site, the better the measurements 
represent concentrations at that location.  APEX allows the user to specify a radius of 
representativeness for the air quality monitors, and only models exposures to the population 
residing in Census tracts located within this radius of a monitoring site (the center of the tract is 
required to be within this distance of a monitor).  Conversely, the further away that locations are 
from monitoring sites, the more uncertain the spatially interpolated concentrations tend to be at 
these locations.  In choosing the radius of representativeness there is a tradeoff between more 
accurate concentrations (smaller radius) and better characterization of the population (larger 
radius). 
 
 We conducted a series of APEX simulations varying the radius of representativeness of 
air quality monitors from 10 km to unlimited (within the modeled area) for the Boston CSA 
using the nearest-neighbor spatial interpolation method.  The APEX inputs for the Boston 2002 
and 2004 base case and current standard scenarios were used, except for varying the 
concentration fields.  Note that the “unlimited” radius simulations are the same as the 
simulations used in the exposure analysis described in the Staff Paper.  The results of these 
simulations are depicted in Figure 7 (2004 base case), Figure 8 (2002 base case), and Figure 9 
(2002 current standard).  The vertical axes are the fractions of the population, and the values for 
the unlimited radius are plotted at 60 km in these figures.  Table 4 shows the 2002 population 
coverage for the different radii analyzed.  This analysis indicates that the nearest-neighbor 
method of spatial interpolation may be introducing a small positive bias into the exposure 
modeling results for these scenarios.  However, using a different radius results in a different 
population being modeled, and this also contributes to the differences seen. 
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Table 4.  Population coverage of 2002 ozone monitors in Boston CSA 

Radius about 
monitors (km) 

Population coverage 
within the radius 

10 47% 
15 65% 
20 81% 
25 89% 
50 99% 

unlimited 100% 
 
 
 

 
Figure 7.  Sensitivity to monitor radius of influence of the fractions of four population 

groups with 8-hour exposures > 0.08 ppm-8hr, Boston, 2004 base case 
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Figure 8.  Sensitivity to monitor radius of influence of the fractions of four population 

groups with 8-hour exposures > 0.08 ppm-8hr, Boston, 2002 base case 
 

 
Figure 9.  Sensitivity to monitor radius of influence of the fractions of four population 

groups with 8-hour exposures > 0.08 ppm-8hr, Boston, 2002 current standard 
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Summary of Uncertainty in Neighborhood-Scale Concentrations 
 
 Table 5 summarizes the uncertainties of neighborhood-scale hourly concentrations for the 
Boston CSA.  As discussed above, we are assuming that these uncertainties can be adequately 
characterized by normal distributions.  It seems reasonable to assume that these three 
components of uncertainty are independent.  The uncertainties of measurement error and missing 
data replacement are additive, while the spatial interpolation uncertainties are multiplicative.  
The spatial interpolation uncertainties are at least an order of magnitude greater than the other 
uncertainties, and we approximate the combined uncertainties by the spatial uncertainties 
(Table 5). 
 
Table 5.  Uncertainty distribution parameters for neighborhood-scale concentrations 
Component of uncertainty Mean (bias) Standard deviation 
Measurement error (additive) small 0.00135 (ppm) 
Missing data replacement (additive) insignificant 0.004 (ppm) 
Spatial interpolation (ratios) none 0.2 (dimensionless) 
Combined uncertainties (ratios) none 0.2 (dimensionless) 
 

Uncertainty of Outdoor Near-Roadway Concentrations 
 

Concentrations of ozone near roadways are particularly difficult to estimate due to the 
rapid reaction of ozone with nitric oxide (NO) emitted from motor vehicles (forming NO2 and 
O2), which reduces ozone concentrations in the vicinity of the roadway. 

 
APEX adjusts ambient ozone concentrations for NO titration near roadways through the 

use of proximity factors.  Proximity factors which adjust concentrations according to the 
locations of people’s activities can be input as single values or distributions to APEX.  They are 
intended to scale the concentrations measured at fixed-site monitors to better represent the 
concentrations at other locations.  In APEX they can serve the dual purpose of incorporating 
random concentration variability into the model. 

 
 We developed distributions for near-roadway proximity factors based on data from the 
1994 Cincinnati Ozone Study (American Petroleum Institute, 1997, Appendix B; Johnson et al. 
1995).  Table 6 lists these distributions.  Vehicle miles traveled in 2003 by city and road type 
obtained from the Federal Highway Administration were used to estimate the distribution of road 
types (local, urban, interstates) for each modeled city.  The development of these proximity 
factor distributions is described in Appendix A of the Exposure Analysis TSD. 
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Table 6.  Near-roadway proximity factor distributions 
  Location Mean Standard 

Deviation 
Lower 
Bound 

Upper 
Bound 

outdoors near road and parking lots 0.755 0.203 0.422 1.0 
in-vehicle, local roads 0.755 0.203 0.422 1.0 
in-vehicle, urban roads 0.754 0.243 0.355 1.0 
in-vehicle, interstates 0.364 0.165 0.093 1.0 
 

We conducted a review of literature on near-roadway titration of ozone by NO to obtain 
information which could be used to estimate the uncertainty of the near-roadway proximity 
factor distributions.  Rodes and Holland (1981) found reductions in ozone downwind of a Los 
Angeles freeway ranging from more than 90% at 8 meters to small reductions at 500 meters from 
the roadway.  Lin et al. (2001) report a 30-40% reduction in ozone in a high traffic-density 
neighborhood.  Suppan and Schadler (2004) in a modeling study using CMAQ predict ozone 
reductions from 3 to 20 ppb downwind of a major highway, with small changes in ozone 
concentrations as far as 40 km from the highway.  Beckerman et al. (2006) measured ozone and 
other pollutants at various distances from a heavily traveled highway in Toronto and find 
significant variation even in 7-day average ozone concentrations, as shown in Figure 10. 
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Figure 10.  Pollutant concentrations around Highway 401, Toronto (Beckerman et al., 2006) 
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Based on this limited information we estimate the uncertainty of the means of the near-
roadway proximity factor distributions to be uniformly distributed as summarized in Table 7.  
Uncertainties of the standard deviations of the near-roadway proximity factor distributions have 
a lesser effect than uncertainties of the means, and we are not assigning uncertainties to them.  
The vehicle miles traveled are much less uncertain than the titration adjustments, and therefore 
we do not need to take into account their uncertainty. 
 
Table 7.  Uncertainty of the means of near-roadway proximity factor distributions 

Distribution of uncertainty (normal) Location Uncertainty of 
the mean of the 
distribution 

Uncertainty Mean Standard 
deviation 

outdoors 
near road 
and parking 
lots 

90% within  
[0.605, 0.905] 

90% within 
[−0.15, 0.15] 

0 0.09 

in-vehicle, 
local roads 

90% within  
[0.605, 0.905] 

90% within 
[−0.15, 0.15] 

0 0.09 

in-vehicle, 
urban roads 

90% within  
[0.604, 0.904] 

90% within 
[−0.15, 0.15] 

0 0.09 

in-vehicle, 
interstates 

90% within  
[0.214, 0.514] 

90% within 
[−0.15, 0.15] 

0 0.09 

 

Uncertainty of Indoor Near-Roadway Concentrations 
 
 APEX considers a person to be near a roadway when their activity diary puts them in the 
near-road microenvironment.  There is no consideration of the effects of roadways on the 
concentrations in residences near roadways, and this is an additional source of uncertainty, since 
a significant portion of the population live near roadways (the 2001 American Housing Survey 
[U.S. Census Bureau, 2002] estimated that an eighth of the housing units in the U.S. are within 
300 feet of a four or more lane highway, railroad, or airport).  We quantify the effects of this 
uncertainty by performing the exposure modeling to account for this in a simplistic way, and 
comparing those modeling results with the standard APEX results.  We base this analysis on a 
data base that specifies the fraction of the population in each Census tract that live within 75 m 
from a major roadway.  This data base is described in Appendix I in the Exposure Analysis TSD.  
 

  We performed APEX simulations using the outdoor near-road proximity factors to 
decrease the ambient concentrations outside residences within 75 m from a major roadway.  A 
comparison of these model results with the standard simulations shows only slight decreases in 
population exposures to high 8-hour average ozone levels.  For example, the number of children 
(ages 5 to 18) predicted by APEX to experience one or more exposures above 0.07 ppm-8hr 
concomitant with moderate exertion decreased by three percent. 

 



 21 

Note that the phenomenon of titration by NO near roadways also has the potential to 
influence the exposure results in the other direction, in cases where the ozone monitors are 
located in areas of high traffic.  Then the measurements could be low in comparison with other 
locations not affected by traffic emissions.  However, there are criteria for siting monitors, which 
specify how far to site monitors from roads to avoid interference that would make the monitor 
unrepresentative of the surrounding area (US EPA, 1998). 
 

Uncertainty of the Vertical Profile of Concentrations 
 
 Ozone concentrations vary with height within the lower boundary layer of the 
atmosphere, which can lead to exposure error for people living in high-rise apartment buildings 
(when significantly higher than the ozone monitors) and in cases where an ozone monitor is 
significantly higher than the surrounding population.  The CD (page AX3-202) states that: 
 

A study of the effect of elevation on O3 concentrations found that concentrations 
increased with increasing elevation. The ratio of O3 concentrations at street level (3 m) 
compared to the rooftop (25 m) was between 0.12 and 0.16, though the actual 
concentrations were highly correlated (r = 0.63) (Väkevä et al., 1999). Differential O3 
exposures may, therefore, exist in apartments that are on different floors. Differences in 
elevation between the monitoring sites in Los Angeles and street level samples may 
have contributed to the lower levels measured by Johnson (1997). Furthermore, since 
O3 monitors are frequently located on rooftops in urban settings, the concentrations 
measured there may overestimate the exposure to individuals outdoors in streets and 
parks, locations where people exercise and maximum O3 exposure is likely to occur.  

 
 We do not intend to address this source of uncertainty at this time, due to a lack of data 
on the vertical distribution of concentrations near the surface in urban areas. 
 

Uncertainty in Concentration Rollback to Reflect Alternative Standards 
 
 One method for assessing the uncertainty of the rollback adjustments used in our 
modeling analyses is to apply the rollback procedure to historical air quality data and compare 
the observed air concentrations with the rolled-back concentrations (Rizzo, 2005).  There are 
difficulties in translating this uncertainty into uncertainties of the APEX model inputs, and so we 
employ a different approach.1 
 
 This approach entails using the rollback method to adjust ozone concentrations for each 
of the 3-year periods 2000-2002, 2001-2003, and 2002-2004, to reflect air quality representative 
of just meeting the current 8-hr ozone standard of 0.08 ppm.  For each of these 3-year periods, 
design values for the current standard were calculated and hourly ozone concentrations rolled-
back to meet the standard.  Since each of these 3-year sets of concentrations represents just 
attaining the current standard, differences between them are due to uncertainty of the rollback 

                                                 
 1 Staff notes that this evaluation is ongoing.  Staff anticipates completing this analysis and presenting the 
results in a staff memo to be made available in the docket for this rulemaking. 
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method.  Each of these 3-year periods are being modeled using APEX for all 12 cities.  The 
variability in the model results for each city provide estimates of a lower bound of the 
uncertainty of rollback in the modeled exposures.  Comparisons are based on the distributions of 
modeled exposures over the 3-year periods, since it is the 3-year period which is being brought 
to just attaining the standard, and not each individual year. 
 

Meteorological Data 

Uncertainty of Ambient Temperatures 
 

Temperatures are the only meteorological inputs to APEX for this application.  
Temperatures input to APEX are specified not as distributions but as hourly and daily values 
measured from one or more monitors.  Thus, temporal and spatial variability are accounted for.  
Due to the smooth nature of the temporal and spatial variability of temperatures, the uncertainty 
of the temperature inputs is typically small and therefore we can ignore this source of 
uncertainty. 

 
Most of the temperature sites have no missing data; a few have 1 or 2 days missing 

during the year.  Thus, the uncertainty from the estimation of missing temperature data is 
insignificant. 
 

Modeling Concentrations in Microenvironments 
 
 The importance of estimation of concentrations in indoor microenvironments (homes, 
offices, schools, restaurants, vehicles, etc.) is underscored by the finding that personal exposure 
measurements of ozone are often not well-correlated with ambient measurements (CD, pages 3-
59 to 3-61). 
 
 The microenvironmental characteristics used to model the concentrations in 
microenvironments tend to be highly variable, both in different microenvironments (e.g., 
different houses have varying characteristics) and within a single microenvironment (e.g., the 
characteristics of a specific house can vary over time).  Since APEX is a probabilistic model, if 
data accurately characterizing this variability can be provided to the model, this will not result in 
uncertainties.  However, even if we can appropriately characterize the distributions of each 
microenvironmental parameter, there will be significant uncertainties unless we appropriately 
model the relationships (e.g., correlations) between the different microenvironmental parameters, 
as well as the relationships between the microenvironmental parameters and other components of 
the exposure model (e.g., people’s activities).  There are 12 microenvironments modeled in 
APEX for this application, listed in Table 8.  The mass balance and factors models used to 
calculate ozone concentrations in these microenvironments are described in the APEX TSD. 
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Table 8.  Microenvironments Modeled For Ozone Exposure Assessment 
Microenvironment Model Parameters1 

Indoors – Residence Mass balance AER and DE 
Indoors – Bars and restaurants Mass balance AER and DE 
Indoors – Schools Mass balance AER and DE 
Indoors – Day-care centers Mass balance AER and DE 
Indoors – Office Mass balance AER and DE 
Indoors – Shopping Mass balance AER and DE 
Indoors – Other Mass balance AER and DE 
In-vehicle – Cars and Trucks Factors PE and PR 
In-vehicle - Mass Transit Factors PE and PR 
Outdoors – Near road Factors PR 
Outdoors – Public garage - parking lot Factors PR 
Outdoors – Other Factors PR 

1 AER: Air Exchange Rate, DE: Decay rate; PE: Penetration factor; PR: Proximity factor 
 

Uncertainty of Air Exchange Processes 
 
 The air exchange rate (AER) is one of the most important factors in determining the ratio 
of outdoor to indoor concentrations of ozone and therefore in determining exposures while 
indoors.  AERs are highly variable at hourly and daily time scales, both within a 
microenvironment over time and between microenvironments of the same type in different 
buildings.  AERs depend strongly on the physical characteristics of a microenvironment and also 
on the behavior of the occupants of the microenvironment.  For example, the concentration in a 
house when a person enters the house will depend on the AER of the preceding hour, which 
could depend on whether or not there was someone else already in the house.  There is also some 
dependence on the atmospheric conditions (temperature, humidity, and wind speed), both 
directly (higher wind speeds result in higher AERs in most circumstances) and indirectly 
(occupants can open and close windows in response to the outdoor temperature). 
 
 AER measurements (which are used to derive the APEX input distributions for a city) 
typically involve fitting tracer concentrations to simple mass balance models.  This analysis of 
AER uncertainty currently does not take into account the uncertainty in this measurement 
process. 
 
Air Exchange Rates 
 
 City-specific lognormal distributions of AERs for use with the APEX ozone model were 
developed based on an analysis of AER data from several studies, described in the Exposure 
Analysis TSD, Appendix A.  The parameters of these distributions depend on the outside 
temperature and whether or not the residence has air conditioning. 
 
 We assess the within-city uncertainty by using a bootstrap distribution to estimate the 
effects of sampling variation on the fitted geometric means (GMs) and standard deviations 
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(GSDs) for each city.  This analysis is described in the Exposure Analysis TSD.  The bootstrap is 
a nonparametric method for estimating uncertainty which accounts for the correlation between 
the GMs and GSDs (e.g., see Figure 12), so that there are not unrealistic combinations of GMs 
and GSDs.  The bootstrap distributions assess the uncertainty due to random sampling variation 
but do not address uncertainties due to the lack of representativeness of the available study data. 
 This could be assessed, to some extent, by comparing AER distributions from different studies 
in the same city.  However, data are not available to do this, and we assign a ten percent 
uncertainty to the potential non-representativeness of the measured AER distributions. 
 
 Several bootstrap distributions were developed for residential air exchange rates, one for 
each city-temperature-A/C combination.  Examples of two of the bootstrap uncertainty 
distributions, which illustrate that the GMs and GSDs are not independent, are provided in 
Figure 11 and Figure 12.  Figure 11 shows the uncertainty distribution around the model input 
values GM=0.916 and GSD=2.451, which specify the distribution of AERs of residences in 
Houston without A/C when ambient temperatures are above 20 degrees C (24-hour average).  
Similarly, Figure 12 shows the uncertainty distribution for the AER distribution parameters for 
Los Angeles for residences without A/C when the ambient temperature is above 25 degrees C.  
Note that in each of these figures there is only one “original data” point (this is the APEX input 
value), indicated by the intersection of the cross-hairs in the figure.  The clouds of points are 
bootstrapped values. 
 
 In the Monte Carlo uncertainty simulations, a GM, GSD pair is selected at random from 
the bootstrap uncertainty distribution for each temperature-A/C combination, and used for input 
to APEX.  (APEX then selects AER values randomly from the log-normal distribution with the 
bootstrap GM and GSD).  The uncertainty of non-residential air exchange rates was modeled in 
the same way, using bootstrap distributions of GM, GSD pairs. 
 

Uncertainty of Residential Air Conditioning Prevalence and Use 
 
 The AER distributions input to APEX are conditioned on the presence or absence of air 
conditioning, and estimates of residential air conditioning prevalence rates for each modeled area 
were obtained from the American Housing Survey of 2003.  Appendix F of the Exposure 
Analysis TSD gives confidence intervals for the air conditioning prevalence rates, reproduced 
here in Table 9.  We model the uncertainty of the prevalence rates with zero-mean normal 
distributions with standard deviations equal to the standard errors given in Table 9. 
 
 In addition to the uncertainty of prevalence rates, there is uncertainty about the amount of 
use of A/C given that a house or office has A/C.  However, most of the studies of AERs that we 
used to develop AER distributions report presence or absence of air conditioning, and not 
whether the A/C was being used (Appendix A, Exposure Analysis TSD).  Thus, the variability 
resulting from the use or non-use of A/C is built into the AER distributions, and is being taken 
into account.  If, in the future, we have sufficient data to allow us to characterize AERs 
separately for conditions of use and non-use, then we can supply APEX with these distributions, 
as well as distributions for use vs. non-use. 
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Figure 11.  Bootstrap distribution of AER uncertainty for Houston, no A/C, >20 C 
 

 
Figure 12.  Bootstrap distribution of AER uncertainty for Los Angeles, no A/C, >25 C 
 
 In each of these figures there is only one “original data” point (the APEX input value), indicated 
by the intersection of the cross-hairs in the figure.  The clouds of points are bootstrapped values.
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Table 9.  Uncertainty of air conditioning prevalence rates 
City Prevalence

rate (%)
Standard 

error
Lower 95% 
confidence 

bound

Upper 95% 
confidence 

bound
Atlanta, 2003 97.0 1.18 94.7 99.3
Boston, 2003 85.2 2.14 81.0 89.4
Chicago, 2003 87.1 1.39 84.4 89.8
Cleveland, 2003 74.6 3.38 68.0 81.3
Detroit, 2003 81.4 1.76 78.0 84.9
Houston, 2003 98.7 0.67 97.4 100.0
Los Angeles, 2003 55.1 1.70 51.7 58.4
New York, 2003 81.6 1.27 79.1 84.1
Philadelphia, 2003 90.6 1.30 88.1 93.2
Sacramento, 2003 94.6 1.93 90.8 98.4
St. Louis, 2003 95.5 1.67 92.3 98.8
Washington DC, 2003 96.5 1.00 94.5 98.4

 
 

Uncertainty of Deposition, Filtration, and Chemical Reaction Processes 
 
 The removal of ozone from a microenvironment due to deposition, filtration, and 
chemical reaction processes is modeled in APEX by a distribution of ozone decay rates.  The 
rate of deposition of ozone to a surface depends on the material the surface is made of, the 
humidity, and the concentration of ozone.  The rate of removal of ozone due to deposition in a 
specific microenvironment also depends on the dimensions, surface coverings, furnishings, and 
the ratio of surface area to volume in the microenvironment.  The degree of ozone loss through 
filtration is a function of the HVAC system in the microenvironment.  Other chemical processes 
that contribute to reduction in ozone concentrations indoors include reaction with NO emitted 
from gas stoves and reaction with VOCs from cleaning products. 
 
 The distribution of ozone decay rates used in the present study represents the decay rates 
measured in a study of 17 residences in Southern California (Lee et al., 1999). A lognormal 
distribution was fit to the measurements from this study, yielding a geometric mean (GM) of 2.5 
and a geometric standard deviation (GSD) of 1.5.  These values are constrained to lie between 
0.95 and 8.05 hour-1.  We estimate the uncertainty of this distribution using a bootstrap method 
described by Cullen and Frey (1999).  This method quantifies sampling uncertainty 
nonparametrically.  The standard deviations of the bootstrap samples for the GM and GSD are 
given in Table 10; however, bear in mind that the GMs and GSDs in these samples are not 
independent. 
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 The bootstrap approach quantifies sampling uncertainty, but does not account for 
uncertainty resulting from nonrepresentativeness of the study in relation to the residences we are 
modeling.  Weschler (2000) summarizes the results of several studies which measured rates of 
ozone removal in indoor environments, and concludes that “earlier measurements in homes and 
offices are in good agreement with the values reported by Lee and coworkers,” referring to the 
Lee et al. (1999) study, which he characterizes as “the most extensive set of measurements in the 
literature.”  Based on this review, we estimate the nonrepresentativeness uncertainty by 
assuming that the GM of 2.5 is unbiased but is correct to within 10 percent with 90 percent 
confidence, and represent this uncertainty with a normal distribution with a standard deviation of 
0.15. 
 
 It is reasonable to assume that this uncertainty is independent of the sampling 
uncertainty, and therefore we combine these uncertainties independently.  Table 10 summarizes 
our estimates of the uncertainty of ozone decay rates. 
 
Table 10.  Uncertainty of lognormal distributions of ozone decay rates input to APEX 
Source of Uncertainty Uncertainty of Geometric 

Mean (hr−1) 
Uncertainty of Geometric 
Standard Deviation (hr−1) 

Finite sample bootstrap 
(mean = 0,  st. dev. = 0.1) 

bootstrap 
(mean = 0,  st. dev. = 0.05) 

Nonrepresentativeness of 
the study 

normal distribution, 
mean = 0,  st. dev. = 0.15 

none 

 

Uncertainty of Vehicle Penetration Factors 
 
 A vehicle penetration factor distribution (normal, mean 0.3, standard deviation 0.232, 
lower bound 0.1, upper bound 1.0) was developed with data from the Cincinnati Ozone Study 
(Johnson et al, 1995).  This was a scripted study using three cars in one city in 1994, designed 
for the purpose of developing distributions for exposure modeling.  This distribution is consistent 
with other studies of concentration ratios inside and outside of vehicles (Chan et al., 1991; Chan 
and Chung, 2003; Riediker et al., 2003), but we have not found data that would support 
quantitative estimates of the uncertainty of this vehicle penetration factor distribution.  For this 
analysis we assume that the mean of the vehicle penetration factor distribution is likely to lie 
within ±50 percent of the APEX input value.  We feel that this estimate is more realistic than the 
implied uncertainty of zero if we do not include this source of uncertainty due to a lack of data.  
We represent this uncertainty with normal distributions such that the mean values input to APEX 
are between 0.15 and 0.45 with 90 percent probability, with an average value of 0.3.  
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Characterization of Population Demographics 

Uncertainty of Demographic Model Inputs  
 
 Data from the 2000 Census provide the demographics of the modeled populations.  When 
modeling a year close to the year of the Census, the uncertainty of the demographic mix of the 
population is relatively small, compared with the other uncertainties of APEX, and therefore we 
are not treating this as an explicit source of uncertainty in this analysis.  The Census data input to 
APEX at a tract level are: 
 

• age 
• gender 
• race (not used in this modeling analysis) 
• home location (Census tract) 
• work location (Census tract) 
• employment probabilities (by age, gender, tract) 
• between-tract commuting probabilities 

 
 However, we can quantify changes in the size of the total populations between the year of 
the Census (2000) and the year being modeled.  Table 11 lists the percent increase in population 
from 2000 to 2002 and 2004 for the 12 modeled CSAs (calculated from the Subcounty 
Population Estimates, April 1, 2000 to July 1, 2004, Population Estimates Program, U.S. Bureau 
of the Census Release dated June 30, 2005). 
 
Table 11.  Change in populations from 2000 to 2002 and 2004 

Urban Area (CSA) 2000 to 2002 
% change 

2000 to 2004 
% change 

Atlanta, GA 5 10 
Boston, MA 1 1 
Chicago, IL 2 3 
Cleveland, OH 0 0 
Detroit, MI 0 1 
Houston, TX 5 9 
Los Angeles, CA 3 7 
New York, NY 1 2 
Philadelphia, PA 1 2 
Sacramento, CA 6 11 
St. Louis, MO 1 2 
Washington, DC 3 5 

 



 29 

 The biases resulting from population changes likely cancel to a large degree when 
assessing relative differences between exposure scenarios. 
 

Modeling People’s Activity Patterns 
 
 APEX models the variability of activities of individuals by random sampling of daily 
activity patterns in the Consolidated Human Activity Database (CHAD).  CHAD consists of a 
collection of 24-hour “diaries” compiled from several studies.  Each diary specifies the activities 
of an individual during the day, the locations of the individual during the activities, and the time 
period of each activity.  The durations of the events in the diaries range from a few minutes to 
several hours.    

Uncertainty of the Activity Pattern Data  
 
 The activity pattern database (CHAD) input to APEX is a very complex multivariate 
database which, due to its complexity, is less amenable than other model inputs to the Monte 
Carlo approach to uncertainty analysis.  In particular, it would be very difficult to vary a set of 
characteristics of CHAD and generate different diary databases reflecting the varied 
characteristics.  In addition, we don’t know a priori what the important characteristics of CHAD 
are with respect to uncertainties of exposure modeling.  A further complication is that we must 
consider the uncertainties of CHAD in the context of the formation of a year-long activity 
sequence made up of diary days sampled from CHAD, for each individual simulated by APEX.  
The uncertainty that results from the method for assembling diary-days for each individual could 
also be important.  The following are limitations of CHAD that result in uncertainties in 
modeling exposures. 
 

• Diary errors, particularly the recall studies (72% of CHAD diaries are recall).  There is 
extensive literature on diary errors; Takarangi et al. (2006) provide an instructive 
commentary on factors which conspire to produce inaccurate diary data. 

• Incompatibility of the CHAD categories/codes with the coding schemes in the different 
studies in CHAD (each study’s codes are mapped to the CHAD codes) 

• Nonrepresentativeness of non-random studies 

• Nonrepresentativeness of older studies (42% are pre-1990, 98% are pre-1995) 

• Geographic (city-specific) nonrepresentativeness 

• Sample size limitation.  This is particularly important because of the stratification 
required for appropriate use of the data in exposure modeling. 

• Longitudinal autocorrelation of activities is not characterized. 

• Geographical locations of activities away from the home are unknown. 
 
 Since is difficult to characterize the uncertainties in CHAD and then to propagate these 
uncertainties to the model results using the Monte Carlo approach, we performed a sensitivity 
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analysis, comparing the APEX results based on all of the CHAD diaries with results from 
running APEX using only the CHAD diaries from the National Human Activity Pattern Study 
(NHAPS), the most comprehensive and nationally representative study in CHAD.  NHAPS is 
national in scope, with a random design, and comprises more than half of the CHAD diaries for 
all ages, and 43 percent of the diary days in CHAD for children ages 5 to 18. 
 
 APEX simulations were performed using only NHAPS diaries for all 12 urban areas, for 
the 2002 base case and the scenario of meeting the current NAAQS.  The results of this 
comparison for the 2002 base case simulations are presented in Table 12 for the percent of 
children at moderate exertion with 8-hour exposures above exposure levels of 0.06, 0.07, and 
0.08 ppm-8hr.  The comparison of estimated reductions in exposures to children at moderate 
exertion in going from the base case to the current standard is presented in Table 13. 
 
 There is very good agreement between the APEX results, whether all of CHAD or only 
the NHAPS component of CHAD is used, indicating that the model results are not being unduly 
influenced by any single study in CHAD.  This also indicates that the method used in APEX for 
stratifying diaries when assigning diaries to simulated individuals is appropriate. 
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Table 12.  Comparison of APEX 2002 base case simulations:  All CHAD vs. the NHAPS part of CHAD.  
Percent of children at moderate exertion with 8-hour exposures above levels of 0.06, 0.07, 0.08 ppm-8hr. 

 Above 0.06 ppm-8hr Above 0.07 ppm-8hr Above 0.08 ppm-8hr 

CSA 
All 

CHAD 
NHAPS 

only 
Absolute 
difference 

All 
CHAD

NHAPS 
only

Absolute 
difference

All 
CHAD 

NHAPS 
only

Absolute 
difference

Atlanta 64% 65% 1% 34% 38% 3% 11% 14% 4%

Boston 62% 60% (  2%) 41% 41% 0% 20% 21% 1%

Chicago 67% 66% (  0%) 40% 42% 2% 15% 16% 1%

Cleveland 74% 73% (  1%) 57% 58% 0% 31% 34% 3%

Detroit 70% 69% (  0%) 46% 49% 3% 18% 20% 2%

Houston 55% 55% (  0%) 26% 28% 2% 11% 12% 2%

Los Angeles 61% 60% (  1%) 35% 35% (  0%) 16% 17% 1%

New York 71% 70% (  1%) 49% 49% 0% 25% 25% 1%

Philadelphia 74% 73% (  1%) 57% 55% (  1%) 34% 34% 0%

Sacramento 64% 65% 1% 36% 39% 2% 13% 16% 3%

St. Louis 70% 69% (  1%) 50% 50% (  0%) 21% 22% 1%

Washington 72% 72% (  0%) 50% 51% 1% 25% 27% 2%

 
 
Table 13.  Comparison of APEX simulations:  All CHAD vs. the NHAPS part of CHAD.  Percent 
reduction1 from the 2002 base case to the current standard of the number of children at moderate 
exertion with 8-hour exposures above levels of 0.06, 0.07, 0.08 ppm-8hr. 

 Above 0.06 ppm-8hr Above 0.07 ppm-8hr Above 0.08 ppm-8hr 

CSA 
All 

CHAD 
NHAPS 

only 
Absolute 
difference 

All 
CHAD

NHAPS 
only

Absolute 
difference

All 
CHAD 

NHAPS 
only

Absolute 
difference

Atlanta 26% 23% (  3%) 57% 50% (  7%) 76% 71% (  4%)

Boston 21% 19% (  2%) 41% 39% (  2%) 58% 55% (  3%)

Chicago 27% 24% (  3%) 54% 55% 1% 84% 82% (  2%)

Cleveland 17% 16% (  2%) 46% 41% (  5%) 79% 79% (  1%)

Detroit 17% 15% (  2%) 44% 42% (  3%) 84% 79% (  5%)

Houston 58% 54% (  4%) 77% 73% (  3%) 91% 89% (  2%)

Los Angeles 88% 85% (  3%) 98% 96% (  1%) 100% 99% (  0%)

New York 37% 34% (  3%) 71% 67% (  4%) 91% 88% (  3%)

Philadelphia 18% 18% (  0%) 42% 39% (  2%) 74% 69% (  5%)

Sacramento 51% 48% (  3%) 81% 75% (  6%) 93% 91% (  2%)

St. Louis 9% 9% (  0%) 27% 26% (  1%) 53% 50% (  3%)

Washington 22% 20% (  2%) 49% 47% (  2%) 73% 73% (  0%)
1 The percent reductions are calculated as 100(base case results – current standard results)/(base case results). 
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Uncertainty of Longitudinal Diary Assembly  
 
 The method in APEX for assembling longitudinal diaries is intended to capture the 
tendency of individuals to repeat activities (this method is described in detail in the Exposure 
Analysis TSD).  There are two model input parameters that control the strength of this tendency 
in the simulated individuals, a population diversity statistic (D) and a within-person 
autocorrelation statistic (A).  For the current application, these statistics are based on the time a 
person spends outdoors each day, which is one of the most important determinants of exposure 
to ozone.  The D statistic reflects the relative importance of within-person variance and 
between-person variance in the outdoor time.  The A statistic specifies the day-to-day 
autocorrelation of outdoor time.  The values used for this analysis (0.2 for D and 0.2 for A) are 
based on one study of school age children, and may be considerably uncertain.  To reflect this 
uncertainty in the Monte Carlo analysis, we allow D and A to vary independently, uniformly 
within a factor of two of their base values (varying from 0.1 to 0.4)   Table 14 gives the 
distributions of (additive) uncertainty about the base values.  The uncertainty of longitudinal 
diary assembly is discussed further in the Model Uncertainty section below. 
 
Table 14.  Uncertainty of longitudinal diary parameters 

Parameter Distribution of uncertainty  
population diversity statistic (D) Uniform on [−0.1, 0.2] 
within-person autocorrelation statistic (A) Uniform on [−0.1, 0.2] 

 

Modeling Physiological Processes 
 

The uncertainties of the inputs to the physiological model are discussed in this section.  
Also see the discussion of the physiological model in APEX in the Model Uncertainty section 
below. 

Uncertainty of Physiological Model Inputs 
 
 The physiological model inputs to APEX are provided as parameters for distributions 
reflecting population variability.  These have been recently updated by Isaacs and Smith (2005). 
 The following distributions and parameters are input to APEX: 
 
• Body mass (BM) (kg) distributions by age and gender 
• Normalized maximal oxygen uptake (NVO2max) distributions by age and gender 
• Resting metabolic rate (RMR) (kcal/min) age- and weight-specific regression equations 
• Metabolic equivalent (MET) distribution for each activity type (dimensionless).  

Distributions for a few activities are occupation- and age-dependent. 
• Effective ventilation rate (EVR) cutpoints for specifying levels of exertion (liters of oxygen 

per minute per m2) (e.g., 1-hour average EVR > 16 indicates moderate or greater exertion) 
• Active PAI cutpoint (a person is characterized as “active” if the median of all of their daily 

PAI values is > 1.75) (dimensionless) 
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Body Mass Distributions 
 

The distributions of body mass come from the most recent data from the National Health 
and Nutrition Examination Survey (NHANES), compiled for the years 1999-2004 (CDC, 2005). 
 The NHANES body mass data are sampled and weighted to provide unbiased national estimates 
of body mass.  There will be some uncertainty due to regional/city differences.  However, the 
uncertainty in the body mass distributions is small compared to the other uncertainties in the 
APEX input data, and we are treating it as insignificant. 
 
NVO2max Distributions 
 
 NVO2max is used in the calculation of the maximum metabolic activity level that can be 
sustained for about five minutes, which ensures that modeled values do not exceed realistic 
limits. Since this rarely occurs, NVO2max is not an influential model input.  These distributions 
were recently updated based on an extensive review of the literature and acquisition of data 
(Isaacs and Smith, 2005).  The uncertainty of this input is significantly less influential than other 
uncertainties, and we are treating it as insignificant. 
 
Resting Metabolic Rates 
 

The age- and weight-specific RMR regression equation coefficients input to APEX are 
integral to the RMR model in APEX and are not intended to be modified by the user.  These are 
model inputs only for the purpose of facilitating sensitivity analyses.  The uncertainty of the 
model for predicting resting metabolic rates is discussed below in the section on model 
uncertainty. 
 
MET Distributions 
 

The distributions of activity-specific MET values are of fundamental importance to the 
physiological model in APEX.  Johnson (2003, section 9.6) states: 
 

Perhaps the weakest link in the algorithm is the step which requires the analyst to provide a 
distribution of possible MET values for each activity code.  These distributions are 
currently based on distributions provided by the developers of CHAD (McCurdy et al., 
2000).  Because available data were often insufficient to accurately define a distribution for 
each activity code, the developers tended to follow a conservative approach and over-
estimate the variability of each distribution.  Consequently, the Ve values produced by the 
ventilation rate algorithm may exhibit an excessive degree of variability. 

 
 McCurdy et al. (2000), in a paper describing the development of the MET distributions in 
CHAD, state: 
 

At this stage of development, the METs distribution assignment effort should be viewed as 
being preliminary in nature.  More work is needed to better relate activity codes used in 
human activity pattern surveys to those long used by exercise physiologists and clinical 
nutritionists. 
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Most of the MET distributions in CHAD were developed based on Ainsworth et al. 

(1993), which has been updated and revised in 2000 (Ainsworth et al., 2000; Ainsworth, 2003).  
CHAD has not yet been updated with this newer information. 

 
There is uncertainty in the MET distributions related to the question of how well the 

MET distributions for defined activities represent the actual exertion during the discrete event 
duration.  For example, a diary event for an hour may be coded “play basketball” (which has a 
relatively high MET value), but in reality the MET value may be much lower for the hour, since 
it is likely that the hour-long event contains periods of rest.  Also, there is uncertainty in the use 
of the CHAD MET distributions for children, the elderly, and persons with compromised health, 
since they were derived from healthy adults.  Puyau et al. (2002) show that adult-derived MET 
cutpoints are not applicable to children. 

 
Although the uncertainty of the assignment of MET to specific individuals and activities 

in APEX may be high, it is the MET distributions over the populations modeled that is crucial to 
producing realistic model results.  In order to assess this we compared the distributions of MET 
generated in APEX simulations to values in the literature.  Brochu, et al. (2006) provide 
summaries of a recent study which collected over 20,000 days of physiological measurements 
from over 1,000 individuals.  Table 15 compares the mean daily MET by gender and age group 
reported by Brochu et al. with the corresponding values from the APEX Boston simulations for 
normal-weight individuals (age 3 to 19 years with BMI less than the 85th percentile by age; ages 
20 to 96 years with BMI from 18.5 to 25 kg/m2).  The agreement is very good, with the APEX 
values generally higher by 0.1 to 0.2.  For the Monte Carlo uncertainty simulations, we shift the 
means of the MET distributions randomly (uniform distribution) within ±5 percent. 
 
 
Table 15.  Comparison of measured daily MET values with APEX modeled values 
Age group 

(years) 
Measured DMET 

(males) 
Measured DMET 

(females)
APEX DMET 

(males)
APEX DMET 

(females)

3 to < 10 1.5 ±0.2 1.5 ±0.2 1.7 ±0.2 1.6 ±0.2 

10 to < 18 1.7 ±0.2 1.7 ±0.3 1.8 ±0.3 1.8 ±0.3 

18 to < 30 1.8 ±0.2 1.8 ±0.3 2.0 ±0.5 1.9 ±0.4 

30 to < 60 1.8 ±0.2 1.8 ±0.3 2.0 ±0.4 1.9 ±0.4 

60+ 1.6 ±0.3 1.6 ±0.3 1.8 ±0.4 1.7 ±0.4 
1 Measured values from Table Web-4, Brochu, et al. (2006).  (dimensionless) 
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EVR Exertion Level Cutpoints 
 

The EVR cutpoints input to APEX define moderate and heavy exertion levels, used to 
stratify exposures by the level of exertion during exposures for the risk calculations (discussed in 
the Staff Paper) and are not considered as uncertain here.  (As opposed to the values of EVR 
calculated by APEX, which are uncertain.) 
 
Active PAI cutpoint 
 
 The Active PAI cutpoint is used to classify a simulated individual as active or not.  In 
order to address the uncertainty of the PAI cutpoint used in the exposure modeling analysis, one 
must have a clear definition of what it means for a person to be characterized as active.  Then 
one could assess the extent to which the PAI cutpoint classification is accurate.  We do not have 
such a definition, and have essentially been using the PAI cutpoint as defining an active person.  
We discuss this further in the section on model uncertainty below. 
 

Simulation Convergence 
 
 APEX is a probabilistic model with numerous inputs and parameters defined in terms of 
probability distributions which reflect the natural variability of the physiology and activities of 
individuals and of physical processes.  In order to realistically estimate distributions of 
population exposures, a sufficient number of individuals must be simulated by APEX to allow 
the input distributions to be sampled enough times so they are adequately represented. 
 
 For this discussion we denote the number of simulated individuals in an APEX run by 
NS.  As NS for a model run increases, the predicted exposure distributions converge to a limiting 
distribution.  If too few individuals are simulated, then the results of simulations with identical 
inputs will differ because too few values from the input distributions are being sampled to 
properly characterize them. 
 
 To illustrate this phenomenon, we ran thousands of APEX simulations with identical 
inputs, but with varying NS.  From each APEX run we calculated statistics based on the 
predicted distributions of exposures, for example, the fraction of the population who experience 
one or more hourly exposures greater than 0.12 ppm-hr.  For runs with very few people 
simulated, these statistics are not stable and can vary widely; but for runs with many people 
simulated, the statistics have values that are closer together for the different model runs.  This is 
illustrated in Figure 13, where we have plotted the spread of one statistic against NS.  The 
horizontal axis gives NS, for 1000, 2000, up to 15,000, simulated in each APEX run.  The 
vertical axis is the fraction of the population who experience one or more hourly exposures 
greater than 0.12 ppm-hr, and the collection of those values for all runs with a given NS is 
presented as a box plot (each model run provides one value).  The bottom and top edges of a box 
indicate the 25th and 75th percentiles; whiskers are at the 5th and 95th percentiles; and squares 
indicate values outside this range.  We see that for NS = 1000, this statistic ranges from 0.172 to 
0.242 (±17% from the median), while for NS = 15,000 the range is only from 0.198 to 0.213 
(±4% from the median). 
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Figure 13.  Distribution of the predicted fractions of population who experience any hourly 
exposures  > 0.12 ppm-hr as a function of the number of profiles simulated 
 
 
 In practice, we model the distribution of exposures with a single simulation, and the 
deviation of this distribution from the limiting distribution (obtained with very large NS) is an 
error, or uncertainty, due to lack of convergence.  Since model run time is proportional to NS, the 
NS that one can simulate depends on the computing capacity and the time requirements.  For the 
hundreds of APEX runs performed in support of the ozone NAAQS review, we simulated 60,000 
individuals in each APEX run, to balance the desire for convergence with time limitations. 
 
 We have assessed the extent of “non-convergence uncertainty” for NS = 60,000 for one 
city, Atlanta, for the 2002 base case scenario, by conducting several APEX simulations identical 
to the single simulation whose results are used in the exposure assessment.  Figure 14 (children) 
and Figure 15 (all people) illustrate this uncertainty with the distributions of the number of 
people predicted by APEX who experience one or more 8-hour average exposures above 0.08 
ppm-8hr, concomitant with moderate or greater exertion.  This distribution is made up of the 
predicted values for 1,268 APEX runs (one value from each run). 
 
 In the next four tables, we describe 12 such distributions; Table 16 and Table 17, 
respectively for children and all people, under moderate exertion, and Table 18 and Table 19 
respectively for children and all people, under any exertion level.  The last row in Table 16 
corresponds to Figure 14 and the last row in Table 17 corresponds to Figure 15.  For example, in 
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the distribution in Figure 14, 90 percent of the values are within 4.5 percent of the median (the 
median should be close to the limiting value as NS become large). 
 
 As expected, convergence is poorer for statistics that are in the tails of the distribution of 
population exposures.  As the exposure cutoff level increases (e.g., going down any column in 
these tables) or as the population group looked at becomes smaller (e.g., children vs. adults), a 
larger NS is required to achieve the same level of convergence.  This is illustrated in the 
summary provided by Table 20. 
 
 In these simulations conducted to assess convergence, we allow the starting seed of the 
sequence of random numbers generated by APEX to be picked randomly based on the date and 
time of the start of the run, so each simulation has a different starting seed.  In the exposure 
simulations for the 12 cities described in the draft Staff Paper, we used different starting seeds 
for each city and year simulated, but used the same seed for all runs for a given city and year.  
For example, the same seed was used for the nine 2002 New York simulations (base case, 
current standard, 7 alternative standards).  In this way the non-convergence uncertainty largely 
cancels out from the comparisons of the runs for a given city, although we have yet to assess the 
extent of this cancellation. 
 
 Since random seeds are used in the Monte Carlo uncertainty simulations, this aspect of 
uncertainty is accounted for in the Monte Carlo results. 
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Figure 14.  The distribution of the predicted number of children with at least one 8-hour 
exposure above 0.08 ppm-8hr at moderate or greater exertion for 1,268 repeated 
simulations of the Atlanta 2002 base case with 60,000 profiles 

 
 
 

Table 16.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All children, 
moderate exertion 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 7,873 7,727 (1.9%) 7,761 (1.4%) 7,815 (0.7%) 7,928 0.7% 7,977 1.3% 8,008 1.7%

0.07 4,277 4,169 (2.5%) 4,194 (1.9%) 4,234 (1.0%) 4,323 1.1% 4,361 2.0% 4,384 2.5%

0.08 1,332 1,272 (4.5%) 1,282 (3.8%) 1,306 (2.0%) 1,356 1.8% 1,378 3.5% 1,392 4.5%
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Figure 15.  The distribution of the predicted number of people with at least one 8-hour 
exposure above 0.08 ppm-8hr at moderate or greater exertion for 1,268 repeated 
simulations of the Atlanta 2002 base case with 60,000 profiles 
 

 
 

Table 17.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All people, 
moderate exertion 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 21,816 21,622 (0.9%) 21,664 (0.7%) 21,734 (0.4%) 21,892 0.3% 21,968 0.7% 22,004 0.9%

0.07 10,804 10,642 (1.5%) 10,679 (1.2%) 10,740 (0.6%) 10,865 0.6% 10,931 1.2% 10,960 1.4%

0.08 3,294 3,199 (2.9%) 3,218 (2.3%) 3,254 (1.2%) 3,331 1.1% 3,364 2.1% 3,383 2.7%
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Table 18.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All children 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 10,405 10,253 (1.5%) 10,281 (1.2%) 10,344 (0.6%) 10,470 0.6% 10,521 1.1% 10,558 1.5%

0.07 6,373 6,237 (2.1%) 6,266 (1.7%) 6,317 (0.9%) 6,419 0.7% 6,465 1.5% 6,499 2.0%

0.08 2,082 2,011 (3.4%) 2,025 (2.7%) 2,052 (1.4%) 2,114 1.5% 2,142 2.9% 2,157 3.6%

 
 

 
Table 19.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All people 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 44,107 43,912 (0.4%) 43,962 (0.3%) 44,030 (0.2%) 44,175 0.2% 44,242 0.3% 44,278 0.4%

0.07 25,819 25,613 (0.8%) 25,659 (0.6%) 25,736 (0.3%) 25,904 0.3% 25,974 0.6% 26,017 0.8%

0.08 9,463 9,322 (1.5%) 9,353 (1.2%) 9,403 (0.6%) 9,520 0.6% 9,570 1.1% 9,605 1.5%

 
 
 
Table 20.  Summary of convergence statistics for the number of people predicted by APEX 
who experience one or more 8-hour average exposures above exposure levels of 0.06, 0.07, 
and 0.08 ppm-8hr:  90 percent confidence intervals around the medians 
Exposure level 

(ppm-8hr) 
Children, 

moderate exertion
Children, 

any exertion 
All people, 

moderate exertion 
All people, 

any exertion 
0.06 ± 1.8% ± 1.5% ± 0.9% ± 0.4% 
0.07 ± 2.5% ± 2.1% ± 1.5% ± 0.8% 
0.08 ± 4.5% ± 3.5% ± 2.8% ± 1.5% 
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APEX MODEL FORMULATION UNCERTAINTY 
 
 Uncertainties are inherent in modeled representations of physical reality due to 
simplifying assumptions and other aspects of model formulation.  The methods for assessing 
input parameter uncertainty and model formulation or structure uncertainty are different.  It is 
difficult to incorporate the uncertainties due to the model formulation into a quantitative 
assessment of uncertainty in a straightforward manner.  The preferred way to assess model 
formulation uncertainty is by comparing model predictions with measured values, while having 
fairly complete knowledge of the uncertainty due to input parameters.  Whence the importance 
of model evaluation and the availability of data suitable to model evaluation.  In the absence of 
measurements that can be used to estimate model uncertainty, one must rely on informed 
judgment. 
 
 Our approach to assessing model formulation uncertainty is to partition this uncertainty 
into that of the components, or algorithms, of the model.  For each of the algorithms within the 
model, we will discuss the simplifying assumptions and those uncertainties associated with the 
algorithms which are distinct from the input data uncertainties.  Where possible, we will evaluate 
these algorithms by comparing their predictions with measured data.  Otherwise, we will 
formulate an informed judgment as to a range of plausible uncertainties for the algorithms.  We 
will assemble the different types of uncertainties to present an integrated assessment of model 
uncertainty. 
 
 It should be noted that data collection efforts in the near future would best serve to reduce 
uncertainties by improving the inputs to the current algorithms and not to derive better 
algorithms.  Uncertainty would be reduced significantly just by the use of better inputs.  For 
example, APEX can model the dependence of AER distributions on hourly temperature, 
humidity, and wind speed, which are known to influence AERs, but data are not available to 
characterize these relationships.  APEX has the flexibility to take advantage of much more data 
than are currently available. 
 
 There are several algorithms in APEX containing simplifying assumptions that have the 
potential to introduce uncertainty into the model, including the following: 
 
• demographic profiles model 
• longitudinal diary construction model 
• collapsing the numerous microenvironments in the diaries to 12 modeled microenvironments 
• modeling movements of individuals (commuting, school, shopping, etc.) 
• microenvironment concentration model – factors approach 
• microenvironment concentration model – mass balance approach 
• modeling near-roadway titration of ozone by NO  
• model for assigning physiological characteristics to individuals 
• MET model 
• ventilation model 
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The Treatment of Variability and Covariability in Apex 
 

 Assessment of the extent to which APEX correctly models variability and covariability is 
central to an understanding of the model uncertainty, and is summarized here. 

 
APEX simulates individuals and then computes exposures to ozone concentrations for 

each of these simulated individuals.  The individuals are selected to represent a random sample 
from a defined population.  The collection of individuals represents the variability of the target 
population, and accounts for several types of variability, including demographic, physiological, 
and human behavior.  Typically more than 50,000 individuals are modeled in order to capture a 
wide range of variability. 
 
 APEX incorporates stochastic processes representing the natural variability of personal 
profile characteristics, activity patterns, and microenvironment parameters.  In this way, APEX 
is able to represent much of the variability in the exposure estimates resulting from the 
variability of the factors effecting human exposure.  APEX is also designed to account for 
covariability, or linear and nonlinear correlation, among the model inputs. 
 

APEX models variability and covariability in two ways: 

• Stochastic.  The user provides APEX with probability distributions characterizing the 
variability of input parameters.  These are treated stochastically in the model and the 
computed distributions of exposures reflect this variability.  For example, the rate of 
decay of ozone in houses depends in a complex way on several factors which we are not 
able to explicitly model at this time.  However, we can specify a distribution of decay 
rates which reflects observed variations in ozone decay rates.  APEX randomly samples 
from this distribution to obtain values which are used in the mass balance model.  
Covariability is modeled through the use of conditional distributions.  If two or more 
parameters are related, conditional distributions which depend on the values of the 
related parameters are input to APEX.  For example, the distribution of air exchange rates 
(AERs) in a house depends on the outdoor temperature and whether or not air 
conditioning (A/C) is in use.  In this case, a set of AER distributions is provided to APEX 
for different ranges of temperatures and A/C use, and the selection of the distribution in 
APEX is driven by the temperature and A/C status at that time. 

• Explicit.  For some variables used in modeling exposure, APEX models variability and 
covariability explicitly and not stochastically.  For example, hourly-average ambient 
ozone concentrations and temperatures are used in model calculations.  These are input to 
the model for every hour in the time period modeled, and in this way the variability and 
covariability of concentrations and hourly temperatures are modeled explicitly. 

 
Each of these methods allows for linear and nonlinear relationships between variables to be 
modeled.  Table 21 lists the components of exposure variability which are modeled by APEX. 
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Table 21.  Components of exposure variability modeled by APEX 
Parameter Dimensions of 

Variation in APEX 
Treatment in APEX 

Population demographics (age, gender, race, 
employment, residence location, work 
location) 

Individuals, by 
Census tract 

Random samples from Census 
tracts 

Commuting Individuals, by 
Census tract 

Random samples from Census 
tracts 

Physiology (weight) Individuals Distributions by age and gender 
Physiology (resting metabolic rate, maximum 
level of sustained metabolic activity, oxygen 
uptake per unit of energy expended) 

Individuals See section 4.3 in the APEX 
TSD. 

Physiology (blood volume, lung diffusivity, 
endogenous CO production rate, amount of 
hemoglobin in the blood) 

Individuals See section 4.3 in the APEX 
TSD.  These parameters are not 
used for modeling ozone. 

Ambient pollutant concentrations Space and time 
(hourly) 

Hourly values at a set of 
locations are input; values from 
the closest location are used. 

Ambient meteorological data Space and time 
(hourly and daily) 

Hourly values at a set of 
locations are input; values from 
the closest location are used; 
daily values are calculated in 
APEX. 

Spatial concentration variability within 
microenvironments 

Microenvironment 
type and 
geographical region 

This variability can be 
incorporated into the variability 
of mass balance or factors 
model parameters. 

Spatial concentration variability within air 
quality districts 

Microenvironment 
type and 
geographical region 

This variability can be 
incorporated into the variability 
of mass balance or factors 
model parameters. 

Within-hour concentration variability Microenvironment 
type and 
geographical region 

This variability can be 
incorporated into the variability 
of mass balance or factors 
model parameters. 

Microenvironment Microenvironment 
type 

APEX can model any number 
of user-defined 
microenvironments 

 
 

There are also model inputs which are not tied to the individual which contribute to the 
variability of the modeling results.  These include spatially and temporally varying air quality 
concentrations and meteorological variables, as well as a number of factors involved in the 
calculation of indoor and in-vehicle microenvironmental concentrations.  The variability of air 
quality and meteorological data is modeled by providing hourly average, spatially varying inputs 
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to APEX.  Variability for these inputs for time scales less than one hour can be modeled with 
parameters of the microenvironment model.  The variability of other parameters is treated by 
specifying distributions for these parameters, from which APEX randomly samples values. 
 
 Correlations and non-linear relationships between variables input to the model can result 
in the model producing incorrect results if the inherent relationships between these variables are 
not preserved. 
 
 APEX has a sophisticated method for modeling linearly and non-linearly correlated input 
data.  This is accomplished by providing inputs that enable the correlation to be modeled 
explicitly within APEX.  For example, there are non-linear relationships between the outdoor 
temperature and rates of air exchange in homes (or automobiles).  One factor that contributes to 
this is that windows tend to be closed more often when temperatures are low or high than when 
temperatures are moderate.  This relationship is explicitly modeled in APEX by specifying 
different probability distributions of air exchange rates for different ambient temperatures. 
 
 Thus, the APEX formulation allows for relationships between input data to be modeled, 
provided that enough is known about these relationships to specify them.  The degree to which 
these relationships are unknown contributes to the uncertainty of the results.  For those 
relationships which APEX explicitly models the correlation, uncertainty arises from 
misspecification of the correlation in the model inputs. 
 
 Table 22 lists different types of covariability and how they are modeled in APEX.  The 
center column of this table indicates whether or not APEX explicitly models this type of 
covariability. 
 
Table 22.  Important components of covariability 
Type of Covariability Modeled 

in APEX? 
Treatment in APEX / Comments 

Within-profile correlations 1 Yes Activities, physiology, 
microenvironments 

Between-profile correlations No Not important 
Correlations between profile variables and 
microenvironment parameters 

Yes Profiles are assigned 
microenvironment parameters 

Correlations between profile variables (age, 
gender) and activities 

Yes Age and gender are used in activity 
diary selection 

Correlations between activities and 
microenvironment parameters 

No E.g., opening windows when cooking 
or smoking.  Might be important, but 
do not have data. 

Correlations among microenvironment 
parameters in the same microenvironment 

Yes Modeled with joint conditional 
variables 
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Type of Covariability Modeled 
in APEX? 

Treatment in APEX / Comments 

Correlations between demographic variables 
and air quality. 

Yes This is modeled with the spatially 
varying demographic variables and 
air quality input to APEX. 

Correlations between meteorological 
variables and activities 

Yes Temperature is used in activity diary 
selection 

Correlations between meteorological 
variables and microenvironment parameters 

Yes The distributions of 
microenvironment parameters can be 
functions of temperature 

The consistency of the occupation (and time 
spent commuting) for an individual from 
one working day to the next. 

No Simulated individuals who are 
employed are assigned activity 
diaries without regard to occupation. 
 This would be important for 
modeling outdoor workers. 

1 We use the term “correlation” to encompass linear and nonlinear relationships. 
 

Errors in Coding 
 
 APEX has undergone fairly extensive testing, but has not been subjected to a rigorous, 
exhaustive test regime.  Incorrect implementation of algorithms as documented falls into the 
realm of coding errors.  We will not attempt to quantify the uncertainties in the model 
predictions that might be the result of coding errors. 
 

Errors in Algorithms 
 
 The likelihood of errors in algorithms can be reduced by a scientific peer review of the 
documentation of the model algorithms.  We will not attempt to quantify a likely range of 
uncertainties due to possible errors in algorithms.  However, we present an example of such an 
error which resulted in increased uncertainty of our exposure modeling results. 
 
 In our review of the APEX modeling results, we uncovered an error in the algorithm for 
estimating ventilation rates.  This algorithm (section 2.5.1, Exposure Analysis TSD) included 
terms for uncertainty as well as variability.  Since only variability should be reflected by the 
algorithm, this error erroneously inflates the variability of ventilation rates, most noticeably for 
older adults.  This error primarily affects the highest percentiles of the distributions of ventilation 
rates.  For adults 70 years of age and older, the 99.9th percentile of the ventilation rates 
distribution is a factor of two too high; for children, the difference is less than 1.5% at the 99.9th 
percentile.  Therefore, while the estimates of exertion levels are acceptable for children, they are 
overestimated for the general population. 
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Ambient Air Quality Concentrations 
 
 Ambient concentrations are not explicitly modeled by APEX; they are provided as input 
data.  APEX is capable of using input data with highly resolved spatial and temporal resolution.  
Model uncertainty associated with ambient concentrations results from erroneous 
characterization of the levels and/or variability of concentrations in very localized areas, e.g., 
close to sources or sinks. 
 
 For ozone modeling, one important process that may not be adequately modeled is the 
effect on exposures of the decrease in ozone concentrations downwind of roadways due to 
titration by NO emitted by cars and trucks.  APEX does simulate the decrease in ozone levels 
downwind of roadways, and the effect of this on exposures of people engaged in activities near 
roadways, but does not differentially model the affects on people in homes close to roadways 
(vs. homes not close to roadways).  A sensitivity analysis (described above) indicates that this 
has a small effect on the estimated frequencies of 8-hour average exposures at levels above 0.06 
ppm-8hr. 
 

Meteorological Data 
 
 Meteorological variables are not explicitly modeled by APEX; they are provided as input 
data.  APEX is capable of using input data with highly resolved spatial and temporal resolution, 
and we do not consider model structure uncertainty associated with meteorological data to be an 
issue. 
 

Modeling Concentrations in Microenvironments 
 
 There are two models in APEX for calculating concentrations in microenvironments, the 
mass balance and the factors models (see the APEX TSD for details): 
 

decayexchangeairnpenetratioproximityambient fxfxfxfxC
dt
dC

=  (mass balance model) 

npenetratioproximityambient fxfxCC =   (factors model) 
 
 One can raise questions as to the appropriateness of the assumptions of the mass balance 
model in APEX for estimating concentrations in microenvironments, such as linearity 
assumptions and assumptions that parameters (e.g., air exchange rates, source strengths, 
infiltration factors, and deposition rates) can be treated as constant in time over an hour.  
However, of much greater importance for model uncertainty is how the inputs to the mass 
balance model (air exchange rates, decay rates, etc.) are modeled, so our discussion will focus on 
these.  The factors model formulation has no model uncertainty, by definition of that model’s 
parameters. 
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Air Exchange Rate 
 
 APEX models the dependence of AERs on the microenvironment characteristics and 
temperature, but not the behavior of the occupants, which is known to influence AERs.  The 
analysis of the uncertainties of the AER distributions input to APEX encompasses this aspect of 
model uncertainty. 
 

Deposition Processes 
 
 The rate of deposition of ozone to some materials diminishes with cumulative exposure 
to ozone.  This is not necessarily a small effect.  In one study, 60 to 90 percent more ozone was 
scavenged by fiberglass insulation that had not been previously exposed to ozone, than by 
insulation with no previous exposure (Liu and Nazaroff, 2001; CD, Appendix AX3, page 179).  
Data are not available to allow this to be explicitly modeled by APEX or to assess the 
uncertainty that may result from this process.  
 

Chemical Reaction Processes 
 
 Ozone reacts with a number of indoor pollutants, such as NO from gas stoves and VOCs 
from consumer products.  Titration of ozone by NO from gas stoves reduces the concentration of 
ozone indoors.  Lee et al. (1999) find ozone concentrations dropping by a factor of five within 
seven minutes of a gas stove being turned on.  If this process were modeled, it would have the 
effect of slightly reducing some people’s exposures. 
 
 Ozone reacts slowly with most other indoor pollutants, and in general this is a minor 
removal process compared to air exchange and surface removal (Weschler, 2000).  Aside from 
the gas stove effect, the lack of a more refined treatment of indoor air chemistry is not 
considered to be a limitation of APEX for modeling ozone exposures. 
 

Characterization of Population Demographics 
 
 The population demographics are taken directly from the 2000 Census and not modeled 
by APEX.  Therefore, although there is uncertainty in the values input to APEX, there is no 
model structure uncertainty associated with this characterization. 
 

Modeling Activity Patterns 
 
 The following are population characteristics that contribute to the variability of exposures 
but which are not fully modeled in APEX.  Of course, some of these are more important than 
others.  Additional data collection will be required to assess the extent to which these are 
limitations. 
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• Occupational category 
• Life cycle (see, e.g., Zuzanek and Smale, 1992) 
• Socio-economic status and educational level 
• Longitudinal stability in occupation, exercise levels, and leisure activities 
• Geographical locations of activities away from the home 
• The specific microenvironments visited away from home 

 
 Even though some of these may influence exposures, they will not necessarily have much 
effect on the population distribution of exposures.  In this case, there would be no reason to 
model them explicitly, unless one wanted to break out results by that variable.  The uncertainty 
of the activity data input to APEX is likely larger than the model structure uncertainty associated 
with these limitations. 
 
 Behavior changes in response to ozone pollution or in response to air quality index (AQI) 
notification (“averting behavior”) is not being taken into account in our exposure modeling.  
Eiswerth et al. (2005) find that increased ozone levels appear to influence the amount of time 
that asthmatic adults spend in different activities.  In a national survey, Mansfield and Corey 
(2003) find a significant fraction of the people surveyed modifying their activities in response to 
ozone alerts.  We do not feel that this is a relatively influential uncertainty at this time, however, 
this aspect of people’s activities presumably will become more important in the future. 
 
 The algorithm in APEX which sequentially (longitudinally) assigns activity diaries to 
simulated individuals introduces a degree of realism reflecting the ways that people tend to 
repeat certain activity patterns.  We have performed sensitivity analyses to assess the impact of 
this treatment (described in the Exposure Analysis TSD), and its parameters are included in the 
Monte Carlo uncertainty analysis.  Additional data on longitudinal activity patterns are needed to 
be able to evaluate this model. 
 
 The assignment of activity diaries to individuals is the primary determinant of the 
frequency of repeated exposures for individuals.  This is an important consideration, since 
multiple exposures pose a greater health concern than single exposures.  The new longitudinal 
methodology does increase the similarity of daily activities for a given simulated individual in 
terms of the time spent outdoors, and some simulated individuals tend to spend more time 
outdoors than others, compared to a more random assignment of diaries from CHAD to modeled 
individuals.  However, repeated routine behavior from one weekday to the next is not simulated. 
 For example, there are no simulated individuals representing children in summer camps who 
spend a large portion of their time outdoors, or adults with well-correlated weekday schedules. 
 
 There are not sufficient multiple diaries from single individuals in CHAD to be able to 
directly evaluate the implications of this shortcoming; and we performed an assessment of 
APEX’s predictions of outdoor workers’ exposures to evaluate the repeated exposure results 
generated by APEX.  Individuals who work outdoors tend to experience the highest 8-hour 
exposures to ozone compared to other groups of adults, and a significant number of outdoor 
workers work at an elevated activity level.  Thus, this is an important segment of the population 
to consider in an ozone exposure and risk assessment.  APEX does not adequately model 
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exposures for this group since there is not have sufficient information to properly model the 
populations of outdoor workers in urban areas, due to the lack of data on activity patterns and 
exertion levels representative of this group. 
 
 In order to investigate the uncertainty of the exposure analysis with respect to repeated 
exposures we calculate for two urban areas (Atlanta and Sacramento) crude estimates of the 
exposures to the population that work outdoors during the day and discuss the results in the 
context of the APEX results for the general population of working adults. 
 
 Our estimate of the number of outdoor workers in an area is based on the May 2005 
estimates of employment by occupation from the Occupational Employment Statistics (OES) 
Survey (US Bureau of Labor Statistics, 2005), coupled with estimated ranges for the proportion 
of all-day outdoor workers in each employment category.  Specifically, for each employment 
category (7-digit Standard Occupational Classification code) we assigned high and low estimates 
of the fraction that work outdoors 8 or more daytime hours five days per week and the fraction 
that work outdoors 8 or more daytime hours only three days per week.  For example, the 
estimates for the category “Landscaping and groundskeeping workers” are: 
 

Low estimates High estimates 
50%  5 days/week  80%  5 days/week 
10%  3 days/week  10%  3 days/week 

 
 Appendix A lists the OES employment data, our low and high estimates for the 
proportions of all-day outdoor workers, and the resulting low and high estimates of the numbers 
of outdoor workers for 65 out of approximately 700 OES employment categories, for the 
Atlanta-Sandy Springs-Marietta, Georgia and the Sacramento--Arden-Arcade--Roseville, CA 
MSAs.  This results in the outdoor worker estimates in Table 23. 
 
Table 23.  Estimates of 8-hour outdoor workers in the Atlanta and Sacramento MSAs 
 Low Estimates High Estimates 
 3-day workers 5-day workers 3-day workers 5-day workers 
Atlanta MSA 22,500 40,400 57,800 90,500 
Sacramento MSA 11,300 22,000 23,900 43,800 
 
 We estimate exposures for the outdoor workers by assuming that the 5-day workers are 
exposed to the 9:00 AM to 5:00 PM 8-hour average outdoor ozone concentrations on all 
weekdays in the ozone season and that the 3-day workers are exposed to random subsets of 3/5 
of these days.  This is not necessarily the period of the daily maximum 8-hour average outdoor 
concentrations of ozone, although there is usually a large overlap of these periods.  Also, it is not 
necessarily the same period of time that an individual is working outdoors. 
 

Table 24 summarizes the comparisons performed for Atlanta and Sacramento for 
repeated exposures to levels above 0.06, 0.07, and 0.08 ppm-8hr for the 2002 base cases.  The 
APEX numbers are for all workers, of which outdoor workers is a subset. 
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Table 24.  Comparison of estimated outdoor workers’ repeated exposures with APEX 
results for all workers, in Atlanta and Sacramento, 2002.  Numbers of people with at least 
six repeated 8-hour exposures above 0.06, 0.07, and 0.08 ppm-8hr.1 
 # above 0.06 ppm-8hr # above 0.07 ppm-8hr # above 0.08 ppm-8hr 
 Est. outdoor 

workers 
APEX all 

workers
Est. outdoor 

workers
APEX all 

workers
Est. outdoor 

workers 
APEX all 

workers
Atlanta 63,000 – 

150,000 
74,000 62,000 – 

140,000
220 41,000 – 

94,000 
0

Sacramento 30,000 – 
61,000 

30,000 27,000 – 
55,000

95 21,000 – 
42,000 

0

1 The numbers in this table have been rounded to two significant digits. 
 

 Comparison of estimates of repeated exposures to outdoor workers with the 
corresponding APEX estimates for all workers reveals that APEX significantly underestimates 
the number of multiple exposures for a large subgroup of working adults.  As discussed above, 
this underestimation results primarily from the way that people’s activities are modeled, which 
does not properly account for repeated behavior of individuals. 
 

Modeling Physiological Processes 

Overview of the Physiological Model 
 
 The model in APEX of physiological processes that are relevant to inhalation exposure 
and dose is significantly improved over earlier (pre-2005) versions of APEX.  APEX currently 
has a physiological model for ventilation rates (the primary driver of dose of ozone) which 
accounts for prior energy expenditure patterns (also known as oxygen debt [fatigue] and excess 
post-exercise oxygen consumption [EPOC]), described in Appendix B of the Exposure Analysis 
TSD.  The physiological calculations do not directly affect APEX’s estimation of exposures; 
rather, they are used to characterize the population according to exertion levels and “active” or 
not.  These are important for exposure-based estimates of risk. 
 
 The physiological model produces two quantities which are used in this exposure 
assessment, an effective ventilation rate (EVR), which is used to characterize levels of exertion 
in compiling summary exposure tables, and a physical activity index (PAImed), used to 
characterize simulated individuals as “active.” 
 
 One of the key variables in this model is the “MET” (metabolic equivalent, Ainsworth, 
2002), defined as the ratio of the metabolic rate of energy consumption for an activity to the 
resting metabolic rate (RMR).  For each simulated individual, APEX generates an event-by-
event time-series of MET values based on activity-specific MET distributions (some MET 
distributions are occupation/age dependent as well).  Events are specified in the diaries, and last 
from 1 to 60 minutes.  This time series of MET values is then adjusted for fatigue and excess 
post-exercise oxygen consumption (METadj).  Then the oxygen consumption rate, VO2, is 
calculated for each event as VO2 = METadj · RMR · ECF, where ECF is a person-specific energy 
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conversion factor and RMR is the person-specific resting (basal) metabolic rate.  The expired 
ventilation rate VE, is calculated by a stochastic model using VO2, body mass, age, and gender.  
The effective ventilation rate EVR = VE / BSA is averaged over one and eight hours, and used to 
characterize average levels of exertion.  Body surface area (BSA) is currently modeled as a 
simple deterministic function of body mass (BM), and there is some uncertainty in the regression 
equation parameters. 
 
 Thus, EVR is a complex function of the activity-specific MET and person-specific RMR, 
ECF, BSA, and BM, which vary with age and gender.  The person-specific parameters are 
modeled in such a way as to realistically reflect variability in the populations.  For example, 
different 36-year old males will have different physiological parameters reflective of the 
variation observed across the population of 36-year old males. 
 
 Once the final MET time series is for a person calculated, a daily average physical 
activity index (PAI) for the simulated individual is calculated as the time-weighted average of 
MET values for each day.  The median of the daily PAI values is calculated for each profile. 
This median daily PAI value (PAImed) is used in the characterization of persons as “active.”  
 

Uncertainty of the Physiological Model 
 
The Resting Metabolic Rate Model 
 

The RMRs for individuals are estimated by a regression equation with coefficients 
specific to age and gender, which were developed by Schofield (1985).  (See Johnson, 2003, 
Table 9-11.) Since then, studies have improved on this model.  For example, Huang et al. (2004) 
find that the best predictive equation for RMR for obese adults include terms for age, gender, 
weight, height, and diabetes.  RMRs are used in APEX to derive ventilation rates, which we are 
able to evaluate against values in the literature.  Therefore, we are not investigating the 
uncertainties of RMRs in APEX at this time. 
 
The Ventilation Rate Model 
 
 We evaluated the APEX algorithm for calculating ventilation rates by comparing them 
with values in the literature.  Detailed distributions of measured ventilation rates are reported by 
Brochu. et al. (2006) for normal-weight individuals (age 3 to 19 years with BMI less than the 
85th percentile by age; ages 20 to 96 years with BMI from 18.5 to 25 kg/m2).  Table 25 
compares the mean daily ventilation rates by gender and age group reported by Brochu et al. 
with the corresponding values from the APEX Boston simulations.  The APEX ventilation rates 
are significantly higher (by 2 or more) for ages less than 7 and greater than 39, and in fairly good 
agreement with the measured values for ages 7 to 39. 
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Table 25.  Comparison of measured ventilation rate distributions with APEX modeled 
values (m3/day) 
Age group 

(years) 
Measured VE  

(males) 
APEX VE  

(males)
Measured VE 

(females)
APEX VE  
(females)

2 to < 5 7.6 ±1.3 10.7 ±2.2 7.1 ±1.2 10.4 ±2.1 

5 to < 7 8.6 ±1.2 11.2 ±2.1 8.2 ±1.3 10.4 ±2.0 

7 to < 11 10.6 ±2.0 12.1 ±2.6 9.8 ±1.7 11.7 ±2.5 

11 to < 23 17.2 ±3.7 15.1 ±4.5 13.3 ±2.6 13.2 ±3.6 

23 to < 30 17.5 ±2.8 16.5 ±5.2 13.7 ±2.3 13.3 ±3.9 

30 to < 40 16.9 ±2.5 16.9 ±5.2 13.7 ±1.8 13.9 ±3.7 

40 to < 65 16.2 ±2.7 18.2 ±5.2 12.3 ±2.1 14.4 ±3.6 

65 to ≤ 96 13.0 ±2.5 16.3 ±4.6 9.8 ±2.2 12.2 ±3.1 
1 Measured values from Table 2, Brochu, et al. (2006), rounded to 1 decimal place.  
 
 
Classification of Individuals as Active 
 
 This is an area where a great deal of research is being done for both adults and children.  
Duke et al. (2003) summarize nationally representative information about levels and types of 
physical activity among children aged 9–13 years.  Puyau et al. (2002) show that adult-derived 
MET cutpoints are not applicable to children and can lead to erroneous conclusions regarding 
physical activity levels in children. 
  
 APEX uses the PAI cutpoint to classify individuals as active or not active.  There are two 
shortcomings of this method.  First, it is not clear what the relevant classification of specific 
activities is in terms of levels of physical exertion.  Second, given such a classification of 
activities, it is not clear how to best characterize a given individual as “active” or not. 
 
 There are various “definitions” or interpretations of how to classify levels of exertion in 
the literature.  The Centers for Disease Control and Prevention (CDC) and the American College 
of Sports Medicine categorize physical activity levels in adults as light: < 3 MET, moderate: 3 to 
6 MET, and vigorous: >6 MET.  Reland et al. (2004) use low activity: < 4,185 kJ/week (1,000 
kcal/week) high: > 8,370 (2,000) moderate: in between, where 1 MET = 4.185 kJ kg-1 h-1.  Marty 
et al. (2002) categorize activity levels according to ventilation rates (l/min per kg body weight), 
with different classifications for ages > 12 and ≤ 12 years.  McCurdy and Graham (2004) present 
a survey of the exercise physiology literature of different measures used to define moderate and 
vigorous physical activity, and find many different ways that researchers are categorizing 
activity levels. 
 



 

 53 

 There is less research in the area of characterizing individuals (as opposed to activities) 
in terms of how active they are, particularly in the context of how it influences their health risk 
from exposure to ozone. 
 
 Sapkota et al. in their 2005 study on adult participation in recommended levels of 
physical activity, use a definition of “regular physical activity” given by CDC2.  Moderate-
intensity activity is described to respondents as any activity "that causes small increases in 
breathing and heart rate," and vigorous-intensity activity is described as any activity "that causes 
large increases in breathing or heart rate."  Respondents are classified as active at the minimum 
recommended level if they report moderate-intensity activity at least 30 minutes per day, 5 or 
more days per week, or vigorous-intensity activity at least 20 minutes per day, 3 or more days 
per week.  The Behavioral Risk Factor Surveillance System (BRFSS) survey for 2003 reports 
46% of U.S. adults to be active by this definition (Sapkota et al., 2005). 
 
 APEX characterizes a person as active if their median daily average MET is greater than 
1.75.  One factor that contributes to the uncertainty of this model is the fact that the daily average 
MET is largely influenced by the number of hours spent sleeping, which is not correlated with 
most definitions of active people.  A better characterization might be the daily maximum 12-hour 
average MET, which would reflect levels of activity while not sleeping.  In order to characterize 
the uncertainty associated with the estimation of exposures to an “active” population, we can use 
the CDC definition of “regular physical activity” for the definition of an active person.3 
 

Unknown Model Uncertainty 
 
 There are structural uncertainties of APEX of which we are currently unaware.  We will 
attempt to characterize their uncertainties as they come to light.  We are proceeding on two 
fronts to uncover additional uncertainties: peer review and diagnostic model evaluation. 
 
 Perhaps there is a correlation between the tendency of people to open windows and their 
tendency to engage in outdoor activities.  If so, people who spend more time outdoors would 
tend to have higher AERs at home and work, and ignoring this could bias the modeled 
distribution of exposures.  This is conjecture, but is an example of potential unknown model 
uncertainty. 
 

                                                 
 2 http://www.cdc.gov/nccdphp/dnpa/physical/terms/index.htm 
 3 Analysis of uncertainty of the exposure modeling results uncovered an error in how children are 
characterized as active, which resulted in an overestimate of the number of active children in the population.  Thus, 
an evaluation of the uncertainty associated with the characterization of children as active is not included at this time. 
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UNCERTAINTY ANALYSIS RESULTS 
 
 As discussed above, a Monte Carlo approach was selected for a detailed uncertainty 
analyses.  Monte Carlo methods for analysis of model uncertainty use statistical sampling 
techniques to estimate statistics which characterize uncertainty.  Essentially, a Monte Carlo 
approach involves performing many model runs with model inputs randomly sampled from 
distributions reflecting the uncertainty of the inputs.  This propagates the uncertainty of the 
model inputs through to the model results, taking into account input parameter dependencies and 
the interaction of uncertainties within the model.  These simulations provide uncertainties of 
model results in terms of uncertainty distributions of the model outputs.  From these we are able 
to calculate 95 percent uncertainty intervals (UI) for a particular model result as the interval from 
the 2.5th to the 97.5th percentile of the uncertainty distribution for that result. 
 
 The Monte Carlo uncertainty analysis performed accounts for the following sources of 
uncertainty (described above in the section Quantifying the Uncertainty of Apex Model Inputs): 

• Ambient air concentrations measurement error 
• Spatial interpolation of ambient concentrations 
• Air exchange rates 
• Air conditioning prevalence rates 
• Ozone deposition and decay rates 
• Vehicle penetration factors  
• Longitudinal diary assembly parameters 
• Metabolic equivalents (MET) 
• Model convergence 

 
 The Monte Carlo uncertainty analysis was performed for Boston 2002, based on 
approximately 2000 APEX simulations for each of the base case and the current standard 
scenarios.  Each pair of simulations uses the same uncertain inputs and differs only by the air 
quality concentrations input to the model, so that we can assess the uncertainty of estimates of 
reductions in exposures in going from the base case to the current standard as well as the 
uncertainty of the estimates of exposures.  Uncertainties of model results for other areas and 
years are expected to be similar. 
 
 Figure 16 illustrates the uncertainty distributions for one model result, the percent of 
children with exposures above 0.06 ppm-8hr while at moderate exertion.  This distribution 
results from approximately 2000 Monte Carlo APEX simulations of the Boston 2002 base case 
with model inputs varied randomly according to their uncertainty.  The “point estimate” of 62 
percent is the result from the APEX simulation using our best estimates of the model inputs, as 
described in Section 4.5 of the Staff Paper.  The corresponding result from the Monte Carlo 
simulations ranges from 56 to 67 percent, with a 95 percent UI of 58 to 65 percent.  Figure 17 
and Figure 18 illustrate the uncertainty distributions for two other model results, the percents of 
children with exposures above 0.07 and 0.08 ppm-8hr while at moderate exertion. 
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Uncertainty distribution for the estimated percent of children with any 8-hour exposures 
above 0.06 ppm-8hr at moderate exertion (point estimate is 62%)

0

100

200

300

400

500

600

56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66% 67%

Percent of children

N
um

be
r o

f M
on

te
 C

ar
lo

 s
im

ul
at

io
ns

Uncertainty distribution for the estimated percent of children with any 8-hour exposures 
above 0.07 ppm-8hr at moderate exertion (point estimate is 41%)
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Figure 16.  Uncertainty of percent of children with exposures above 0.06 ppm-8hr  (Boston 
2002 base case) 

Figure 17.  Uncertainty of percent of children with exposures above 0.07 ppm-8hr  (Boston 
2002 base case) 
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 Uncertainty intervals are presented in Table 26 and Table 27 for the estimated 
percentages of all children and asthmatic children with exposures above different 8-hour 
exposure levels under moderate exertion.  The UIs for the estimated reductions in exposures, 
going from the 2002 base case to the current standard, for these two groups are given in Table 
28. Across these three tables, the spans of the 95 percent UIs range from 2 to 10 percentage 
points, and the point estimates are generally within 5 percentage points of the UI endpoints.  The 
uncertainties of the exposures to asthmatic children are slightly higher than for all children.  
These results are very positive, and the modeling uncertainty is small enough to lend confidence 
to the use of the model results. 

Uncertainty distribution for the estimated percent of children with any 8-hour exposures 
above 0.08 ppm-8hr at moderate exertion (point estimate is 20%)
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Figure 18.  Uncertainty of percent of children with exposures above 0.08 ppm-8hr  (Boston 
2002 base case) 
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Table 26.  Uncertainty of the estimated percent of children exposed at moderate exertion, 
Boston, 2002 

Exposure level 
(ppm-8hr) 

Air quality 
scenario

Point 
estimat

e 95% UI

0.06 base case 62% 58-65%

0.07 base case 41% 38-44%

0.08 base case 20% 19-24%

0.06 current standard 49% 46-52%

0.07 current standard 24% 23-27%

0.08 current standard 8.5% 8-10%
 
 
Table 27.  Uncertainty of the estimated percent of asthmatic children exposed at moderate 
exertion, Boston, 2002 

Exposure level 
(ppm-8hr) 

Air quality 
scenario

Point 
estimat

e 95% UI

0.06 base case 65% 60-67%

0.07 base case 43% 39-46%

0.08 base case 21% 19-25%

0.06 current standard 52% 48-56%

0.07 current standard 24% 23-30%

0.08 current standard 9% 8-11%
 
 
Table 28.  Uncertainty of the estimated percent reduction, from the base case to the current 
standard, of all children and asthmatic children exposed at moderate exertion, Boston, 
2002 

 All children Asthmatic children

Exposure level 
(ppm-8hr) 

Point 
estimate 95% UI

Point 
estimate 95% UI

0.06 21% 18-22% 19% 16-22%

0.07 41% 38-42% 43% 37-45%

0.08 58% 55-59% 58% 53-63%
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Key Findings 
 
 Uncertainty of the APEX model predictions results from uncertainties in the spatial 
interpolation of measured concentrations, the microenvironment models and parameters, 
people’s activity patterns, and, to a lesser extent, model structure.  The predominant sources of 
uncertainty appear to be the activity pattern information and the spatial interpolation of ambient 
concentrations from monitoring sites to other locations.  The primary findings of these analyses 
are the following: 

• The Monte Carlo analysis of the uncertainties of the APEX model estimates of exposure 
distributions indicates that the uncertainty is relatively small.  The APEX estimates of the 
percent of children or asthmatic children with exposures above 0.06, 0.07, or 0.08 ppm-8hr 
under moderate exertion have 95% uncertainty intervals of at most ±6 percentage points. 

• The non-representativeness of the CHAD activity diaries with respect to the specific urban 
areas and time periods modeled indicates uncertainties of only a few percent in the APEX 
estimates of the numbers of children with exposures above 0.06, 0.07, or 0.08 ppm-8hr 
under moderate exertion. 

• The effect on exposures in residences of the titration of ozone by mobile source NO is 
small, on the order of 1 to 3 percent. 

• APEX significantly underestimates the frequency of occurrence of individuals 
experiencing repeated 8-hour average exposures greater than 0.06 ppm-8hr.  The reasons 
for this are understood, and further research will be required to address this. 

 
 In the future, we expect to have better data for characterizing personal exposure and dose 
to ozone and other pollutants and integrating these with controlled human exposure health 
studies and with epidemiological analyses.  Important research needs to reduce uncertainties 
associated with the current ozone exposure analysis include conducting studies to provide better 
information for refining methods for assessing exposure to ozone as well as other pollutants.  
E.g., activity diaries for sensitive groups; distributions of short-term ozone concentrations near 
roadways and inside homes as functions of influential covariates.  There is also a need for 
personal exposure monitors with shorter averaging times and lower detection limits. 
 
 The activity diary data base CHAD could be updated to include recent studies, such as 
the second phase of the Panel Study of Income Dynamics Child Development Supplement (CDS, 
2005).  This is a longitudinal study of a representative sample of U.S. individuals and families 
which collected time diary data for almost 3,000 children and adolescents aged 5-18 years.  
Characterization of repetitive activity patterns is particularly important. 
 
 The most pressing need at this time is for evaluation of existing exposure models and 
evaluation of the specific algorithms which make up these models.  This would greatly improve 
our understanding of how well current models perform and aid in prioritizing future data 
collection and model development efforts. 
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APPENDIX A 
 
 

Occupational Employment Statistics Survey employment data for the 
Atlanta and Sacramento MSAs and low and high estimates for the 
fractions of all-day outdoor workers in each employment category 

 



 
 
 
 



  A-1 

3 days 
low 

5 days 
low 

3 days 
high 

5 days 
high 

SOC 
Code 

Occupation Title Atlanta 
employment

Sacramento 
employment 

    11-0000 Management occupations 156,630 42,220 
    13-0000 Business and financial operations occupations 112,510 55,060 
    15-0000 Computer and mathematical occupations 75,960 24,970 
    17-0000 Architecture and engineering occupations 37,350 18,960 
    19-0000 Life, physical, and social science occupations 15,110 9,740 
    21-0000 Community and social services occupations 19,550 13,500 
    23-0000 Legal occupations 18,260 7,720 
    25-0000 Education, training, and library occupations 130,850 58,250 
    27-0000 Arts, design, entertainment, sports, and media occupations 23,490 10,870 
    29-0000 Healthcare practitioners and technical occupations 90,910 36,120 
    31-0000 Healthcare support occupations 37,370 17,980 
    33-0000 Protective service occupations 49,040 22,030 
    35-0000 Food preparation and serving related occupations 183,860 67,980 
    37-0000 Building and grounds cleaning and maintenance occupations   
    37-1011 First-line supervisors/managers of housekeeping and janitorial workers 3,470 900 

0.00 0.00 0.30 0.50 37-1012 First-line supervisors/managers of landscaping, lawn service, and 
groundskeeping workers

3,090 750 

    37-2011 Janitors and cleaners, except maids and housekeeping cleaners 28,170 10,210 
    37-2012 Maids and housekeeping cleaners 12,160 4,530 

0.05 0.05 0.10 0.20 37-2021 Pest control workers 1,620 690 
0.10 0.50 0.10 0.80 37-3011 Landscaping and groundskeeping workers 15,020 8,070 
0.10 0.50 0.10 0.80 37-3012 Pesticide handlers, sprayers, and applicators, vegetation 270 70 
0.10 0.70 0.10 0.80 37-3013 Tree trimmers and pruners 340 70 
0.10 0.50 0.10 0.80 37-3019 Grounds maintenance workers, all other 0 0 

    39-0000 Personal care and service occupations 52,760 18,690 
    41-0000 Sales and related occupations   
    41-1011 First-line supervisors/managers of retail sales workers 20,450 6,710 
    41-1012 First-line supervisors/managers of non-retail sales workers 5,780 1,530 
    41-2011 Cashiers 54,960 21,130 
    41-2021 Counter and rental clerks 6,430 4,370 
    41-2022 Parts salespersons 3,330 1,550 
    41-2031 Retail salespersons 75,950 27,370 
    41-3011 Advertising sales agents 3,130 850 
    41-3021 Insurance sales agents 4,600 1,820 
    41-3031 Securities, commodities, and financial services sales agents 3,170 2,490 
    41-3041 Travel agents 1,950 340 
    41-3099 Sales representatives, services, all other 6,780 5,280 
    41-4011 Sales representatives, wholesale and manufacturing, technical and 

scientific products
12,110 2,060 

    41-4012 Sales representatives, wholesale and manufacturing, except technical and 
scientific products

33,520 6,960 
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    41-9011 Demonstrators and product promoters 2,420 450 
    41-9021 Real estate brokers 1,050 30 
    41-9022 Real estate sales agents 4,420 330 
    41-9031 Sales engineers 1,720 860 
    41-9041 Telemarketers 6,730 800 
    41-9091 Door-to-door sales workers, news and street vendors, and related workers   
    41-9091A Door-to-door sales workers (est 50% of 41-9091) 210 1,255 

0.20 0.60 0.00 1.00 41-9091B news and street vendors  (est 50% of 41-9091) 210 1,255 
    41-9099 Sales and related workers, all other 3,380 1,310 
    43-0000 Office and administrative support occupations   
    43-1011 First-line supervisors/managers of office and administrative support 

workers
32,380 15,290 

    43-2011 Switchboard operators, including answering service 3,980 1,110 
    43-2021 Telephone operators 0 0 
    43-2099 Communications equipment operators, all other 50 30 
    43-3011 Bill and account collectors 13,220 2,470 
    43-3021 Billing and posting clerks and machine operators 8,710 2,710 
    43-3031 Bookkeeping, accounting, and auditing clerks 27,690 12,530 
    43-3051 Payroll and timekeeping clerks 3,410 1,640 
    43-3061 Procurement clerks 1,110 340 
    43-3071 Tellers 9,190 3,530 
    43-4011 Brokerage clerks 1,380 490 
    43-4021 Correspondence clerks 540 50 
    43-4031 Court, municipal, and license clerks 1,770 0 
    43-4041 Credit authorizers, checkers, and clerks 0 330 
    43-4051 Customer service representatives 53,340 12,650 
    43-4061 Eligibility interviewers, government programs 40 0 
    43-4071 File clerks 3,000 1,660 
    43-4081 Hotel, motel, and resort desk clerks 3,770 920 
    43-4111 Interviewers, except eligibility and loan 2,130 2,040 
    43-4121 Library assistants, clerical 1,230 960 
    43-4131 Loan interviewers and clerks 0 2,930 
    43-4141 New accounts clerks 3,050 680 
    43-4151 Order clerks 4,260 0 
    43-4161 Human resources assistants, except payroll and timekeeping 0 2,470 
    43-4171 Receptionists and information clerks 17,590 7,900 
    43-4199 All other information and record clerks 6,530 1,420 
    43-5011 Cargo and freight agents 1,560 0 
    43-5021 Couriers and messengers 1,410 710 
    43-5031 Police, fire, and ambulance dispatchers 1,600 0 
    43-5032 Dispatchers, except police, fire, and ambulance 4,110 920 
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0.10 0.50 0.20 0.80 43-5041 Meter readers, utilities 930 410 
    43-5051 Postal service clerks 1,480 670 

0.10 0.40 0.20 0.80 43-5052 Postal service mail carriers 5,660 2,320 
    43-5053 Postal service mail sorters, processors, and processing machine operators 4,200 1,290 
    43-5061 Production, planning, and expediting clerks 7,090 1,830 
    43-5071 Shipping, receiving, and traffic clerks 12,150 5,470 
    43-5081 Stock clerks and order fillers 34,340 10,710 
    43-5111 Weighers, measurers, checkers, and samplers, recordkeeping 1,340 640 
    43-6011 Executive secretaries and administrative assistants 30,520 11,480 
    43-6012 Legal secretaries 0 2,460 
    43-6013 Medical secretaries 0 2,060 
    43-6014 Secretaries, except legal, medical, and executive 27,980 6,690 
    43-9011 Computer operators 2,660 1,590 
    43-9021 Data entry keyers 6,760 2,450 
    43-9022 Word processors and typists 2,660 1,980 
    43-9031 Desktop publishers 420 110 
    43-9041 Insurance claims and policy processing clerks 4,120 4,080 
    43-9051 Mail clerks and mail machine operators, except postal service 3,080 1,080 
    43-9061 Office clerks, general 39,740 33,990 
    43-9071 Office machine operators, except computer 1,050 520 
    43-9081 Proofreaders and copy markers 0 30 
    43-9111 Statistical assistants 1,800 110 
    43-9199 Office and administrative support workers, all other 4,160 0 
    45-0000 Farming, fishing, and forestry occupations   

0.10 0.10 0.20 0.20 45-1011 First-line supervisors/managers of farming, fishing, and forestry workers 100 3,620 
0.10 0.10 0.20 0.20 45-2011 Agricultural inspectors 130 190 
0.10 0.10 0.20 0.20 45-2041 Graders and sorters, agricultural products 320 100 
0.10 0.50 0.20 0.80 45-2091 Agricultural equipment operators 0 320 
0.10 0.50 0.20 0.80 45-2092 Farmworkers and laborers, crop, nursery, and greenhouse 0 2,090 
0.10 0.50 0.20 0.80 45-2093 Farmworkers, farm and ranch animals 350 160 
0.10 0.40 0.20 0.80 45-2099 Agricultural workers, all other 0 240 
0.10 0.40 0.20 0.80 45-4011 Forest and conservation workers 0 190 

    45-4021 Fallers 0 40 
0.10 0.40 0.20 0.80 45-4022 Logging equipment operators 260 60 

    47-0000 Construction and extraction occupations   
0.10 0.10 0.20 0.20 47-1011 First-line supervisors/managers of construction trades and extraction 

workers
11,230 4,970 

    47-2011 Boilermakers 680  
0.40 0.10 0.30 0.60 47-2021 Brickmasons and blockmasons 810 390 
0.40 0.10 0.30 0.60 47-2022 Stonemasons 0 100 
0.20 0.25 0.30 0.40 47-2031 Carpenters 10,120 11,390 
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    47-2041 Carpet installers 0 1,050 
    47-2044 Tile and marble setters 0 1,320 

0.00 0.30 0.30 0.60 47-2051 Cement masons and concrete finishers 3,420 2,840 
0.20 0.10 0.30 0.60 47-2053 Terrazzo workers and finishers 0 0 
0.10 0.60 0.10 0.90 47-2061 Construction laborers 18,270 8,950 
0.10 0.60 0.10 0.90 47-2071 Paving, surfacing, and tamping equipment operators 1,230 240 
0.10 0.60 0.10 0.90 47-2072 Pile-driver operators 0 40 
0.10 0.60 0.10 0.90 47-2073 Operating engineers and other construction equipment operators 9,190 2,060 
0.05 0.05 0.30 0.20 47-2081 Drywall and ceiling tile installers 2,540 2,700 
0.05 0.05 0.30 0.20 47-2082 Tapers 130 1,240 
0.05 0.05 0.20 0.10 47-2111 Electricians 11,650 5,150 

    47-2121 Glaziers 1,400 0 
    47-2131 Insulation workers, floor, ceiling, and wall 240 0 
    47-2132 Insulation workers, mechanical 0 0 

0.20 0.10 0.30 0.30 47-2141 Painters, construction and maintenance 2,740 2,500 
    47-2142 Paperhangers 0 0 
    47-2151 Pipelayers 2,410 380 
    47-2152 Plumbers, pipefitters, and steamfitters 6,230 4,500 

0.20 0.10 0.30 0.30 47-2161 Plasterers and stucco masons 0 1,810 
0.20 0.30 0.10 0.90 47-2171 Reinforcing iron and rebar workers 170 0 
0.25 0.50 0.10 0.90 47-2181 Roofers 1,850 1,300 

    47-2211 Sheet metal workers 3,360 1,300 
0.40 0.30 0.10 0.90 47-2221 Structural iron and steel workers 850 0 
0.40 0.10 0.30 0.60 47-3011 Helpers--brickmasons, blockmasons, stonemasons, and tile and marble 

setters
460 620 

0.20 0.25 0.30 0.40 47-3012 Helpers--carpenters 0 0 
0.05 0.05 0.20 0.10 47-3013 Helpers--electricians 2,140 400 
0.20 0.10 0.30 0.30 47-3014 Helpers--painters, paperhangers, plasterers, and stucco masons 130 230 

    47-3015 Helpers--pipelayers, plumbers, pipefitters, and steamfitters 2,230 0 
0.25 0.50 0.10 0.90 47-3016 Helpers--roofers 590 240 
0.40 0.10 0.30 0.60 47-3019 Helpers, construction trades, all other 680 140 
0.05 0.05 0.20 0.10 47-4011 Construction and building inspectors 1,650 1,010 

    47-4021 Elevator installers and repairers 340 0 
0.30 0.30 0.10 0.90 47-4031 Fence erectors 0 290 

    47-4041 Hazardous materials removal workers 510 150 
0.30 0.30 0.10 0.90 47-4051 Highway maintenance workers 810 450 
0.20 0.10 0.30 0.60 47-4071 Septic tank servicers and sewer pipe cleaners 150 0 
0.20 0.10 0.30 0.60 47-4099 Construction and related workers, all other 370 270 

    47-5021 Earth drillers, except oil and gas 130 0 
    47-5051 Rock splitters, quarry 0 0 
    47-5081 Helpers--extraction workers 30 0 
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    47-5099 Extraction workers, all other 0 0 
    49-0000 Installation, maintenance, and repair occupations   
    49-1011 First-line supervisors/managers of mechanics, installers, and repairers 10,740 2,580 
    49-2011 Computer, automated teller, and office machine repairers 3,420 1,190 
    49-2021 Radio mechanics 370 0 
    49-2022 Telecommunications equipment installers and repairers, except line 

installers
5,170 0 

    49-2091 Avionics technicians 190 40 
    49-2092 Electric motor, power tool, and related repairers 310 80 
    49-2094 Electrical and electronics repairers, commercial and industrial equipment 2,310 0 
    49-2096 Electronic equipment installers and repairers, motor vehicles 120 60 
    49-2097 Electronic home entertainment equipment installers and repairers 1,520 280 
    49-2098 Security and fire alarm systems installers 1,390 300 
    49-3011 Aircraft mechanics and service technicians 0 220 

0.10 0.00 0.50 0.10 49-3021 Automotive body and related repairers 2,640 950 
    49-3022 Automotive glass installers and repairers 0 0 
    49-3023 Automotive service technicians and mechanics 10,510 4,970 
    49-3031 Bus and truck mechanics and diesel engine specialists 3,660 1,500 

0.10 0.00 0.50 0.00 49-3041 Farm equipment mechanics 130 120 
    49-3042 Mobile heavy equipment mechanics, except engines 2,110 710 
    49-3051 Motorboat mechanics 170 160 
    49-3052 Motorcycle mechanics 130 130 
    49-3053 Outdoor power equipment and other small engine mechanics 370 130 
    49-3091 Bicycle repairers 30 70 
    49-3092 Recreational vehicle service technicians 0 0 

0.10 0.00 0.50 0.00 49-3093 Tire repairers and changers 1,230 1,050 
    49-9012 Control and valve installers and repairers, except mechanical door 530 270 

0.00 0.00 0.20 0.00 49-9021 Heating, air conditioning, and refrigeration mechanics and installers 1,900 680 
    49-9031 Home appliance repairers 1,140 170 
    49-9041 Industrial machinery mechanics 3,220 460 
    49-9042 Maintenance and repair workers, general 19,670 6,880 
    49-9043 Maintenance workers, machinery 1,080 180 
    49-9044 Millwrights 610 160 

0.20 0.30 0.10 0.90 49-9051 Electrical power-line installers and repairers 2,670 0 
0.20 0.10 0.10 0.70 49-9052 Telecommunications line installers and repairers 2,440 850 

    49-9062 Medical equipment repairers 520 200 
    49-9069 Precision instrument and equipment repairers, all other 480 60 
    49-9091 Coin, vending, and amusement machine servicers and repairers 410 120 
    49-9093 Fabric menders, except garment 0 0 
    49-9094 Locksmiths and safe repairers 410 200 
    49-9095 Manufactured building and mobile home installers 0 0 
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    49-9096 Riggers 0 0 
0.10 0.00 0.30 0.10 49-9098 Helpers--installation, maintenance, and repair workers 3,580 620 
0.10 0.00 0.30 0.10 49-9099 Installation, maintenance, and repair workers, all other 2,050 1,080 

    51-0000 Production occupations   
    51-1011 First-line supervisors/managers of production and operating workers 9,860 2,150 
    51-2021 Coil winders, tapers, and finishers 500 70 
    51-2022 Electrical and electronic equipment assemblers 2,100 510 
    51-2023 Electromechanical equipment assemblers 460 130 
    51-2031 Engine and other machine assemblers 450 350 
    51-2041 Structural metal fabricators and fitters 1,160 0 
    51-2091 Fiberglass laminators and fabricators 310 3,650 
    51-2092 Team assemblers 18,110 690 
    51-2099 Assemblers and fabricators, all other 4,150 890 
    51-3011 Bakers 2,540 950 
    51-3021 Butchers and meat cutters 3,140 300 
    51-3022 Meat, poultry, and fish cutters and trimmers 1,940 40 
    51-3023 Slaughterers and meat packers 1,080 690 
    51-3092 Food batchmakers 1,100 130 
    51-4011 Computer-controlled machine tool operators, metal and plastic 600 310 
    51-4012 Numerical tool and process control programmers 120 30 
    51-4021 Extruding and drawing machine setters, operators, and tenders, metal and 

plastic
1,580 0 

    51-4022 Forging machine setters, operators, and tenders, metal and plastic 220 0 
    51-4023 Rolling machine setters, operators, and tenders, metal and plastic 510 130 
    51-4031 Cutting, punching, and press machine setters, operators, and tenders, 

metal and plastic
2,840 870 

    51-4032 Drilling and boring machine tool setters, operators, and tenders, metal and 
plastic

310 30 

    51-4033 Grinding, lapping, polishing, and buffing machine tool setters, operators, 
and tenders, metal and plastic

740 200 

    51-4034 Lathe and turning machine tool setters, operators, and tenders, metal and 
plastic

330 30 

    51-4035 Milling and planing machine setters, operators, and tenders, metal and 
plastic

180 40 

    51-4041 Machinists 3,600 1,120 
    51-4051 Metal-refining furnace operators and tenders 80 0 
    51-4052 Pourers and casters, metal 50 0 
    51-4062 Patternmakers, metal and plastic 30 0 
    51-4072 Molding, coremaking, and casting machine setters, operators, and tenders, 

metal and plastic
1,790 0 

    51-4081 Multiple machine tool setters, operators, and tenders, metal and plastic 1,190 80 



  A-7 

3 days 
low 

5 days 
low 

3 days 
high 

5 days 
high 

SOC 
Code 

Occupation Title Atlanta 
employment

Sacramento 
employment 

    51-4111 Tool and die makers 790 0 
0.10 0.30 0.10 0.90 51-4121 Welders, cutters, solderers, and brazers 4,850 1,130 

    51-4122 Welding, soldering, and brazing machine setters, operators, and tenders 610 0 
    51-4191 Heat treating equipment setters, operators, and tenders, metal and plastic 110 0 
    51-4192 Lay-out workers, metal and plastic 40 40 
    51-4193 Plating and coating machine setters, operators, and tenders, metal and 

plastic
270 80 

    51-4194 Tool grinders, filers, and sharpeners 60 60 
    51-4199 Metal workers and plastic workers, all other 80 80 
    51-5011 Bindery workers 970 310 
    51-5012 Bookbinders 140 0 
    51-5021 Job printers 480 0 
    51-5022 Prepress technicians and workers 870 420 
    51-5023 Printing machine operators 4,900 660 
    51-6011 Laundry and dry-cleaning workers 4,420 940 
    51-6021 Pressers, textile, garment, and related materials 1,060 450 
    51-6031 Sewing machine operators 3,300 370 
    51-6041 Shoe and leather workers and repairers 0 0 
    51-6051 Sewers, hand 0 0 
    51-6052 Tailors, dressmakers, and custom sewers 210 0 
    51-6061 Textile bleaching and dyeing machine operators and tenders 370 0 
    51-6062 Textile cutting machine setters, operators, and tenders 310 0 
    51-6063 Textile knitting and weaving machine setters, operators, and tenders 820 0 
    51-6064 Textile winding, twisting, and drawing out machine setters, operators, and 

tenders
1,470 0 

    51-6091 Extruding and forming machine setters, operators, and tenders, synthetic 
and glass fibers

340 0 

    51-6092 Fabric and apparel patternmakers 110 0 
    51-6093 Upholsterers 240 0 
    51-6099 Textile, apparel, and furnishings workers, all other 250 0 
    51-7011 Cabinetmakers and bench carpenters 1,510 920 
    51-7031 Model makers, wood 0 160 
    51-7041 Sawing machine setters, operators, and tenders, wood 460 550 
    51-7042 Woodworking machine setters, operators, and tenders, except sawing 1,270 580 
    51-7099 Woodworkers, all other 0 0 
    51-8012 Power distributors and dispatchers 0 50 
    51-8021 Stationary engineers and boiler operators 0 310 
    51-8031 Water and liquid waste treatment plant and system operators 1,760 330 
    51-8091 Chemical plant and system operators 320 0 
    51-8099 Plant and system operators, all other 70 0 
    51-9011 Chemical equipment operators and tenders 340 0 
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    51-9012 Separating, filtering, clarifying, precipitating, and still machine setters, 
operators, and tenders

320 0 

    51-9021 Crushing, grinding, and polishing machine setters, operators, and tenders 320 120 
    51-9022 Grinding and polishing workers, hand 300 180 
    51-9023 Mixing and blending machine setters, operators, and tenders 2,520 350 
    51-9031 Cutters and trimmers, hand 610 90 
    51-9032 Cutting and slicing machine setters, operators, and tenders 1,540 100 
    51-9041 Extruding, forming, pressing, and compacting machine setters, operators, 

and tenders
1,090 90 

    51-9051 Furnace, kiln, oven, drier, and kettle operators and tenders 280 100 
    51-9061 Inspectors, testers, sorters, samplers, and weighers 6,170 1,190 
    51-9071 Jewelers and precious stone and metal workers 510 70 
    51-9081 Dental laboratory technicians 1,720 290 
    51-9082 Medical appliance technicians 130 90 
    51-9111 Packaging and filling machine operators and tenders 7,450 1,000 
    51-9121 Coating, painting, and spraying machine setters, operators, and tenders 860 250 

0.00 0.00 0.40 0.20 51-9122 Painters, transportation equipment 1,110 340 
0.00 0.00 0.30 0.10 51-9123 Painting, coating, and decorating workers 510 0 

    51-9131 Photographic process workers 360 80 
    51-9132 Photographic processing machine operators 800 320 
    51-9192 Cleaning, washing, and metal pickling equipment operators and tenders 180 1,290 
    51-9193 Cooling and freezing equipment operators and tenders 110 0 
    51-9194 Etchers and engravers 60 0 
    51-9195 Molders, shapers, and casters, except metal and plastic 0 100 
    51-9196 Paper goods machine setters, operators, and tenders 2,070 180 
    51-9198 Helpers--production workers 9,450 1,150 
    51-9199 Production workers, all other 4,770 2,350 
    53-0000 Transportation and material moving occupations   
    53-1021 First-line supervisors/managers of helpers, laborers, and material movers, 

hand
3,670 1,010 

    53-1031 First-line supervisors/managers of transportation and material-moving 
machine and vehicle operators

4,780 1,210 

    53-2012 Commercial pilots 380 70 
    53-2021 Air traffic controllers 670 230 
    53-2022 Airfield operations specialists 130 0 
    53-3011 Ambulance drivers and attendants, except emergency medical technicians 0 0 
    53-3022 Bus drivers, school 4,890 1,190 
    53-3031 Driver/sales workers 8,450 2,260 
    53-3032 Truck drivers, heavy and tractor-trailer 29,200 7,570 
    53-3033 Truck drivers, light or delivery services 16,770 5,930 
    53-3041 Taxi drivers and chauffeurs 1,130 690 
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    53-3099 Motor vehicle operators, all other 1,350 270 
    53-4011 Locomotive engineers 40 0 
    53-4013 Rail yard engineers, dinkey operators, and hostlers 30 0 
    53-4099 Rail transportation workers, all other 50 0 
    53-5021 Captains, mates, and pilots of water vessels 0 30 
    53-5022 Motorboat operators 0 30 

0.30 0.30 0.10 0.90 53-6021 Parking lot attendants 2,210 1,060 
0.10 0.10 0.10 0.50 53-6031 Service station attendants 1,290 330 

    53-6041 Traffic technicians 0 220 
    53-6051 Transportation inspectors 730 90 
    53-6099 Transportation workers, all other 0 390 
    53-7011 Conveyor operators and tenders 580 220 

0.20 0.30 0.10 0.90 53-7021 Crane and tower operators 860 90 
0.20 0.30 0.10 0.90 53-7032 Excavating and loading machine and dragline operators 360 250 
0.10 0.00 0.50 0.20 53-7051 Industrial truck and tractor operators 15,930 2,940 

    53-7061 Cleaners of vehicles and equipment 6,400 2,270 
0.10 0.00 0.50 0.20 53-7062 Laborers and freight, stock, and material movers, hand 48,480 12,290 

    53-7063 Machine feeders and offbearers 1,540 420 
    53-7064 Packers and packagers, hand 16,850 4,250 

0.30 0.30 0.10 0.90 53-7081 Refuse and recyclable material collectors 1,550 530 
    53-7199 Material moving workers, all other 0 160 
       

22,480 40,378 57,791 90,469  TOTALS - Atlanta 2,211,840  
11,341 22,041 23,868 43,828  TOTALS - Sacramento 853,950 

 
 


