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Denote by A, B, C the random variables and by fA, fB, fC the probability distribution 
functions for the anthropogenic, background, and observed concentrations, respectively.  Denote 
by µA, µB, µC the means and by σA, σB, σC the standard deviations of A, B, C, and let ρ be the 
Pearson’s correlation between A and B. 
 
We have C  =  A + B     (1) 

therefore µC  =  µA + µB     (2) 

and  σC
2  =  σA

2 + σB
2 + 2 ρ σA σB   (3) 

 
Let fB|C=c0 denote the distribution of B conditioned on C=c0.  In other words, suppose 

one looks at the all of the values of background concentrations at those times when the observed 
concentration is close to c0.  fB|C=c0 is the probability distribution of those values.  If background 
were a constant b0, then fB|C=c0 would just be b0 (with probability 1), and there wouldn’t be a 
distribution of different daily values. 
 
 We model fA and fB by 3-parameter gamma distributions of the form    
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where Γ is the gamma function, α is the shape parameter, β is the scale parameter, and τ is the 
location (threshold) parameter. 
 

We find better fits to PM2.5 data when the location parameter τ is taken to be zero (instead 
of estimated from the data) and so we do that here.  We estimate the mean and standard deviation 
µC and σC of the observed concentrations by the sample mean and standard deviation of the 
observed concentrations.  We assume that we have in hand estimates of the mean and standard 
deviation of the short-term background concentrations, µB and σB, and that we also have an 
estimate of the correlation ρ between the anthropogenic and background concentrations. 
 
 We use a Monte Carlo approach to estimate the joint distribution of B and C, in the 
following way.  First, we generate a large sample from the joint distribution of fA and fB: {ai} 
and {bi} (with correlation ρ), which is fully specified by equations 1-4.  Then we set ci = ai + bi, 
generating the joint sample {ai, bi, ci}.  We can then estimate the conditional distribution fB|C=c0 
nonparametrically directly from this. 
 
 To assign a short-term background value to an observed concentration x for the risk 
assessment, we randomly sample a value from the distribution fB|C=x. 
  
 
Application to Ambient Daily-Average PM2.5 Concentrations in St. Louis 
 

For the health risk assessment in support of the PM NAAQS (Abt, 2005), we have a time 
series C of 365 monitor-composite daily averages of PM2.5 concentrations in St. Louis for the 
year 2003 for which we want to generate a series of background concentrations B.  The sample 
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mean µC is 14.02 and the sample standard deviation σC is 7.09 µg/m3.  Fitting a gamma 
distribution to these data using maximum likelihood estimation (MLE) produces the parameter 
estimates αC = 4.11 and βC = 3.41.  Figure 1 shows the fitted gamma distribution function 
overlaid on a histogram of the observed concentrations.  We are assuming that the mean µB and 
standard deviation σB of the daily background concentrations of PM2.5 are 3.5 and 2.5 µg/m3 
respectively.  This mean value is provided by the PM CD (EPA, 2004) and referenced in the 
draft PM Staff Paper (EPA, 2005).  The basis for the standard deviation is given in Langstaff 
(2005). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  The distribution of the observed PM2.5 concentrations in St. Louis, with fitted gamma 
pdf (µg/m3) 
 

 

We estimate the parameters of the gamma distribution of background concentrations by 
the method of moments: 
 
   αB = (µB / σB)2  =  1.96     (5) 

   βB  = µB /αB  =  1.79      (6) 
 
To estimate the gamma parameters for A, we set 
 
   µA = µC – µB = 14.02 – 3.5 = 10.52    (7) 
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and find values of αA and βA such that 

   βA = µA /αA         (8) 

and C = A + B has a gamma(αC, βC) distribution. 
 

We do this by generating sets of series A and B (with correlation ρ = 0) for different 
values of αA;  for each of these form C=A+B;  then calculate MLE estimates of αC and βC;  and 
then choose αA such that αC and βC are the same as the gamma parameters 4.11 and 3.41 for the 
observed PM2.5 data.  (See Figures 2 and 3.) 
 

Since A, B, and C are not distributed exactly as gamma, we estimate αA in this way 
instead of analytically.  Then we set βA = µA /αA.  This results in αA = 2.59 and βA = 4.06. 
 

At this point we have parametric forms of the distributions of A and B, and we generate a 
large number of independent variates {ai} and {bi} from these distributions. 
 

To assign a short-term background value to an observed concentration x for the risk 
assessment, we randomly sample a value from the distribution fB|C=x.  We do this by 
subdividing the range of the observed concentrations into nonoverlapping bins G1, G2, etc.  We 
used bin sizes of 0.2 from 0 to 20, 0.5 from 20 to 30, and 1.0 above 30 (µg/m3).  Then for each 
observed x, we identify the bin Gx that it falls in, and randomly sample one of the bi from the set 
{{ai, bi, ci} where ci falls in Gx }.  This yields a series {bj

*, j=1 to 365}, which we refer to as a 
“realization.”  Note that in order for this method to be stable, there needs to be a sufficient 
number of values in each of the bins Gi.  We generated three million values for each of A, B, and 
C, which resulted in each bin having at least 440 values.  Sensitivity analyses have shown this to 
be sufficient to characterize the joint distribution of A and B. 
 

Although {bi} has mean 3.5 and standard deviation 2.5,  any realization {bj
*} sampled 

from {bi} is likely to have mean and standard deviation that differ from these values (as a result 
of sampling variability).  Figure 4 illustrates this variability for 240 realizations of B with 
distributions of the means, standard deviations, minima and maxima of these realizations.  The 
variability of the corresponding realizations of A and of the correlations of A and B are 
illustrated in Figures 5 and 6.  We require the mean of the selected realization {bj

*} to be 3.5, the 
standard deviation to be close to 2.5, and the correlation between {aj

*} and {bj
*} to be near zero, 

where aj
* = xj - bj

*, and xj is the jth observed concentration.  We generate 240 realizations, narrow 
these down to realizations with mean and standard deviation within one percent of the observed 
PM2.5 statistics and correlation with magnitude less than 0.1 (Table 1), and from these select the 
background series to be the realization with mean closest to 3.5. 
 
The distributions of the selected background and anthropogenic concentration series are shown 
in Figures 7 and 8. 
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Figure 2.  MLE estimates of αC as a function of αA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  MLE estimates of βC as a function of αA 
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Table 1.  Realizations with mean and standard deviation within one percent of the observed 
PM2.5 statistics and correlation with magnitude less than 0.1.  Realization index (j), means and 
standard deviations (µg/m3) of the realization with the percent differences between the 
realizations and the observed data, and the correlations between A and B are tabulated. 
 
            Mean    Percent    St Dev   Percent  Correlation 
     j      of B     diff       of B     diff    of A and B 
 
    153     3.474     .75%      2.517    (.66%)    -0.087 
    219     3.477     .66%      2.522    (.88%)     0.012 
    216     3.482     .53%      2.520    (.81%)     0.069 
    149     3.483     .49%      2.499     .02%      0.061 
    107     3.484     .46%      2.477     .93%     -0.029 
    160     3.486     .39%      2.516    (.64%)     0.010 
    147     3.499     .03%      2.505    (.19%)     0.046 
    109     3.499     .02%      2.484     .64%     -0.029 
      8     3.500     .00%      2.521    (.84%)     0.012 
     39     3.512    (.35%)     2.475     .99%      0.010 
     90     3.532    (.91%)     2.522    (.88%)     0.008 
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Figure 4.  Variability of statistics of 240 realizations of B for St. Louis (µg/m3) 
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Figure 5.  Variability of statistics of 240 realizations of A for St. Louis (µg/m3) 
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Figure 6.  Variability of correlations of 240 realizations of A and B for St. Louis 
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Figure 7.  The distribution of the PM2.5 background concentration series for St. Louis (µg/m3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  The distribution of the PM2.5 anthropogenic concentration series for St. Louis (µg/m3) 
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 We also generate a series of background concentrations with the assumption that the 
background and anthropogenic concentrations are positively correlated following the same steps 
described above, except rho is taken to be non-zero.  Figure 9 shows the distribution of 
background values assuming a correlation of 0.4 between the background and anthropogenic 
concentrations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  The distribution of the PM2.5 background concentration series for St. Louis, assuming 
a correlation of 0.4 between the background and anthropogenic concentrations (µg/m3) 
 
 
 
 
Application to Ambient Daily-Average PM2.5 Concentrations in Detroit 
 

We have a time series C of 357 PM2.5 concentrations in Detroit for the year 2003 for 
which we want to generate a series of background concentrations B.  The sample mean µC is 
15.73 and the sample standard deviation σC is 9.29.  Fitting a gamma distribution to these data 
yields the parameter estimates αC = 3.183 and βC = 4.943.  Figure 10 shows this fitted gamma 
distribution function overlaid on a histogram of the observed concentrations.  Following the 
procedure described above, we generate a background series corresponding to the observed 
concentrations with mean 3.5 and standard deviation 2.5 µg/m3.  Figure 11 illustrates the 
distribution of this series. 
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Figure 10.  The distribution of the observed PM2.5 concentration series for Detroit (µg/m3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  The distribution of the PM2.5 background concentration series for Detroit (µg/m3) 
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