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MEMORANDUM

SUBJECT: A Methodology For Incorporating Short-Term Variable
Background Conce tratlons In Risk Assessments

FROM: John Langstaff
TO: PM NAAQS Review Docke R-2001-0017)
DATE: December 17, 2004

One of the analyses we perform as part of our PM risk assessment is a calculation of
health risks assuming that the non-anthropogenic background concentrations fluctuate daily.
Assigning daily background concentrations to observed concentrations for our risk assessments
has been problematic. If we randomly assign background concentrations according to their
distribution, sometimes the background value will be higher than the observed value. Easy fixes
to this unrealistically distort the distribution of concentrations.

This memorandum describes a methodology for specifying the short-term background
concentrations in a more realistic way. The key idea of this method is to use the available
distributional information for the observed and background concentrations to estimate their joint
distribution, which yields the distribution of the background concentrations conditioned on the
level of the observed concentrations. Then to assign a background value to an observed
concentration, we randomly select a value from the conditional distribution corresponding to the
observed value. We also describe an application of this method to daily PM; 5 concentrations in
an urban area.

Description of Method

For PM we can argue heuristically that background and non-background concentrations
are not highly correlated since they derive from independent processes, although meteorology
can induce some correlation. However, we can specify some degree of correlation for an
analysis of sensitivity to this factor.

For ease of presentation we will refer to the non-background concentrations as
anthropogenic concentrations in the remainder of this memorandum.



Denote by A, B, C the random variables and by fa, fg, fc the probability distribution
functions for the anthropogenic, background, and observed concentrations, respectively. Denote
by pa, UB, Kc the means and by 64, 6B, oc the standard deviations of A, B, C, and let p be the
Pearson’s correlation between A and B.

We have C=A+B (1)
therefore Hc = Ha + UB (2)
and oc> = oa” +op°+2 p Ga OB 3)

Let f5|C=co denote the distribution of B conditioned on C=c,. In other words, suppose
one looks at the all of the values of background concentrations at those times when the observed
concentration is close to cy. fg|C=cy is the probability distribution of those values. If background
were a constant by, then fg|C=c(, would just be by (with probability 1), and there wouldn’t be a
distribution of different daily values.

We model fj and fg by 3-parameter gamma distributions of the form

() exple )
fo=trs

where I' is the gamma function, a is the shape parameter,  is the scale parameter, and 1 is the
location (threshold) parameter.

, xz7; a,f>0, (4)

We find better fits to PM; s data when the location parameter 7 is taken to be zero (instead
of estimated from the data) and so we do that here. We estimate the mean and standard deviation
uc and oc of the observed concentrations by the sample mean and standard deviation of the
observed concentrations. We assume that we have in hand estimates of the mean and standard
deviation of the short-term background concentrations, pg and g, and that we also have an
estimate of the correlation p between the anthropogenic and background concentrations.

We use a Monte Carlo approach to estimate the joint distribution of B and C, in the
following way. First, we generate a large sample from the joint distribution of f5 and fg: {a;}
and {b;} (with correlation p), which is fully specified by equations 1-4. Then we set ¢; = a; + bj,
generating the joint sample {aj, b;, ci}. We can then estimate the conditional distribution fg|C=cy
nonparametrically directly from this.

To assign a short-term background value to an observed concentration x for the risk
assessment, we randomly sample a value from the distribution fg|C=x.

Application to Ambient Daily-Average PM, s Concentrations in St. Louis

For the health risk assessment in support of the PM NAAQS (Abt, 2005), we have a time
series C of 365 monitor-composite daily averages of PM; s concentrations in St. Louis for the
year 2003 for which we want to generate a series of background concentrations B. The sample



mean pic is 14.02 and the sample standard deviation oc is 7.09 ug/m’. Fitting a gamma
distribution to these data using maximum likelihood estimation (MLE) produces the parameter
estimates a¢c = 4.11 and Bc = 3.41. Figure 1 shows the fitted gamma distribution function
overlaid on a histogram of the observed concentrations. We are assuming that the mean pg and
standard deviation op of the daily background concentrations of PM; s are 3.5 and 2.5 ug/m3
respectively. This mean value is provided by the PM CD (EPA, 2004) and referenced in the
draft PM Staff Paper (EPA, 2005). The basis for the standard deviation is given in Langstaff
(2005).
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Figure 1. The distribution of the observed PM; 5 concentrations in St. Louis, with fitted gamma
pdf (ug/m*)

We estimate the parameters of the gamma distribution of background concentrations by
the method of moments:

og = (ug / op)’ = 1.96 (5)
BB = UB /(XB = 1.79 (6)

To estimate the gamma parameters for A, we set

Ha = fe — pg = 14.02 - 3.5 =10.52 (7)



and find values of ax and Ba such that

Pa=pa /aa (8)
and C = A + B has a gamma(ac, Bc) distribution.

We do this by generating sets of series A and B (with correlation p = 0) for different
values of as; for each of these form C=A+B; then calculate MLE estimates of ac and B¢; and
then choose a, such that ac and B¢ are the same as the gamma parameters 4.11 and 3.41 for the
observed PM, s data. (See Figures 2 and 3.)

Since A, B, and C are not distributed exactly as gamma, we estimate a4 in this way
instead of analytically. Then we set Bo = pa /aa. This results in o, = 2.59 and B = 4.06.

At this point we have parametric forms of the distributions of A and B, and we generate a
large number of independent variates {a;} and {b;} from these distributions.

To assign a short-term background value to an observed concentration x for the risk
assessment, we randomly sample a value from the distribution fg|C=x. We do this by
subdividing the range of the observed concentrations into nonoverlapping bins G;, G, etc. We
used bin sizes of 0.2 from 0 to 20, 0.5 from 20 to 30, and 1.0 above 30 (ug/m’). Then for each
observed x, we identify the bin Gy that it falls in, and randomly sample one of the b; from the set

{{a;, b;, ¢;} where c; falls in G, }. This yields a series {bj*, j=1to 365}, which we refer to as a
“realization.” Note that in order for this method to be stable, there needs to be a sufficient
number of values in each of the bins G;. We generated three million values for each of A, B, and
C, which resulted in each bin having at least 440 values. Sensitivity analyses have shown this to
be sufficient to characterize the joint distribution of A and B.

Although {b;} has mean 3.5 and standard deviation 2.5, any realization {bj*} sampled
from {b;} is likely to have mean and standard deviation that differ from these values (as a result
of sampling variability). Figure 4 illustrates this variability for 240 realizations of B with
distributions of the means, standard deviations, minima and maxima of these realizations. The
variability of the corresponding realizations of A and of the correlations of A and B are
illustrated in Figures 5 and 6. We require the mean of the selected realization {bj*} to be 3.5, the
standard deviation to be close to 2.5, and the correlation between {aj*} and {bj*} to be near zero,
where a;" = x; - b, and x| is the j"" observed concentration. We generate 240 realizations, narrow
these down to realizations with mean and standard deviation within one percent of the observed
PM, s statistics and correlation with magnitude less than 0.1 (Table 1), and from these select the
background series to be the realization with mean closest to 3.5.

The distributions of the selected background and anthropogenic concentration series are shown
in Figures 7 and 8.
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Figure 2. MLE estimates of ac as a function of o,
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Table 1. Realizations with mean and standard deviation within one percent of the observed
PM, s statistics and correlation with magnitude less than 0.1. Realization index (j), means and
standard deviations ( ug/m3) of the realization with the percent differences between the
realizations and the observed data, and the correlations between A and B are tabulated.

Mean Percent St Dev Percent Correlation

Jj of B diff of B diff of A and B
153 3.474 .75% 2.517 (.66%) -0.087
219 3.477 .66% 2.522 (.88%) 0.012
216 3.482 .53% 2.520 (.81%) 0.069
149 3.483 .49% 2.499 .02% 0.061
107 3.484 .46% 2.477 .93% -0.029
160 3.486 .39% 2.516 (.64%) 0.010
147 3.499 .03% 2.505 (.19%) 0.0406
109 3.499 .02% 2.484 .64% -0.029
8 3.500 .00% 2.521 (.84%) 0.012
39 3.512 (.35%) 2.475 .99% 0.010
90 3.532 (.91%) 2.522 (.88%) 0.008
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Figure 4. Variability of statistics of 240 realizations of B for St. Louis (ug/m’)
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Figure 5. Variability of statistics of 240 realizations of A for St. Louis (ng/m’)
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Figure 6. Variability of correlations of 240 realizations of A and B for St. Louis




35
Summary Statistics
N 365
30 Mean 3.50
Std Dev 252
Minimum 0.005
25 - Maximum 17
— Gamma Shape 2.011
Scale 1.740
20- Threshold 0.000
€
8
&
15
101
\
51
0 T T T T T T i\\—?%_‘—lj‘

0 1.5 3 45 6 7.5 9 105 12 13.5 15 16.5
B

Figure 7. The distribution of the PM, s background concentration series for St. Louis (ug/m?)
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Figure 8. The distribution of the PM, 5 anthropogenic concentration series for St. Louis (ug/m’)
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We also generate a series of background concentrations with the assumption that the
background and anthropogenic concentrations are positively correlated following the same steps
described above, except rho is taken to be non-zero. Figure 9 shows the distribution of
background values assuming a correlation of 0.4 between the background and anthropogenic

concentrations.
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Figure 9. The distribution of the PM, 5 background concentration series for St. Louis, assuming
a correlation of 0.4 between the background and anthropogenic concentrations (ug/m’)

Application to Ambient Daily-Average PM; ;s Concentrations in Detroit

We have a time series C of 357 PM, 5 concentrations in Detroit for the year 2003 for
which we want to generate a series of background concentrations B. The sample mean pc is
15.73 and the sample standard deviation oc is 9.29. Fitting a gamma distribution to these data
yields the parameter estimates oc = 3.183 and Bc = 4.943. Figure 10 shows this fitted gamma
distribution function overlaid on a histogram of the observed concentrations. Following the
procedure described above, we generate a background series corresponding to the observed
concentrations with mean 3.5 and standard deviation 2.5 pg/m’. Figure 11 illustrates the
distribution of this series.

11



30
Summary Statistics
N 357
| Mean 15.73
e \ Std Dev 9.29
Minimum 1.600
Maximum 52
201 — Gamma Shape 3.183
Scale 4,943
Threshold 0.000
g
15
&
10

\\
" N

0 T T T T T T T T T T T
25 75 125 17.5 225 27.5 325 375 425 475 62.5

PM25

Figure 10. The distribution of the observed PM, s concentration series for Detroit (pug/m”)
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Figure 11. The distribution of the PM, s background concentration series for Detroit (ug/m’)
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