
 

 

 

 

   

 

20  DETECTION AND QUANTIFICATION 
CAPABILITIES 

20.1 Overview 

This chapter discusses issues related to analyte detection and quantification capabilities. The 
topics addressed include methods for deciding whether an analyte is present in a sample as well 
as measures of the detection and quantification capabilities of a measurement process. 

Environmental radioactivity measurements may involve material containing very small amounts 
of the radionuclide of interest. Measurement uncertainty often makes it difficult to distinguish 
such small amounts from zero. So, an important performance characteristic of an analytical 
measurement process is its detection capability, which is usually expressed as the smallest 
concentration of analyte that can be reliably distinguished from zero. Effective project planning 
requires knowledge of the detection capabilities of the analytical procedures that will be or could 
be used. This chapter explains the performance measure, called the minimum detectable con-
centration (MDC), or the minimum detectable amount (MDA), that is used to describe radio-
analytical detection capabilities, as well as some proper and improper uses for it. The chapter 
also gives laboratory personnel methods for calculating the minimum detectable concentration. 

Project planners may also need to know the quantification capability of an analytical procedure, 
or its capability for precise measurement. The quantification capability is expressed as the small-
est concentration of analyte that can be measured with a specified relative standard deviation. 
This chapter explains a performance measure called the minimum quantifiable concentration 
(MQC), which may be used to describe quantification capabilities. (See Chapter 3 and Appendix 
C for explanations of the role of the minimum detectable concentration and minimum quantifi-
able concentration in the development of measurement quality objectives.) 

Section 20.2 presents the concepts and definitions used throughout the chapter. The major 
recommendations of the chapter are listed in Section 20.3. Section 20.4 presents the mathe-
matical details of calculating critical values, minimum detectable values, and minimum quanti-
fiable values. Attachment 20A describes issues related to analyte detection decisions in low-
background radiation counting and how the issues may be dealt with mathematically. 

20.2 Concepts and Definitions 

20.2.1  Analyte Detection Decisions 

An obvious question to be answered following 
the analysis of a laboratory sample is: �Does the 
sample contain a positive amount of the 
analyte?� Uncertainty in the measured value 
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Detection and Quantification Capabilities 

often makes the question difficult to answer. There are different methods for making a detection 
decision, but the methods most often used in radiochemistry involve the principles of statistical 
hypothesis testing. 

To �detect� the analyte in a laboratory sample means to decide on the basis of the measurement 
data that the analyte is present. The detection decision involves a choice between two hypotheses 
about the sample. The first hypothesis is the �null hypothesis� H0: The sample is analyte-free. 
The second hypothesis is the �alternative hypothesis� H1: The sample is not analyte-free. The 
null hypothesis is presumed to be true unless there is sufficient statistical evidence to the con-
trary. If the evidence is strong enough, the null hypothesis is rejected in favor of the alternative 
hypothesis. (See Attachment 3B of Chapter 3 for an introduction to these concepts.) 

The methods of statistical hypothesis testing do not guarantee correct decisions. In any hypoth-
esis test there are two possible types of decision errors. An error of the first type, or Type I error, 
occurs if one rejects the null hypothesis when it is true. An error of the second type, or Type II 
error, occurs if one fails to reject the null hypothesis when it is false. The probability of a Type I 
error is usually denoted by α, and the probability of a Type II error is usually denoted by β. In the 
context of analyte detection decisions, to make a Type I error is to conclude that a sample 
contains the analyte when it actually does not, and to make a Type II error is to fail to conclude 
that a sample contains the analyte when it actually does.1 

A Type I error is sometimes called a �false rejection� or �false positive,� and a Type II error is 
sometimes called a �false acceptance� or �false negative.� Recently the terms �false positive� 
and �false negative� have been losing favor, because they can be misleading in some contexts. 

The use of statistical hypothesis testing to decide whether an analyte is present in a laboratory 
sample is conceptually straightforward, yet the subject still generates confusion and disagreement 
among radiochemists and project managers. Hypothesis testing has been used for analyte detec-
tion in radiochemistry at least since 1962. Two influential early publications on the subject were 
Altshuler and Pasternack (1963) and Currie (1968). Other important but perhaps less well-known 
documents were Nicholson (1963 and 1966). Most approaches to the detection problem have 
been similar in principle, but there has been inadequate standardization of terminology and meth-
odology. However, there has been recent progress. In 1995, the International Union of Pure and 
Applied Chemistry (IUPAC) published �Nomenclature in Evaluation of Analytical Methods 
Including Detection and Quantification Capabilities� (IUPAC, 1995), which recommends a uni-
form approach to defining various performance characteristics of any chemical measurement 
process, including detection and quantification limits; and in 1997 the International Organization 
for Standardization (ISO) issued the first part of ISO 11843 �Capability of Detection,� a multi-

1 Note that in any given situation, only one of the two types of decision error is possible. If the sample does not 
contain the analyte, a Type I error is possible. If the sample does contain the analyte, a Type II error is possible. 
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Detection and Quantification Capabilities 

part standard which deals with issues of detection in an even more general context of measure-
ment. Part 1 of ISO 11843 includes terms and definitions, while Parts 2�4 deal with meth-
odology. Although members of the IUPAC and ISO working groups collaborated during the 
development of their guidelines, substantial differences between the final documents remain. 
MARLAP follows both the ISO and IUPAC guidelines where they agree but prefers the 
definitions of ISO 11843-1 for the critical value and minimum detectable value, relating them to 
the terminology and methodology already familiar to most radiochemists. 

In July 2000, ISO also published the first three parts of ISO 11929 �Determination of the Detec-
tion Limit and Decision Threshold for Ionizing Radiation Measurements.� Unfortunately, ISO 
11929 is not completely consistent with either the earlier ISO standard or the IUPAC recommen-
dations. 

In the terminology of ISO 11843-1, the analyte concentration of a laboratory sample is the state 
variable, denoted by Z, which represents the state of the material being analyzed. Analyte-free 
material is said to be in the basic state. The state variable cannot be observed directly, but it is 
related to an observable response variable, denoted by Y, through a calibration function F, the 
mathematical relationship being written as Y = F(Z). In radiochemistry, the response variable Y is 
most often an instrument signal, such as the number of counts observed. The inverse, F−1, of the 
calibration function is sometimes called the evaluation function (IUPAC, 1995). The evaluation 
function, which gives the value of the net concentration in terms of the response variable, is 
closely related to the mathematical model described in Section 19.4.2 of Chapter 19. 

The difference between the state variable, Z, and its value in the basic state is called the net state 
variable, which is denoted by X. In radiochemistry there generally is no difference between the 
state variable and the net state variable, because the basic state is represented by material whose 
analyte concentration is zero. In principle the basic state might correspond to a positive concen-
tration, but MARLAP does not address this scenario. 

20.2.2  The Critical Value 

In an analyte detection decision, one chooses between the null and alternative hypotheses on the 
basis of the observed value of the response variable, Y. The value of Y must exceed a certain 
threshold value to justify rejection of the null hypothesis and acceptance of the alternative: that 
the sample is not analyte-free. This threshold is called the critical value of the response variable 
and is denoted by yC. 

The calculation of yC requires the choice of a significance level for the test. The significance level 
is a specified upper bound for the probability, α, of a Type I error (false rejection). The signifi-
cance level is usually chosen to be 0.05. This means that when an analyte-free sample is 
analyzed, there should be at most a 5 % probability of incorrectly deciding that the analyte is 
present. In principle other values of α are possible, but in the field of radiochemistry, α is often 
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Detection and Quantification Capabilities 

implicitly assumed to be 0.05. So, if another value is used, it should be explicitly stated. A 
smaller value of α makes type I errors less likely, but also makes Type II errors more likely when 
the analyte concentration in the laboratory sample is positive but near  zero. 

The critical value of the analyte concentration, xC , as defined by MARLAP, is the value obtained 
by applying the evaluation function, F−1, to the critical value of the response variable, yC. Thus, 
xC = F−1(yC). In radiochemistry, when yC is the gross instrument signal, this formula typically 
involves subtraction of the blank signal and division by the counting efficiency, test portion size, 
chemical yield, decay factor, and possibly other factors. In ANSI N42.23, �Measurement and 
Associated Instrument Quality Assurance for Radioassay Laboratories,� the same value, xC, is 
called the decision level concentration, or DLC. 

A detection decision can be made by comparing the observed gross instrument signal to its 
critical value, yC, as indicated above. However, it has become standard practice in radiochemistry 
to make the decision by comparing the net instrument signal to its critical value, SC. The net 
signal is calculated from the gross signal by subtracting the estimated blank value and any inter-
ferences. The critical net signal, SC, is calculated from the critical gross signal, yC, by subtracting 
the same correction terms; so, in principle, either approach should lead to the same detection 
decision. 

Since the term �critical value� alone is ambiguous, one should specify the variable to which the 
term refers. For example, one may discuss the critical (value of the) analyte concentration, the 
critical (value of the) net signal, or the critical (value of the) gross signal. 

It is important to understand that there is no single equation for the critical value that is appro-
priate in all circumstances. Which equation is best depends on the structure of the measurement 
process and the statistics of the measurements. Many of the commonly used expressions are 
based on the assumption of Poisson counting statistics and are invalid if that assumption is not a 
good approximation of reality. For example, if the instrument background varies between meas-
urements or if it is necessary to correct the result for sample-specific interferences, then expres-
sions for the critical value based on the Poisson model require modification or replacement. If the 
analyte is a naturally occurring radionuclide that is present at varying levels in reagents, then a 
correction for the reagent contamination is necessary and expressions based on the Poisson 
model may be completely inappropriate. In this case the critical value usually must be determined 
by repeated measurements of blanks under conditions similar to those of the sample measure-
ment. 

Generally, the clients of a laboratory do not have the detailed knowledge of the measurement 
process that is necessary to choose a specific equation for the critical value; however, clients may 
specify the desired Type I error rate (5 % by default). 
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Detection and Quantification Capabilities 

Section 20.4.1 and Section 20A.2 of Attachment 20A provide more information on the calcula-
tion of critical values. 

20.2.3  The Blank 

In radiochemistry, the response variable is typically an instrument signal, whose mean value 
generally is positive even when analyte-free material is analyzed. The gross signal must be cor-
rected by subtracting an estimate of the signal produced by analyte-free material. This estimate 
may be obtained by means of any of several types of radiochemical blanks, including blank 
sources and reagent blanks (Chapter 18). The radiochemical blank is chosen to provide an 
estimate of the mean signal produced by an analyte-free sample, whether the signal is produced 
by the instrument background, contaminated reagents, or other causes. The most appropriate type 
of blank depends on the analyte and on the method and conditions of measurement. Some 
analytes. including many anthropogenic radionuclides, are unlikely to occur as contaminants in 
laboratory reagents. For these analytes the radiochemical blank may be only a blank source that 
mimics the container, geometry, and physical form of a source prepared from a real sample. On 
the other hand, many naturally occurring radionuclides may be present in laboratory water, 
reagents, and glassware, and these analytes often require the laboratory to analyze reagent blanks 
or matrix blanks to determine the distribution of the instrument signal that can be expected when 
analyte-free samples are analyzed. 

20.2.4  The Minimum Detectable Concentration 

The power of any hypothesis test is defined as the probability that the test will reject the null 
hypothesis when it is false.2 So, if the probability of a Type II error is denoted by β, the power is 
1 ! β. In the context of analyte detection, the power of the test is the probability of correctly 
detecting the analyte (concluding that the analyte is present), which happens whenever the 
response variable exceeds its critical value. The power depends on the analyte concentration of 
the sample and other conditions of measurement; so, one often speaks of the �power function� or 
�power curve.� Note that the power of a test for analyte detection generally is an increasing 
function of the analyte concentration � i.e., the greater the analyte concentration the higher the 
probability of detecting it. 

The minimum detectable concentration (MDC) is the minimum concentration of analyte that 
must be present in a sample to give a specified power, 1 ! β. It may also be defined as:

  � The minimum analyte concentration that must be present in a sample to give a specified 
probability, 1 ! β, of detecting the analyte; or 

2 Some authors define power more simply as the probability that the null hypothesis will be rejected � regardless of 
whether it is true or false. However, the concept of power is more relevant when the null hypothesis is false. 
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  � The minimum analyte concentration that must be present in a sample to give a specified 
probability, 1 ! β, of measuring a response greater than the critical value, leading one to 
conclude correctly that there is analyte in the sample. 

The value of β that appears in the definition, like α, is usually chosen to be 0.05 or is assumed to 
be 0.05 by default if no value is specified. The minimum detectable concentration is denoted in 
mathematical expressions by xD. In radiochemistry the MDC is usually obtained from the 
minimum detectable value of the net instrument signal, SD, which is the smallest mean value of 
the net signal at which the probability that the response variable will exceed its critical value is 
1 − β. The relationship between the critical net signal, SC, and the minimum detectable net signal, 
SD, is shown in Figure 20.1. 

Net signal distribution for 
analyte-free samples 

β α 

Net signal distribution for 
samples at the MDC 

0 S S C D 

FIGURE 20.1 � The critical net signal, SC, and minimum detectable net signal, SD 

Sections 20.4.2 and 20A.3 provide more information about the calculation of the minimum 
detectable concentration. 

The minimum detectable value of the activity or mass of analyte in a sample is sometimes called 
the minimum detectable amount, which may be abbreviated as MDA (ANSI N13.30 and 
N42.23). This chapter focuses on the MDC, but with few changes the guidance is also applicable 
to any type of MDA. 

While project planners and laboratories have some flexibility in choosing the significance level, 
α, used for detection decisions, the MDC is usually calculated with α = β = 0.05. The use of 
standard values for α and β allows meaningful comparison of analytical procedures. 

The MDC concept has generated controversy among radiochemists for years and has frequently 
been misinterpreted and misapplied. The term must be carefully and precisely defined to prevent 
confusion. The MDC is by definition an estimate of the true concentration of analyte required to 
give a specified high probability that the measured response will be greater than the critical 
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value. Thus, the common practice of comparing a measured concentration to the MDC to make a 
detection decision is incorrect. 

There are still disagreements about the proper uses of the MDC concept. Some define the MDC 
strictly as an estimate of the nominal detection capability of a measurement process. Those in 
this camp consider it invalid to compute an MDC for each measurement using sample-specific 
information such as test portion size, chemical yield, and decay factors (e.g., ANSI N42.23). The 
opposing view is that the �sample-specific� MDC is a useful measure of the detection capability 
of the measurement process, not just in theory, but as it actually performs. The sample-specific 
MDC may be used, for example, to determine whether an analysis that has failed to detect the 
analyte of interest should be repeated because it did not have the required or promised detection 
capability. 

Neither version of the MDC can legitimately be used as a threshold value for a detection deci-
sion. The definition of the MDC presupposes that an appropriate detection threshold (i.e., the 
critical value) has already been defined. 

Many experts strongly discourage the reporting of a sample-specific MDC because of its limited 
usefulness and the likelihood of its misuse. Nevertheless, this practice has become firmly estab-
lished at many laboratories and is expected by many users of radioanalytical data. Furthermore, 
NUREG/CR-4007 states plainly that �the critical (decision) level and detection limit [MDC] 
really do vary with the nature of the sample� and that �proper assessment of these quantities 
demands relevant information on each sample, unless the variations among samples (e.g., inter-
ference levels) are quite trivial� (NRC, 1984). 

Since a sample-specific MDC is calculated from measured values of input quantities such as the 
chemical yield, counting efficiency, test portion size, and background level, the MDC estimate 
has a combined standard uncertainty, which in principle can be obtained by uncertainty propa-
gation (see Chapter 19). 

In the calculation of a sample-specific MDC, the treatment of any randomly varying but precisely 
measured quantities, such as the chemical yield, is important and may not be identical at all lab-
oratories. The most common approach to this calculation uses the measured value and ignores 
the variability of the quantity. For example, if the chemical yield routinely varies between 0.85 
and 0.95, but for a particular analysis the yield happens to be 0.928, the MDC for that analysis 
would be calculated using the value 0.928 with no consideration of the typical range of yields. A 
consequence of this approach is that the MDC varies randomly when the measurement is 
repeated under similar conditions; or, in other words, the sample-specific MDC with this 
approach is a random variable. An MDC calculated in this manner may or may not be useful as a 
predictor of the future performance of the measurement process. 
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Detection and Quantification Capabilities 

If sample-specific MDCs are reported, it must be clear that no measured value should ever be 
compared to an MDC to make a detection decision. In certain cases it may be valid to compare 
the sample-specific MDC to a required detection limit to determine whether the laboratory has 
met contractual or regulatory requirements (remembering to consider the uncertainty of the MDC 
estimate), and in general it may be informative to both laboratory personnel and data users to 
compare sample-specific MDCs to nominal estimates, but other valid uses for the sample-
specific MDC are rare. 

20.2.5  The MARLAP Approach to Critical Values and Detection Limits 

Historically, detection in radiochemistry has often been based on the distribution of the instru-
ment signal obtained by counting analyte-free sources; however, in principle it should be based 
on the distribution obtained when analyte-free samples are analyzed, which is often affected by 
the processing of samples before instrumental analysis. There is more than one valid approach 
for dealing with the effects of sample processing. One approach, which is recommended by 
IUPAC (1995), makes the detection decision for a sample using the critical concentration, xC, 
which is calculated on the basis of the distribution of the measured analyte concentration, x�, 
under the null hypothesis of zero true concentration in the sample. Similarly, the IUPAC 
approach determines the MDC on the basis of the distribution of x� as a function of the true 
concentration. 

The approach of this chapter makes detection decisions using the critical net signal, SC, which is 
calculated on the basis of the distribution of the net signal, S�, under the same null hypothesis 
(zero true concentration in the sample). This approach requires one to consider all sources of 
variability in the signal, including any due to sample processing. So, for example, if the presence 
of analyte in the reagents causes varying levels of contamination in the prepared sources, this var-
iability may increase the variance of the blank signal and thereby increase the critical net signal. 

The MARLAP approach to detection decisions ignores the variability of any term or factor in the 
measurement model that does not affect the distribution of the instrument signal obtained from 
samples and blanks. For example, measurement errors in the counting efficiency may increase 
the variability of the measured concentration, but since they have no effect on the distribution of 
the signal, they do not affect the critical value, SC. 

The MARLAP approach to the calculation of the MDC also takes into account all sources of 
variability in the signal, including those related to sample processing, but it ignores any addi-
tional sources of variability in the measured concentration that do not affect the distribution of 
the signal. For example, variability in the true yield from one measurement to another affects the 
distribution of S� and thereby increases the MDC, but measurement error in the estimated yield 
typically does not. The estimated yield is applied as a correction factor to S�; so, errors in its 
measurement contribute to the variability of the calculated concentration but do not affect the 
variability of S� or the true value of the MDC. (On the other hand, yield measurement errors may 
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make precise determination of the MDC more difficult because they make it harder to determine 
the distribution of yields.) 

20.2.6  Other Detection Terminologies 

Another term frequently used for a measure of detection capability is the �lower limit of detec-
tion,� or LLD (Altshuler, 1963; EPA, 1980; NRC, 1984). Unfortunately this term has been used 
with more than one meaning. In Upgrading Environmental Radiation Data (EPA, 1980), the 
LLD is defined as a measure of the detection capability of an instrument and is expressed as an 
activity. However, the Nuclear Regulatory Commission defines the LLD to be identical to the 
MDC when α = β = 0.05 (see, for example, NUREG/CR-4007). It is thus a measure of the detec-
tion capability of a measurement process and is expressed as an activity concentration. 

The term �detection limit� is often used as a synonym for �minimum detectable concentration� or 
for �minimum detectable value� of any other measured quantity. 

Many other terms have been used to describe detection capabilities of measurement procedures. 
Most of them will not be listed here, but one term deserves attention because of the possibility of 
its confusion with the MDC. The method detection limit, or MDL, is a measure of detection 
capability used routinely in the context of analyzing samples for chemical contaminants. 

The term �method detection limit� is defined in the Code of Federal Regulations. In Title 40 
CFR Part 136, Appendix B, the following definition appears: 

The method detection limit (MDL) is defined as the minimum concentration of a 
substance that can be measured and reported with 99% confidence that the analyte 
concentration is greater than zero and is determined from analysis of a sample in a 
given matrix containing the analyte. 

The definition is later clarified somewhat by a statement that the MDL �is used to judge the sig-
nificance of a single measurement of a future sample.� Thus, the MDL serves as a critical value; 
however, it is also used as a measure of detection capability, like an MDC. Note that, in 
MARLAP�s usage, the �method detection limit� is not truly a detection limit. 

In March 2003, the Federal Register published a proposed revision of the definition of MDL, 
which would make it clear that the MDL serves as a critical value. The proposed new definition 
is: 

The method detection limit (MDL) is an estimate of the measured concentration at 
which there is 99 % confidence that a given analyte is present in a given sample 
matrix. The MDL is the concentration at which a decision is made regarding 
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whether an analyte is detected by a given analytical method. The MDL is calcu-
lated from replicate analyses of a matrix containing the analyte and is functionally 
analogous to the �critical value� described by Currie (1968, 1995 [IUPAC, 1995]) 
and the Limit of Detection (LOD) described by the American Chemical Society 
(Keith et al, 1980, McDougal et al., 1983). 

At the time of this writing, the proposed revision had not been approved. 

The similarity between the abbreviations MDC and MDL tends to produce confusion. The term 
�method detection limit� is seldom used in the context of radiochemistry except when the analyt-
ical method is one that is commonly used to measure stable elements (e.g., ICP-MS methods), or 
when the term is misused by those who are more familiar with the terminology of hazardous 
chemical analysis. The confusion is made worse by the fact that �MDL� is sometimes interpreted 
by radiochemists as an abbreviation for nonstandard terms such as �minimum detectable level� 
and �minimum detectable limit,� the use of which MARLAP strongly discourages. 

20.2.7  The Minimum Quantifiable Concentration 

The minimum quantifiable concentration, or the minimum quantifiable value of the analyte con-
centration, is defined as the concentration of analyte in a laboratory sample at which the measure-
ment process gives results with a specified relative standard deviation.3 A relative standard devi-
ation of 10 % is usually specified, although other values are possible (see for example MARLAP 
Appendix C). Since ISO 11843 addresses detection capability but not quantification capability, 
MARLAP follows IUPAC guidance in defining �minimum quantifiable value� (IUPAC, 1995). 
IUPAC defines both the minimum quantifiable instrument signal and the minimum quantifiable 
concentration, although MARLAP considers only the latter. In this document the minimum quan-
tifiable concentration will be abbreviated as MQC and denoted in equations by xQ. 

The term �quantification limit� may be used as a synonym for �minimum quantifiable concentra-
tion� or for �minimum quantifiable value� of any other measured quantity. 

Section 20.4.3 provides more information about the calculation of the minimum quantifiable 
concentration. 

Historically much attention has been given to the detection capabilities of radiochemical meas-
urement processes, but less attention has been given to quantification capabilities, although for 
some analytical projects, quantification capability may be a more relevant issue. For example, 
suppose the purpose of a project is to determine whether the 226Ra concentration in soil from a 

3 The MQC is defined in terms of the relative standard deviation of the estimator � not the relative standard 
uncertainty of the measured result. The standard uncertainty is generally an estimate of the standard deviation. 
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site is below an action level. Since 226Ra occurs naturally in almost any type of soil, the analyte 
may be assumed to be present in every sample, making detection decisions irrelevant. The MDC 
of the measurement process obviously should be less than the action level, but a more important 
question is whether the MQC is less than the action level (see also Chapter 3 and Appendix C). 

20.3 Recommendations 

MARLAP makes the following recommendations.

  � When an analyte detection decision is required, it should be made by comparing the gross 
signal, net signal, or measured analyte concentration to its corresponding critical value.

  � The laboratory should choose expressions for the critical value and minimum detectable 
value that are appropriate for the structure and statistics of the measurement process. The 
client may specify the desired Type I and Type II error rates (both 5 % by default) but should 
not require particular equations for the critical value or the minimum detectable value 
without detailed knowledge of the measurement process.

  � The laboratory should use an appropriate radiochemical blank to predict the signal produced 
by a sample that contains no analyte. The most appropriate type of blank for this purpose 
depends on the analyte and on the method and conditions of measurement. Depending on the 
circumstances, it may be a blank source, reagent blank, or other process blank that accounts 
for instrument background as well as any contaminants introduced during the processing of 
the sample.

  � The laboratory should confirm the validity of the Poisson approximation for the measurement 
process before using an expression for the critical value that is based on Poisson statistics. 
When the analyte is present at observable levels in the water, reagents, and lab ware used in 
the analysis, the Poisson approximation is often inappropriate. In these cases replicated 
blanks may be used to determine the critical value.

  � The laboratory should consider all sources of variance in the instrument signal (or other 
response variable) when calculating the critical value and minimum detectable value.

  � The minimum detectable value (MDC or MDA) should be used only as a performance 
characteristic of the measurement process.

  � A measurement result should never be compared to the minimum detectable value to make a 
detection decision. 
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  � The laboratory should report each measurement result and its uncertainty as obtained (as 
recommended in Chapter 19) even if the result is less than zero. The laboratory should never 
report a result as �less than MDC.�

  � The minimum detectable value should not be used for projects where the issue is quantifica-
tion of the analyte and not detection. For these projects, MARLAP recommends the min-
imum quantifiable value as a more relevant performance characteristic of the measurement 
process. 

MARLAP neither encourages nor discourages the reporting of sample-specific MDCs with 
measurement results, so long as the recommendations stated above are followed. 

20.4 Calculation of Detection and Quantification Limits 

20.4.1  Calculation of the Critical Value 

In Section 20.2.2, the critical value of the response variable (or gross instrument signal), denoted 
by yC, was defined as the response threshold used to decide whether the analyte concentration of 
a laboratory sample is greater than that of the blank. The critical value of the net instrument sig-
nal, denoted by SC, was similarly defined as the net signal threshold that may be used for the 
same purpose. 

The critical value of the net signal, SC, is defined symbolically by the relation 

Pr[S� > SC | X �� 0]  �� α (20.1) 

� � where Pr[ S  > SC | X = 0] denotes the probability that the observed net signal, S , exceeds its criti-
cal value, SC, when the true analyte concentration, X, is zero, and α denotes the significance 
level, or the specified probability of a Type I error. When the signal assumes only discrete values 
(e.g., numbers of counts), there may be no value SC that satisfies Equation 20.1 exactly. The criti-

� cal value in this case is defined as the smallest value, SC, such that Pr[ S  > SC | X = 0] # α. 

Determining a value of SC which satisfies the definition requires knowledge of the distribution of 
the net signal, S�, under the assumption that the analyte concentration in the laboratory sample is

� � � zero (the null hypothesis). The measured net signal may be written as S  = Y  − B�, where Y 
denotes the measured gross signal and B�  denotes the estimated value of the gross signal under 
the null hypothesis H0. In the absence of interferences, the value of B�  is usually estimated by 
measuring one or more blanks using the same procedure used to measure the test sample, and the

� � � distribution of Y  under H0 is determined from that of B . In other cases, however, the value of B 
includes estimated baseline and other interferences that are present only during the measurement 
of the sample and cannot be determined from the blank. 
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Since SC, not yC, has traditionally been used for analyte detection decisions in radiochemistry, the 
following presentation focuses primarily on SC. However, conversion of either of these values to 

� the other is simple, because yC = SC + B . 

20.4.1.1  Normally Distributed Signals 

� If the distribution of the net signal S  under H0 is approximately normal with a well-known stan-
dard deviation, σ0, the critical value of S� is 

SC ' z1&ασ0 (20.2) 

where z1 − α denotes the (1 − α)-quantile of the standard normal distribution. Table G.1 in Appen-
dix G shows that z1 − α . 1.645 when α = 0.05. Attachment 20A describes the calculation of SC 
when the standard deviation is not well-known. 

� The blank signal, B , and its standard deviation, σB, may be estimated by replicate blank measure-
ments, but at least 20 measurements are generally needed to ensure that the experimental stan-
dard deviation, sB, is an accurate estimate of σB. (If fewer than 20 measurements are made, see

� � � Attachment 20A.) Given σB, the standard deviation, σ0, of the net signal, S ' Y & B , under the 
null hypothesis is  equal to 

1 % 
1 (20.3) σ0 ' σB n 

where n denotes the number of replicate blank measurements. So, the critical net signal is given 
by 

1 % 
1 (20.4) SC ' z1&ασB n 

The preceding equation is valid only if the blank measurements are made in the same manner and 
under the same conditions as the sample measurement. In particular, count times should be 
identical for the sample and the blanks. 

20.4.1.2  Poisson Counting 

Radionuclide analyses typically involve radiation counting measurements. Although radiation 
counting data never follow the Poisson model exactly, the model may be a useful approximation 
in some situations, especially those where the mean blank count is extremely low and the ob-
served count therefore does not follow a normal distribution. At somewhat higher count levels, 
features from both models are often used, since the Poisson distribution may be approximated by 
a normal distribution. In this case the Poisson model allows one to estimate σ0 without replica-
tion, because one blank measurement provides an estimate of σB. 
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Generally the pure Poisson model is inappropriate when one analyzes for radionuclides that are 
found in observable quantities in the water, reagents, and lab ware used in the analysis. Some 
radionuclides, such as the naturally occurring isotopes of uranium, thorium, and radium, may be 
present as interfering contaminants in the laboratory and require blank corrections that account 
for their presence and variability in prepared sources. The variability of these contaminant levels 
usually must be determined by replicate measurements. If variability is found, one may either 
abandon the Poisson model (in this case see Section 20.4.1.1) or modify it by including addi-
tional non-Poisson variance terms (as shown in the next subsection, �The Poisson-Normal 
Approximation,� and in Section 19.5.4 of Chapter 19). 

When a test source is analyzed in a radiation counting measurement, either the gross count or the
� gross count rate may be considered the instrument signal Y . In this section, it is assumed that the 

instrument signal is the gross count. Therefore, if there are no interferences, the estimated gross 
and blank signals are 

�Y ' NS and 
tS �B ' NB tB 

(20.5) 

where 
NS is the gross count (source count); 
NB is the blank count; 
tS is the count time for the test source; and 
tB is the count time for the blank. 

If there are interferences, the blank signal is 

NB � B� ' % RI tS (20.6) 
tB 

where R�I  denotes the estimated count rate due to the interferences. In either case the net instru-
� � ment signal is the net count, defined as S  = NS − B . The net signal is always assumed to have 

zero mean when analyte-free samples are analyzed. 

THE POISSON-NORMAL APPROXIMATION 

Suppose the distribution of the blank signal can be estimated using the Poisson model, possibly 
with an additional small non-Poisson variance component and perhaps a correction for known 
interferences, and the instrument background remains at a level where the Poisson distribution is 
approximately normal. Then the critical net count is given approximately by the equation 
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SC ' z1�α tS 

RB % RI 

tS 

% 
RB 

tB 

% ξ2 
B % σ2( �RI) (20.7) 

where 
RB is the (true) mean count rate of the blank; 
RI is the mean interference count rate; 
ξB

2 is the non-Poisson variance in the blank (count rate) correction (see Section 19.5.4 of 
Chapter 19); and 

� σ2(RI ) is the variance of the estimator for RI . 

When there are no interferences and no non-Poisson blank variance, Equation 20.7 becomes 

tS (20.8) 1 % RB tS SC ' z1�α tB 

The preceding formula is equivalent to �Currie�s equation� LC = 2.33 µB  when tB = tS, α = 0.05, 
and the symbols LC and µB are identified with SC and RB tS, respectively (Currie, 1968). 

In Equation 20.8, RB denotes the true mean blank count rate, which can only be estimated. In
� practice one must substitute an estimated value, RB, for RB, as shown in the following equation. 

tS (20.9) R�B tS 1 % SC ' z1�α tB 

� Equation 20.9 resembles Equation 20.8 but involves the estimated count rate, RB , which varies 
� with repeated measurements. The value of RB  is usually estimated from the same blank value NB 

used to calculate the net instrument signal. (See Attachment 20A for other possible estimators.) 

NB �RB ' (20.10) tB 

The resulting formula, shown below, is equivalent to equations published by several authors 
(Currie, 1968; Lochamy, 1976; Strom and Stansbury, 1992; ANSI N13.30). 

tS tS (20.11) 1 % NB tB tB 

SC ' z1�α 
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Note that this is a commonly used expression for the critical net count, but its validity depends on 
the assumption of pure Poisson counting statistics. If the variance of the blank signal is affected 
by sample processing, interferences, or background instability, then Equation 20.11 may be 
invalid (but Equation 20.7 may be appropriate). 

If α = 0.05 and tB = tS, Equation 20.11 leads to the well-known expression 2.33 NB  for the 
critical net count. 

When the blank count is high (e.g., 100 or more), Equation 20.11 works well. At lower blank 
levels, it can produce a high rate of Type I errors. For example, if the true mean blank count is 
0.693, there is a 25 % chance of observing 0 blank counts and a positive number of test source 
counts in paired measurements of equal duration. In this case, a critical value calculated by Equa-
tion 20.11 produces Type I errors more than 25 % of the time regardless of the chosen signif-
icance level α. Attachment 20A describes several expressions for SC that have been proposed for 
use in situations where the mean blank count is less than 100. 

EXAMPLE 20.1 

Problem: A 6000-second blank measurement is performed on a proportional counter and 
108 beta counts are observed. A test source is to be counted for 3000 s. Estimate the critical 
value of the net count when α = 0.05. (See also Example 20.10.) 

Solution: 
tS tS 1 % SC ' z1�α NB tB tB 

3000 s 1 % 
3000 s 

' 1.645 108 
6000 s 6000 s 

' 14.8 net counts. 

EXAMPLE 20.2 

Problem: Repeat the same problem assuming the blank correction, expressed as a count rate, 
has a non-Poisson uncertainty component of ξB = 0.001 s!1 (see Section 19.5.4 of Chapter 19). 
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Solution: 
tS tS 2 

% ξ2 1 % NB B tS SC ' z1�α tB tB 

3000 s 1 % 
3000 s 

' 1.645 108 % (0.001 s&1)2 (3000 s)2 

6000 s 6000 s 
' 15.6 net counts. 

20.4.1.3  Batch Blanks 

Equation 20.11 is derived with the assumption that a detection decision is based on counts ob-
tained from a single radiation counter. When laboratory samples are analyzed in batches, it is 
common to analyze a single blank per batch, so that the measurement conditions for the blank 
may differ somewhat from those of the samples. In particular, the counts for the laboratory 
samples and the blank may be measured using different detectors. If detection in a laboratory 
sample is defined relative to a blank counted on a different instrument, Equation 20.11 is in-
appropriate. Even if a single instrument is used, the presence of positive amounts of analyte in 
the reagents probably invalidates the (pure) Poisson assumption. In principle, B�  should be 
estimated by converting the absolute activity of the blank ZB to an estimated gross count on the 
instrument used to measure the laboratory sample. Thus, 

� 

Then the net count is S Y − B , whose critical value is 

B �� F(ZB) (20.12) 

where 
F 

ZB 

is the calibration function for the laboratory sample measurem 
include the instrument background, counting efficiency, chemi 
estimated interferences and 
is the estimated absolute activity of the blank. 

ent, whose parameters 
cal yield, and any 

� � �  = 

SC ' z1�α σ
2(Y�0) % σ2(B�) (20.13) 

where 
σ2(Y�0) is the variance of the gross count Y� in the test source measurement when the sample 

is analyte-free and 
σ2(B�) is the variance of the estimator B�. 

� � � If Poisson counting statistics are assumed, then σ2(Y0) may be estimated by B  (assuming B  > 0), 
but estimating σ2(B�) still requires a more complicated expression, which may be based on uncer-
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tainty propagation or replication. The variance of B�  may be difficult to estimate if positive blank 
values are caused not by the presence of the analyte in reagents but by contaminated glassware or 
instruments, which may represent a loss of statistical control of the analytical process. 

A valid alternative to the approach just described is to use replicate blank measurements to deter-
mine the distribution of the measured total activity and to calculate the critical net (absolute) 
activity using an equation similar to Equation 20.4. The critical net activity is given by 

1 % 
1 (20.14) Critical Net Activity ' z1&ασblank n 

where σblank denotes the standard deviation of the blank activity and n denotes the number of 
replicate blank measurements. Then a detection decision is made for a real sample by comparing 
the measured net activity to the critical net activity. 

This approach should work best if all samples and blanks are analyzed under very similar con-
ditions, using instruments with similar counting efficiencies and background levels. (Each 
sample result and each blank result must still be corrected for instrument background.) If the 
instruments are significantly different, special care may be needed to ensure that the replicate 
blank measurements are made using all the available instruments and that samples are assigned 
to instruments randomly so that the variance of the blank results is similar to the variance ob-
served when analyte-free samples are analyzed. 

20.4.2  Calculation of the Minimum Detectable Concentration 

The minimum detectable concentration (MDC) is defined as the concentration of analyte xD that 
must be present in a laboratory sample to give a specified probability, 1 − β, of obtaining a meas-
ured response greater than its critical value, leading one to conclude correctly that there is analyte 
in the sample. In other words, the MDC is the analyte concentration at which the type II error rate 
is β. 

The MDC may also be defined as the analyte concentration xD that satisfies the relation 

Pr[S� # SC | X ' xD] ' β (20.15) 

� � where the expression Pr[ S # SC | X = xD] is read as �the probability that the net signal S  does not 
exceed its critical value SC when the true concentration X is equal to xD.� 

The MDC is often used as a performance measure for an analytical process for the purpose of 
comparing different analytical procedures or evaluating a laboratory�s capabilities against speci-
fied requirements. The calculation of the �nominal� MDC is complicated by the fact that some 
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input quantities in the mathematical model, such as interferences and the chemical yield, which 
have a substantial impact on the MDC, may vary significantly from measurement to measure-
ment. Other quantities that may have similar effects include the decay time, counting efficiency, 
and instrument background. Because of these variable quantities, determining the value of xD that 
satisfies Equation 20.15 in practice may be difficult. One common approach to this problem is to 
make conservative choices for the values of the variable quantities, which tend to increase the 
value of xD . 

The MDC is also commonly used in radiochemistry to describe the detection capability of the 
analytical process as implemented in a particular instance. In this case, the need for conservative 
choices is reduced. Instead, the measured values of the variable quantities may be used. How-
ever, since the measured values have uncertainties, their uncertainties contribute to a combined 
standard uncertainty in the calculated value of xD. To ensure compliance with regulatory or 
contractual requirements, an uncertainty interval or conservative upper bound for xD may still be 
useful (see NRC, 1984). 

20.4.2.1  The Minimum Detectable Net Instrument Signal 

The traditional method for calculating the MDC involves first calculating the minimum detect-
able value of the net instrument signal and then converting the result to a concentration using the 
mathematical measurement model. The minimum detectable value of the net instrument signal, 
denoted by SD, is defined as the mean value of the net signal that gives a specified probability, 
1 ! β, of yielding an observed signal greater than its critical value SC. Thus, 

Pr[S� # SC | S ' SD ] ' β (20.16) 

where S denotes the true mean net signal. 

In radiochemistry the mean net signal, S, is usually directly proportional to X, the true analyte 
concentration in the sample. So, there is a �sensitivity� constant, A, such that S = AX. The 
constant A typically is the mean value of the product of factors such as the source count time, 
decay-correction factor, yield, counting efficiency, and test portion size (e.g., mass or volume). 
Its value in some cases may be sample-dependent, but it is essentially independent of the analyte 
concentration over a wide range of values. Combining Equation 20.16 with the relation S = AX 
gives 

Pr[S� # SC | X ' SD / A] ' β (20.17) 

A comparison of Equation 20.17 to Equation 20.15, the defining relation of the minimum detec-
table concentration, xD, shows that 
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SD xD ' (20.18) 
A 

The preceding equation is only true if all sources of variability are accounted for when determin-
ing the distribution of the net signal, S�. If sample-processing effects are ignored, the expression 
SD / A may underestimate the MDC. Note that ensuring the MDC is not underestimated also re-
quires that the value of A not be overestimated. 

Certain variations of this procedure for calculating SD and xD may also be useful. As an example, 
suppose 

A ' tS µY µV µg µD µFS (20.19) 

where 
tS the source count time; 
µY the mean chemical yield; 
µV the mean test portion size (mass or volume); 
µg 

µD 

the mean counting efficiency; 
the mean decay-correction factor; and 
the mean �subsampling factor,� defined in Chapter 19 as the ratio of analyte concen-µFS tration in a subsample to that in a sample (  is assumed to be 1). µFS 

Much of the guidance given later for calculating SD presumes that the distribution of the signal is 
normal, but the distribution tends not to be normal if the true yield (Y), test portion size (V), 
counting efficiency (g), decay-correction factor (D), or subsampling factor (FS) is not normally 
distributed, or if the total relative variance of the product of these factors is large. For example, 
suppose the yield and decay factor vary over large ranges and are not normally distributed but the 
other factors are either constant or approximately normal. Then a reasonable method of calcu-
lating xD is to ignore the variances of Y and D when calculating SD but to compensate for their 
omission by replacing µYµD in the expression for the sensitivity factor, A, by a lower value, such 
as the β-quantile of the historical distribution of YD (i.e., the 5th percentile when β = 0.05). In 
general, the variance of any or all of the factors may be ignored if a sufficiently conservative 
value is substituted for the mean value of the product of those factors when estimating the 
sensitivity factor, A. 

20.4.2.2  Normally Distributed Signals 

� If the net signal, S , is normally distributed and its estimated standard deviation, σ0, under H0 is 
� well-known, the critical value of S  is SC = z1&ασ0 , as previously noted. Then the minimum 

detectable net signal, SD, is determined implicitly by the equation 

SD ' SC % z1&β σ
2(S� | S ' SD) (20.20) 
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S� � where σ2(  |  S = SD) denotes the variance of the measured signal, S , when the true mean signal, 
S, equals SD. If the function σ2(  |  S = SD) is constant, Equation 20.20 gives the value of SD S� 
immediately, but typically σ2(  |  S = SD) is an increasing function of SD. S� 

If the function σ2(  |  S = SD) has a simple form, it may be possible to transform Equation 20.20 S� 
by algebraic manipulation into an explicit formula for SD. For example, the variance of S� often 
has the form 

σ2(S�) ' aS 2 % bS % c (20.21) 

where S denotes the true mean net signal and the constants a, b, and c do not depend on S (see 

SD ' 1 
Iβ 

SC % 
z 2 

1�β b 
2 

% z1�β bSC % 
z 2 

1�β b 2 

4 
% aS 2 

C % Iβ c (20.22) 

Section 20.4.2.3, �Poisson Counting�). In this case the minimum detectable net signal is given by 

where Iβ = 1 − z1�
2 
β a . When α = β, the preceding equation can be simplified to the following. 

bz1
2 
&β % 2SC SD ' (20.23) 

1 & z 2 
1&β a 

In Equations 20.21 and 20.22, the constant c equals σ0
2 , the variance of the net signal, S�, when 

analyte-free samples are analyzed. If Poisson counting statistics are assumed (possibly with other 
sources of variance) and the signal S is the net count, as defined earlier, the constant b usually 
equals 1. In some situations, such as alpha-counting 222Rn and its short-lived progeny in an alpha 
scintillation cell, a different value of b may be needed because of the different counting statis-
tics.4 

For typical radiochemistry measurement models, the value of the constant a is the relative vari-
ance (squared coefficient of variation) of the overall sensitivity, which is the product of factors 
such as the count time, yield, counting efficiency, and subsampling factor. In general the relative 
variance of a product of independent positive factors F1, F2, ..., FN  is given by 

φ2(F1 F2 @@@FN) ' (1 % φ2(F1))(1 % φ2(F2)) @@@ (1 % φ2(FN)) & 1 (20.24) 

where n2 denotes relative variance, although an adequate approximation is usually given by 

Detection and Quantification Capabilities 

4 Note that b equals the �index of dispersion� of the counts produced by net  sample activity (the ratio of the variance 
to the mean). See Lucas and Woodward (1964) for more information about the counting statistics  of  alpha-
scintillation cells. 
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φ2(F1 F2 @@@FN) . φ2(F1) % φ2(F2) % @@@ % φ2(FN) (20.25) 

when each coefficient of variation, n(Fi), is small. So, if the coefficients of variation of the yield, 
counting efficiency, subsampling factor, and other such factors are known, the value of a can be 
calculated. 

EXAMPLE 20.3 

Problem: Suppose the sensitivity is the product of the yield (Y), counting efficiency (g), test 
portion size (V), count time (tS), and subsampling factor (FS), and that essentially all of the 
variance of this product is generated by the variances of the yield and subsampling factor. 
Assume the coefficients of variation of these two factors are 

n(Y) = 0.06 
n(FS) = 0.03 

Assume the counts produced by the net sample activity follow Poisson counting statistics, and 
assume that σ2 , the variance of the net count observed when analyte-free samples are ana-0 
lyzed, equals 209. Determine the values of the constants a, b, and c such that σ2( �S) ' 
aS 2 % bS % c . 

Solution: The value of a is determined using Equation 20.24, as follows: 

a ' φ2(YFS) ' (1 % φ2(Y))(1 % φ2(FS)) & 1 
' (1 % 0.062)(1 % 0.032) & 1 
' 0.0045 

The value of b is 1, because Poisson counting statistics are assumed. The value of c equals σ2 , 0 
or 209. So, the variance of the net signal, �, is given by the equation S 

σ2( �S) ' (0.0045 × S 2) % S % 209 

ITERATIVE METHODS 

If Equation 20.20 cannot be transformed algebraically, an iterative procedure, such as fixed-point 
iteration, may be used to solve the equation for SD. An outline of fixed-point iteration is shown 
below.5 

5 Fixed-point iteration, or functional iteration, is the term for a general technique for solving an equation of the form 
x = f(x). The iteration produces a sequence x0, x1, x2, ..., where xn + 1 = f(xn). Under certain conditions, the sequence 
converges to a fixed point of f, where f(x) = x. Newton�s Method for finding a zero of a function g(x) is one example 
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1. Initially calculate SD = SC + z1&β σ
2(S� | S ' SC) (using S = SC) 

2. repeat loop (Lines 3�4) 

3.      Set h = SD 

4.      Recalculate SD = SC + z1&β σ
2(S� | S ' h) (using S = h) 

5. until |SD − h | is sufficiently small 

6. output the solution SD 

In many cases, one iteration of the loop (Lines 3�4) provides an adequate approximation of SD. In 
almost all cases, repeated iteration produces an increasing sequence of approximations con-
verging upward to the solution; so, the stopping condition at Line 5 may be replaced by 
�until SD # h� to obtain full machine precision in the result. 

EXAMPLE 20.4 

Problem: Assume the variance of the net signal, S�, is given by 

σ2(S�) ' (0.0045 × S 2) % S % 209 

where 0.0045 is the value of the constant a determined in Example 20.3, assuming a 3 % coef-
ficient of variation in the subsampling factor and a 6 % coefficient of variation in the yield. Let 
α = β = 0.05. The critical net signal, SC, is calculated as follows. 

SC ' z1&α σ
2(S� | S ' 0) ' 1.645 209 ' 23.78 

Use fixed-point iteration to calculate SD. 

Solution: The algorithm produces a sequence of approximations. 

SD,0 ' 23.78 % 1.645 σ2(S� | S ' 23.78) ' 49.02 

SD,1 ' 23.78 % 1.645 σ2(S� | S ' 49.02) ' 50.75 

SD,2 ' 23.78 % 1.645 σ2(S� | S ' 50.75) ' 50.88 

of the technique. 
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SD,3 ' 23.78 % 1.645 σ2(S� | S ' 50.88) ' 50.89 

SD,4 ' 23.78 % 1.645 σ2(S� | S ' 50.89) ' 50.89 

The sequence converges to 50.89, which is the value of SD. 

Notice that the same value can be calculated using Equation 20.22 or 20.23 with the constants 
a = 0.0045, b = 1, c = 209. 

20.4.2.3  Poisson Counting 

If the following assumptions are true: 

� The mean blank count is at least 100 
� The only source of signal variance considered is Poisson counting statistics 
� α = β 
� Equation 20.11 is used to calculate the critical net signal, SC 

then the minimum detectable net signal, SD, is given by the following simple equation.6 

SD ' z1
2 
&β % 2SC (20.26) 

In the special case when α = β = 0.05, Equation 20.26 becomes 

SD ' 2.71 % 2SC (20.27) 

In the case when α … β, SD is determined from Equation 20.22 using the following values for a, b, 
and c. 

tS a ' 0 b ' 1 c ' RB tS 1 % 
tB 

The resulting formula for SD is 

Detection and Quantification Capabilities 

6 Some references  use the value 3 instead of  z 21�β  in this formula. A straightforward derivation gives the value z 21�β , 
which is approximately 2.71 when β = 0.05, but replacing  this value by  −ln β (approximately 3 when β = 0.05) 
accounts for the fact that  when the mean count is low, a Poisson distribution is only imperfectly approximated by a 
normal distribution. The value !ln β is the exact  value of  SD when the mean blank  count rate is  zero, because in this 
case S � 

C = 0, and Pr[ S  = 0] #  β if and only if  S  $ !ln β. Note also that the equation in the text is valid only if  α = β. 
MARLAP considers either z 2 

1�β  or −ln β to be an acceptable value in this case. 
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2 z z1�
2 
β 1 % 

tS (20.28) SD ' SC % 1�β 
% SC % RB tS % z1�β 2 4 tB 

EXAMPLE 20.5 

Problem: Consider Example 20.1 again, where a 6000-second blank measurement on a pro-
portional counter produces 108 beta counts and a test source is to be counted for 3000 s. 
Assume this blank measurement gives the best available estimate of the true mean blank count 
rate, RB, and use Equation 20.27 to calculated the minimum detectable net signal, SD, using the 
default value, 0.05, for Type I and Type II error probabilities. Also use Equation 20.28 to 
calculate SD for α = 0.05 and β = 0.10. 

Solution: As in Example 20.1, the critical net count, SC, equals 14.8. The count times are tS = 
3000 s and tB = 6000 s. The mean blank count rate, RB, is estimated by 

108 RB . ' 0.018 s&1 

6000 s 

For the first part of the problem, Equation 20.27 may be used, because α = β = 0.05. It gives 
the result 

SD ' 2.71 % 2(14.8) ' 32.3 net counts 

For the second part of the problem, Equation 20.28 is used, because α … β. 

2 2 z z 1�β 1�β tS SD ' SC % % SC % RB tS 1 % % z1�β 2 4 tB 

' 14.8 % 1.2822 1.2822 
1 % 3000 s 

% 1.282 % 14.8 % (0.018 s&1)(3,000 s) 
2 4 6000 s 

' 28.2 net counts 

Detection and Quantification Capabilities 

As previously noted, counting  data never follow the  Poisson model exactly. Variable factors such 
as the yield, counting  efficiency, subsampling  error, and source geometry and placement tend to 
increase a, while interferences and background instability tend to increase c. So, using  any of 
Equations 20.26�28 to calculate SD is only appropriate if a conservative value of the sensitivity 
factor, A, (such as the β-quantile of the distribution of the true sensitivity) is used when con-
verting  SD to the MDC. The following  example illustrates the calculation of SD and xD when both 
Poisson counting  statistics and other sources of variance are considered. 
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EXAMPLE 20.6 

Problem: Again consider the scenario of Example 20.5, where tB = 6000 s, tS = 3000 s, and 
RB . 0.018 s!1. Let the measurement model be 

NS & (NB tS / tB) 
X ' 

tS gYmS DFS 

where 
X is the specific activity of the radionuclide in the sample; 
g is the counting efficiency; 
Y is the yield; 
mS is the mass of the test portion; 
D is the decay-correction factor (calculated); and 
FS is the subsampling factor. 

Assume: 
� the mass of the test portion is always between 0.98 g and 1.05 g 
� the half-life of the analyte is 5.07 d, and decay times from collection to start of 

counting range from about 3 d to about 10 d 
� the counting efficiency has mean 0.42 and a 2 % coefficient of variation 
� the yield has approximate mean 0.85 and a 5 % coefficient of variation 
� the subsampling factor, whose mean is assumed to be 1, has a 3 % coefficient of 

variation 
� background instability contributes a non-Poisson standard deviation of 0.001 s!1 to the 

blank correction, expressed as a count rate (see Section 19.5.4 of Chapter 19). 

Calculate SD and xD using the value 0.05 for both the Type I and Type II error probabilities. 

Solution: First determine how to handle each variable sensitivity factor. The following 
approach is reasonable. 

� The source count time, tS, has negligible variability; so, use the given value 3000 s and 
ignore the variance. 

� The mass of the test portion, mS, has only a little variability; so, use the lower bound, 
0.98 g, and ignore the variance of mS. 

� The decay-correction factor, D, can vary significantly from sample to sample, but no 
information is given about the distribution except its range of values. Assume a rec-
tangular distribution of decay times from 3 d to 10 d, and calculate the 95th percentile, 3 
+ 0.95(10 ! 3) = 9.65 d, which gives the 5th percentile of the decay-correction factor 
(calculated below). 
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� Use the stated mean values of the counting efficiency (g), yield (Y), and subsampling 
factor (FS) to calculate the sensitivity factor, and use the stated coefficients of variation 
for these factors when calculating SD. 

Next write an expression for the variance of the net signal, S�. The Poisson counting variance 
is given by 

t t tS S
2 

S
2 

Poisson variance of ' E(NS) % E(NB) ' (S % RB tS) % RB 
t 2 

NS & NB tB B 
tB 

� where E( @ ) denotes expectation. The non-Poisson variance of the background contributes to S 
an additional variance component equal to (0.001)2tS

2 . The variability of the efficiency, yield, 
and subsampling factor contribute a variance component of 

(1 % 0.022)(1 % 0.052)(1 % 0.032) & 1 × S 2 ' 0.0038 × S 2 

Therefore, the total variance of S� is given by 

2 t 
σ2(S�) ' S % RB tS % RB

S 
% (0.001 s&1)2tS

2 
% (0.0038 × S 2) 

tB 
tS 

' (0.0038 × S 2) % S % RB tS 1 % % (0.001 s&1)2tS
2 

tB 

So, let a, b, and c be as follows. 

tS a ' 0.0038 b ' 1 c ' RB tS 1 % % (0.001 s&1)2 tS
2 
' 90 

tB 

As in Example 20.2, the critical net count, SC, equals 15.6. Then Equation 20.23 gives the 
minimum detectable net signal, SD. 

(1)(1.645)2 % 2(15.6) 33.918 SD ' ' ' 34.3 counts 
1 & (1.645)2(0.0038) 0.9897 

The value of the sensitivity factor, A, is obtained from the product of the chosen values for the 
count time, counting efficiency, yield, test portion size, decay factor, and subsampling factor. 
The decay constant, λ, must be calculated from the half-life, T1/2 = 5.07 d. 

Detection and Quantification Capabilities 
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ln2 0.693147 λ ' ' ' 1.582 × 10&6 s &1 

T1/2  (5.07 d)(86,400 s /d) 

Then the decay-correction factor is calculated. 

1 & e&(1.582×10&6 s&1)(3000 s) 
&λ tD 1 & e &λ tS 

' e&(1.582×10&6 s&1)(9.65 d)(86,400 s /d) D ' e ' 0.2667 
λ tS (1.582×10&6 s&1)(3000 s) 

So, the sensitivity factor is 

A ' tS gYmS DFS ' (3000 s)(0.42)(0.85)(0.98 g)(0.2667)(1) ' 279.9 g @s 

Therefore, the minimum detectable concentration is 

SD 34.3 xD ' ' ' 0.12 Bq/g 
A 279.9 

20.4.2.4  More Conservative Approaches 

More conservative (higher) estimates of the MDC may be obtained by following the recommen-
dations of NUREG/CR-4007, in which formulas for MDC (LLD) include estimated bounds for 
relative systematic error in the blank determination ( ∆| B) and the sensitivity ( ∆| A). The critical net 
count SC is increased by ∆| B B� , and the minimum detectable net count SD is increased by 2∆| B B� . 
The MDC is then calculated by dividing SD by the sensitivity and multiplying the result by 
1 % ∆| A . The NUREG�s conservative approach treats random errors and systematic errors differ-
ently to ensure that the MDC for a measurement process is unlikely to be consistently under-
estimated, which is an important consideration if the laboratory is required by regulation or 
contract to achieve a specified MDC. 

20.4.2.5  Experimental Verification of the MDC 

To ensure that the MDC has been estimated properly, one may test the estimate experimentally 
by analyzing n identical control samples spiked with an analyte concentration equal to xD. If the 
MDC has been determined properly (the null hypothesis), the probability of failing to detect the 
analyte in each control sample is at most β. Then the number of nondetectable results in the ex-
periment may be assumed to have a binomial distribution with parameters n and β. If k non-
detectable results are actually obtained, one calculates the cumulative binomial probability 
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n k�1 n β j (1 � β)n� j or 1 � j 
n � j β j (1 � β)n (20.29) P ' j 

j'k j j'0 j 

and rejects the null hypothesis if P is smaller than the chosen significance level for the test 
(which may differ from the significance level for the analyte detection test). 

NOTE: For any nonnegative integers n and j, the notation n
j

 denotes a binomial coefficient, usually read �n 

choose j,� which is the number of possible combinations of n objects chosen j at a time. For 0 # j # n, the 
value of n  equals n! , where the symbol ! denotes the factorial operator. The number of combinations 

j j!(n& j)! 

of n objects chosen j at a time is also denoted sometimes by nCj . 

To make the test realistic, one should ensure that the physical and chemical characteristics of the 
control samples, including potential interferences, are representative of laboratory samples 
encountered in practice. 

EXAMPLE 20.7 

Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with 
concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to 
have been underestimated (at the 10 % level of significance)? 

Solution: The variables are n = 10, β = 0.05, and k = 3. Calculate the P-value 

2 10 � j �P �� 1 �  j (0.05) j (0.95)10 � 1 � 0.9885 �� 0.0115 
j� j �0 

Since P # 0.10, reject the null hypothesis and conclude that the MDC was underestimated. 

Detection and Quantification Capabilities 

20.4.3  Calculation of  the Minimum  Quantifiable Concentration 

The minimum quantifiable concentration (MQC), or the minimum quantifiable value of the con-
centration, was defined in Section 20.2.7 as the analyte concentration in a laboratory sample that 
gives measured results with a specified relative standard deviation 1 / kQ, where kQ is usually 
chosen to be 10. 

Calculation of the MQC requires that one be able to estimate the standard deviation for the result 
of a hypothetical measurement performed on a laboratory sample with a specified analyte con-
centration. Section 19.5.13 of Chapter 19 discusses the procedure for calculating  the standard 
deviation for such a hypothetical measurement. 
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Q

xQ ' kQ σ
2(X� | X ' xQ) (20.30) 

X� � where σ2(  |  X = xQ) denotes the variance of the estimator X  when the true concentration X 
equals xQ. If the function σ2(  |  X = xQ) has a simple form, it may be possible to solve Equation X� 
20.30 for xQ using only algebraic manipulation. Otherwise, fixed-point iteration, which was 
introduced in Section 20.4.2, may be used. The use of fixed-point iteration for this purpose is 
shown below. 

1. Initially calculate xQ = kQ σ
2(X� | X ' 0) (using X = 0) 

2. repeat loop (Lines 3�4) 

3. Set h = xQ 

4. Recalculate xQ = kQ σ
2(X� | X ' h) (using X = h) 

5. until |xQ ! h | is sufficiently small 

6. output the solution xQ 

The sequence of values generated by the algorithm typically converges upward to the solution. 

When Poisson counting statistics are assumed, possibly with excess variance components, and 
the mathematical model for the analyte concentration is X = S / A , where S is the net count, A 
denotes the overall sensitivity of the measurement, Equation 20.30 may be solved for xQ to obtain 
the formula 

k 2 4 IQ tS (20.31) % ξB
2 t 2 

% σ2( � ) t 2 xQ ' Q 1 % 1 % 1 % RB tS S % RI tS RI S 2AIQ kQ
2 tB 

where 
tS is the count time for the test source; 
tB is the count time for the blank; 
RB is the mean blank count rate; 
ξB

2 is the non-Poisson variance component of the blank count rate correction; 
RI is the mean interference count rate; 
σ(R�I) is the standard deviation of the measured interference count rate; 
φA 

2
� is the relative variance of the measured sensitivity, A�, including the subsampling 

variance; and 
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The MQC is defined symbolically as the value x  that satisfies the relation 
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is equal to 1 ! kQ φ
2 . IQ

2 
A� 

If the true sensitivity A may vary, then a conservative value, such as the 0.05-quantile A0.05 , 
should be substituted for A in the formula. Note that φ2 

A�  denotes only the relative variance of A� 
due to subsampling and measurement error � it does not include the variance of the true 
sensitivity, A. 

Note that Equation 20.31 defines the MQC only if IQ > 0. If IQ # 0, the MQC is infinite, because
� there is no concentration at which the relative standard deviation of X  fails to exceed 1 / kQ. In 

particular, if the relative standard deviation of the measured sensitivity A� or the subsampling 
standard deviation φSamp exceeds 1 / kQ, then IQ < 0 and the MQC is infinite. 

More generally, if the variance of the measured concentration X� can be expressed in the form 
σ2( ) =  aX2 + bX + c, where a, b, and c do not depend on X, then the MQC is given by the X� 
formula 

4c (1 & kQ
2 a) kQ

2 

(20.32) b 2 % 
2(1  & kQ

2 a) kQ
2 

xQ ' b % 

For example, if pure Poisson counting statistics are assumed and there are no interferences, then 
a ' φA 

2
� , b ' 1 /  A , and c = RB tS (1 + tS / tB) / A2. 

EXAMPLE 20.8 

Problem: Refer once more to Examples 20.5 and 20.6, where the measurement model is given 
by 

NS & (NB tS / tB) 
X ' 

tS gYmS DFS 

where 
X is the specific activity of the radionuclide in the sample; 
NS is the sample (gross) count; 
NB is the blank count; 
tS is the sample count time (s); 
tB is the blank count time (s); 
g is the counting efficiency; 
Y is the yield; 
mS is the mass of the test portion (g); 
D is the decay-correction factor; and 
FS is the subsampling factor. 

Detection and Quantification Capabilities 
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Keep the same assumptions as in the earlier examples. Assume also that the relative standard 
deviation of the yield measurement (as opposed to that of the yield itself) is 3 %, and that the 
relative standard deviation of the efficiency measurement is 2 %. Use Equation 20.31 to calcu-
late the minimum quantifiable concentration, xQ, defined as the analyte concentration at which 
the relative standard deviation of the measurement process is 10 %. 

Solution: The relative measurement variance of the sensitivity, φ2 
A� , is assumed to be the sum 

of the relative subsampling variance and the relative measurement variances of Y and g, since 
the other sensitivity factors are measured with better relative precision. As in the earlier 
example, conservative values for mS (0.98 g) and D (0.2667) will be used in the calculation of 
the sensitivity factor, A. However, for this problem, a somewhat conservative value of the 
yield will also be used, because the true yield has a 5 % relative standard deviation, which is 
not otherwise taken into account. Since the mean value of the yield is 0.85 and the relative 
standard deviation is 5 %, estimate the 0.05-quantile of the yield as follows: 

Y = 0.85 × (1 − 1.645 × 0.05) = 0.78 

The following values are also used in this problem. 

tS ' 3000 s 
tB ' 6000 s 

RB ' 0.018 s&1 

g ' 0.42 
RI ' 0, σ2(R�I) ' 0, ξB ' 0 
kQ ' 10 
φ ' 0.02 g 

φY ' 0.03 
φSamp ' 0.03 

φ2 
' φ2 

% φ2 
Samp ' 0.022 % 0.032 % 0.032 

A� g Y ' φ2 

IQ ' 1 & kQ
2 φ2 

' 1 & 100(0.022 % 0.032 % 0.032) ' 0.78 A� 

The sensitivity factor, A, is now evaluated as follows. 

A = tS gYmS DFS  = (3000 s)(0.42)(0.78)(0.98 g)(0.2667)(1) = 256.9 g @ s 

Next, the MQC can be calculated as shown below. 
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k 2 4 IQ tS xQ ' Q 1 % 1 % 1 % % 0 RB tS 2AIQ kQ
2 tB 

' 100 
2(256.9 g @s)(0.78) 

1 % 1 % 4(0.78) 
100 

(0.018 s&1) (3000 s) 1 % 3000 s 
6000 s 

% 0 

' 0.718 Bq/g 

Now, as a check, one may use the procedure described in Section 19.5.13 of Chapter 19 to 
predict the combined standard uncertainty of a measurement made on a hypothetical sample 
whose analyte concentration is exactly xQ. 

NB ' RB tB ' (0.018 s&1)(6000 s) ' 108 

NS ' xQ A % RB tS ' (0.718 Bq/g)(256.9 g @s) % (0.018 s&1)(3000 s) ' 238.45 

2 2 
u 2(g) 

% 
u 2(Y) 

% φ2 NS % NB tS / tB 2 uc(X) ' % xQ 
g2 Y 2 Samp 

A 2 

238.45 % (108)(3000 s)2 / (6000 s)2 
' % (0.718 Bq/g)2 0.022 % 0.032 % 0.032 

(256.9 g @s)2 

' 0.0718 Bq/g 

So, the combined standard uncertainty is predicted to be 0.0718 Bq/g, or 10 % of the true 
value, as expected. 
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ATTACHMENT 20A 
Low-Background Detection  Issues 

20A.1  Overview 

This attachment describes methods for determining critical values and minimum detectable con-
centrations (MDCs) when the standard deviation of the blank signal is not known precisely, 
which occurs for example when the blank is measured by low-background Poisson counting or 
when the standard deviation is estimated from a small number of replicate measurements. The 
methods described below are applicable more generally, even when the background is high or the 
number of degrees of freedom is large, but in these situations the simpler methods described 
previously should be adequate. 

20A.2 Calculation of the Critical Value 

The critical value of the net signal SC was defined earlier by the relation 

Pr[S� > SC | X ' 0]  ' α (20.33) 

When the signal assumes only discrete values (e.g., numbers of counts), there may be no value SC 
that satisfies Equation 20.33 exactly. The critical value in this case is defined as the smallest 
value SC such that Pr[ S� > SC | X = 0] # α. 

20A.2.1 Normally Distributed Signals 

� If the distribution of the net signal S  under H0 is approximately normal with a well-known stan-
dard deviation, σ0, the critical value of S� is 

SC ' z1�ασ0 (20.34) 

where z1 ! α denotes the (1 ! α)-quantile of the standard normal distribution. Typically the stan-
dard deviation σ0 is not well-known and must therefore be replaced by an estimate, σ�0. If σ�0 is 
determined by a statistical evaluation with ν degrees of freedom, the multiplier z1 − α should be 
replaced by t1 ! α(ν), the (1 ! α)-quantile of the t-distribution with ν degrees of freedom (cf. Type 
A evaluation of standard uncertainty in Section 19.4.2.1 of Chapter 19). Thus, 

SC ' t1&α(ν) ×  σ� 0 (20.35) 

Table G.2 in Appendix G lists values of t1 ! α(ν). In general, t1 ! α(ν) is greater than z1 ! α , but the two 
values are approximately equal if ν is large. 
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� When B  is estimated by the average of n replicate blank measurements (assuming no interfer-
ences), the standard deviation σ�0 of the net signal S� under the null hypothesis may be estimated 
from the experimental standard deviation of the measured blank values, sB. Specifically, 

1 % 
1 (20.36) σ� 0 ' sB n 

The number of degrees of freedom, ν, in this case equals n ! 1; so, the critical value of S� is 

SC ' t1&α(n&1) × sB 1 % 
1 (20.37) 
n 

EXAMPLE 20.9 

Problem: Suppose seven replicate blank measurements are made, producing the following 
results (total counts). 

58  43  64  53  47  66  60 

Assume the blank distribution is approximately normal and calculate the critical value of the 
net count (gross sample count minus average blank count) using a 5 % significance level. 

Solution: First, calculate the mean blank count, B . 
n 1 391 B ' ' 55.857 j Bi ' 

n i'1 7 

Calculate the standard deviation of the blank counts, sB. 

n 1 442.857 sB ' (Bi & B)2 ' ' 8.5912 
n & 1 j 

i'1 7 & 1 

Find the 0.95-quantile of the t-distribution with 7 ! 1 = 6 degrees of freedom in Appendix G. 

(6) ' 1.943 t1 & α(n&1) ' t0.95

Calculate the critical net count using Equation 20.37. 

1 % 
1 1 % 

1 SC ' t1&α(n&1) × sB ' 1.943 × 8.5912 ' 17.85 
n 7 

Thus, the net count must exceed 17.85 to be considered detected. 

Detection and Quantification Capabilities: Low-Background Detection Issues 
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Note that if z1&α  were used instead of t1&α(n&1)  in the equation, the critical value would be 
underestimated as 

1 % 
1 
' 1.645 × 8.5912 1 % 

1 
' 15.11 (incorrect) SC ' z1&α × sB n 7 

20A.2.2 Poisson Counting 

It is assumed here, as in Section 20.4, that the instrument is a radiation counter and the instru-
ment signal is the gross count. Therefore, 

NB � � % � Y ' NS B ' RI tS (20.38) tB 

and the net instrument signal is the net count,  which is given by 

RI is the estimated count rate due to interferences; 

�S ' NS & 
NB 

tB 

% �RI tS (20.39) 

where 
NS is the gross count (source count); 
NB
� 

is the blank count; 

tS is the count time for the test source; and 
tB is the count time for the blank. 

If tB is much greater than tS, generally at least 10 times greater, the blank count rate, RB, can be 
considered to be �well-known,� because it contributes little variance to the net signal, S�. The 
value of RB may be estimated from a single measurement of long duration or from an average of 
several measurements of shorter duration. Whenever RB is well-known, if there are no inter-
ferences, then according to the Poisson model, the critical gross count, yC, equals the smallest 
nonnegative integer n such that 

n )k 
&RB tS

(RB tS e $ 1 & α (20.40) j
k'0 k! 

Then SC, the critical net count, equals  yC ! RB tS. Table 20.1 shows critical gross counts for α = 
0.05 for small values of RB tS (adapted from NRC, 1984).7 To use the table, one calculates the 

7 The breaks in the table occur at RB tS = 0.5 × χ2 (2yC) and 0.5 × χ2 (2yC + 2). 0.05 0.05 

Detection and Quantification Capabilities: Low-Background Detection Issues 

JULY 2004 20-39 MARLAP 



  
 

 
 

  

 

 

   

                  

value of RB tS, finds the appropriate line in the table, and compares the observed gross count NS to 
the value of yC read from the table. The analyte is considered detected if and only if NS > yC. 
When RB tS is greater than about 20, yC may be approximated by 

yC ' 0.5 % RB tS % z1&α RB tS (20.41) 

where z1 ! α denotes the (1 − α)-quantile of the standard normal distribution, and for any number x, 
the expression lxm denotes the largest integer not greater than x. 

Note that these critical values are appropriate only under the assumption of Poisson counting 
statistics with no interferences. 

TABLE 20.1 � Critical gross count (well-known blank) 

RB tS yC RB tS yC RB tS yC 

0.000�0.051 0 5.425�6.169 10 13.255�14.072 20 

0.051�0.355 1 6.169�6.924 11 14.072�14.894 21 

0.355�0.818 2 6.924�7.690 12 14.894�15.719 22 

0.818�1.366 3 7.690�8.464 13 15.719�16.549 23 

1.366�1.970 4 8.464�9.246 14 16.549�17.382 24 

1.970�2.613 5 9.246�10.036 15 17.382�18.219 25 

2.613�3.285 6 10.036�10.832 16 18.219�19.058 26 

3.285�3.981 7 10.832�11.634 17 19.058�19.901 27 

3.981�4.695 8 11.634�12.442 18 19.901�20.746 28 

4.695�5.425 9 12.442�13.255 19 20.746�21.594 29 

Figure 20.2 shows the Type I error rates produced by Table 20.1 for α = 0.05 and three different 
count-time ratios, tB / tS. The error rates are much greater than 0.05 when the blank count time 
equals the sample count time, but they fall as the blank count time increases (and the blank count 
rate becomes better known). If the blank count rate were known perfectly, the Type I error rate 
would remain at or below 0.05 everywhere.8 

8 Probabilities on the curves are calculated using the equation 
yC(n) 4 (µtB/ tS)n µk 

&µ (1% tB/ tS) P(µ) ' 1 & e j j 
n'0 n! k'0 k! 

where µ = RBtS (the true mean gross count when the sample contains no analyte) and yC(n) denotes the critical gross 
count obtained from Table 20.1 when RBtS is approximated by n (tS / tB) . 
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FIGURE 20.2 � Type I error rates for Table 20.1 

Other commonly used methods for calculating the critical value when the blank count rate is not 
well-known are described below. 

THE POISSON-NORMAL APPROXIMATION 

As stated in Section 20.4.1.2, when Poisson counting statistics are assumed (possibly with addi-
tional variance components) and the instrument background remains stable between measure-
ments at a level where the Poisson distribution is approximately normal, the critical net count is 
given approximately by the equation 

RB % RI RB 
% % ξB

2 
% σ2(R�I) (20.42) SC ' z1&α tS tS tB 

where RB denotes the (true) mean count rate of the blank, RI denotes the mean interference count 
rate, ξB

2 denotes non-Poisson variance in the blank (count rate) correction, and σ2(R�I) denotes the 
variance of the estimator for RI . When there are no interferences and no non-Poisson blank var-
iance, this equation becomes 

tS (20.43) 1 % RB tS SC ' z1&α tB 

Low mean blank levels cause the Poisson distribution to deviate from the normal model. Figure 
20.3 shows the effects of these deviations on the Type I error rates for the Poisson-normal 
approximation when tB = tS and α = 0.05. The graph has discontinuities because of the discrete 
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nature of the Poisson distribution, but the Type I error rate is approximately correct (equal to 
0.05) when the mean blank count is 10 or more.9 
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FIGURE 20.3 � Type I error rate for the Poisson-normal approximation (tB = tS) 

In Equation 20.43, RB denotes the true mean blank count rate. In practice, RB is usually not well-
� known; so, one must substitute an estimated value, RB , as shown in the following equation. 

(20.44) R�B tS 1 % 
tS 

tB 

SC ' z1&α 

The most frequently used expressions for SC may be derived from Equation 20.44 using an esti-
� mator RB  that equals a weighted average of the measured blank count rate NB / tB and the meas-

ured source count rate NS / tS. A weighted average of both measured rates may be used here to 
estimate the true blank level for the purpose of the hypothesis test, because, under the null 
hypothesis of zero net source activity, both measured rates are unbiased estimates of the true 
blank count rate. Given nonnegative weights wS and wB such that wS + wB = 1, the mean blank 
count rate is estimated by 

NS NB �RB ' wS % wB (20.45) tS tB 

9 Probabilities on the curve are calculated using the equation 
4 n%2.33 µ 

&2µ µn µk 
P(µ) ' 1 & e j j 

n'0 n! k'0 k! 

where µ denotes the (true) mean blank count. Terms of the infinite sum are accumulated until the cumulative
&µ 'n Poisson probability, e i'0 µ

i / i! , approaches 1. The calculated values agree with those listed in Table 1 of 
Brodsky (1992). The discontinuities occur at µ = k2 / 2.332 for k = 1, 2, 3, �. 
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2 2 z1
2 
&α wS tS z1&α wS tS

2 tS tS (20.47) SC ' 1 % 1 % 1 % % NB % z1&α 2 tB 4 tB tB tB 

NS NB tS � (20.46) 1 % wS % wB tS SC ' z1&α tS tB tB 

Detection and Quantification Capabilities: Low-Background Detection Issues 

� This estimator RB  is always unbiased under the null hypothesis of zero net activity and no inter-
ferences, but the choice of weights affects the variance of the estimator. (When interferences are 
present, this weighted average is inappropriate.)10 

This attachment will use the notation S� C , which is nonstandard, to denote any version of the 
critical value  that depends on the  gross signal NS (or Y�). Then Equations 20.44 and 20.45 imply 
the following. 

� It is often convenient to eliminate NS from the  expression for SC  (e.g., when calculating  the 
MDC). When the same measured value of NB is used to calculate both the critical value  S� C  and 
the net signal  S� , elimination of  NS from Equation 20.46 produces the following  formula for an 
alternative critical value  SC.11 

It is not  generally true that SC = S� C  unless wS = 0, but either critical value may be used to imple-
ment the same test for analyte detection, because S�  > SC if and only if S� > S� C . 

If there is additional non-Poisson variance associated with the blank correction, an extra term 
may be included under the radical (e.g., ξ2 t 2 2

B S , where ξB  is as in Equation 20.42), although at very 
low blank levels the Poisson variance tends to dominate this excess component. 

FORMULA  A 

The most commonly used approach for calculating  SC is given by Formula A (shown below). 

10 The common practice of using the same Poisson  measurement data to calculate both the net signal S� and its 
critical value tends  to produce a correlation between the  two variables. This correlation does not exist when the 
critical value is determined by a statistical evaluation  of normally distributed data as described earlier in the attach-
ment. 

11 The critical  value S�C  may be written as a function f(S�)  of the observed net signal S�  and the blank  count NB. Then 
S� exceeds  S� C  if and only if it exceeds the fixed point of  f, which is the value SC where f(SC) = SC. The fixed point is 
a function of  NB but not of  NS . 
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tS tS SC ' z1&α 1 % 
tB tB (20.48) 

NB 

Formula A 

If α = 0.05 and tB = tS, Formula A leads to the well-known expression 2.33 NB  for the critical 
net count (e.g., see Currie, 1968). 

Formula A may be derived from Equation 20.44 by using the blank measurement alone to 
estimate the true blank count rate � i.e., by using the weights wS = 0 and wB = 1. 

As noted in Section 20.4.1.2, when the blank count is high (e.g., 100 or more), Formula A works 
well, but at lower blank levels, it can produce a high rate of Type I errors. Figure 20.4 shows 
Type I error rates for Formula A as a function of the mean blank count for count time ratios 
tB / tS = 1 and 5 when α = 0.05.12 
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FIGURE 20.4 � Type I error rates for Formula A 

12 Probabilities on the two curves are calculated using the equation 
yC(n) 4 (µtB / tS)n µk 

&µ (1% tB/ tS) P(µ) ' 1 & e j j 
n'0 n! k'0 k! 

where yC(n) = SC(n) % n (tS / tB)and µ = RB tS (the mean gross count when the sample contains no analyte). The same 
equation with different expressions for SC(n) is used to calculate the Type I error rates shown in Figures 20.5�8. 
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FORMULA B 

Another published formula for the critical value is (equivalent to) the following (Nicholson, 
1966). 

t 2 
� % NB 

S (20.49) SC ' z1&α NS 2 tB 

The critical value calculated by Equation 20.49 equals z1 − α times the combined standard uncer-
tainty of the net count. This fact is the basis for the original derivation of the formula, but the 
formula may also be derived from Equation 20.46 using the weights wS = tB / (tS + tB) and wB = 

� tS / (tS + tB) to estimate RB . When NS is eliminated from Equation 20.49, one obtains Formula B 
(below), which is equivalent to the equation for the critical value given in Atoms, Radiation, and 
Radiation Protection (Turner, 1995). 

2 z z1
2 
&α tS tS SC ' 1&α 

% z1&α 1 % % NB 4 tB tB (20.50) 2 

Formula B 

Type I error rates for Formula B are shown in Figure 20.5. 
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FIGURE 20.5 � Type I error rates for Formula B 

Formula B appears natural and intuitive when it is derived in terms of the combined standard 
uncertainty of the net count, and it gives excellent results when tB = tS and the pure Poisson 
model is valid. However, when the formula is derived using the weights wS and wB, as described 
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above, the expression seems much less natural, because the weights clearly are not optimal when 
tB … tS. Notice that when tB > tS, the Type I error rate tends to be less than α. 

FORMULA C 

If the pure Poisson model is valid, then under the null hypothesis, the weights wS = tS / (tS + tB) 
and wB = tB / (tS + tB) provide the minimum-variance unbiased estimator R�B  for the mean blank 
count rate and lead to the following formula for the critical net count (Nicholson, 1963; 1966).13 

tS � (NS % NB) (20.51) SC ' z1&α tB 

Elimination of NS from Equation 20.51 produces Formula C, shown below. 

2 z1
2 
&α tS z1&α tS

2 tS tS SC ' % z1&α 1 % 
4t 2 

% NB tB tB (20.52) 2tB B 

Formula C 

Formula C is equivalent to the equation for the �decision threshold� given in Table 1 of ISO 
11929-1 for the case of fixed-time counting. Figure 20.6 shows Type I error rates for Formula C. 
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FIGURE 20.6 � Type I error rates for Formula C 

13 The approach here is conceptually similar to that of a two-sample t-test, which employs a pooled estimate of 
variance in the comparison of two normal populations. 
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Z ' 2 
NS % d 

tS 

& 
NB % d 

tB 

1 
tS 

% 
1 
tB 

(20.53) 

which involves variance-stabilizing transformations of the Poisson counts NS and NB, has a distri-
bution that is approximately standard normal under the null hypothesis (Stapleton, 1999; Strom 
and MacLellan, 2001). So, the critical value of Z is z1 ! α, the (1 − α)-quantile of the standard 
normal distribution. From these facts one may derive the following expression for the critical net 
count as a function of NB. 

tS 
& 1 % 

z1
2 
&α 1 % 

tS tS 1 % 
tS (NB % d) SC ' d % z1&α tB 4 tB tB tB (20.54) 

The Stapleton Approximation 

When α = 0.05, the value d = 0.4 appears to be a near-optimal choice. Then for tB = tS, the 
Stapleton approximation gives the equation 

SC ' 1.35 % 2.33 NB % 0.4 (20.55) 

Figure 20.7 shows the Type I error rates for the Stapleton approximation when α = 0.05 and 
d = 0.4. This approximation gives Type I error rates almost identical to those of Formulas B and 
C when tB = tS, but it has an advantage when tB … tS. 

Detection and Quantification Capabilities: Low-Background Detection Issues 

If the blank correction involves additional non-Poisson variance, an extra term may be included 
under the radical in Formula C; however, the weights wS and wB used to derive the formula are 
not necessarily optimal in this case. (See  ISO 11929-2 for another approach.) 

Note that Formulas B and C are equivalent when tB = tS, because both assign equal weights to the 
blank measurement and the source measurement. In this case, both formulas are also equivalent 
to the formula given by Altshuler and Pasternack (1963). 

THE STAPLETON APPROXIMATION 

When the mean counts are low and tB  …  tS, another approximation formula for SC appears to out-
perform all of the approximations described above. For small values of the constant d, the 
statistic 
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FIGURE 20.7 � Type I error rates for the Stapleton approximation 

When α … 0.05, the value d = z1!α / 4.112 appears to give good results (4.112 = z0.95 / 0.4). 

ξ2 2 When the blank correction involves a small non-Poisson variance component, a term ( ) may B tS 
be included under the radical in Equation 20.54 to account for it. 

THE EXACT TEST 

Poisson counting statistics also permit an �exact� test for analyte detection, whose Type I error 
rate is guaranteed to be no greater than the chosen value of α, although it may be less. A ran-
domized version of the test can provide a Type I error rate exactly equal to α (Nicholson, 1963), 
but only the nonrandomized version will be considered here, since its outcome is always based 
solely on the data and not on a random number generator. The test is implemented by rejecting 
H0 if and only if the following inequality is true.14 

NS %NB NS % NB tS 
k tB 

NS %NB &k 
# α (20.56) j

k'NS k tS % tB tS % tB 

NOTE: For any nonnegative integers n and k, the notation n  denotes a binomial coefficient, usually read 
k 

�n choose k,� which is the number of possible combinations of n objects chosen k at a time. For 0 # k # n, 

14 The left-hand side of the inequality is a cumulative binomial probability (see Attachment 19A of Chapter 19). It 
also equals 

I tS (NS,NB %1) 
tS% tB 

where Ix(a,b) denotes the incomplete beta function (NBS, 1964; Press et al., 1992). 
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the value of n  equals n! , where the symbol ! denotes the factorial operator. The number of combina-
k k!(n&k)! 

tions of n objects chosen k at a time is also denoted sometimes by nCk . 

Nicholson presents the test as a comparison of the gross count NS to a critical value. The critical 
value  y�C is the smallest nonnegative integer n such that15 

n NS % NB tS 
k tB 

NS %NB &k 
$ 1 & α (20.57) j

k'0 k tS % tB tS % tB 

The same (nonrandomized) test is implemented by calculating a critical gross count, yC, equal to 
the smallest nonnegative integer, n, such that 

n NB % k tS 
k tS % tB 

NB %1 
$ (1 & α) (20.58) 

k
j
'0 NB tS % tB tB 

Then the critical net count, SC, equals yC ! NB (tS / tB). (Note that Inequality 20.58 is intended for 
use when NB is small.) Table G.4 in Appendix G lists critical values yC for α = 0.01 and 0.05 and 
for integral values of the count time ratio, tB / tS, ranging from 1 to 5. 

Figure 20.8 shows the Type I error rates for the nonrandomized exact test. (The Type I error rate 
for the randomized version of the test equals 0.05 everywhere.) 
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FIGURE 20.8 � Type I error rates for the nonrandomized exact test 

15 To implement the randomized test, calculate the critical value y�C , and, if NS > y�C , reject H0, as in the non-
randomized test. If NS = y�C , calculate a rejection probability P by subtracting 1 ! α from the sum on the left-hand 
side of the inequality (with n = NS) and dividing the difference by the summation�s last term 

NS NB NS % NB tS tB 
NS tS % tB tS % tB 

Then reject H0 with probability P. 
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EXAMPLE 20.10 

Problem: A 60,000-second blank measurement is performed on an alpha-particle spectrometer 
and 4 counts are observed in a region of interest. A test source is to be counted for 60,000 s. 
Use the methods described in this attachment to estimate the critical value of the net count 
when α = 0.05. 

Solution: Table 20.1 should not be used in this case, because the ratio of count times, tB / tS, is 
too small. 

Formula A gives the result 

tS t
S S 

' C z1&α N 1 % B tB tB 

'
60,000 s 1 % 60,000 s 

 1.645 4  
60,000 s 60,000 s 

' 4.65 net counts. 

Formula B gives the result 

z 2 2 

S 1&α z1&α tS t
' S 

% C z %
2 1&  α N 1 %  

4 B tB tB 

1.6452 1.6452 
' %

60,000 s 1 % 60,000 s  1.645 % 4  
2 4 60,000 s 60,000 s 

' 6.20 net counts. 

Formula C gives the result 

z 2 2 
1& t

S α tS z1&  t
2 

α S tS S 
' % C z %1&α  N 1 % 

2t B 2 
B 4t tB tB B

1.6452(60,000 s) 1.6452
' %

(60,000 s)2 
%

60,000 s  4 1 % 60,000 s  1.645  
2(60,000 s) 4(60,000 s)2 60,000 s 60,000 s 

' 6.20 net counts. 
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Notice that Formula B and Formula C give the same result, because tS = tB. 

The Stapleton approximation (with d = 0.4) gives the result 

tS z1
2 
&α tS tS tS 

& 1 % 1 % 1 % (NB % d) SC ' d % z1&α tB 4 tB tB tB 

60,000 
% 

1.6452 
1 % 

60,000 60,000 1 % 
60,000 

' 0.4 & 1 % 1.645 (4 % 0.4) 
60,000 4 60,000 60,000 60,000 

' 6.23 net counts. 

The exact test gives the result yC = 11 counts (the entry in Table G.4 for α = 0.05, tB / tS = 1, 
and NB = 4), which implies that 

SC ' 11 & (4) (60,000 / 60,000) ' 7 net counts. 

EXAMPLE 20.11 

Problem: Consider again the problem presented in Example 20.1. A 6000-second blank meas-
urement is performed on a proportional counter and 108 beta counts are observed. A test 
source is to be counted for 3000 s. Use the methods described in this attachment to estimate 
the critical value of the net count when α = 0.05. 

Solution: Again, Table 20.1 should not be used, because the ratio of count times, tB / tS, is too 
small. 

Formula A gives the result 

tS tS SC ' z1&α 1 % NB tB tB 

3000 1 % 
3000 

' 1.645 108 
6000 6000 

' 14.8 net counts. 

Notice that this is the same result that was obtained in Example 20.1. 
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Formula B is not recommended. Since tB > tS in this case, Formula B produces a Type I error 
rate that is less than α. 

Formula C gives the result 

2 tS z1
2 
&α tS z1&α tS

2 tS SC ' % z1&α 1 % % NB 2tB 4tB
2 tB tB 

(1.645)2(3000) (1.645)2(3000)2 3000 1 % 3000 
' % 1.645 % 108 

2(6000) 4(6000)2 6000 6000 
' 15.5 net counts. 

The Stapleton approximation (with d = 0.4) gives the result 

SC ' d
tS z1

2 
&α tS tS tS 

& 1 % 1 % 1 % (NB % d) 
tB 4 tB 

% z1&α tB tB 

3000 
% 

1.6452 
1 % 

3000 3000 1 % 
3000 

' 0.4 & 1 % 1.645 (108 % 0.4) 
6000 4 6000 6000 6000 

' 15.6 net counts. 

The exact test gives the result yC = 70 counts (the entry in Table G.4 for α = 0.05, tB / tS = 2, 
and NB = 108), which implies that 

SC ' 70 & (108)(3000 / 6000) ' 16 net counts. 
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COMPARISONS  AND RECOMMENDATIONS 

Although Formula A gives the highest Type I error rates of all the formulas described above in 
the pure Poisson counting  scenario, it is the formula that can be adapted most easily for dealing 
with interferences. It can also be modified to reduce the very high Type I error rates at low blank 
levels (by adding  1 or 2 to the number of blank counts NB under the radical). Formula B  cannot 
be recommended. When the pure Poisson model is valid, Formula C  gives better results than 
either A or B, but the Stapleton approximation appears to  give the most predictable Type I error 
rates of all.  Nicholson�s exact test is the only one of the tests whose  Type I error rate  is guaran-
teed not to exceed the chosen significance level, but it is also the most complicated of the tests 
and requires either software or lookup tables to be practical. Furthermore, the nonrandomized 
version of the test has relatively low power. Achieving  the chosen significance level exactly 
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appears to require the randomized version of Nicholson�s test. Using critical values from Table 
20.1 is appropriate when the blank is counted much longer than the sample and the expected 
count for an analyte-free sample is very low. 

MARLAP makes the following recommendations regarding the use of the various equations for 
the critical value when Poisson statistics are assumed:

  � A laboratory should confirm the validity of the Poisson approximation before using Table 
20.1, Formula A, Formula C, Stapleton�s approximation, Nicholson�s exact test, or any other 
detection criterion that is based on pure Poisson counting statistics. (If the Poisson approx-
imation is invalid, the blank distribution should be determined by repeated measurements.)

  � If the blank count time is at least 10 times longer than the sample count time, the critical 
gross counts in Table 20.1 can be used.

  � If the mean blank count is at least 100, Formula A can be used and may be preferred for its 
relative simplicity.

  � Formula B for the critical value should not be used.
  � If the ratio of count times, tB / tS, is not large, and if the mean blank count is less than 100, 

either Formula C or Stapleton�s approximation should be used. Stapleton�s approximation 
seems to have an advantage over Formula C when tS … tB.

  � Nicholson�s exact test may be used to compare the means of two Poisson distributions when 
a high level of statistical rigor is required, but it is more complicated than necessary for 
routine laboratory analyses and lacks the power of Formula C and Stapleton�s approx-
imation.16 

20A.3  Calculation of the Minimum Detectable Concentration 

The minimum detectable concentration, or MDC, was defined earlier as the concentration of 
analyte, xD, that must be present in a laboratory sample to give a probability 1 − β of obtaining a 
measured response greater than its critical value. Equivalently, the MDC is defined as the analyte 
concentration xD that satisfies the relation 

Pr[S� # SC | X ' xD] ' β (20.59) 

� � where the expression Pr[ S # SC | X = xD] may be read as �the probability that the net signal S 
does not exceed its critical value SC when the true concentration X is equal to xD.� 

The MDC may be estimated by calculating the minimum detectable value of the net instrument 
signal, SD, and converting the result to a concentration. Recall that the minimum detectable value 

16  The reduced power of the exact test at low blank levels is evident from the low Type I error rates shown in Figure 
20.8. 
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of the net instrument signal is defined as the mean value of the net signal that gives a specified 
probability, 1 − β, of yielding an observed signal greater than its critical value SC. Thus, 

Pr[S� # SC | S ' SD ] ' β (20.60) 

where S denotes the true mean net signal. 

20A.3.1 Normally Distributed Signals 

� If the net signal, S , is normally distributed and its estimated standard deviation, σ�0, under H0 is 
determined from a statistical evaluation with ν degrees of freedom (e.g., n = ν + 1 replicate blank 
measurements), then the critical value of S� is 

SC ' t1&α(ν) ×  σ� 0 (20.61) 

Then, if the variance of S� is constant at all concentrations � or at least can be considered constant 
at sufficiently low concentrations � the minimum detectable value of the signal is given by 

SD ' δα,β,νσ0 (20.62) 

where δα, β, ν denotes the noncentrality parameter of a noncentral t-distribution with ν degrees of 
freedom. The parameter δα, β, ν is such that 

tβ 
)(ν,δα,β,ν) ' t1&α(ν) (20.63) 

where  tβ 
)(ν,δα,β,ν) denotes the β-quantile of the noncentral t-distribution. The noncentrality par-

ameter δα, β, ν may be approximated by 

t1&α(ν)
2 

(20.64) 1 & 1 δα,β,ν . t1&α(ν) ×  1 % % z1&β 4ν 2ν 

which is based on an approximation for the noncentral t distribution function (NBS, 1964). When 
α = β = 0.05 and ν $ 4, the noncentrality parameter is also approximated adequately by (ν)  × t0.95 
8ν / (4ν + 1) (Currie, 1997). 

Conceptually the standard deviation σ�0 used to calculate the critical value, SC, is only an estimate 
and therefore can be considered a random variable. If it were the true standard deviation, the cor-
rect multiplier used to calculate SC would be z1 ! α, not t1&α(ν) . However, the standard deviation 
used to calculate SD is, conceptually at least, the true standard deviation σ0, even if its value is not 
known exactly. The true standard deviation may be estimated by σ�0, but since the estimator σ�0 is 
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biased, a correction factor should be used for ν less than about 20.17 An unbiased estimator for σ0 
is σ�0  / c4, where 

Γ ν%1 
2 c4 ' 2 

(20.65) 
Γ ν ν 

2 

and where Γ denotes the gamma function (NBS, 1964). The gamma function is easily computed 
in software (Press et al., 1992), but c4 is also approximated well by 4ν / (4ν + 1), and values of c4 
are commonly tabulated in references for statistical quality control (whence the notation c4 is bor-
rowed). Then SD is estimated by 

σ� 0 SD ' δα,β,ν (20.66) c4 

which is approximately 2 t0.95(ν)σ�0, or 2 SC, when α = β = 0.05 and ν $ 4. Values of c4 for ν = 1 to 
40 are listed in Table 20.2. 
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TABLE 20.2 � Bias factor for the experimental standard deviation 

ν c4 ν c4 ν c4 ν c4 

1 0.79788 11 0.97756 21  0.98817 31  0.99197 
2 0.88623 12 0.97941 22  0.98870 32  0.99222 
3 0.92132 13 0.98097 23  0.98919 33  0.99245 
4 0.93999 14 0.98232 24  0.98964 34  0.99268 
5 0.95153 15 0.98348 25  0.99005 35  0.99288 
6 0.95937 16 0.98451 26  0.99043 36  0.99308 
7 0.96503 17 0.98541 27  0.99079 37  0.99327 
8 0.96931 18 0.98621 28  0.99111 38  0.99344 
9 0.97266 19 0.98693 29  0.99142 39  0.99361 

10 0.97535 20 0.98758 30  0.99170 40  0.99377 

EXAMPLE 20.12 

Problem: Use the blank data from Example 20.10 to calculate the minimum detectable net 
signal, SD. Assume the variance of the net signal, S�, is approximately constant at  low analyte 
concentrations. 

17 Although σ� 20  is assumed here to be an unbiased estimator  for the variance, its square root, σ� 0 , is a biased esti-
mator for the standard deviation (see Section 19.4.5.2 in Chapter 19). 
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Solution: In Example 20.9 the standard deviation of the blank, sB, based on seven replicate 
measurements was found to be 8.5912. The estimated standard deviation of the net signal 
therefore is 

σ� 0 ' (8.5912) 1 % 
1 
' 9.1844 

7 

The number of degrees of freedom, ν, equals 7 ! 1 = 6. So, the value of the noncentrality par-
ameter, δα, β, ν, may be approximated as follows. 

(6) ' 1.943 t1&α(ν) ' t0.95 

t1&α(ν)
2 

1 & 1 δα,β,ν ' t1&α(ν) ×  1 % % z1&α 4ν 2ν 

1 1 % 
1.9432 

' 1.943 × 1 & % 1.645 
(4)(6) (2)(6) 

' 3.748 

The value of c4 for 6 degrees of freedom is 0.95937. So, 

SD ' δα,β,ν

σ� 0 
' (3.748) 9.1844 

' 35.88 . 
c4 0.95937 

� If the variance of S  is not constant but increases with the mean signal S, the minimum detectable 
net signal is determined implicitly by the equation 

SD σ0 t ) ν, ' t1&α(ν) ×  (20.67) β σD σD 

� where σD denotes the standard deviation of S  when S = SD. An iterative algorithm, such as the 
one shown below, may be needed to solve the equation for SD. 

1. Set σ0 ' σ2(S� | S ' 0) 

2. Initially calculate SD ' t1&α(ν) ×  σ0 

3. repeat loop (Lines 4�7) 

4. Set σD ' σ2(S� | S ' SD) 
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) 5. Find the value of δ such that tβ(ν,δ) ' t1&α(ν) ×  σ0 /σD 

6. Set h ' SD 

7. Recalculate SD ' δσD 

8. until SD & h is sufficiently small 

9. output the solution SD 

The value of the noncentrality parameter δ in Step 5 may be approximated by 

t1&α(ν) ×  σ0 /σD
2 σ0 1 & 1 1 % (20.68) δ . t1&α(ν) ×  % z1&β σD 4ν 2ν 

    
 

 

EXAMPLE 20.13 

Problem: Assume the signal, S�, is the net count for a radioactivity measurement, and its 
variance is given by an expression of the form 

aS 2 % bS % c 

The coefficient b is assumed to be 1, because the term bS represents the Poisson counting vari-
ance due to activity in the sample (see Section 20.4.2.2). The term c is estimated by σ� 0

2 , the 
variance of the net signal observed when analyte-free samples are analyzed. The coefficient a 
is estimated to be 0.052, and represents a 5 % coefficient of variation, which is observed at 
high analyte concentrations. Assume σ�0 is evaluated from 7 replicate blank measurements and 
is found to be 9.1844, as in the preceding example. Use the iterative algorithm described above 
to approximate the minimum detectable net signal, SD. 

Solution: The first two steps are performed as follows. 

σ0 ' 9.1844 
SD ' 1.943 × 9.1844 ' 17.85 

Then the first iteration of the loop is performed as follows. 
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When  σ�0 is determined by any means other than a statistical evaluation, SD must be calculated 
differently. 
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σD ' (0.05)2(17.85)2 % 17.85 % (9.1844)2 ' 10.149 
σ0 t1&α(ν) ×  ' 1.943 × 9.1844 

' 1.7584 
σD 10.149 

1 1 % 1.75842 
δ ' 1.7584 × 1 & % 1.645 ' 3.5298 

(4)(6) (2)(6) 
SD ' (3.5298)(10.149) ' 35.822 

Subsequent iterations produce the sequence of approximations 

37.242  37.354  37.363  37.364  37.364  ... 

The sequence converges to 37.364, which is the approximate value of the minimum detectable 
net signal. 

20A.3.2 Poisson Counting 

Another equation for SD, which was described in Section 20.4.2.2, is 

SD ' SC % z1&β σ
2(S� | S ' SD) (20.69) 

� � where SC = z1 ! ασ0 and σ2(  |S S = SD) denotes the variance of the measured signal, S , when the 
true mean signal, S, equals SD. This equation is the basis for formulas that are commonly used for 
SD when the Poisson-normal approximation is assumed. Regardless of whether the signal follows 
the pure Poisson model or has non-Poisson variance, the variance of S� can usually be expressed 
in the form 

σ2(S�) ' aS 2 % bS % c (20.70) 

as in Example 20.13, where S denotes the true mean net signal and the constants a, b, and c do 
not depend on S. In this case, the minimum detectable net signal is given by 

2 2 z1&β b z1&β b 2 1 (20.71) SD ' SC % % z1&β bSC % % aSC
2 
% Iβ c 

2 4 Iβ 

where Iβ ' 1 & z1
2 
&β a . 
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tS tS tS tS 
% 

1.6452 
(20.72) [SC] ' 0.4 & 1 1 % % 1.645 (9 % 0.4) 1 % 

tB 4 tB tB tB 

So, if tS = tB, then [SC] = 8.49 counts. 

Detection and Quantification Capabilities: Low-Background Detection Issues 

Equation 20.69 is often used even when SC is calculated using  one of the formulas presented 
above for low-background Poisson counting, with RB tB substituted for the blank count NB, but in 
this case SD may be underestimated because of the fact that the calculated value of SC varies from 
measurement to measurement. One option for obtaining a more conservative estimate of SD is to 
substitute a conservative value of SC, which will be denoted here by [SC]. For Poisson counting, 
one method of obtaining  [SC] is to use the value of  SC calculated from the largest blank count NB 
likely to be observed, given the assumed mean blank count rate RB  (e.g., use Table 20.1 with 
RB tB replacing  RB tS and NB replacing  yC in the column headings). To calculate SD, one may sub-
stitute [SC] for SC in Equation 20.71. 

Note that  [SC]  is not used to make detection decisions. It is used only to calculate SD. 

For example, suppose α = β = 0.05, the assumed mean blank count rate is R 4 s!1
B = 8 × 10! , and 

the blank count time is tB = 6000 s. Then RB tB = 4.8 counts. Using  Table 20.1, one finds 4.8 in 
the first column between 4.695 and 5.425, and reads the value 9 from the second column. So, 9 is 
the largest value of  NB likely to be observed when measuring  a blank. Now, if Stapleton�s 
approximation is used to calculate  SC when making  a detection decision, the value of [SC] used to 
calculate  SD is given by the following  equation. 

PURE POISSON COUNTING 

As previously noted, counting data never follow the Poisson model exactly, but the model can be 
used to calculate  SD if the variance of the blank signal is approximately Poisson and a conserva-
tive value of the sensitivity factor is used to convert SD to xD. Equation 20.28, which is repeated 
below as Equation 20.73, shows how to calculate SD using  the pure Poisson model. 

SD ' SC % 
z 2 

1&β 

2 
% z1&β 

z 2 
1&β 

4 
% SC % RB tS 1 % 

tS 

tB 

(20.73) 

When Formula A is used for the critical net count, and α = β, this expression for SD simplifies to 
z 2 

%1&β  2SC . Example 20.5 in Section 20.4.2.3 illustrates the use of the latter expression. 
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SD ' 
(z1&α % z1&β)

2 

4 
1 % 

tS 

tB 

% (z1&α % z1&β) RB tS 1 % 
tS 

tB 

(20.74) 

SD ' 5.41 % 4.65 RB tS (20.75) 
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DETECTION LIMITS FOR  THE STAPLETON APPROXIMATION 

When the Stapleton approximation is used for SC, the minimum detectable net count SD may be 
calculated using  Equation 20.73, but when the pure Poisson model is assumed, a better estimate 
is given by the formula 

Equation 20.74 also gives a better approximation of SD even when Formula C is used for the 
critical  value as long as the ratio of count times tB / tS is not too far from 1 (see Table 20.3). It is 
recommended by ISO 11929-1 in a slightly different but equivalent form. 

When  α = β = 0.05 and tB = tS, the preceding  equation becomes 

PRECISE  CALCULATION OF  SD 

When the pure Poisson model is assumed, with no other sources of variance, the mean blank 
count rate RB and the analyte detection criteria completely determine SD. So, in principle, a 
computer program can be written to calculate  SD precisely. The calculation is most easily 
described when the critical net count is  expressed in terms of NB but not NS (e.g., SC as defined by 
Formulas A�C, the Stapleton approximation, and the exact test). Then, at any specified value S 
of the mean net signal, the power of the detection test can be computed using either of the 
following expressions: 

Power ' 1 & j 
4 

n'0 

(RB tB)n e &RB tB 

n! j 

yC(n) 

k'0 

(RB tS %S)k e &(RB tS %S) 

k! 

' 1 & exp(&RB (tS % tB)&S) j 
4 

n'0 

(RB tB)n 

n! j 

yC(n) 

k'0 

(RB tS %S)k 

k! 

(20.76) 

where yC(n) denotes the value of yC (or SC + NB tS / tB) when NB = n. Terms of the infinite sum 
must be accumulated only until the cumulative Poisson probability, e &RB tB 'n m

m'0 (RBtB)  / m!, 
approaches 1. Given a software procedure to compute Equation 20.76, the value of SD may be 
determined using  an iterative algorithm, such as Newton�s method or bisection, which calculates 
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4 (RB tB)n yC(n) 
&RB tB Power ' 1 & e j j f(k;S) (20.77) 

n'0 n! k'0 

where f(k,S) is the probability that the gross count will equal k when the mean net signal is S. 
Given an assumed distribution for A, the value of f(k,S) can be calculated in software. For 
example, if the sensitivity has a rectangular distribution with mean µA and half-width δ, then 

f(k;S) ' 
1 

2δx 
P k % 1, RB tS % S 1 % 

δ 
µA 

& P k % 1, RB tS % S 1 & 
δ 

µ A 
(20.78) 
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the power at trial values of  S until the correct value is found where the power equals 1 !  β (e.g. 
see Burden and Faires, 1993). 

Since no sources of variance except Poisson counting statistics are being considered here, a con-
servative value of the sensitivity factor should be used when converting  SD to the minimum 
detectable concentration, xD. 

A procedure of the type described above generated the true values of SD for Table 20.3, which 
shows both the estimated and true values of SD obtained when Formulas A and C and the 
Stapleton approximation are used for the critical value. The estimated values of SD in this table 
are based on values of SC calculated using  the true mean blank count, not the upper bound [NB]. 
The use of [NB] would produce  larger  estimates. 

If one can assume that the sensitivity, A, has a particular distribution, such as a rectangular or 
triangular distribution, then it is still possible to calculate SD precisely in software, although the 
mathematics is less straightforward than that needed when only  Poisson variance is considered. 
At any specified value, S, of the mean net signal, the detection power equals 

where P(@, @) denotes the incomplete gamma function. Other combinations of the incomplete 
gamma function appear when different polygonal distributions are assumed (e.g., triangular). 

To the extent that this approach accounts for the variance of the sensitivity, A, it becomes unnec-
essary to assume a conservative value of A when converting  SD to xD. Instead, one uses the best 
available estimates of the actual distribution parameters (e.g., µA and δ above). 
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TABLE 20.3 � Estimated and true values of SD  (tB = tS) 

Mean Blank 
Count 

Formula A Formula C Stapleton 
Estimated 

by Eq. 20.73 
True Estimated 

by Eq. 20.73 
True Estimated 

by Eq. 20.74 
True 

0 2.706 2.996 7.083 6.296 5.411 6.296 
1 7.358 8.351 9.660 10.095 10.063 10.095 
2 9.285 10.344 11.355 12.010 11.991 12.010 
3  10.764  11.793  12.719  13.551  13.469  13.551 
4  12.010  13.021  13.894  14.826  14.716  14.826 
5  13.109  14.091  14.942  15.930  15.814  15.930 
6  14.101  15.076  15.897  16.902  16.807  16.902 
7  15.015  16.028  16.780  17.785  17.720  17.785 
8  15.864  16.945  17.605  18.614  18.570  18.614 
9  16.663  17.804  18.383  19.406  19.368  19.406 

10  17.418  18.595  19.120  20.170  20.123  20.170 
11  18.136  19.324  19.823  20.903  20.841  20.903 
12  18.822  20.002  20.496  21.602  21.527  21.602 
13  19.480  20.642  21.142  22.267  22.185  22.267 
14  20.113  21.257  21.764  22.900  22.819  22.900 
15  20.724  21.854  22.366  23.506  23.430  23.506 
16  21.315  22.438  22.948  24.091  24.020  24.091 
17  21.888  23.010  23.513  24.657  24.593  24.657 
18  22.444  23.569  24.062  25.206  25.149  25.206 
19  22.985  24.116  24.596  25.738  25.690  25.738 
20  23.511  24.649  25.116  26.252  26.217  26.252 
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	often makes the question difficult to answer. There are different methods for making a detection decision, but the methods most often used in radiochemistry involve the principles of statistical hypothesis testing. 
	To •detect• the analyte in a laboratory sample means to decide on the basis of the measurement data that the analyte is present. The detection decision involves a choice between two hypotheses about the sample. The first hypothesis is the •null hypothesis• H: The sample is analyte-free. The second hypothesis is the •alternative hypothesis• H: The sample is not analyte-free. The null hypothesis is presumed to be true unless there is sufficient statistical evidence to the contrary. If the evidence is strong e
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	The methods of statistical hypothesis testing do not guarantee correct decisions. In any hypothesis test there are two possible types of decision errors. An error of the first type, or Type I error, occurs if one rejects the null hypothesis when it is true. An error of the second type, or Type II error, occurs if one fails to reject the null hypothesis when it is false. The probability of a Type I error is usually denoted by α, and the probability of a Type II error is usually denoted by β. In the context o
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	A Type I error is sometimes called a •false rejection• or •false positive,• and a Type II error is sometimes called a •false acceptance• or •false negative.• Recently the terms •false positive• and •false negative• have been losing favor, because they can be misleading in some contexts. 
	The use of statistical hypothesis testing to decide whether an analyte is present in a laboratory sample is conceptually straightforward, yet the subject still generates confusion and disagreement among radiochemists and project managers. Hypothesis testing has been used for analyte detection in radiochemistry at least since 1962. Two influential early publications on the subject were Altshuler and Pasternack (1963) and Currie (1968). Other important but perhaps less well-known documents were Nicholson (196
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	part standard which deals with issues of detection in an even more general context of measurement. Part 1 of ISO 11843 includes terms and definitions, while Parts 2•4 deal with methodology. Although members of the IUPAC and ISO working groups collaborated during the development of their guidelines, substantial differences between the final documents remain. MARLAP follows both the ISO and IUPAC guidelines where they agree but prefers the definitions of ISO 11843-1 for the critical value and minimum detectab
	-
	-

	In July 2000, ISO also published the first three parts of ISO 11929 •Determination of the Detection Limit and Decision Threshold for Ionizing Radiation Measurements.• Unfortunately, ISO 11929 is not completely consistent with either the earlier ISO standard or the IUPAC recommendations. 
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	In the terminology of ISO 11843-1, the analyte concentration of a laboratory sample is the state variable, denoted by Z, which represents the state of the material being analyzed. Analyte-free material is said to be in the basic state. The state variable cannot be observed directly, but it is related to an observable response variable, denoted by Y, through a calibration function F, the mathematical relationship being written as Y = F(Z). In radiochemistry, the response variable Y is most often an instrumen
	−1

	The difference between the state variable, Z, and its value in the basic state is called the net state variable, which is denoted by X. In radiochemistry there generally is no difference between the state variable and the net state variable, because the basic state is represented by material whose analyte concentration is zero. In principle the basic state might correspond to a positive concentration, but MARLAP does not address this scenario. 
	-

	 Note that in any given situation, only one of the two types of decision error is possible. If the sample does not contain the analyte, a Type I error is possible. If the sample does contain the analyte, a Type II error is possible. 
	 Note that in any given situation, only one of the two types of decision error is possible. If the sample does not contain the analyte, a Type I error is possible. If the sample does contain the analyte, a Type II error is possible. 
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	20.2.2  The Critical Value 
	20.2.2  The Critical Value 
	In an analyte detection decision, one chooses between the null and alternative hypotheses on the basis of the observed value of the response variable, Y. The value of Y must exceed a certain threshold value to justify rejection of the null hypothesis and acceptance of the alternative: that the sample is not analyte-free. This threshold is called the critical value of the response variable and is denoted by y. 
	C

	The calculation of y requires the choice of a significance level for the test. The significance level is a specified upper bound for the probability, α, of a Type I error (false rejection). The significance level is usually chosen to be 0.05. This means that when an analyte-free sample is analyzed, there should be at most a 5 % probability of incorrectly deciding that the analyte is present. In principle other values of α are possible, but in the field of radiochemistry, α is often 
	The calculation of y requires the choice of a significance level for the test. The significance level is a specified upper bound for the probability, α, of a Type I error (false rejection). The significance level is usually chosen to be 0.05. This means that when an analyte-free sample is analyzed, there should be at most a 5 % probability of incorrectly deciding that the analyte is present. In principle other values of α are possible, but in the field of radiochemistry, α is often 
	C
	-

	implicitly assumed to be 0.05. So, if another value is used, it should be explicitly stated. A smaller value of α makes type I errors less likely, but also makes Type II errors more likely when the analyte concentration in the laboratory sample is positive but near  zero. 

	The critical value of the analyte concentration, x, as defined by MARLAP, is the value obtained by applying the evaluation function, F, to the critical value of the response variable, y. Thus, x = F(y). In radiochemistry, when y is the gross instrument signal, this formula typically involves subtraction of the blank signal and division by the counting efficiency, test portion size, chemical yield, decay factor, and possibly other factors. In ANSI N42.23, •Measurement and Associated Instrument Quality Assura
	C 
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	C
	C
	−1
	C
	C
	C

	A detection decision can be made by comparing the observed gross instrument signal to its critical value, y, as indicated above. However, it has become standard practice in radiochemistry to make the decision by comparing the net instrument signal to its critical value, S. The net signal is calculated from the gross signal by subtracting the estimated blank value and any interferences. The critical net signal, S, is calculated from the critical gross signal, y, by subtracting the same correction terms; so, 
	C
	C
	-
	C
	C

	Since the term •critical value• alone is ambiguous, one should specify the variable to which the term refers. For example, one may discuss the critical (value of the) analyte concentration, the critical (value of the) net signal, or the critical (value of the) gross signal. 
	It is important to understand that there is no single equation for the critical value that is appropriate in all circumstances. Which equation is best depends on the structure of the measurement process and the statistics of the measurements. Many of the commonly used expressions are based on the assumption of Poisson counting statistics and are invalid if that assumption is not a good approximation of reality. For example, if the instrument background varies between measurements or if it is necessary to co
	-
	-
	-
	-

	Generally, the clients of a laboratory do not have the detailed knowledge of the measurement process that is necessary to choose a specific equation for the critical value; however, clients may specify the desired Type I error rate (5 % by default). 
	Section 20.4.1 and Section 20A.2 of Attachment 20A provide more information on the calculation of critical values. 
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	20.2.3  The Blank 
	20.2.3  The Blank 
	In radiochemistry, the response variable is typically an instrument signal, whose mean value generally is positive even when analyte-free material is analyzed. The gross signal must be corrected by subtracting an estimate of the signal produced by analyte-free material. This estimate may be obtained by means of any of several types of radiochemical blanks, including blank sources and reagent blanks (Chapter 18). The radiochemical blank is chosen to provide an estimate of the mean signal produced by an analy
	-


	20.2.4  The Minimum Detectable Concentration 
	20.2.4  The Minimum Detectable Concentration 
	The power of any hypothesis test is defined as the probability that the test will reject the null hypothesis when it is false. So, if the probability of a Type II error is denoted by β, the power is 1 ! β. In the context of analyte detection, the power of the test is the probability of correctly detecting the analyte (concluding that the analyte is present), which happens whenever the response variable exceeds its critical value. The power depends on the analyte concentration of the sample and other conditi
	2

	The minimum detectable concentration (MDC) is the minimum concentration of analyte that must be present in a sample to give a specified power, 1 ! β. It may also be defined as:
	  � The minimum analyte concentration that must be present in a sample to give a specified probability, 1 ! β, of detecting the analyte; or 
	  � The minimum analyte concentration that must be present in a sample to give a specified probability, 1 ! β, of measuring a response greater than the critical value, leading one to conclude correctly that there is analyte in the sample. 
	The value of β that appears in the definition, like α, is usually chosen to be 0.05 or is assumed to be 0.05 by default if no value is specified. The minimum detectable concentration is denoted in mathematical expressions by x. In radiochemistry the MDC is usually obtained from the minimum detectable value of the net instrument signal, S, which is the smallest mean value of the net signal at which the probability that the response variable will exceed its critical value is 1 − β. The relationship between th
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	Net signal distribution for analyte-free samples 
	β α Net signal distribution for samples at the MDC 
	FIGURE 20.1 • The critical net signal, S, and minimum detectable net signal, S
	FIGURE 20.1 • The critical net signal, S, and minimum detectable net signal, S
	C
	D 



	0 SS 
	CD 
	Sections 20.4.2 and 20A.3 provide more information about the calculation of the minimum detectable concentration. 
	The minimum detectable value of the activity or mass of analyte in a sample is sometimes called the minimum detectable amount, which may be abbreviated as MDA (ANSI N13.30 and N42.23). This chapter focuses on the MDC, but with few changes the guidance is also applicable to any type of MDA. 
	While project planners and laboratories have some flexibility in choosing the significance level, α, used for detection decisions, the MDC is usually calculated with α = β = 0.05. The use of standard values for α and β allows meaningful comparison of analytical procedures. 
	The MDC concept has generated controversy among radiochemists for years and has frequently been misinterpreted and misapplied. The term must be carefully and precisely defined to prevent confusion. The MDC is by definition an estimate of the true concentration of analyte required to give a specified high probability that the measured response will be greater than the critical 
	The MDC concept has generated controversy among radiochemists for years and has frequently been misinterpreted and misapplied. The term must be carefully and precisely defined to prevent confusion. The MDC is by definition an estimate of the true concentration of analyte required to give a specified high probability that the measured response will be greater than the critical 
	value. Thus, the common practice of comparing a measured concentration to the MDC to make a detection decision is incorrect. 

	There are still disagreements about the proper uses of the MDC concept. Some define the MDC strictly as an estimate of the nominal detection capability of a measurement process. Those in this camp consider it invalid to compute an MDC for each measurement using sample-specific information such as test portion size, chemical yield, and decay factors (e.g., ANSI N42.23). The opposing view is that the •sample-specific• MDC is a useful measure of the detection capability of the measurement process, not just in 
	Neither version of the MDC can legitimately be used as a threshold value for a detection decision. The definition of the MDC presupposes that an appropriate detection threshold (i.e., the critical value) has already been defined. 
	-

	Many experts strongly discourage the reporting of a sample-specific MDC because of its limited usefulness and the likelihood of its misuse. Nevertheless, this practice has become firmly established at many laboratories and is expected by many users of radioanalytical data. Furthermore, NUREG/CR-4007 states plainly that •the critical (decision) level and detection limit [MDC] really do vary with the nature of the sample• and that •proper assessment of these quantities demands relevant information on each sam
	-
	-

	Since a sample-specific MDC is calculated from measured values of input quantities such as the chemical yield, counting efficiency, test portion size, and background level, the MDC estimate has a combined standard uncertainty, which in principle can be obtained by uncertainty propagation (see Chapter 19). 
	-

	In the calculation of a sample-specific MDC, the treatment of any randomly varying but precisely measured quantities, such as the chemical yield, is important and may not be identical at all laboratories. The most common approach to this calculation uses the measured value and ignores the variability of the quantity. For example, if the chemical yield routinely varies between 0.85 and 0.95, but for a particular analysis the yield happens to be 0.928, the MDC for that analysis would be calculated using the v
	-

	If sample-specific MDCs are reported, it must be clear that no measured value should ever be compared to an MDC to make a detection decision. In certain cases it may be valid to compare the sample-specific MDC to a required detection limit to determine whether the laboratory has met contractual or regulatory requirements (remembering to consider the uncertainty of the MDC estimate), and in general it may be informative to both laboratory personnel and data users to compare sample-specific MDCs to nominal es
	 Some authors define power more simply as the probability that the null hypothesis will be rejected • regardless of whether it is true or false. However, the concept of power is more relevant when the null hypothesis is false. 
	 Some authors define power more simply as the probability that the null hypothesis will be rejected • regardless of whether it is true or false. However, the concept of power is more relevant when the null hypothesis is false. 
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	20.2.5  The MARLAP Approach to Critical Values and Detection Limits 
	20.2.5  The MARLAP Approach to Critical Values and Detection Limits 
	Historically, detection in radiochemistry has often been based on the distribution of the instrument signal obtained by counting analyte-free sources; however, in principle it should be based on the distribution obtained when analyte-free samples are analyzed, which is often affected by the processing of samples before instrumental analysis. There is more than one valid approach for dealing with the effects of sample processing. One approach, which is recommended by IUPAC (1995), makes the detection decisio
	-
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	The approach of this chapter makes detection decisions using the critical net signal, S, which is calculated on the basis of the distribution of the net signal, S, under the same null hypothesis (zero true concentration in the sample). This approach requires one to consider all sources of variability in the signal, including any due to sample processing. So, for example, if the presence of analyte in the reagents causes varying levels of contamination in the prepared sources, this variability may increase t
	C
	•
	-

	The MARLAP approach to detection decisions ignores the variability of any term or factor in the measurement model that does not affect the distribution of the instrument signal obtained from samples and blanks. For example, measurement errors in the counting efficiency may increase the variability of the measured concentration, but since they have no effect on the distribution of the signal, they do not affect the critical value, S. 
	C

	The MARLAP approach to the calculation of the MDC also takes into account all sources of variability in the signal, including those related to sample processing, but it ignores any additional sources of variability in the measured concentration that do not affect the distribution of the signal. For example, variability in the true yield from one measurement to another affects the distribution of S and thereby increases the MDC, but measurement error in the estimated yield typically does not. The estimated y
	The MARLAP approach to the calculation of the MDC also takes into account all sources of variability in the signal, including those related to sample processing, but it ignores any additional sources of variability in the measured concentration that do not affect the distribution of the signal. For example, variability in the true yield from one measurement to another affects the distribution of S and thereby increases the MDC, but measurement error in the estimated yield typically does not. The estimated y
	-
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	•
	•

	make precise determination of the MDC more difficult because they make it harder to determine the distribution of yields.) 


	20.2.6  Other Detection Terminologies 
	20.2.6  Other Detection Terminologies 
	Another term frequently used for a measure of detection capability is the �lower limit of detection,� or LLD (Altshuler, 1963; EPA, 1980; NRC, 1984). Unfortunately this term has been used with more than one meaning. In Upgrading Environmental Radiation Data (EPA, 1980), the LLD is defined as a measure of the detection capability of an instrument and is expressed as an activity. However, the Nuclear Regulatory Commission defines the LLD to be identical to the MDC when α = β = 0.05 (see, for example, NUREG/CR
	-
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	The term •detection limit• is often used as a synonym for •minimum detectable concentration• or for •minimum detectable value• of any other measured quantity. 
	Many other terms have been used to describe detection capabilities of measurement procedures. Most of them will not be listed here, but one term deserves attention because of the possibility of its confusion with the MDC. The method detection limit, or MDL, is a measure of detection capability used routinely in the context of analyzing samples for chemical contaminants. 
	The term •method detection limit• is defined in the Code of Federal Regulations. In Title 40 CFR Part 136, Appendix B, the following definition appears: 
	The method detection limit (MDL) is defined as the minimum concentration of a 
	substance that can be measured and reported with 99% confidence that the analyte 
	concentration is greater than zero and is determined from analysis of a sample in a 
	given matrix containing the analyte. 
	The definition is later clarified somewhat by a statement that the MDL •is used to judge the significance of a single measurement of a future sample.• Thus, the MDL serves as a critical value; however, it is also used as a measure of detection capability, like an MDC. Note that, in MARLAP•s usage, the •method detection limit• is not truly a detection limit. 
	-

	In March 2003, the Federal Register published a proposed revision of the definition of MDL, which would make it clear that the MDL serves as a critical value. The proposed new definition is: 
	The method detection limit (MDL) is an estimate of the measured concentration at 
	which there is 99 % confidence that a given analyte is present in a given sample 
	matrix. The MDL is the concentration at which a decision is made regarding 
	whether an analyte is detected by a given analytical method. The MDL is calcu
	-

	lated from replicate analyses of a matrix containing the analyte and is functionally 
	analogous to the •critical value• described by Currie (1968, 1995 [IUPAC, 1995]) 
	and the Limit of Detection (LOD) described by the American Chemical Society 
	(Keith et al, 1980, McDougal et al., 1983). 
	At the time of this writing, the proposed revision had not been approved. 
	The similarity between the abbreviations MDC and MDL tends to produce confusion. The term •method detection limit• is seldom used in the context of radiochemistry except when the analytical method is one that is commonly used to measure stable elements (e.g., ICP-MS methods), or when the term is misused by those who are more familiar with the terminology of hazardous chemical analysis. The confusion is made worse by the fact that •MDL• is sometimes interpreted by radiochemists as an abbreviation for nonstan
	-


	20.2.7  The Minimum Quantifiable Concentration 
	20.2.7  The Minimum Quantifiable Concentration 
	The minimum quantifiable concentration, or the minimum quantifiable value of the analyte concentration, is defined as the concentration of analyte in a laboratory sample at which the measurement process gives results with a specified relative standard deviation. A relative standard deviation of 10 % is usually specified, although other values are possible (see for example MARLAP Appendix C). Since ISO 11843 addresses detection capability but not quantification capability, MARLAP follows IUPAC guidance in de
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	The term •quantification limit• may be used as a synonym for •minimum quantifiable concentration• or for •minimum quantifiable value• of any other measured quantity. 
	-

	Section 20.4.3 provides more information about the calculation of the minimum quantifiable concentration. 
	Historically much attention has been given to the detection capabilities of radiochemical measurement processes, but less attention has been given to quantification capabilities, although for some analytical projects, quantification capability may be a more relevant issue. For example, suppose the purpose of a project is to determine whether the Ra concentration in soil from a 
	-
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	site is below an action level. Since Ra occurs naturally in almost any type of soil, the analyte may be assumed to be present in every sample, making detection decisions irrelevant. The MDC of the measurement process obviously should be less than the action level, but a more important question is whether the MQC is less than the action level (see also Chapter 3 and Appendix C). 
	226

	 The MQC is defined in terms of the relative standard deviation of the estimator • not the relative standard uncertainty of the measured result. The standard uncertainty is generally an estimate of the standard deviation. 
	 The MQC is defined in terms of the relative standard deviation of the estimator • not the relative standard uncertainty of the measured result. The standard uncertainty is generally an estimate of the standard deviation. 
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	20.3 Recommendations 
	20.3 Recommendations 
	MARLAP makes the following recommendations.
	  • 
	  • 
	  • 
	When an analyte detection decision is required, it should be made by comparing the gross signal, net signal, or measured analyte concentration to its corresponding critical value.

	  • 
	  • 
	The laboratory should choose expressions for the critical value and minimum detectable value that are appropriate for the structure and statistics of the measurement process. The client may specify the desired Type I and Type II error rates (both 5 % by default) but should not require particular equations for the critical value or the minimum detectable value without detailed knowledge of the measurement process.

	  • 
	  • 
	The laboratory should use an appropriate radiochemical blank to predict the signal produced by a sample that contains no analyte. The most appropriate type of blank for this purpose depends on the analyte and on the method and conditions of measurement. Depending on the circumstances, it may be a blank source, reagent blank, or other process blank that accounts for instrument background as well as any contaminants introduced during the processing of the sample.

	  • 
	  • 
	The laboratory should confirm the validity of the Poisson approximation for the measurement process before using an expression for the critical value that is based on Poisson statistics. When the analyte is present at observable levels in the water, reagents, and lab ware used in the analysis, the Poisson approximation is often inappropriate. In these cases replicated blanks may be used to determine the critical value.

	  • 
	  • 
	The laboratory should consider all sources of variance in the instrument signal (or other response variable) when calculating the critical value and minimum detectable value.

	  • 
	  • 
	The minimum detectable value (MDC or MDA) should be used only as a performance characteristic of the measurement process.

	  • 
	  • 
	A measurement result should never be compared to the minimum detectable value to make a detection decision. 

	  • 
	  • 
	The laboratory should report each measurement result and its uncertainty as obtained (as recommended in Chapter 19) even if the result is less than zero. The laboratory should never report a result as •less than MDC.•

	  • 
	  • 
	The minimum detectable value should not be used for projects where the issue is quantification of the analyte and not detection. For these projects, MARLAP recommends the minimum quantifiable value as a more relevant performance characteristic of the measurement process. 
	-
	-



	MARLAP neither encourages nor discourages the reporting of sample-specific MDCs with measurement results, so long as the recommendations stated above are followed. 

	20.4 Calculation of Detection and Quantification Limits 
	20.4 Calculation of Detection and Quantification Limits 
	20.4.1  Calculation of the Critical Value 
	20.4.1  Calculation of the Critical Value 
	In Section 20.2.2, the critical value of the response variable (or gross instrument signal), denoted by y, was defined as the response threshold used to decide whether the analyte concentration of a laboratory sample is greater than that of the blank. The critical value of the net instrument signal, denoted by S, was similarly defined as the net signal threshold that may be used for the same purpose. 
	C
	-
	C

	The critical value of the net signal, S, is defined symbolically by the relation 
	C

	Pr[S> S| X �� 0] �� α (20.1) 
	•
	C

	•• 
	where Pr[ S > S | X = 0] denotes the probability that the observed net signal, S , exceeds its critical value, S, when the true analyte concentration, X, is zero, and α denotes the significance level, or the specified probability of a Type I error. When the signal assumes only discrete values (e.g., numbers of counts), there may be no value S that satisfies Equation 20.1 exactly. The criti
	C
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	C
	C
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	• 
	cal value in this case is defined as the smallest value, S, such that Pr[ S > S | X = 0] # α. 
	C
	C

	Determining a value of S which satisfies the definition requires knowledge of the distribution of the net signal, S, under the assumption that the analyte concentration in the laboratory sample is
	C
	•

	•• • 
	zero (the null hypothesis). The measured net signal may be written as S = Y − B, where Y denotes the measured gross signal and B denotes the estimated value of the gross signal under the null hypothesis H. In the absence of interferences, the value of B is usually estimated by measuring one or more blanks using the same procedure used to measure the test sample, and the
	•
	•
	0
	•

	•• • 
	distribution of Y under H is determined from that of B. In other cases, however, the value of B includes estimated baseline and other interferences that are present only during the measurement of the sample and cannot be determined from the blank. 
	0

	Since S, not y, has traditionally been used for analyte detection decisions in radiochemistry, the following presentation focuses primarily on S. However, conversion of either of these values to 
	C
	C
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	• 
	the other is simple, because y = S + B. 
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	20.4.1.1  Normally Distributed Signals 
	20.4.1.1  Normally Distributed Signals 
	• 
	If the distribution of the net signal S under H is approximately normal with a well-known standard deviation, σ, the critical value of S is 
	0
	-
	0
	•

	C &α(20.2) 
	S
	' z
	1
	σ
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	where z denotes the (1 − α)-quantile of the standard normal distribution. Table G.1 in Appendix G shows that z. 1.645 when α = 0.05. Attachment 20A describes the calculation of Swhen the standard deviation is not well-known. 
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	• 
	The blank signal, B , and its standard deviation, σ, may be estimated by replicate blank measurements, but at least 20 measurements are generally needed to ensure that the experimental standard deviation, s, is an accurate estimate of σ. (If fewer than 20 measurements are made, see
	B
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	-
	B
	B
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	Attachment 20A.) Given σ, the standard deviation, σ, of the net signal, S ' Y & B, under the null hypothesis is  equal to 
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	where n denotes the number of replicate blank measurements. So, the critical net signal is given by 
	1 % (20.4) 
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	The preceding equation is valid only if the blank measurements are made in the same manner and under the same conditions as the sample measurement. In particular, count times should be identical for the sample and the blanks. 

	20.4.1.2  Poisson Counting 
	20.4.1.2  Poisson Counting 
	Radionuclide analyses typically involve radiation counting measurements. Although radiation counting data never follow the Poisson model exactly, the model may be a useful approximation in some situations, especially those where the mean blank count is extremely low and the observed count therefore does not follow a normal distribution. At somewhat higher count levels, features from both models are often used, since the Poisson distribution may be approximated by a normal distribution. In this case the Pois
	-
	0
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	Generally the pure Poisson model is inappropriate when one analyzes for radionuclides that are found in observable quantities in the water, reagents, and lab ware used in the analysis. Some radionuclides, such as the naturally occurring isotopes of uranium, thorium, and radium, may be present as interfering contaminants in the laboratory and require blank corrections that account for their presence and variability in prepared sources. The variability of these contaminant levels usually must be determined by
	-

	When a test source is analyzed in a radiation counting measurement, either the gross count or the• 
	gross count rate may be considered the instrument signal Y . In this section, it is assumed that the instrument signal is the gross count. Therefore, if there are no interferences, the estimated gross 
	and blank signals are 
	and blank signals are 
	and blank signals are 
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	where 
	where 


	Nis the gross count (source count); 
	S 

	Nis the blank count; 
	B 

	tis the count time for the test source; and 
	S 

	tis the count time for the blank. 
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	If there are interferences, the blank signal is 
	NB 
	• 
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	where R denotes the estimated count rate due to the interferences. In either case the net instru•• 
	•
	I
	-

	ment signal is the net count, defined as S = N − B. The net signal is always assumed to have zero mean when analyte-free samples are analyzed. 
	S

	THE POISSON-NORMAL APPROXIMATION 
	Suppose the distribution of the blank signal can be estimated using the Poisson model, possibly with an additional small non-Poisson variance component and perhaps a correction for known interferences, and the instrument background remains at a level where the Poisson distribution is approximately normal. Then the critical net count is given approximately by the equation 
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	where 
	where 


	Ris the (true) mean count rate of the blank; 
	B 

	Ris the mean interference count rate; 
	I 

	ξis the non-Poisson variance in the blank (count rate) correction (see Section 19.5.4 of Chapter 19); and 
	B
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	• 
	σ(R) is the variance of the estimator for R. 
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	When there are no interferences and no non-Poisson blank variance, Equation 20.7 becomes 
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	The preceding formula is equivalent to �Currie�s equation� L = 2.33 µ when t = t, α = 0.05, and the symbols L and µ are identified with S and Rt, respectively (Currie, 1968). 
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	In Equation 20.8, R denotes the true mean blank count rate, which can only be estimated. In• 
	B

	practice one must substitute an estimated value, R, for R, as shown in the following equation. 
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	Equation 20.9 resembles Equation 20.8 but involves the estimated count rate, R, which varies • 
	B

	with repeated measurements. The value of R is usually estimated from the same blank value Nused to calculate the net instrument signal. (See Attachment 20A for other possible estimators.) 
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	The resulting formula, shown below, is equivalent to equations published by several authors (Currie, 1968; Lochamy, 1976; Strom and Stansbury, 1992; ANSI N13.30). 
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	Note that this is a commonly used expression for the critical net count, but its validity depends on the assumption of pure Poisson counting statistics. If the variance of the blank signal is affected by sample processing, interferences, or background instability, then Equation 20.11 may be invalid (but Equation 20.7 may be appropriate). 
	If α = 0.05 and t = t, Equation 20.11 leads to the well-known expression 2.33 N for the critical net count. 
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	When the blank count is high (e.g., 100 or more), Equation 20.11 works well. At lower blank levels, it can produce a high rate of Type I errors. For example, if the true mean blank count is 0.693, there is a 25 % chance of observing 0 blank counts and a positive number of test source counts in paired measurements of equal duration. In this case, a critical value calculated by Equation 20.11 produces Type I errors more than 25 % of the time regardless of the chosen significance level α. Attachment 20A descri
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	EXAMPLE 20.1 Problem: A 6000-second blank measurement is performed on a proportional counter and 108 beta counts are observed. A test source is to be counted for 3000 s. Estimate the critical value of the net count when α = 0.05. (See also Example 20.10.) 
	EXAMPLE 20.1 Problem: A 6000-second blank measurement is performed on a proportional counter and 108 beta counts are observed. A test source is to be counted for 3000 s. Estimate the critical value of the net count when α = 0.05. (See also Example 20.10.) 
	EXAMPLE 20.1 Problem: A 6000-second blank measurement is performed on a proportional counter and 108 beta counts are observed. A test source is to be counted for 3000 s. Estimate the critical value of the net count when α = 0.05. (See also Example 20.10.) 

	Solution: tS tS 1 % SC ' z1�α NB tB tB 3000 s 1 % 3000 s ' 1.645 108 6000 s 6000 s ' 14.8 net counts. 
	Solution: tS tS 1 % SC ' z1�α NB tB tB 3000 s 1 % 3000 s ' 1.645 108 6000 s 6000 s ' 14.8 net counts. 




	EXAMPLE 20.2 
	EXAMPLE 20.2 
	Problem: Repeat the same problem assuming the blank correction, expressed as a count rate, has a non-Poisson uncertainty component of ξ = 0.001 s (see Section 19.5.4 of Chapter 19). 
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	' 15.6 net counts. 
	20.4.1.3  Batch Blanks 
	20.4.1.3  Batch Blanks 
	Equation 20.11 is derived with the assumption that a detection decision is based on counts obtained from a single radiation counter. When laboratory samples are analyzed in batches, it is common to analyze a single blank per batch, so that the measurement conditions for the blank may differ somewhat from those of the samples. In particular, the counts for the laboratory samples and the blank may be measured using different detectors. If detection in a laboratory sample is defined relative to a blank counted
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	Then the net count is SY − B, whose critical value is 
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	is the calibration function for the laboratory sample measurem include the instrument background, counting efficiency, chemi estimated interferences and is the estimated absolute activity of the blank. 
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	where σ(Y) is the variance of the gross count Y in the test source measurement when the sample is analyte-free and σ(B) is the variance of the estimator B. 
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	• •• 
	If Poisson counting statistics are assumed, then σ(Y) may be estimated by B (assuming B > 0), but estimating σ(B) still requires a more complicated expression, which may be based on uncer-
	2
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	tainty propagation or replication. The variance of B may be difficult to estimate if positive blank values are caused not by the presence of the analyte in reagents but by contaminated glassware or instruments, which may represent a loss of statistical control of the analytical process. 
	•

	A valid alternative to the approach just described is to use replicate blank measurements to determine the distribution of the measured total activity and to calculate the critical net (absolute) activity using an equation similar to Equation 20.4. The critical net activity is given by 
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	where σ denotes the standard deviation of the blank activity and n denotes the number of replicate blank measurements. Then a detection decision is made for a real sample by comparing the measured net activity to the critical net activity. 
	blank

	This approach should work best if all samples and blanks are analyzed under very similar conditions, using instruments with similar counting efficiencies and background levels. (Each sample result and each blank result must still be corrected for instrument background.) If the instruments are significantly different, special care may be needed to ensure that the replicate blank measurements are made using all the available instruments and that samples are assigned to instruments randomly so that the varianc
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	20.4.2  Calculation of the Minimum Detectable Concentration 
	20.4.2  Calculation of the Minimum Detectable Concentration 
	The minimum detectable concentration (MDC) is defined as the concentration of analyte x that must be present in a laboratory sample to give a specified probability, 1 − β, of obtaining a measured response greater than its critical value, leading one to conclude correctly that there is analyte in the sample. In other words, the MDC is the analyte concentration at which the type II error rate is β. 
	D
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	The MDC may also be defined as the analyte concentration x that satisfies the relation 
	D

	Pr[S# S| X ' x] ' β (20.15) 
	• 
	C
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	•• 
	where the expression Pr[ S # S | X = x] is read as •the probability that the net signal S does not exceed its critical value S when the true concentration X is equal to x.• 
	C
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	The MDC is often used as a performance measure for an analytical process for the purpose of comparing different analytical procedures or evaluating a laboratory•s capabilities against specified requirements. The calculation of the •nominal• MDC is complicated by the fact that some 
	The MDC is often used as a performance measure for an analytical process for the purpose of comparing different analytical procedures or evaluating a laboratory•s capabilities against specified requirements. The calculation of the •nominal• MDC is complicated by the fact that some 
	-

	input quantities in the mathematical model, such as interferences and the chemical yield, which have a substantial impact on the MDC, may vary significantly from measurement to measurement. Other quantities that may have similar effects include the decay time, counting efficiency, and instrument background. Because of these variable quantities, determining the value of x that satisfies Equation 20.15 in practice may be difficult. One common approach to this problem is to make conservative choices for the va
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	The MDC is also commonly used in radiochemistry to describe the detection capability of the analytical process as implemented in a particular instance. In this case, the need for conservative choices is reduced. Instead, the measured values of the variable quantities may be used. However, since the measured values have uncertainties, their uncertainties contribute to a combined standard uncertainty in the calculated value of x. To ensure compliance with regulatory or contractual requirements, an uncertainty
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	20.4.2.1  The Minimum Detectable Net Instrument Signal 
	20.4.2.1  The Minimum Detectable Net Instrument Signal 
	The traditional method for calculating the MDC involves first calculating the minimum detectable value of the net instrument signal and then converting the result to a concentration using the mathematical measurement model. The minimum detectable value of the net instrument signal, denoted by S, is defined as the mean value of the net signal that gives a specified probability, 1 ! β, of yielding an observed signal greater than its critical value S. Thus, 
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	Pr[S# S| S ' S] ' β (20.16) 
	• 
	C
	D

	where S denotes the true mean net signal. 
	In radiochemistry the mean net signal, S, is usually directly proportional to X, the true analyte concentration in the sample. So, there is a •sensitivity• constant, A, such that S = AX. The constant A typically is the mean value of the product of factors such as the source count time, decay-correction factor, yield, counting efficiency, and test portion size (e.g., mass or volume). Its value in some cases may be sample-dependent, but it is essentially independent of the analyte concentration over a wide ra
	Pr[S# S| X ' S/ A] ' β (20.17) 
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	A comparison of Equation 20.17 to Equation 20.15, the defining relation of the minimum detectable concentration, x, shows that 
	-
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	x' (20.18) 
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	A 
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	The preceding equation is only true if all sources of variability are accounted for when determining the distribution of the net signal, S. If sample-processing effects are ignored, the expression S / A may underestimate the MDC. Note that ensuring the MDC is not underestimated also requires that the value of A not be overestimated. 
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	Certain variations of this procedure for calculating S and x may also be useful. As an example, suppose 
	D
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	A ' tS µY µV µg µD µFS 
	A ' tS µY µV µg µD µFS 
	A ' tS µY µV µg µD µFS 
	(20.19) 

	where 
	where 

	tS 
	tS 
	the source count time; 

	µY 
	µY 
	the mean chemical yield; 

	µV 
	µV 
	the mean test portion size (mass or volume); 

	µg µD 
	µg µD 
	the mean counting efficiency; the mean decay-correction factor; and 


	the mean •subsampling factor,• defined in Chapter 19 as the ratio of analyte concen
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	tration in a subsample to that in a sample ( is assumed to be 1). 
	F
	µ
	S 

	Much of the guidance given later for calculating S presumes that the distribution of the signal is normal, but the distribution tends not to be normal if the true yield (Y), test portion size (V), counting efficiency (g), decay-correction factor (D), or subsampling factor (F) is not normally distributed, or if the total relative variance of the product of these factors is large. For example, suppose the yield and decay factor vary over large ranges and are not normally distributed but the other factors are 
	D
	S
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	D
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	20.4.2.2  Normally Distributed Signals 
	20.4.2.2  Normally Distributed Signals 
	• 
	If the net signal, S , is normally distributed and its estimated standard deviation, σ, under H is � 
	0
	0

	well-known, the critical value of S is S = zσ, as previously noted. Then the minimum detectable net signal, S, is determined implicitly by the equation 
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	&α
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	S' S% zσ(S�| S ' S) (20.20) 
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	&β
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	where σ( | S = S) denotes the variance of the measured signal, S, when the true mean signal, S, equals S. If the function σ( | S = S) is constant, Equation 20.20 gives the value of S
	2
	D
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	Simmediately, but typically σ( | S = S) is an increasing function of S. 
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	S
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	If the function σ( | S = S) has a simple form, it may be possible to transform Equation 20.20 
	2
	D

	Sby algebraic manipulation into an explicit formula for S. For example, the variance of S often has the form 
	• 
	D
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	σ(S) ' aS % bS % c (20.21) 
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	2 

	where S denotes the true mean net signal and the constants a, b, and c do not depend on S (see 
	SD ' 1 Iβ SC % z 2 1�β b 2 % z1�β bSC % z 2 1�β b 2 4 % aS 2 C % Iβ c (20.22) Section 20.4.2.3, �Poisson Counting�). In this case the minimum detectable net signal is given by 
	where I = 1 − za. When α = β, the preceding equation can be simplified to the following. 
	β
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	bz% 2SD (20.23) 1 & z 
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	In Equations 20.21 and 20.22, the constant c equals σ, the variance of the net signal, S, when analyte-free samples are analyzed. If Poisson counting statistics are assumed (possibly with other sources of variance) and the signal S is the net count, as defined earlier, the constant b usually equals 1. In some situations, such as alpha-counting Rn and its short-lived progeny in an alpha scintillation cell, a different value of b may be needed because of the different counting statistics.
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	For typical radiochemistry measurement models, the value of the constant a is the relative variance (squared coefficient of variation) of the overall sensitivity, which is the product of factors such as the count time, yield, counting efficiency, and subsampling factor. In general the relative variance of a product of independent positive factors F, F, ..., F  is given by 
	-
	1
	2
	N

	φ(FF@@@F) ' (1 % φ(F))(1 % φ(F)) @@@ (1 % φ(F)) & 1 (20.24) 
	2
	1 
	2 
	N
	2
	1
	2
	2
	2
	N

	where n denotes relative variance, although an adequate approximation is usually given by 
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	φ(FF@@@F) . φ(F) % φ(F) % @@@ % φ(F) (20.25) 
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	when each coefficient of variation, n(F), is small. So, if the coefficients of variation of the yield, counting efficiency, subsampling factor, and other such factors are known, the value of a can be calculated. 
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	EXAMPLE 20.3 Problem: Suppose the sensitivity is the product of the yield (Y), counting efficiency (g), test portion size (V), count time (tS), and subsampling factor (FS), and that essentially all of the variance of this product is generated by the variances of the yield and subsampling factor. Assume the coefficients of variation of these two factors are n(Y) = 0.06 n(FS) = 0.03 Assume the counts produced by the net sample activity follow Poisson counting statistics, and assume that σ2 , the variance of t
	EXAMPLE 20.3 Problem: Suppose the sensitivity is the product of the yield (Y), counting efficiency (g), test portion size (V), count time (tS), and subsampling factor (FS), and that essentially all of the variance of this product is generated by the variances of the yield and subsampling factor. Assume the coefficients of variation of these two factors are n(Y) = 0.06 n(FS) = 0.03 Assume the counts produced by the net sample activity follow Poisson counting statistics, and assume that σ2 , the variance of t
	EXAMPLE 20.3 Problem: Suppose the sensitivity is the product of the yield (Y), counting efficiency (g), test portion size (V), count time (tS), and subsampling factor (FS), and that essentially all of the variance of this product is generated by the variances of the yield and subsampling factor. Assume the coefficients of variation of these two factors are n(Y) = 0.06 n(FS) = 0.03 Assume the counts produced by the net sample activity follow Poisson counting statistics, and assume that σ2 , the variance of t
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	Solution: The value of a is determined using Equation 20.24, as follows: a ' φ2(YFS) ' (1 % φ2(Y))(1 % φ2(FS)) & 1 ' (1 % 0.062)(1 % 0.032) & 1 ' 0.0045 The value of b is 1, because Poisson counting statistics are assumed. The value of c equals σ2 , 0 or 209. So, the variance of the net signal, �, is given by the equation S σ2( �S) ' (0.0045 × S 2) % S % 209 
	Solution: The value of a is determined using Equation 20.24, as follows: a ' φ2(YFS) ' (1 % φ2(Y))(1 % φ2(FS)) & 1 ' (1 % 0.062)(1 % 0.032) & 1 ' 0.0045 The value of b is 1, because Poisson counting statistics are assumed. The value of c equals σ2 , 0 or 209. So, the variance of the net signal, �, is given by the equation S σ2( �S) ' (0.0045 × S 2) % S % 209 


	ITERATIVE METHODS 
	If Equation 20.20 cannot be transformed algebraically, an iterative procedure, such as fixed-point iteration, may be used to solve the equation for S. An outline of fixed-point iteration is shown below.
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	1. Initially calculate S = S + zσ(S| S ' S) (using S = SC) 
	1. Initially calculate S = S + zσ(S| S ' S) (using S = SC) 
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	Figure
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	2. 
	2. 
	repeat loop (Lines 3•4) 

	3.
	3.
	     Set h = S
	D 


	4.     Recalculate S = S + zσ(S| S ' h) (using S = h) 
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	Figure
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	5. 
	5. 
	until |S− h | is sufficiently small 
	D 


	6. 
	6. 
	output the solution S
	D 



	In many cases, one iteration of the loop (Lines 3•4) provides an adequate approximation of S. In almost all cases, repeated iteration produces an increasing sequence of approximations converging upward to the solution; so, the stopping condition at Line 5 may be replaced by •until S# h• to obtain full machine precision in the result. 
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	EXAMPLE 20.4 Problem: Assume the variance of the net signal, S, is given by σ(S) ' (0.0045 × S ) % S % 209 where 0.0045 is the value of the constant a determined in Example 20.3, assuming a 3 % coefficient of variation in the subsampling factor and a 6 % coefficient of variation in the yield. Let α = β = 0.05. The critical net signal, S, is calculated as follows. S' zσ(S| S ' 0) ' 1.645 ' 23.78 Use fixed-point iteration to calculate S. 
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	Solution: The algorithm produces a sequence of approximations. 
	S' 23.78 % 1.645 σ(S| S ' 23.78) ' 49.02 S' 23.78 % 1.645 σ(S| S ' 49.02) ' 50.75 S' 23.78 % 1.645 σ(S| S ' 50.75) ' 50.88 
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	of the technique. 
	S' 23.78 % 1.645 σ(S| S ' 50.88) ' 50.89 S' 23.78 % 1.645 σ(S| S ' 50.89) ' 50.89 
	D,3 
	Figure
	2
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	D,4 
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	The sequence converges to 50.89, which is the value of S. Notice that the same value can be calculated using Equation 20.22 or 20.23 with the constants a = 0.0045, b = 1, c = 209. 
	D

	 Note that b equals the •index of dispersion• of the counts produced by net sample activity (the ratio of the variance to the mean). See Lucas and Woodward (1964) for more information about the counting statistics of alpha-scintillation cells. 
	 Note that b equals the •index of dispersion• of the counts produced by net sample activity (the ratio of the variance to the mean). See Lucas and Woodward (1964) for more information about the counting statistics of alpha-scintillation cells. 
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	 Fixed-point iteration, or functional iteration, is the term for a general technique for solving an equation of the form x = f(x). The iteration produces a sequence x, x, x, ..., where x = f(x). Under certain conditions, the sequence converges to a fixed point of f, where f(x) = x. Newton•s Method for finding a zero of a function g(x) is one example 
	 Fixed-point iteration, or functional iteration, is the term for a general technique for solving an equation of the form x = f(x). The iteration produces a sequence x, x, x, ..., where x = f(x). Under certain conditions, the sequence converges to a fixed point of f, where f(x) = x. Newton•s Method for finding a zero of a function g(x) is one example 
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	20.4.2.3  Poisson Counting 
	20.4.2.3  Poisson Counting 
	If the following assumptions are true: 
	• 
	• 
	• 
	The mean blank count is at least 100 

	• 
	• 
	The only source of signal variance considered is Poisson counting statistics 

	• 
	• 
	α = β 

	• 
	• 
	Equation 20.11 is used to calculate the critical net signal, S
	C 



	then the minimum detectable net signal, S, is given by the following simple equation.
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	S' z% 2S(20.26) 
	D 
	1
	2 
	&β 
	C 

	In the special case when α = β = 0.05, Equation 20.26 becomes 
	S' 2.71 % 2S
	D 
	C 
	(20.27) 

	In the case when α … β, S is determined from Equation 20.22 using the following values for a, b, and c. 
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	Figure

	a ' 0 b ' 1 c ' Rt
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	1 % 
	tB 
	Figure
	The resulting formula for S is 
	D

	1�β 1�β 
	which is approximately 2.71 when β = 0.05, but replacing this value by −ln β (approximately 3 when β = 0.05) accounts for the fact that when the mean count is low, a Poisson distribution is only imperfectly approximated by a normal distribution. The value !ln β is the exact value of S when the mean blank count rate is zero, because in this 
	D

	• 
	case S = 0, and Pr[ S = 0] # β if and only if S $!ln β. Note also that the equation in the text is valid only if α = β. MARLAP considers either z or −ln β to be an acceptable value in this case. 
	C
	1•
	2 
	β

	2 
	z 
	1�β 
	Figure
	z
	2 
	Figure
	1 % 
	t
	S 

	(20.28) 
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	EXAMPLE 20.5 Problem: Consider Example 20.1 again, where a 6000-second blank measurement on a proportional counter produces 108 beta counts and a test source is to be counted for 3000 s. Assume this blank measurement gives the best available estimate of the true mean blank count rate, RB, and use Equation 20.27 to calculated the minimum detectable net signal, SD, using the default value, 0.05, for Type I and Type II error probabilities. Also use Equation 20.28 to calculate SD for α = 0.05 and β = 0.10. 
	EXAMPLE 20.5 Problem: Consider Example 20.1 again, where a 6000-second blank measurement on a proportional counter produces 108 beta counts and a test source is to be counted for 3000 s. Assume this blank measurement gives the best available estimate of the true mean blank count rate, RB, and use Equation 20.27 to calculated the minimum detectable net signal, SD, using the default value, 0.05, for Type I and Type II error probabilities. Also use Equation 20.28 to calculate SD for α = 0.05 and β = 0.10. 
	EXAMPLE 20.5 Problem: Consider Example 20.1 again, where a 6000-second blank measurement on a proportional counter produces 108 beta counts and a test source is to be counted for 3000 s. Assume this blank measurement gives the best available estimate of the true mean blank count rate, RB, and use Equation 20.27 to calculated the minimum detectable net signal, SD, using the default value, 0.05, for Type I and Type II error probabilities. Also use Equation 20.28 to calculate SD for α = 0.05 and β = 0.10. 
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	Solution: As in Example 20.1, the critical net count, SC, equals 14.8. The count times are tS = 3000 s and tB = 6000 s. The mean blank count rate, RB, is estimated by 108 RB . ' 0.018 s&1 6000 s For the first part of the problem, Equation 20.27 may be used, because α = β = 0.05. It gives the result SD ' 2.71 % 2(14.8) ' 32.3 net counts For the second part of the problem, Equation 20.28 is used, because α … β. 2 2 z z 1�β 1�β tS SD ' SC % % SC % RB tS 1 % % z1�β 2 4 tB ' 14.8 % 1.2822 1.2822 1 % 3000 s % 1.2
	Solution: As in Example 20.1, the critical net count, SC, equals 14.8. The count times are tS = 3000 s and tB = 6000 s. The mean blank count rate, RB, is estimated by 108 RB . ' 0.018 s&1 6000 s For the first part of the problem, Equation 20.27 may be used, because α = β = 0.05. It gives the result SD ' 2.71 % 2(14.8) ' 32.3 net counts For the second part of the problem, Equation 20.28 is used, because α … β. 2 2 z z 1�β 1�β tS SD ' SC % % SC % RB tS 1 % % z1�β 2 4 tB ' 14.8 % 1.2822 1.2822 1 % 3000 s % 1.2


	As previously noted, counting data never follow the Poisson model exactly. Variable factors such as the yield, counting efficiency, subsampling error, and source geometry and placement tend to increase a, while interferences and background instability tend to increase c. So, using any of Equations 20.26�28 to calculate S is only appropriate if a conservative value of the sensitivity factor, A, (such as the β-quantile of the distribution of the true sensitivity) is used when converting S to the MDC. The foll
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	EXAMPLE 20.6 
	Problem: Again consider the scenario of Example 20.5, where t = 6000 s, t = 3000 s, and R. 0.018 s. Let the measurement model be 
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	where 
	X is the specific activity of the radionuclide in the sample; 
	g is the counting efficiency; 
	Y is the yield; 
	mis the mass of the test portion; 
	S 

	D is the decay-correction factor (calculated); and 
	Fis the subsampling factor. 
	S 

	Assume: 
	• 
	• 
	• 
	the mass of the test portion is always between 0.98 g and 1.05 g 

	• 
	• 
	the half-life of the analyte is 5.07 d, and decay times from collection to start of counting range from about 3 d to about 10 d 

	• 
	• 
	the counting efficiency has mean 0.42 and a 2 % coefficient of variation 

	• 
	• 
	the yield has approximate mean 0.85 and a 5 % coefficient of variation 

	• 
	• 
	the subsampling factor, whose mean is assumed to be 1, has a 3 % coefficient of variation 

	• 
	• 
	background instability contributes a non-Poisson standard deviation of 0.001 s to the blank correction, expressed as a count rate (see Section 19.5.4 of Chapter 19). 
	!1



	Calculate S and x using the value 0.05 for both the Type I and Type II error probabilities. 
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	Solution: First determine how to handle each variable sensitivity factor. The following approach is reasonable. 
	• 
	• 
	• 
	The source count time, t, has negligible variability; so, use the given value 3000 s and ignore the variance. 
	S


	• 
	• 
	• 
	The mass of the test portion, m, has only a little variability; so, use the lower bound, 
	S


	0.98 g, and ignore the variance of m. 
	S


	• 
	• 
	• 
	The decay-correction factor, D, can vary significantly from sample to sample, but no information is given about the distribution except its range of values. Assume a rectangular distribution of decay times from 3 d to 10 d, and calculate the 95 percentile, 3 
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	+ 0.95(10 ! 3) = 9.65 d, which gives the 5 percentile of the decay-correction factor (calculated below). 
	th


	• 
	• 
	Use the stated mean values of the counting efficiency (g), yield (Y), and subsampling factor (F) to calculate the sensitivity factor, and use the stated coefficients of variation for these factors when calculating S. 
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	Next write an expression for the variance of the net signal, S. The Poisson counting variance is given by 
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	• 
	where E(@) denotes expectation. The non-Poisson variance of the background contributes to S an additional variance component equal to (0.001)t. The variability of the efficiency, yield, and subsampling factor contribute a variance component of 
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	(1 % 0.02)(1 % 0.05)(1 % 0.03) & 1× S ' 0.0038 × S 
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	Therefore, the total variance of S is given by 
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	t σ(S) ' S % Rt% R% (0.001 s)t% (0.0038 × S ) 
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	So, let a, b, and c be as follows. 
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	a ' 0.0038 b ' 1 c ' Rt
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	As in Example 20.2, the critical net count, S, equals 15.6. Then Equation 20.23 gives the minimum detectable net signal, S. 
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	33.918 
	(1)(1.645)
	2 
	% 2(15.6) 

	S' '' 34.3 counts 1 & (1.645)(0.0038) 
	D 
	2
	0.9897 

	The value of the sensitivity factor, A, is obtained from the product of the chosen values for the count time, counting efficiency, yield, test portion size, decay factor, and subsampling factor. The decay constant, λ, must be calculated from the half-life, T = 5.07 d. 
	1/2

	0.693147 
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	λ '' ' 1.582 × 10s T(5.07 d)(86,400 s/d) 
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	Then the decay-correction factor is calculated. 
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	D ' e ' 0.2667 λtS So, the sensitivity factor is A ' tgYmDF' ' 279.9 g@s Therefore, the minimum detectable concentration is D 34.3 
	(1.582×10
	&6
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	&1
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	(3000 s)(0.42)(0.85)(0.98 g)(0.2667)(1) 
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	x'' ' 0.12 Bq/g 
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	A 279.9 
	A 279.9 

	 Some references use the value 3 instead of z  in this formula. A straightforward derivation gives the value z , 
	 Some references use the value 3 instead of z  in this formula. A straightforward derivation gives the value z , 
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	20.4.2.4  More Conservative Approaches 
	20.4.2.4  More Conservative Approaches 
	More conservative (higher) estimates of the MDC may be obtained by following the recommendations of NUREG/CR-4007, in which formulas for MDC (LLD) include estimated bounds for relative systematic error in the blank determination ( ∆| ) and the sensitivity ( ∆| ). The critical net count S is increased by ∆| B, and the minimum detectable net count S is increased by 2∆| B. The MDC is then calculated by dividing S by the sensitivity and multiplying the result by 1 % ∆| . The NUREG�s conservative approach treats
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	20.4.2.5  Experimental Verification of the MDC 
	20.4.2.5  Experimental Verification of the MDC 
	To ensure that the MDC has been estimated properly, one may test the estimate experimentally by analyzing n identical control samples spiked with an analyte concentration equal to x. If the MDC has been determined properly (the null hypothesis), the probability of failing to detect the analyte in each control sample is at most β. Then the number of nondetectable results in the experiment may be assumed to have a binomial distribution with parameters n and β. If k non-detectable results are actually obtained
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	and rejects the null hypothesis if P is smaller than the chosen significance level for the test (which may differ from the significance level for the analyte detection test). 
	NOTE: For any nonnegative integers n and j, the notation  denotes a binomial coefficient, usually read •n choose j,• which is the number of possible combinations of n objects chosen j at a time. For 0 # j # n, the value of  equals , where the symbol ! denotes the factorial operator. The number of combinations 
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	jof n objects chosen j at a time is also denoted sometimes by C. 
	j!(n&j)! 
	n
	j 

	To make the test realistic, one should ensure that the physical and chemical characteristics of the control samples, including potential interferences, are representative of laboratory samples encountered in practice. 
	EXAMPLE 20.7 Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to have been underestimated (at the 10 % level of significance)? 
	EXAMPLE 20.7 Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to have been underestimated (at the 10 % level of significance)? 
	EXAMPLE 20.7 Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to have been underestimated (at the 10 % level of significance)? 

	Solution: The variables are n = 10, β = 0.05, and k = 3. Calculate the P-value 2 10 � j �P �� 1� j (0.05) j (0.95)10 � 1 � 0.9885 �� 0.0115 j� j �0 Since P # 0.10, reject the null hypothesis and conclude that the MDC was underestimated. 
	Solution: The variables are n = 10, β = 0.05, and k = 3. Calculate the P-value 2 10 � j �P �� 1� j (0.05) j (0.95)10 � 1 � 0.9885 �� 0.0115 j� j �0 Since P # 0.10, reject the null hypothesis and conclude that the MDC was underestimated. 




	20.4.3  Calculation of the Minimum Quantifiable Concentration 
	20.4.3  Calculation of the Minimum Quantifiable Concentration 
	The minimum quantifiable concentration (MQC), or the minimum quantifiable value of the concentration, was defined in Section 20.2.7 as the analyte concentration in a laboratory sample that gives measured results with a specified relative standard deviation 1 / k, where k is usually chosen to be 10. 
	-
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	Calculation of the MQC requires that one be able to estimate the standard deviation for the result of a hypothetical measurement performed on a laboratory sample with a specified analyte concentration. Section 19.5.13 of Chapter 19 discusses the procedure for calculating the standard deviation for such a hypothetical measurement. 
	-

	The MQC is defined symbolically as the value x that satisfies the relation 
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	x' kσ(X�| X ' x) (20.30) �� 
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	where σ( | X = x) denotes the variance of the estimator X when the true concentration X equals x. If the function σ( | X = x) has a simple form, it may be possible to solve Equation 
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	X
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	20.30 for x using only algebraic manipulation. Otherwise, fixed-point iteration, which was introduced in Section 20.4.2, may be used. The use of fixed-point iteration for this purpose is shown below. 
	Q

	1. Initially calculate x = kσ(X| X ' 0) (using X = 0) 
	1. Initially calculate x = kσ(X| X ' 0) (using X = 0) 
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	2. 
	2. 
	repeat loop (Lines 3•4) 

	3. 
	3. 
	Set h = x
	Q 


	4. Recalculate x = kσ(X| X ' h) (using X = h) 
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	Q 
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	5. 
	5. 
	until |x! h | is sufficiently small 
	Q 


	6. 
	6. 
	output the solution x
	Q 



	The sequence of values generated by the algorithm typically converges upward to the solution. 
	When Poisson counting statistics are assumed, possibly with excess variance components, and the mathematical model for the analyte concentration is X = S / A, where S is the net count, A denotes the overall sensitivity of the measurement, Equation 20.30 may be solved for x to obtain the formula 
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	where 
	tis the count time for the test source; 
	S 

	tis the count time for the blank; 
	B 

	Ris the mean blank count rate; 
	B 

	ξis the non-Poisson variance component of the blank count rate correction; 
	B
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	Ris the mean interference count rate; 
	I 

	σ(R) is the standard deviation of the measured interference count rate; 
	•
	I

	φis the relative variance of the measured sensitivity, A, including the subsampling 
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	variance; and 
	variance; and 
	is equal to 1 ! kφ. 
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	If the true sensitivity A may vary, then a conservative value, such as the 0.05-quantile A, should be substituted for A in the formula. Note that φ denotes only the relative variance of Adue to subsampling and measurement error � it does not include the variance of the true sensitivity, A. 
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	Note that Equation 20.31 defines the MQC only if I > 0. If I# 0, the MQC is infinite, because• 
	Q
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	there is no concentration at which the relative standard deviation of X fails to exceed 1 / k. In particular, if the relative standard deviation of the measured sensitivity A or the subsampling standard deviation φ exceeds 1 / k, then I < 0 and the MQC is infinite. 
	Q
	•
	Samp
	Q
	Q

	More generally, if the variance of the measured concentration X can be expressed in the form σ() = aX + bX + c, where a, b, and c do not depend on X, then the MQC is given by the 
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	For example, if pure Poisson counting statistics are assumed and there are no interferences, then a ' φ, b ' 1/ A, and c = Rt(1 + t / t) / A. 
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	EXAMPLE 20.8 
	Problem: Refer once more to Examples 20.5 and 20.6, where the measurement model is given by 
	N& (Nt/ t) 
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	where 
	X is the specific activity of the radionuclide in the sample; 
	Nis the sample (gross) count; 
	S 

	Nis the blank count; 
	B 

	tis the sample count time (s); 
	S 

	tis the blank count time (s); 
	B 

	g is the counting efficiency; 
	Y is the yield; 
	mis the mass of the test portion (g); 
	S 

	D is the decay-correction factor; and 
	Fis the subsampling factor. 
	S 

	Keep the same assumptions as in the earlier examples. Assume also that the relative standard deviation of the yield measurement (as opposed to that of the yield itself) is 3 %, and that the relative standard deviation of the efficiency measurement is 2 %. Use Equation 20.31 to calculate the minimum quantifiable concentration, x, defined as the analyte concentration at which the relative standard deviation of the measurement process is 10 %. 
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	Q

	Solution: The relative measurement variance of the sensitivity, φ, is assumed to be the sum of the relative subsampling variance and the relative measurement variances of Y and g, since the other sensitivity factors are measured with better relative precision. As in the earlier example, conservative values for m (0.98 g) and D (0.2667) will be used in the calculation of the sensitivity factor, A. However, for this problem, a somewhat conservative value of the yield will also be used, because the true yield 
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	Y = 0.85 × (1 − 1.645 × 0.05) = 0.78 
	The following values are also used in this problem. 
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	The sensitivity factor, A, is now evaluated as follows. 
	A = tgYmDF@ s 
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	 = (3000 s)(0.42)(0.78)(0.98 g)(0.2667)(1) = 256.9 g 

	Next, the MQC can be calculated as shown below. 
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	Now, as a check, one may use the procedure described in Section 19.5.13 of Chapter 19 to predict the combined standard uncertainty of a measurement made on a hypothetical sample whose analyte concentration is exactly x. 
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	So, the combined standard uncertainty is predicted to be 0.0718 Bq/g, or 10 % of the true value, as expected. 
	20.5 References 
	20.5.1  Cited Sources 
	Altshuler, Bernard, and Bernard Pasternack. 1963. Statistical Measures of the Lower Limit of Detection of a Radioactivity Counter. Health Physics 9: 293•298. 
	American National Standards Institute (ANSI). 1996. Performance Criteria for Radiobioassay, N13.30. 
	American National Standards Institute (ANSI). 1996. Measurement and Associated Instrument Quality Assurance for Radioassay Laboratories, N42.23. 
	CFR 136. 1999. U.S. Environmental Protection Agency. •Guidelines Establishing Test Procedures for the Analysis of Pollutants.• 
	-

	Currie, Lloyd A. 1968. Limits for Qualitative Detection and Quantitative Determination: Application to Radiochemistry. Analytical Chemistry 40(3): 586•593. 
	-

	Currie, L.A. 1997. Detection: International Update, and Some Emerging Di-lemmas Involving Calibration, the Blank, and Multiple Detection Decisions. Chemometrics and Intelligent Laboratory Systems 37: 151•181. 
	U.S.
	U.S.
	U.S.
	 Environmental Protection Agency (EPA). 1980. Upgrading Environmental Radiation Data, Health Physics Society Committee Report HPSR-1, EPA, 520/1-80-012, EPA, Office of Radiation Programs, Washington, DC. 

	U.S.
	U.S.
	 Environmental Protection Agency (EPA). 2000. Guidance for Data Quality Assessment: Practical Methods for Data Analysis. EPA QA/G-9, QA00 Version. EPA/600/R-96/084, qa_docs.html. 
	EPA, Quality Assurance Division, Washington, DC. Available at www.epa.gov/quality1/ 



	Federal Register. 2003. •Proposed Rules.• Federal Register 68(48):11786. 
	International Organization for Standardization (ISO). 1993. Statistics • Vocabulary and Symbols • Part 1: Probability and General Statistical Terms. ISO 3534-1. ISO, Geneva, Switzerland. 
	International Organization for Standardization (ISO). 1997. Capability of Detection • Part 1: Terms and Definitions. ISO 11843-1. ISO, Geneva, Switzerland. 
	International Organization for Standardization (ISO). 2000. Determination of the Detection Limit and Decision Threshold for Ionizing Radiation Measurements • Part 1: Fundamentals and Application to Counting Measurements without the Influence of Sample Treatment. ISO 11929-1. ISO, Geneva, Switzerland. 
	International Organization for Standardization (ISO). 2000. Determination of the Detection Limit and Decision Threshold for Ionizing Radiation Measurements • Part 2: Fundamentals and Application to Counting Measurements with the Influence of Sample Treatment. ISO 11929
	-

	2. ISO, Geneva, Switzerland. 
	International Organization for Standardization (ISO). 2000. Determination of the Detection Limit and Decision Threshold for Ionizing Radiation Measurements • Part 3: Fundamentals and Application to Counting Measurements by High-resolution Gamma Spectrometry, without the Influence of Sample Treatment. ISO 11929-2. ISO, Geneva, Switzerland. 
	International Union of Pure and Applied Chemistry (IUPAC). 1995. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities. Pure and Applied Chemistry 67(10): 1699•1723. 
	Keith, Lawrence H., et al. 1983. Principles of Environmental Analysis. Analytical Chemistry 55(14): 2210• 2218. 
	Lochamy, Joseph C. 1976. The Minimum Detectable Activity Concept. NBS Report No. NBSSP456, National Bureau of Standards, Gaithersburg, MD. 
	-

	Lucas, H.F., Jr., and D.A. Woodward. 1964. Journal of Applied Physics 35: 452. 
	McDougal, Daniel, et al. 1980. Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry. Analytical Chemistry 52(14): 2242-2249. 
	National Bureau of Standards (NBS). 1963. Experimental Statistics. NBS Handbook 91, National Bureau of Standards, Gaithersburg, MD. 
	National Bureau of Standards (NBS). 1964. Handbook of Mathematical Functions. Applied Mathematics Series 55, National Bureau of Standards, Gaithersburg, MD. 
	National Council on Radiation Protection and Measurements (NCRP). 1985. Handbook of Radioactivity Measurement Procedures. NCRP Report 58, 2 ed., NCRP, Bethesda, MD. 
	nd

	Nicholson, W.L. 1963. Fixed Time Estimation of Counting Rates with Background Corrections. AEC Research and Development Report HW-76279. 
	Nicholson, W.L. 1966. Statistics of Net-counting-rate Estimation with Dominant Background Corrections. Nucleonics 24(8): 118•121. 
	Nuclear Regulatory Commission (NRC). 1984. Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements. NUREG/CR-4007. NRC, Washington, DC. 
	-

	Strom, Daniel J., and Paul S. Stansbury. 1992. Minimum Detectable Activity When Background Is Counted Longer than the Sample. Health Physics 63(3): 360•361. 
	20.5.2  Other Sources 
	American Chemical Society (ACS). 1988. Detection in Analytical Chemistry: Importance, Theory, and Practice. ACS Symposium Series 361, ACS, Washington, DC. 
	20A.1  Overview 
	This attachment describes methods for determining critical values and minimum detectable concentrations (MDCs) when the standard deviation of the blank signal is not known precisely, which occurs for example when the blank is measured by low-background Poisson counting or when the standard deviation is estimated from a small number of replicate measurements. The methods described below are applicable more generally, even when the background is high or the number of degrees of freedom is large, but in these 
	-

	20A.2 Calculation of the Critical Value 
	The critical value of the net signal S was defined earlier by the relation 
	C

	Pr[S> S| X ' 0] ' α (20.33) 
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	When the signal assumes only discrete values (e.g., numbers of counts), there may be no value Sthat satisfies Equation 20.33 exactly. The critical value in this case is defined as the smallest value S such that Pr[ S > S | X = 0] # α. 
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	20A.2.1 Normally Distributed Signals 
	• 
	If the distribution of the net signal S under H is approximately normal with a well-known standard deviation, σ, the critical value of S is 
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	where z denotes the (1 ! α)-quantile of the standard normal distribution. Typically the standard deviation σ is not well-known and must therefore be replaced by an estimate, σ�. If σ� is determined by a statistical evaluation with ν degrees of freedom, the multiplier z should be replaced by t(ν), the (1 ! α)-quantile of the t-distribution with ν degrees of freedom (cf. Type A evaluation of standard uncertainty in Section 19.4.2.1 of Chapter 19). Thus, 
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	Table G.2 in Appendix G lists values of t(ν). In general, t(ν) is greater than z, but the two values are approximately equal if ν is large. 
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	• 
	When B is estimated by the average of n replicate blank measurements (assuming no interferences), the standard deviation σ� of the net signal S under the null hypothesis may be estimated from the experimental standard deviation of the measured blank values, s. Specifically, 
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	The number of degrees of freedom, ν, in this case equals n ! 1; so, the critical value of S is S' t(n&1) × s1 % (20.37) 
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	Note that if z were used instead of t(n&1) in the equation, the critical value would be underestimated as 
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	20A.2.2 Poisson Counting 
	It is assumed here, as in Section 20.4, that the instrument is a radiation counter and the instrument signal is the gross count. Therefore, 
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	and the net instrument signal is the net count,  which is given by 
	Ris the estimated count rate due to interferences; 
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	is the gross count (source count); 
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	is the blank count; 


	tis the count time for the test source; and 
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	tis the count time for the blank. 
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	If t is much greater than t, generally at least 10 times greater, the blank count rate, R, can be considered to be •well-known,• because it contributes little variance to the net signal, S. The value of R may be estimated from a single measurement of long duration or from an average of several measurements of shorter duration. Whenever R is well-known, if there are no interferences, then according to the Poisson model, the critical gross count, y, equals the smallest nonnegative integer n such that 
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	Then S, the critical net count, equals  y! Rt. Table 20.1 shows critical gross counts for α = 
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	0.05 for small values of Rt (adapted from NRC, 1984). To use the table, one calculates the 
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	0.05 0.05 
	value of Rt, finds the appropriate line in the table, and compares the observed gross count N to the value of y read from the table. The analyte is considered detected if and only if N > y. When Rt is greater than about 20, y may be approximated by 
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	where z denotes the (1 − α)-quantile of the standard normal distribution, and for any number x, the expression lxm denotes the largest integer not greater than x. 
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	Note that these critical values are appropriate only under the assumption of Poisson counting statistics with no interferences. 
	TABLE 20.1 • Critical gross count (well-known blank) 
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	0.000•0.051 
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	Figure 20.2 shows the Type I error rates produced by Table 20.1 for α = 0.05 and three different count-time ratios, t / t. The error rates are much greater than 0.05 when the blank count time equals the sample count time, but they fall as the blank count time increases (and the blank count rate becomes better known). If the blank count rate were known perfectly, the Type I error rate would remain at or below 0.05 everywhere.
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	where µ = Rt (the true mean gross count when the sample contains no analyte) and y(n) denotes the critical gross count obtained from Table 20.1 when Rt is approximated by n(t/ t). 
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	Other commonly used methods for calculating the critical value when the blank count rate is not well-known are described below. 
	THE POISSON-NORMAL APPROXIMATION 
	As stated in Section 20.4.1.2, when Poisson counting statistics are assumed (possibly with additional variance components) and the instrument background remains stable between measurements at a level where the Poisson distribution is approximately normal, the critical net count is given approximately by the equation 
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	where R denotes the (true) mean count rate of the blank, R denotes the mean interference count rate, ξdenotes non-Poisson variance in the blank (count rate) correction, and σ(R) denotes the variance of the estimator for R. When there are no interferences and no non-Poisson blank variance, this equation becomes 
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	Low mean blank levels cause the Poisson distribution to deviate from the normal model. Figure 
	20.3 shows the effects of these deviations on the Type I error rates for the Poisson-normal approximation when t = t and α = 0.05. The graph has discontinuities because of the discrete 
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	nature of the Poisson distribution, but the Type I error rate is approximately correct (equal to 
	0.05) when the mean blank count is 10 or more.
	9 

	0 5 10 15 20 0.00 0.05 0.10 0.15 0.20 P RBtS 
	FIGURE 20.3 • Type I error rate for the Poisson-normal approximation (t = t) 
	FIGURE 20.3 • Type I error rate for the Poisson-normal approximation (t = t) 
	B
	S



	In Equation 20.43, R denotes the true mean blank count rate. In practice, R is usually not well• 
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	known; so, one must substitute an estimated value, R, as shown in the following equation. 
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	The most frequently used expressions for S may be derived from Equation 20.44 using an esti• 
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	mator R that equals a weighted average of the measured blank count rate N / t and the measured source count rate N / t. A weighted average of both measured rates may be used here to estimate the true blank level for the purpose of the hypothesis test, because, under the null hypothesis of zero net source activity, both measured rates are unbiased estimates of the true blank count rate. Given nonnegative weights w and w such that w + w = 1, the mean blank count rate is estimated by 
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	where µ denotes the (true) mean blank count. Terms of the infinite sum are accumulated until the cumulative
	&µ n 
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	Poisson probability, e µ/i!, approaches 1. The calculated values agree with those listed in Table 1 of Brodsky (1992). The discontinuities occur at µ = k / 2.33 for k = 1, 2, 3, •. 
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	• 
	This estimator R is always unbiased under the null hypothesis of zero net activity and no interferences, but the choice of weights affects the variance of the estimator. (When interferences are present, this weighted average is inappropriate.)
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	• 
	This attachment will use the notation S, which is nonstandard, to denote any version of the critical value that depends on the gross signal N (or Y). Then Equations 20.44 and 20.45 imply the following. 
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	• 
	It is often convenient to eliminate N from the expression for S (e.g., when calculating the • 
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	MDC). When the same measured value of N is used to calculate both the critical value S and • 
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	the net signal S, elimination of N from Equation 20.46 produces the following formula for an alternative critical value S.
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	It is not generally true that S = S unless w = 0, but either critical value may be used to imple• •• 
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	ment the same test for analyte detection, because S > S if and only if S > S. 
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	If there is additional non-Poisson variance associated with the blank correction, an extra term may be included under the radical (e.g., ξt, where ξ is as in Equation 20.42), although at very low blank levels the Poisson variance tends to dominate this excess component. 
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	FORMULA A 
	The most commonly used approach for calculating S is given by Formula A (shown below). 
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	 The common practice of using the same Poisson measurement data to calculate both the net signal S and its critical value tends to produce a correlation between the two variables. This correlation does not exist when the critical value is determined by a statistical evaluation of normally distributed data as described earlier in the attachment. 
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	 The critical value S may be written as a function f(S) of the observed net signal S and the blank count N. Then •• 
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	S exceeds S if and only if it exceeds the fixed point of f, which is the value S where f(S) = S. The fixed point is a function of N but not of N. 
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	Formula A 
	If α = 0.05 and t = t, Formula A leads to the well-known expression 2.33 N for the critical net count (e.g., see Currie, 1968). 
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	Formula A may be derived from Equation 20.44 by using the blank measurement alone to estimate the true blank count rate • i.e., by using the weights w = 0 and w = 1. 
	S
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	As noted in Section 20.4.1.2, when the blank count is high (e.g., 100 or more), Formula A works well, but at lower blank levels, it can produce a high rate of Type I errors. Figure 20.4 shows Type I error rates for Formula A as a function of the mean blank count for count time ratios t / t = 1 and 5 when α = 0.05.
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	 Probabilities on the two curves are calculated using the equation 
	12

	yC(n) 
	(µt/ t)k 
	4 
	B
	S
	n 
	Figure
	Figure
	µ

	&µ(1%t/t) 
	B
	S

	P(µ) ' 1 & e 
	jj 
	n'0 n! k'0 where y(n) = S(n) % n(t/ t)and µ = Rt (the mean gross count when the sample contains no analyte). The same equation with different expressions for S(n) is used to calculate the Type I error rates shown in Figures 20.5•8. 
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	FORMULA B 
	Another published formula for the critical value is (equivalent to) the following (Nicholson, 1966). 
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	The critical value calculated by Equation 20.49 equals z times the combined standard uncertainty of the net count. This fact is the basis for the original derivation of the formula, but the formula may also be derived from Equation 20.46 using the weights w = t / (t + t) and w = 
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	• 
	t / (t + t) to estimate R. When N is eliminated from Equation 20.49, one obtains Formula B (below), which is equivalent to the equation for the critical value given in Atoms, Radiation, and Radiation Protection (Turner, 1995). 
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	Formula B 
	Type I error rates for Formula B are shown in Figure 20.5. 
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	Formula B appears natural and intuitive when it is derived in terms of the combined standard uncertainty of the net count, and it gives excellent results when t = t and the pure Poisson model is valid. However, when the formula is derived using the weights w and w, as described 
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	above, the expression seems much less natural, because the weights clearly are not optimal when t… t. Notice that when t > t, the Type I error rate tends to be less than α. 
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	FORMULA C 
	If the pure Poisson model is valid, then under the null hypothesis, the weights w = t / (t + t) and w = t / (t+ t) provide the minimum-variance unbiased estimator R for the mean blank 
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	S
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	count rate and lead to the following formula for the critical net count (Nicholson, 1963; 1966).
	13 

	tS 
	Figure

	• 
	(N% N) (20.51) 
	S 
	B

	C &α 
	S
	' z
	1

	tB 
	Elimination of N from Equation 20.51 produces Formula C, shown below. 
	S

	2 
	zt
	1
	2 
	&α 
	S 

	ztttS'% z
	1
	&α 
	S
	2 
	S 
	Figure
	S 
	C 
	1
	&α 

	1 % tt(20.52) 
	4t 
	2 
	% N
	B 
	B 
	B 
	Figure

	B 
	2t
	B
	Figure

	Formula C 
	Formula C is equivalent to the equation for the •decision threshold• given in Table 1 of ISO 11929-1 for the case of fixed-time counting. Figure 20.6 shows Type I error rates for Formula C. 
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	 The approach here is conceptually similar to that of a two-sample t-test, which employs a pooled estimate of variance in the comparison of two normal populations. 
	13

	If the blank correction involves additional non-Poisson variance, an extra term may be included under the radical in Formula C; however, the weights w and w used to derive the formula are not necessarily optimal in this case. (See ISO 11929-2 for another approach.) 
	S
	B

	Note that Formulas B and C are equivalent when t = t, because both assign equal weights to the blank measurement and the source measurement. In this case, both formulas are also equivalent to the formula given by Altshuler and Pasternack (1963). 
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	THE STAPLETON APPROXIMATION 
	When the mean counts are low and t… t, another approximation formula for S appears to outperform all of the approximations described above. For small values of the constant d, the statistic 
	B 
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	Z ' 2 NS % d tS & NB % d tB 1 tS % 1 tB 
	(20.53) 
	which involves variance-stabilizing transformations of the Poisson counts N and N, has a distribution that is approximately standard normal under the null hypothesis (Stapleton, 1999; Strom and MacLellan, 2001). So, the critical value of Z is z, the (1 − α)-quantile of the standard normal distribution. From these facts one may derive the following expression for the critical net count as a function of N. 
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	The Stapleton Approximation 
	When α = 0.05, the value d = 0.4 appears to be a near-optimal choice. Then for t = t, the Stapleton approximation gives the equation 
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	S' 1.35 % 2.33 (20.55) 
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	Figure 20.7 shows the Type I error rates for the Stapleton approximation when α = 0.05 and d = 0.4. This approximation gives Type I error rates almost identical to those of Formulas B and C when t = t, but it has an advantage when t… t. 
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	When α … 0.05, the value d = z / 4.112 appears to give good results (4.112 = z / 0.4). 
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	When the blank correction involves a small non-Poisson variance component, a term ( ) may 
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	be included under the radical in Equation 20.54 to account for it. 
	THE EXACT TEST 
	Poisson counting statistics also permit an �exact� test for analyte detection, whose Type I error rate is guaranteed to be no greater than the chosen value of α, although it may be less. A randomized version of the test can provide a Type I error rate exactly equal to α (Nicholson, 1963), but only the nonrandomized version will be considered here, since its outcome is always based solely on the data and not on a random number generator. The test is implemented by rejecting H if and only if the following ine
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	NOTE: For any nonnegative integers n and k, the notation  denotes a binomial coefficient, usually read 
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	•n choose k,• which is the number of possible combinations of n objects chosen k at a time. For 0 # k # n, 
	 The left-hand side of the inequality is a cumulative binomial probability (see Attachment 19A of Chapter 19). It also equals 
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	where I(a,b) denotes the incomplete beta function (NBS, 1964; Press et al., 1992). 
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	the value of  equals , where the symbol ! denotes the factorial operator. The number of combina
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	ktions of n objects chosen k at a time is also denoted sometimes by C. 
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	Nicholson presents the test as a comparison of the gross count N to a critical value. The critical value  y•is the smallest nonnegative integer n such that
	S
	C 
	15 

	nN% NkN%N&k 
	Figure
	S 
	B 
	Figure
	t
	S 
	Figure
	Figure
	t
	B 
	Figure
	S 
	B 

	$ 1 & α (20.57) 
	j
	k'0 kt% tt% t
	S 
	B 
	S 
	B 

	The same (nonrandomized) test is implemented by calculating a critical gross count, y, equal to the smallest nonnegative integer, n, such that 
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	Then the critical net count, S, equals y! N(t / t). (Note that Inequality 20.58 is intended for use when N is small.) Table G.4 in Appendix G lists critical values y for α = 0.01 and 0.05 and for integral values of the count time ratio, t / t, ranging from 1 to 5. 
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	Figure 20.8 shows the Type I error rates for the nonrandomized exact test. (The Type I error rate for the randomized version of the test equals 0.05 everywhere.) 
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	 To implement the randomized test, calculate the critical value y�, and, if N > y�, reject H, as in the non-randomized test. If N = y�, calculate a rejection probability P by subtracting 1 ! α from the sum on the left-hand side of the inequality (with n = N) and dividing the difference by the summation�s last term 
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	Then reject Hwith probability P. 
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	EXAMPLE 20.10 
	Problem: A 60,000-second blank measurement is performed on an alpha-particle spectrometer and 4 counts are observed in a region of interest. A test source is to be counted for 60,000 s. Use the methods described in this attachment to estimate the critical value of the net count when α = 0.05. 
	Solution: Table 20.1 should not be used in this case, because the ratio of count times, t / t, is too small. 
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	Formula A gives the result 
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	Formula B gives the result 
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	' 6.20 net counts. Formula C gives the result 
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	' 6.20 net counts. 
	Notice that Formula B and Formula C give the same result, because t = t. The Stapleton approximation (with d = 0.4) gives the result 
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	The exact test gives the result y = 11 counts (the entry in Table G.4 for α = 0.05, t / t = 1, and N = 4), which implies that 
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	S' 11 & (4)(60,000 / 60,000) ' 7 net counts. 
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	EXAMPLE 20.11 
	Problem: Consider again the problem presented in Example 20.1. A 6000-second blank measurement is performed on a proportional counter and 108 beta counts are observed. A test source is to be counted for 3000 s. Use the methods described in this attachment to estimate the critical value of the net count when α = 0.05. 
	-

	Solution: Again, Table 20.1 should not be used, because the ratio of count times, t / t, is too small. 
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	Formula A gives the result 
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	' 14.8 net counts. Notice that this is the same result that was obtained in Example 20.1. 
	Formula B is not recommended. Since t > t in this case, Formula B produces a Type I error rate that is less than α. 
	B
	S

	Formula C gives the result 
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	The Stapleton approximation (with d = 0.4) gives the result 
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	Figure
	The exact test gives the result y = 70 counts (the entry in Table G.4 for α = 0.05, t / t = 2, and N = 108), which implies that 
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	S' 70 & (108)(3000 / 6000) ' 16 net counts. 
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	COMPARISONS AND RECOMMENDATIONS 
	Although Formula A gives the highest Type I error rates of all the formulas described above in the pure Poisson counting scenario, it is the formula that can be adapted most easily for dealing with interferences. It can also be modified to reduce the very high Type I error rates at low blank levels (by adding 1 or 2 to the number of blank counts N under the radical). Formula B cannot be recommended. When the pure Poisson model is valid, Formula C gives better results than either A or B, but the Stapleton ap
	Although Formula A gives the highest Type I error rates of all the formulas described above in the pure Poisson counting scenario, it is the formula that can be adapted most easily for dealing with interferences. It can also be modified to reduce the very high Type I error rates at low blank levels (by adding 1 or 2 to the number of blank counts N under the radical). Formula B cannot be recommended. When the pure Poisson model is valid, Formula C gives better results than either A or B, but the Stapleton ap
	B
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	appears to require the randomized version of Nicholson•s test. Using critical values from Table 

	20.1 is appropriate when the blank is counted much longer than the sample and the expected count for an analyte-free sample is very low. 
	MARLAP makes the following recommendations regarding the use of the various equations for the critical value when Poisson statistics are assumed:
	  • 
	  • 
	  • 
	A laboratory should confirm the validity of the Poisson approximation before using Table 20.1, Formula A, Formula C, Stapleton•s approximation, Nicholson•s exact test, or any other detection criterion that is based on pure Poisson counting statistics. (If the Poisson approximation is invalid, the blank distribution should be determined by repeated measurements.)
	-


	  • 
	  • 
	If the blank count time is at least 10 times longer than the sample count time, the critical gross counts in Table 20.1 can be used.

	  • 
	  • 
	If the mean blank count is at least 100, Formula A can be used and may be preferred for its relative simplicity.

	  • 
	  • 
	Formula B for the critical value should not be used.

	  • 
	  • 
	If the ratio of count times, t / t, is not large, and if the mean blank count is less than 100, either Formula C or Stapleton•s approximation should be used. Stapleton•s approximation seems to have an advantage over Formula C when t… t.
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	  • 
	  • 
	Nicholson•s exact test may be used to compare the means of two Poisson distributions when a high level of statistical rigor is required, but it is more complicated than necessary for routine laboratory analyses and lacks the power of Formula C and Stapleton•s approx
	-
	imation.
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	20A.3  Calculation of the Minimum Detectable Concentration 
	The minimum detectable concentration, or MDC, was defined earlier as the concentration of analyte, x, that must be present in a laboratory sample to give a probability 1 − β of obtaining a measured response greater than its critical value. Equivalently, the MDC is defined as the analyte concentration x that satisfies the relation 
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	Pr[S# S| X ' x] ' β (20.59) 
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	•• 
	where the expression Pr[ S # S | X = x] may be read as •the probability that the net signal S does not exceed its critical value S when the true concentration X is equal to x.• 
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	D

	The MDC may be estimated by calculating the minimum detectable value of the net instrument signal, S, and converting the result to a concentration. Recall that the minimum detectable value 
	D

	  The reduced power of the exact test at low blank levels is evident from the low Type I error rates shown in Figure 20.8. 
	16

	of the net instrument signal is defined as the mean value of the net signal that gives a specified probability, 1 − β, of yielding an observed signal greater than its critical value S. Thus, 
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	Pr[S# S| S ' S] ' β (20.60) where S denotes the true mean net signal. 20A.3.1 Normally Distributed Signals � 
	• 
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	If the net signal, S , is normally distributed and its estimated standard deviation, σ�, under H is determined from a statistical evaluation with ν degrees of freedom (e.g., n = ν + 1 replicate blank measurements), then the critical value of S is 
	0
	0
	•
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	Then, if the variance of S is constant at all concentrations • or at least can be considered constant at sufficiently low concentrations • the minimum detectable value of the signal is given by 
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	where δ denotes the noncentrality parameter of a noncentral t-distribution with ν degrees of freedom. The parameter δ is such that 
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	where  t(ν,δ) denotes the β-quantile of the noncentral t-distribution. The noncentrality parameter δ may be approximated by 
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	which is based on an approximation for the noncentral t distribution function (NBS, 1964). When α = β = 0.05 and ν $ 4, the noncentrality parameter is also approximated adequately by (ν) × 
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	8ν / (4ν + 1) (Currie, 1997). 
	Conceptually the standard deviation σ� used to calculate the critical value, S, is only an estimate and therefore can be considered a random variable. If it were the true standard deviation, the correct multiplier used to calculate S would be z, not t(ν). However, the standard deviation used to calculate S is, conceptually at least, the true standard deviation σ, even if its value is not known exactly. The true standard deviation may be estimated by σ�, but since the estimator σ� is 
	Conceptually the standard deviation σ� used to calculate the critical value, S, is only an estimate and therefore can be considered a random variable. If it were the true standard deviation, the correct multiplier used to calculate S would be z, not t(ν). However, the standard deviation used to calculate S is, conceptually at least, the true standard deviation σ, even if its value is not known exactly. The true standard deviation may be estimated by σ�, but since the estimator σ� is 
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	biased, a correction factor should be used for ν less than about 20. An unbiased estimator for σis σ� / c, where 
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	and where Γ denotes the gamma function (NBS, 1964). The gamma function is easily computed in software (Press et al., 1992), but c is also approximated well by 4ν / (4ν + 1), and values of care commonly tabulated in references for statistical quality control (whence the notation c is borrowed). Then S is estimated by 
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	σ� D α,β,ν (20.66) c
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	which is approximately 2t(ν)σ�, or 2 S, when α = β = 0.05 and ν $ 4. Values of c for ν = 1 to 40 are listed in Table 20.2. 
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	TABLE 20.2 • Bias factor for the experimental standard deviation 
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	ν 
	ν 
	c4 
	ν 
	c4 
	ν 
	c4 
	ν 
	c4 

	1 
	1 
	0.79788 
	11 
	0.97756 
	21
	 0.98817 
	31
	 0.99197 

	2 
	2 
	0.88623 
	12 
	0.97941 
	22
	 0.98870 
	32
	 0.99222 

	3 
	3 
	0.92132 
	13 
	0.98097 
	23
	 0.98919 
	33
	 0.99245 

	4 
	4 
	0.93999 
	14 
	0.98232 
	24
	 0.98964 
	34
	 0.99268 

	5 
	5 
	0.95153 
	15 
	0.98348 
	25
	 0.99005 
	35
	 0.99288 

	6 
	6 
	0.95937 
	16 
	0.98451 
	26
	 0.99043 
	36
	 0.99308 

	7 
	7 
	0.96503 
	17 
	0.98541 
	27
	 0.99079 
	37
	 0.99327 

	8 
	8 
	0.96931 
	18 
	0.98621 
	28
	 0.99111 
	38
	 0.99344 

	9 
	9 
	0.97266 
	19 
	0.98693 
	29
	 0.99142 
	39
	 0.99361 

	10 
	10 
	0.97535 
	20 
	0.98758 
	30
	 0.99170 
	40
	 0.99377 


	EXAMPLE 20.12 
	Problem: Use the blank data from Example 20.10 to calculate the minimum detectable net signal, S. Assume the variance of the net signal, S, is approximately constant at low analyte concentrations. 
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	 Although σ�  is assumed here to be an unbiased estimator for the variance, its square root, σ� , is a biased estimator for the standard deviation (see Section 19.4.5.2 in Chapter 19). 
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	Solution: In Example 20.9 the standard deviation of the blank, s, based on seven replicate measurements was found to be 8.5912. The estimated standard deviation of the net signal therefore is 
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	The number of degrees of freedom, ν, equals 7 ! 1 = 6. So, the value of the noncentrality parameter, δ, may be approximated as follows. 
	-
	α, β, ν

	(6) ' 1.943 
	&α0.95 
	t
	1
	(ν) ' t

	t(ν)
	Figure
	1
	&α
	2 

	1 & 
	1 & 
	1 

	δ' t(ν)× 
	α,β,ν 
	1
	&α

	1 % 
	Figure

	&α 
	% z
	1

	4ν 
	2ν 
	Figure

	P
	Figure
	1 

	P
	Figure
	1 % 
	1.943
	2 

	' 1.943 × 
	1 & 
	% 1.645 
	(4)(6) 
	(2)(6) 
	Figure

	' 3.748 The value of c for 6 degrees of freedom is 0.95937. So, 
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	S' δ' (3.748) ' 35.88. 
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	• 
	If the variance of S is not constant but increases with the mean signal S, the minimum detectable net signal is determined implicitly by the equation 
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	where σ denotes the standard deviation of S when S = S. An iterative algorithm, such as the one shown below, may be needed to solve the equation for S. 
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	Initially calculate S' t(ν)× σ
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	repeat loop (Lines 4•7) 

	4. Set σ' σ(S| S ' S) 
	D 
	Figure
	2
	•
	D


	) 
	5. 
	5. 
	5. 
	Find the value of δ such that t(ν,δ) ' t(ν)× σ/σ
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	is sufficiently small 
	9. output the solution S
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	The value of the noncentrality parameter δ in Step 5 may be approximated by 
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	When σ� is determined by any means other than a statistical evaluation, S must be calculated differently. 
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	EXAMPLE 20.13 
	Problem: Assume the signal, S, is the net count for a radioactivity measurement, and its variance is given by an expression of the form 
	•

	aS % bS % c 
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	The coefficient b is assumed to be 1, because the term bS represents the Poisson counting variance due to activity in the sample (see Section 20.4.2.2). The term c is estimated by σ� , the variance of the net signal observed when analyte-free samples are analyzed. The coefficient a is estimated to be 0.05, and represents a 5 % coefficient of variation, which is observed at high analyte concentrations. Assume σ� is evaluated from 7 replicate blank measurements and is found to be 9.1844, as in the preceding e
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	Solution: The first two steps are performed as follows. σ' 9.1844 S' 1.943 × 9.1844 ' 17.85 Then the first iteration of the loop is performed as follows. 
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	Subsequent iterations produce the sequence of approximations 37.242  37.354  37.363  37.364  37.364  ... The sequence converges to 37.364, which is the approximate value of the minimum detectable net signal. 
	20A.3.2 Poisson Counting 
	Another equation for S, which was described in Section 20.4.2.2, is 
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	where S = zσ and σ( |SS = S) denotes the variance of the measured signal, S , when the true mean signal, S, equals S. This equation is the basis for formulas that are commonly used for S when the Poisson-normal approximation is assumed. Regardless of whether the signal follows the pure Poisson model or has non-Poisson variance, the variance of S can usually be expressed in the form 
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	σ(S) ' aS % bS % c (20.70) 
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	as in Example 20.13, where S denotes the true mean net signal and the constants a, b, and c do not depend on S. In this case, the minimum detectable net signal is given by 
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	Equation 20.69 is often used even when S is calculated using one of the formulas presented above for low-background Poisson counting, with Rt substituted for the blank count N, but in this case S may be underestimated because of the fact that the calculated value of S varies from measurement to measurement. One option for obtaining a more conservative estimate of S is to substitute a conservative value of S, which will be denoted here by [S]. For Poisson counting, one method of obtaining [S] is to use the v
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	Note that [S] is not used to make detection decisions. It is used only to calculate S. 
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	For example, suppose α = β = 0.05, the assumed mean blank count rate is R = 8 × 10 s, and the blank count time is t = 6000 s. Then Rt = 4.8 counts. Using Table 20.1, one finds 4.8 in the first column between 4.695 and 5.425, and reads the value 9 from the second column. So, 9 is the largest value of N likely to be observed when measuring a blank. Now, if Stapleton�s approximation is used to calculate S when making a detection decision, the value of [S] used to calculate S is given by the following equation.
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	So, if t = t, then [S] = 8.49 counts. 
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	PURE POISSON COUNTING 
	As previously noted, counting data never follow the Poisson model exactly, but the model can be used to calculate S if the variance of the blank signal is approximately Poisson and a conservative value of the sensitivity factor is used to convert S to x. Equation 20.28, which is repeated below as Equation 20.73, shows how to calculate S using the pure Poisson model. 
	D
	-
	D
	D
	D

	SD ' SC % z 2 1&β 2 % z1&β z 2 1&β 4 % SC % RB tS 1 % tS tB 
	(20.73) 
	When Formula A is used for the critical net count, and α = β, this expression for S simplifies to z% 2S. Example 20.5 in Section 20.4.2.3 illustrates the use of the latter expression. 
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	DETECTION LIMITS FOR THE STAPLETON APPROXIMATION 
	When the Stapleton approximation is used for S, the minimum detectable net count S may be calculated using Equation 20.73, but when the pure Poisson model is assumed, a better estimate 
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	is given by the formula 
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	Equation 20.74 also gives a better approximation of S even when Formula C is used for the critical value as long as the ratio of count times t / t is not too far from 1 (see Table 20.3). It is recommended by ISO 11929-1 in a slightly different but equivalent form. 
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	When α = β = 0.05 and t = t, the preceding equation becomes 
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	PRECISE CALCULATION OF SD 
	When the pure Poisson model is assumed, with no other sources of variance, the mean blank count rate R and the analyte detection criteria completely determine S. So, in principle, a computer program can be written to calculate S precisely. The calculation is most easily described when the critical net count is expressed in terms of N but not N (e.g., S as defined by Formulas A•C, the Stapleton approximation, and the exact test). Then, at any specified value S of the mean net signal, the power of the detecti
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	where y(n) denotes the value of y (or S + Nt / t) when N = n. Terms of the infinite sum 
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	must be accumulated only until the cumulative Poisson probability, e (Rt) / m!, approaches 1. Given a software procedure to compute Equation 20.76, the value of S may be determined using an iterative algorithm, such as Newton•s method or bisection, which calculates 
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	the power at trial values of S until the correct value is found where the power equals 1 ! β (e.g. see Burden and Faires, 1993). 

	Since no sources of variance except Poisson counting statistics are being considered here, a conservative value of the sensitivity factor should be used when converting S to the minimum detectable concentration, x. 
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	A procedure of the type described above generated the true values of S for Table 20.3, which shows both the estimated and true values of S obtained when Formulas A and C and the Stapleton approximation are used for the critical value. The estimated values of S in this table are based on values of S calculated using the true mean blank count, not the upper bound [N]. The use of [N] would produce larger estimates. 
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	If one can assume that the sensitivity, A, has a particular distribution, such as a rectangular or triangular distribution, then it is still possible to calculate S precisely in software, although the mathematics is less straightforward than that needed when only Poisson variance is considered. At any specified value, S, of the mean net signal, the detection power equals 
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	where f(k,S) is the probability that the gross count will equal k when the mean net signal is S. Given an assumed distribution for A, the value of f(k,S) can be calculated in software. For example, if the sensitivity has a rectangular distribution with mean µ and half-width δ, then 
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	f(k;S) ' 1 2δx P k % 1, RB tS % S 1 % δ µA & P k % 1, RB tS % S 1 & δ µA (20.78) 
	where P(@, @) denotes the incomplete gamma function. Other combinations of the incomplete gamma function appear when different polygonal distributions are assumed (e.g., triangular). 
	To the extent that this approach accounts for the variance of the sensitivity, A, it becomes unnecessary to assume a conservative value of A when converting S to x. Instead, one uses the best available estimates of the actual distribution parameters (e.g., µ and δ above). 
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