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Analysis of NEEAR culture data: combining marine and freshwaters 
 
Bottom line: Marine and freshwater culture-derived data do not reflect a pattern suggesting that 
they are different. Based on our observations, marine and freshwater culture enterococci data 
are combinable. 
 
Rationale and Evidence: 

o 
-

o 
r

o 
f

o 
t

 

The main source of the fecal contamination (and thus, fecal indicators) - WWTP effluent 
 is the same at all NEEAR study beaches. 

The 1986 RWQC geometric mean (GM) indicator density, which is to be used as the 
eference point in the 2012 RWQC is (effectively) the same in freshwater and marine 

waters (GM 33 versus 35, respectively). 
The number of beaches evaluated in the NEEAR studies was a relatively small (4 
reshwater, 3 temperate marine, and 1 tropical marine) subset of all waterbodies that the 

RWQC will apply to. 
The literature indicates that of the factors influencing enterococci fate in the environment, 
here is more evidence that sunlight, temperature and predation are more important in 

controlling enterococci concentrations than the effects of salinity. 

Analytical Approach for Comparing NEEAR Beaches: 
 
To determine if beaches should necessarily be grouped by salinity (grouping beaches as 
freshwater versus marine) we conducted several analyses.  First, the observed range of culturable 
enterococci for each NEEAR beach was plotted in a box-and-whisker plot (Figure 1). As shown, 
there is substantial overlap in the observed densities across all beaches.  There is also substantial 
intra-beach variability.  
 
Next, we used an ANOVA analysis of the NEEAR culturable enterococci to test for equality of 
GMs between beaches. This test indicated that the means (Refer to Table 1) between beaches 
were significantly different (p<0.001). Since more than two beaches were compared, a 
statistically significant effect in the ANOVA only indicates that the GMs are different between 
the beaches, but not which beaches are different and how. 
 
Given the overlap of observed culturable enterococci among all beaches (Figure 1) we examined 
the variability between individual beaches. A post-hoc test (Tamhane’s test) was used to 
ascertain which pairs of GMs are significantly different. This test is suitable in this situation 
because the variances are not equal and the number of beaches in groups is not constrained to be 
equal. The major advantage of this test is that it accounts for both intra- and inter- variability in 
GMs for beaches to inform the groupings; another advantage is that it is a conservative test, 
accounting for multiple comparisons between beach GMs (the type I error α is constrained to be 
less than 0.05). As shown in Table 1, these statistically derived groups are not aligned strictly by 
classification of whether the waterbody was a fresh or marine beach.   
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Figure 1. 

 
 

 

NEEAR Fresh and Marine Water Culturable Water Quality Results
(white, grey, hatched boxes represent statistically different groups)
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Table 1. Homogenous subgroups of NEEAR beaches based on culturable enterococci 
results. 

(The log10 means of each beach are listed under the column of the homogenous group 
to which it belongs.  Log10 standard deviations are shown in parentheses). 

Beach Water body 
type 

N Group 1* 
(cfu per 
100ml) 

Group 2 
(cfu per 
100ml) 

Group 3 (cfu 
per100ml 

Surfside (SS) marine 530 0.48 (0.73)    
Goddard (GB) marine 426 0.56 (0.92)     
Boqueron (BB) marine 600   0.75 (0.81)   
West Beach (WB) fresh 336  0.83 (1.01)  
Edgewater (EB) marine 395   0.88 (0.95)   
Fairhope (FB) marine 431    1.32 (0.95) 
Washington Park(WP) fresh 421    1.39 (0.50) 
Huntington (HB) fresh 420    1.4 (1.01) 
Silver Beach (SB) fresh 423     1.49 (0.66) 
 *Groups in the table are reflected by different colors and cross hatching in the figure 
above. 
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Analysis Findings: 
o 

o 
o 

 

Extensive data analysis of NEEAR enterococci culture densities indicates that there is not 
a compelling distinction between marine and freshwater. 
The observed enterococci culture densities across all beaches are within the same range. 
While the means between individual beaches were significantly different, their 
differences are not aligned strictly by classification of whether the water body was a fresh 
or marine beach. 

Background information 
 
The literature indicates that of the factors influencing enterococci fate in the environment, there 
is more evidence that sunlight, temperature, and predation are more important in controlling 
enterococci concentrations than the effects of salinity. While numerous studies have documented 
these sunlight (Davies-Colley et al., 1999; Sinton et al., 1999; Boehm et al., 2002; Sinton et al., 
2002; Noble et al., 2004; Liu et al., 2006; Boehm et al., 2009; Walters et al., 2009; Nevers and 
Boehm, 2010) and predation (Enzinger and Cooper, 1976; Chamberlin and Mitchell, 1978; 
McCambridge and McMeekin, 1981; Barcina et al., 2997; Menon et al., 2003; Noble et al., 2004; 
Boehm et al., 2005), there are overall fewer studies documenting temperature (Wait and Sobsey, 
2001; Noble et al., 2004) and salinity (Hanes and Fragala, 1967; Noble et al., 2004) effects on 
enterococci persistence. While the results of all temperature studies illustrate that lower 
temperatures results in increased persistence, the results from the few salinity studies are 
conflicting – sometimes showing no effect of salinity, sometimes increased persistence at low 
salinities and sometimes increased persistence at high salinities. The most relevant study for the 
issue at hand on enterococci survival is  Noble et al. (2004) who tested the persistence of 
enterococci from a variety of sources in fresh and seawater exposed to sunlight and various 
temperatures. They found that inactivation rates in did not differ amongst various treatments 
executed in seawater and freshwater. The Noble et al. (2004) paper is perhaps the most direct 
evidence of the lack of effect of salinity on the persistence of enterococci in the aqueous 
environment.  
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