United States Environmental Protection Agency Office Of Water (WH-552) EPA 821-R-93-007 May 1993

Supplement To The Development Document For Effluent Limitations Guidelines And New Source Performance Standards For The

Organic Chemicals, Plastics, And Synthetic Fibers Point Source Category

Final

SUPPLEMENT TO THE DEVELOPMENT DOCUMENT

FOR

EFFLUENT LIMITATIONS GUIDELINES NEW SOURCE PERFORMANCE STANDARDS AND PRETREATMENT STANDARDS

FOR THE

ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS POINT SOURCE CATEGORY

Carol M. Browner Administrator

Thomas P. O'Farrell Director, Engineering & Analysis Division

> Elwood H. Forsht Chief, Chemicals/Metals Branch

> > George M. Jett Project Officer

May 28, 1993

Engineering & Analysis Division Office of Water U.S. Environmental Protection Agency 401 M Street, S.W. Washington, D.C. 20460

ACKNOWLEDGEMENTS

Support of this Final Supplemental to the Development Document for the Effluent Limitations Guidelines, New Source Performance Standards and Pretreatment Standards for the Organic Chemicals, Plastics and Synthetic Fibers Point Source Category was provided under Contract No. 68-C1-0006.

TABLE OF CONTENTS

			<u>Page</u>
I.	INT	RODUCTION	I-1
	Α.	SUMMARY	I-1
	В.	LEGAL AUTHORITY	I-2
		1. Best Practicable Control Technology Currently Available (BPT)	I-2
		2. Best Available Technology Economically Achievable (BAT)	I-3
		3. Best Conventional Pollutant Control Technology (BCT)	I-3
		4. New Source Performance Standards (NSPS)	I-4
		5. Pretreatment Standards for Existing Sources (PSES)	I-4
		6. Pretreatment Standards for New Sources (PSNS)	I-4
	C.	HISTORY OF THE OCPSF RULEMAKING EFFORTS AND LITIGATION	I-5
	D.	ORGANIZATION OF THE SUPPLEMENTAL DEVELOPMENT DOCUMENT .	I-5
II.	ВАТ	SUBCATEGORIZATION SCHEME	II-1
III.		LANT BIOLOGICAL TREATMENT RELATED TO BAT SUBPART J	III-1
	A.	BACKGROUND	III-l
	B.	APPLICABILITY OF BAT SUBPART J AND PSES	III-3
	C.	PASS-THROUGH ANALYSIS METHODOLOGY	III-6
		1. Assessment of the Remanded Phthalate Esters and Polynuclear Aromatics	III-7
	D.	REVISED BAT SUBPART J AND PSES COMPLIANCE COSTS AND LAND REQUIREMENTS	III-1 1
		1. Revised Baseline Costs	III- 11
		2. Revised In-Plant Biological Treatment Costs	Ⅲ-16

.

.

TABLE OF CONTENTS

				<u>Page</u>
		3.	The Initial Analysis	Ш-29
		4.	The RIA Analysis	Ш-29
		5.	The Preamble Economic Impact Analysis	M-29
		6.	Land Availability	Ш-42
	E.	FIN.	AL BAT SUBPART J AND PSES LIMITATIONS	III-48
IV.			URCE PERFORMANCE STANDARDS AND PRETREATMENT STANDARDS	FOR IV-1

	APPENDIX I-A -	GUIDANCE FOR L	ABORATORY ANAI	LYSIS OF COMP	LEX MATRICES
--	----------------	----------------	----------------	---------------	--------------

- APPENDIX I-B GUIDANCE FOR THE APPROPRIATE FLOW BASIS FOR CONVERTING CONCENTRATIONS INTO MASS-BASED IMITATIONS AND STANDARDS
- APPENDIX III-A TECHNICAL SUPPORT DOCUMENT FOR THE ORGANIC CHEMICALS, PLASTICS AND SYNTHETIC FIBERS POINT SOURCE CATEGORY DECEMBER 1, 1992 NOTICE OF AVAILABILITY OF NEW INFORMATION
- APPENDIX III-B BAT AND PSES INITIAL ANALYSIS COST DATA
- APPENDIX III-C BAT AND PSES RIA ANALYSIS COST DATA
- APPENDIX III-D BPT, BAT AND PSES PREAMBLE ANALYSIS COST DATA
- APPENDIX III-E BPT, BAT AND PSES TECHNOLOGIES COSTED FOR THE PREAMBLE ANALYSIS COST DATA

LIST OF TABLES

<u>Table</u>		<u>Page</u>
III-i	List of 47 BAT Subpart J Plants	Ш-5
III-2	Compliance Cost Estimates for Steam Stripping Upgrades	LII- 13
111-3	Compliance Cost Estimates for Chemical Precipitation Upgrades ,	Ⅲ-14
III-4	Revised Plant-by-Plant Cost Estimates for Plants with Steam Stripping and Chemical Precipitation Upgrades	Ш-15
III-5	Technology Corrections	III-17
III-6	Revised Cost Estimates Based on Technology Corrections	Ш-18
III-7	Flow Corrections and Revised Cost Estimates Based on Flow Corrections	Ш-19
III-8	Detention Time Versus Average Influent Phenol Concentration Analysis	III-20
111-9	Detention Time Analysis for the Remaining Pollutants	Ⅲ-22
III-10	Plant-by-Plant Detention Time Assignment	Ш-25
III-11	Revised Land Requirement Estimates for In-Plant Biological Treatment Systems	Ш-26
111-12	Revised Capital and O&M Cost for In-Plant Biological Treatment Systems	III-28
III-13	Land Availability of Selected OCPSF Plants	III- 43

LIST OF FIGURES

<u>Figure</u>		Page
III-1	Total Capital Cost Curve vs. Flow for Small In-Plant Biological Treatment Systems - Detention Time: 84 hours	III-30
111-2	Total Capital cost Curve vs. Flow for Small In-Plant Biological Treatment Systems - Detention Time: 130 hours	Ш-31
III-3	Total Capital Cost Curve vs. Flow for Small In=Plant biological Treatment Systems - Detention Time: 413 hours	III-32
III-4	Annual O&M Cost Curve vs. Flow for Small In-Plant Biological Treatment Systems - Detention Time: 84 hours	Ш-33
111-5	Annual O&M Cost Curve vs. Flow for Small In-Plant Biological Treatment Systems - Detention Time: 130 hours	111-34
111-6	Annual O&M Cost Curve vs. Flow for Small In-Plant Biological Treatment Systems - Detention Time: 413 hours	Ш-35
III-7	Total Capital Cost Curve vs. Flow for Large In-Plant Biological Treatment Systems - Detention Time: 84 hours	III-36
III-8	Total Capital Cost Curve vs. Flow for Large In-Plant Biological Treatment Systems - Detention Time: 130 hours	Ш-37
III-9	Total Capital Cost Curve vs. Flow for Large In-Plant Biological Treatment Systems - Detention Time: 413 hours	Ш-38
III-10	Annual O&M Cost Curve vs. Flow for Large In-Plant Biological Treatment Systems - Detention Time: 84 hours	Ш-39
III-11	Annual O&M Cost Curve vs. Flow for Large In-Plant Biological Treatment Systems - Detention Time: 130 hours	III-40
III-12	Annual O&M Cost Curve vs. Flow for Large In-Plant Biological Treatment Systems - Detention Time: 413 hours	III-41

I. INTRODUCTION

A. SUMMARY

This document describes the supporting information for the Agency's amendments to 40 CFR Part 414, which limits effluent discbarges to waters of the United States and the introduction of pollutants into publicly owned treatment works (POTWs) by existing and new sources in the organic chemicals, plastics, and synthetic fibers (OCPSF) point source category. These final amendments are based on the December 6, 1991 Proposal (56 FR 63897), the January 21, 1992 Extension of the Comment Period and Correction Notice (57 FR 2238) and the December 1, 1992 Notice of Availability (NOA) and request for comments (57 FR 56883). The OCPSF guideline was promulgated on November 5, 1987 (55 FR 42522), and is codified at 40 CFR Part 414. These amendments respond to the U. S. Fifth Circuit Court of Appeals' remand decisions on the OCPSF regulation, <u>Chemical Manufacturers Association v. U.S. EPA</u>, 870 F.2d 177 (5th Cir.), modified, 885 F.2d 253 (5th Cir. 1989), <u>cert. denied</u>, <u>PPG Industries, Inc. v. U.S. EPA</u>, 495 U.S. 910 (1990).

The Court remanded three aspects of the OCPSF guideline: (1) the subcategorization of the industry into two subcategories imposing differing limitations based on Best Available Technology Economically Achievable (BAT), on the grounds that the Agency did not provide sufficient notice of the scheme; (2) limitations for 19 of the 20 BAT Subpart J pollutants that were based upon in-plant biological treatment technology (and the corresponding New Source Performance Standards (NSPS) for these pollutants), as well as 13 corresponding Pretreatment Standards for Existing Sources and Pretreatment Standards for New Sources (PSES and PSNS, respectively), on the grounds that the model treatment systems used to estimate the cost of compliance had shorter detention times than the systems on which the limitations were based; and (3) the New Source Performance Standards (NSPS) and the Pretreatment Standards for New Sources (PSNS) for consideration of whether zero discharge limits would be appropriate for new plants in the OCPSF industry based on recycle of wastewater.

In reconsidering the BAT subcategorization scheme for Subpart I and Subpart J. The Agency concluded that this is the most appropriate approach for the OCPSF industry.

EPA is also promulgating the same numerical effluent limitations and standards that were proposed on December 6, 1991 for the 19 remanded BAT Subpart J and NSPS pollutants and for 11 of the 13 corresponding PSES and PSNS pollutants based on revised estimates for the cost of compliance derived from revised model in-plant biological treatment system designs. Pretreatment standards for phenol and 2,4-dimethylphenol are not being promulgated because, based on the revised pass-through analysis results presented in the December 1, 1992 NOA, EPA has concluded they do not pass through POTWs. The final limitations and standards are listed on pages III-48 to II-49 of Section III.

EPA also decided not to revise the NSPS and PSNS standards that were promulgated in the OCPSF guideline because, among other things, EPA's database does not demonstrate that total recycle is a demonstrated technology.

In addition, EPA corrected the criteria for designating "metal-" and "cyanide-bearing" waste streams and is adopting the two nonsubstantive formatting changes that were described in the December 6, 1991 notice. These actions did not arise out of the litigation; rather, they resulted from independent EPA review of the regulation.

B. LEGAL AUTHORITY

This regulation was promulgated under the authority of Sections 301, 304, 306, 307, 308, and 501 of the Clean Water Act (the Federal Water Pollution Control Act Amendments of 1972, 33 U.S.C. 1251 et seq., as amended) also referred to as "the Act" or "CWA". It is also promulgated in response to the Consent Decree in <u>Natural Resources Defense Council, Inc. v. Reilly</u>, D.D.C. Civ. No. 89-2980 (consent decree entered January 31, 1992).

Under the Act, the EPA is required to establish several different kinds of effluent limitations guidelines and standards. These are summarized briefly helow.

1. Best Practicable Control Technology Currently Available (BPT)

BPT effluent limitations guidelines are generally based on the average of the best existing performance by plants of various sizes, ages, and unit processes within the category or subcategory for control of familiar (e.g., conventional) pollutants, such as BOD₅, TSS, and pH. In establishing BPT effluent limitations guidelines, EPA considers the total cost in relation to the effluent reduction benefits, age of equipment and facilities involved, processes employed, process changes required, engineering aspects of the control technologies, and non-water quality environmental impacts (including energy requirements). The Agency balances the category-wide or subcategory-wide cost of applying the technology against the effluent reduction benefits.

2. <u>Best Available Technology Economically Achievable (BAT)</u>

BAT effluent limitations guidelines, in general, represent the best existing performance in the category or subcategory. The Act establishes BAT as the principal national means of controlling the direct discharge of toxic and nonconventional pollutants to navigable waters.

In establishing BAT, the Agency considers the age of equipment and facilities involved, processes employed, engineering aspects of the control technologies, process changes, cost of achieving such effluent reduction, and non-water quality environmental impacts.

3. Best Conventional Pollutant Control Technology (BCT)

The 1977 Amendments to the Clean Water Act added Section 301(b)(2)(E), establishing "best conventional pollutant control technology" (BCT) for the discharge of conventional pollutants from existing industrial point sources. Section 304(a)(4) designated the following as conventional pollutants: BOD₅, TSS, fecal coliform, pH, and any additional pollutants defined by the Administrator as conventional. The Administrator designated oil and grease a conventional pollutant on July 30, 1979 (44 FR 44501).

BCT is not an additional limitation, but replaces BAT for the control of conventional pollutants. In addition to other factors specified in Section 304(b)(4)(B), the Act requires that the BCT effluent limitations guidelines be assessed in light of a two part "cost-reasonableness" test [American Paper Institute v. EPA, 660 F.2d 954 (4th Cir. 1981)]. The first test compares the cost for private industry to reduce its discharge of conventional pollutants with the costs to publicly-owned treatment works (POTWs) for similar levels of reduction in their discharge of these pollutants. The second test examines the cost-effectiveness of additional industrial treatment beyond BPT. EPA must find that limitations are

"reasonable" under both tests before establishing them as BCT. In no case may BCT be less stringent than BPT.

EPA has promulgated a methodology for establishing BCT effluent limitations guidelines (51 FR 24974, July 8, 1986).

4. <u>New Source Performance Standards (NSPS)</u>

NSPS are based on the performance of the best available demonstrated technology. New plants have the opportunity to install the best and most efficient production processes and wastewater treatment technologies. As a result, NSPS should represent the most stringent numerical values attainable through the application of best available demonstrated control technology for all pollutants (i.e., toxic, conventional, and nonconventional).

5. Pretreatment Standards for Existing Sources (PSES)

PSES are designed to prevent the discharge of pollutants that pass through, interfere with, or are otherwise incompatible with the operation of POTWs. The legislative history of the 1977 Act indicates that pretreatment standards are to be technology-based and analogous to the BAT effluent limitations guidelines for removal of toxic pollutants. For the purpose of determining whether to promulgate national category-wide PSES, EPA generally determines that there is pass through of pollutants, and thus a need for categorical standards if the nationwide average percentage of pollutants removed by well-operated POTWs achieving secondary treatment is less than the percent removed by the BAT model treatment system. The General Pretreatment Regulations, which serve as the framework for categorical pretreatment standards, are found at 40 CFR Part 403. (These regulations contain a definition of pass through that addresses localized rather than national instances of pass through and does not use the percent removal comparison test described above (52 FR 1586, January 14, 1987).)

6. Pretreatment Standards for New Sources (PSNS)

Like PSES, PSNS are designed to prevent the discharge of pollutants that pass through, interfere with, or are otherwise incompatible with the operation of a POTW. PSNS are to be issued at the same time as NSPS. New indirect dischargers, like new direct dischargers, have the opportunity to incorporate in

their plant the best available demonstrated technologies. The Agency considers the same factors in promulgating PSNS as it considers in promulgating NSPS.

C. HISTORY OF THE OCPSF RULEMAKING EFFORTS AND LITIGATION

A detailed history of OCPSF rulemaking efforts and litigation as well as background for the current amendments is contained in the December 6, 1991 Proposal (56 FR 63897).

The Agency received comments from 28 separate commenters on the December 6, 1991 proposal and January 21, 1992 extension of the comment period. These included three trade associations, two POTWs, 22 individual companies, and NRDC. The Agency also received comments from 26 separate commenters on the December 1, 1992 NOA. These included four trade associations, four POTWs, the City of Philadelphia, and 17 individual companies. The Agency's responses to these comments are contained in the "Comment Summary and Response" section of the rulemaking docket. EPA's responses to the principal comments relating to the remand issues are also presented in Section VIII of the Preamble to the Final Regulation.

D. ORGANIZATION OF THE SUPPLEMENT TO THE DEVELOPMENT DOCUMENT

The following sections describe the technical analyses that provide the basis for the Agency's response to the Fifth Circuit's remand:

- BAT Subcategorization Scheme
- In-Plant Biological Treatment for BAT Subpart J Limitations and PSES Standards
 - New Source Performance Standards and Pretreatment Standards for New Sources

In addition, Agency guidance in response to two general OCPSF implementation issues, "Laboratory Analysis of Complex Matrices " and "Appropriate Flow Basis for Converting Concentrations into Mass-Based Limitations and Standards" are presented as Appendix I-A and I-B to this document.

II. BAT SUBCATEGORIZATION SCHEME

The original OCPSF guideline had two technology-based BAT subcategories for the control of toxic pollutants: one for any direct discharge point source that uses end-of-pipe biological treatment or installs end-of-pipe biological treatment to comply with BPT effluent limitations (Subpart I, § 414.90), and one for any direct discharge point source that does not use end-of-pipe biological treatment or does not install end-of-pipe biological treatment to comply with BPT effluent limitations (Subpart J, § 414.100). Subparts I and J set limits for 63 and 59 pollutants, respectively. Of the 59 Subpart J Maximum for Monthly Average limitations, 9 are identical to, 20 are more stringent than, and 30 are less stringent than the corresponding Subpart I limitations.

As explained in the proposal, EPA established this scheme based, in part, on its conclusion that there are plants in the OCPSF industry whose wastewaters have such low levels of Biochemical Oxygen Demand (BOD) that they will not be able to operate biological treatment systems effectively and do not need biological treatment systems to comply with the BPT BOD effluent levels (56 FR at 63899). Biological treatment systems rely on microorganisms to biodegrade or "eat" the organic pollutants in the wastewater. BOD, a measure of the organic pollutant strength in water or wastewater, is determined by measuring the oxygen used by microorganisms to oxidize or "eat" the organic contaminants of a sample. Consequently, BOD measures the amount of substrate or "food" available for the survival of microorganisms (id.). Biological treatment systems therefore require sufficient BOD levels to operate (id.).

NRDC challenged the BAT subcategorization scheme in the litigation over the OCPSF guideline, arguing that the Agency had failed to present its BAT subcategorization scheme for comment and also asserting that this type of BAT subcategorization violated the CWA because it allowed a discharger who chooses not to employ end-of-pipe biological treatment to be subject to fewer and less stringent BAT Subcategory J limitations, rather than the more stringent Subcategory I limitations which apply to plants with end-of-pipe biological treatment systems. NRDC also argued that, if it had an opportunity to comment, it would have urged EPA to establish a raw waste BOD "floor" above which plants would not be able to qualify for Subpart J, or to limit the applicability of Subpart J to those categories of OCPSF production that tend to have low raw waste BOD levels (NRDC 6/30/88 Brief at 54).

On March 30, 1989, the Fifth Circuit Court of Appeals, without ruling on NRDC's substantive arguments, remanded the BAT subcategorization of the industry for notice-and-comment proceedings. The Court left the scheme in effect pending further rulemaking, reasoning in part that the notice-and-comment proceedings may disclose that the BOD floor urged by NRDC is neither necessary nor feasible (870 F.2d at 236).

The Agency has reconsidered the issues related to revising the BAT subcategorization scheme or otherwise limiting the applicability of Subpart J and has decided not to revise the existing scheme for the same reasons presented in its December 6, 1991 Proposal. The scheme accommodates the complexity of the industry and encourages source control and rational waste management decisions. In addition, EPA does not believe revision of the scheme is necessary. Plants must comply with low BPT limits, and plants that need to achieve significant BOD reductions will generally install biological treatment because other treatment alternatives are significantly more expensive. EPA does not believe plants' treatment decisions will be motivated by the desire to be subject to Subpart J. In any event, Subpart J is not significantly less stringent than Subpart I.

Moreover, the Agency does not have a technical basis to determine which plants can sustain biological treatment because of the lack of a theoretical BOD floor for sustaining biological treatment and the great variability of OCPSF production and wastewater characteristics. For these reasons, as explained more fully in Section VIII. C of the preamble to the final regulation, the Agency has decided not to establish a BOD floor or otherwise limit the applicability of Subpart J.

III. IN-PLANT BIOLOGICAL TREATMENT RELATED TO BAT SUBPART J LIMITATIONS AND PSES STANDARDS

A. BACKGROUND

At promulgation, BAT Subpart J established direct discharge toxic pollutant limitations for an estimated 23 plants that were projected to comply with BPT limitations without the use of end-of-pipe biological treatment or contract hauling. The BAT Subpart J toxic pollutant numerical limitations were based on the performance of in-plant wastewater treatment technology including steam stripping to remove volatile priority pollutants, chemical precipitation for metals, alkaline chlorination for cyanide, and in-plant biological treatment for removal of selected priority pollutants including polynuclear aromatics, phthalate esters, acrylonitrile, phenol, and 2,4-dimethylphenol (52 FR 42538 - 45, 1987 Dev. Doc. Vol. I, pp. II-8 to 11).

Numerical standards for 20 of the BAT Subpart J pollutants were based on the performance of three biological treatment systems with detention times between 1.6 and 17.2 days. In contrast, detention times between 1 to 2.1 days were used to estimate the costs of compliance based on the model in-plant biological treatment systems [(1987 Dev. Doc., pp. VIII-189); OCPSF Record R. 93970-4020; EPA 9-23-88 Response Brief, pp. 244-59].

CMA challenged the BAT Subpart J limitations based on in-plant biological treatment arguing, in part, that the plants used by EPA to derive the limitations based on in-plant biological treatment have more treatment in place than EPA's model treatment used to estimate costs of compliance and that EPA significantly underestimated the costs of installing in-plant biological treatment (CMA's 4-25-88 Brief, pp. 58-76).

After the Fifth Circuit initially upheld these BAT Subpart J limitations (870 F.2d at 240-2), CMA petitioned for reconsideration, again arguing, in part, that the Agency underestimated the costs of compliance due to the differences between the detention times of the three plants that provided the basis for the numerical standards and the detention times of the model technology that provided the basis for estimating the engineering costs of compliance (CMA's 5-3-89 Petition for Review Brief, pp. 8-11). The Court concluded that the detention time was a key variable in determining the effectiveness of biological treatment and that EPA had failed to demonstrate a reasonable basis to conclude that biological systems with a 1 or 2.1 day detention time would control pollutants as effectively as the biological systems with the 3.5 and 17.2-day detention times (885 F.2d at 265).

The Court remanded limitations for the BAT Subpart J pollutants based on the two plants with these longer detention times. In a June 29, 1990 revocation notice (55 FR 26691), the Agency withdrew the BAT limits for the 19 of the 20 Subpart J limits that were based on these two plants. EPA left in effect the limitations for acrylonitrile, which were based upon the treatment system with the 1.6 day detention time. In this notice, EPA also withdrew the 19 corresponding NSPS standards, and the 13 corresponding PSES and PSNS standards that were based on the remanded BAT Subpart J limits.

The remand was based on the discrepancy between the detention times of the systems that provided the technical basis for the BAT Subpart J limits and the detention times of the costed model in-plant systems, and not on the technical achievability of the limits generally. EPA therefore proposed on December 6, 1991 and January 21, 1992, the same numerical standards with revised estimates of costs of compliance. The revised compliance costs were based on revised model in-plant biological treatment systems with increased detention times as a function of reported or projected raw waste toxic pollutant concentrations.

A large number of comments received on the December 6, 1991 proposal and January 21, 1992 extension of the comment period challenged EPA's proposal. CMA and other commenters raised in comments the same kinds of costing issues arising from their technical critique of the limits as they did in their challenge to the 1987 OCPSF guideline (see, e.g., CMA Brief at 56 n.94, CMA Reply Brief at 61 n.112 (EPA has grossly underestimated cost of compliance and economic impacts because it did not cost sufficiently extensive treatment systems)). These issues were litigated and decided in EPA's favor, and were not re-opened by the Court's remand. Rather, the issues opened by the remand were whether EPA accurately re-costed the model in-plant technology to reflect the longer detention times assigned to the plants and whether EPA adequately accounted for land availability.

A large number of the comments on the proposal also challenged EPA's determination in the original 1987 OCPSF promulgation that phenol -- one of the 13 pollutants for which pretreatment standards were remanded -- passes through POTWs. Several comments raised the same issue with respect to 2,4-dimethylphenol -- another of the 13 pollutants. Based on EPA's assessment that these comments had merit, EPA announced in a Notice of Availability (NOA) published in the Federal Register on December 1, 1992, that it was considering revising its determination that phenol and 2,4-dimethylphenol pass through POTWs, based on a proposed modification to the Agency's traditional pass-through methodology (57 FR 56883). The revised methodology as proposed applied scientific and engineering judgment in conjunction with biological treatment performance data to determine that phenol and 2,4-dimethylphenol do not pass through POTWs.

EPA collected additional POTW phenol removal data and reviewed it in conjunction with the data that EPA used in the 1987 pass through analysis, and performed a chemical and engineering assessment of the fate of phenol and 2,4-dimethylphenol in biological treatment systems. EPA has concluded that these pollutants are highly biodegradable and that the removals of these pollutants achieved by POTWs are essentially equivalent to those achieved by direct dischargers. In addition, since phenol and 2,4dimethylphenol are low volatility pollutants, the removals achieved by POTWs do not simply result from the transfer of the pollutants to the air.

Based on these conclusions, the final PSES regulation is based on revised engineering costs of compliance and pollutant loading reductions for 11 of the 13 remanded PSES pollutants. Final pretreatment standards for phenol and 2,4-dimethylphenol are not being promulgated today because the Agency has concluded they do not pass through POTWs.

The following sections present the analyses that have been performed since the December 6, 1991 Proposal and the December 1, 1992 NOA.

B. APPLICABILITY OF BAT SUBPART J AND PSES

At promulgation, EPA identified 84 direct discharge plants that relied exclusively upon end-of-pipe physical/chemical treatment or did not report any treatment in-place at all (see Table VII-42 of the DD). At that time, the Agency projected that after compliance with BPT, only 23 plants would remain without end-of-pipe biological treatment in-place. After promulgation, the Agency determined from its 308 Questionnaire data base that one plant (#2660) was not a direct discharger because it did not discharge process wastewater; subsequently, this plant was reclassified as a zero discharge facility and was eliminated from this analysis.

In April of 1991, SAIC contacted the remaining 83 direct dischargers by telephone to determine the accuracy of the projection that 22 plants would be subject to BAT Subpart J limitations, i.e. these plants would not install end-of-pipe biological treatment.

The April 1991 survey (documented in a April 26, 1991 Memo to the OCPSF Record) found that of the 83 direct discharge plants:

a) 14 plants had become indirect dischargers (33, 155, 180, 502, 536, 611, 819, 877, 956, 991, 1593, 1794, 2606, & 2680).

- b) 6 plants are closed (87, 614, 876, 1033, 1776, 2606)
- c) 12 plants installed EOP biological treatment
- d) 7 plants could not be reached (no listings or nobody answered phone, or people would not or could not answer questions 260, 373, 992, 1327, 1670, 1774, 2647); these plants retained their 1987 Subpart I or J assignments.

Based on the results of this survey, there are 44 known Subpart J plants plus 3 plants (260, 373, and 1774) originally categorized as Subpart J plants whose status could not be determined and that have been assumed to be included in BAT Subpart J. Table III-1 presents a list of these 47 Subpart J plants.

Based on comments received on the December 6, 1991 Proposal and the December 1, 1992 NOA, the Agency decided to update its projection of the number of plants subject to BAT Subparts I and J and PSES limitations for the purposes of updating its compliance cost estimates and associated economic impacts for promulgation based on the information obtained. This updated analysis includes the following changes:

- For the 14 plants that switched to indirect discharge status:
 - a) delete all direct discharge costs; (BPT and BAT)
 - b) develop costs using the PSES trigger values
 - c) include these plants and associated costs in PSES
- For the plants that switched from BAT Subpart I to Subpart J:
 - a) BPT end-of-pipe biological costs were kept and in-plant biological costs based on BAT Subpart Ι trigger values were deleted; all other BAT costs were kept. This serves as а conservative estimate cover to whatever these plants did to comply with the BPT/BAT Subpart J limits without installing end-of-pipe biological treatment.
 - b) cost in-plant biological using Subpart J trigger values and revised detention time.
- For the plants that closed:
 - a) use the same costs estimated for the December 6, 1991 Proposal.

TABLE III-1

Plant #	Plant #	Plant #
76	709	2030
105	727	2047
114	775	2062
225	814	2073
259	859	2268
260	913	2400
. 373	942	2419
412	1249	2527
446	1439	2533
447	1569	2590
451	1618	2668
601	1688	2735
657	1774	2767
663	1785	2771
664	1839	2786
669	1986	

LIST OF 47 BAT SUBPART J PLANTS

C. PASS-THROUGH ANALYSIS METHODOLOGY

A large number of the comments on the December 6, 1991 proposal and the January 21, 1992 extension of the comment period challenged EPA's determination in the original 1987 OCPSF promulgation thatphenol -- one of the 13 pollutants for which pretreatment standards were remanded -- passes through POTWs. Several comments raised the same issue with respect to 2,4-dimethylphenol -- another of the 13 pollutants. Based on EPA's assessment that these comments had merit, EPA announced in a Notice of Availability (NOA) published in the Federal Register on December 1, 1992, that it was considering revising its determination that phenol and 2,4-dimethylphenol pass through POTWs, based on a proposed modification to the Agency's traditional pass-through methodology (57 FR 56883). The revised methodology as proposed applied scientific and engineering judgment in conjunction with biological treatment performance data to determine that phenol and 2,4-dimethylphenol do not pass through POTWs.

EPA collected additional POTW phenol removal data and reviewed it in conjunction with the data that EPA used in the 1987 pass through analysis, and performed a chemical and engineering assessment of the fate of phenol and 2,4-dimethylphenol in biological treatment systems. EPA concluded that these pollutants are highly biodegradable and that the removals of these pollutants achieved by POTWs were essentially equivalent to those achieved by direct dischargers. In addition, since phenol and 2,4-dimethylphenol are low volatility pollutants, the removals achieved by POTWs do not simply result from the transfer of the pollutants to the air.

A number of industry commenters supported the Agency's proposed conclusion presented in the December 1, 1992 NOA that phenol and 2,4-dimethylphenol do not pass through POTWs, but urged that the modified pass through analysis used to reach that conclusion be applied to the remaining 11 remanded PSES pollutants to determine that they also do not pass through. EPA disagrees, for the reasons explained below.

As the Agency explained in the NOA, EPA generally is continuing to apply the median percent removal methodology used to determine pass through at promulgation of the OCPSF guideline (57 FR at 56885). This methodology was upheld in litigation as an appropriate, conservative approach to determining pass through (870 F.2d at 243-48), and EPA continues to believe it is the correct approach as a general matter. EPA determined that the approach is overly conservative for the highly-biodegradable phenol and 2,4-dimethylphenol, but believes it is appropriate for the other 11 remanded pollutants.

As explained in the NOA and below, EPA believes these pollutants are less biodegradable and, consequently, less readily treatable by POTWs, which typically have biological treatment systems with much shorter detention times than the systems employed by direct dischargers.

1. Assessment of the Remanded Phthalate Esters and Polynuclear Aromatics.

In the NOA and accompanying Technical Support Document (TSD), which is included as Appendix III-A of this document, EPA performed a data review and technical analysis for the other 11 remanded pollutants similar to that performed for phenol and 2,4-dimethylphenol. The Agency reviewed the available data on the removal of the two phenols as well as the two other general pollutant categories covering the remaining 11 pollutants, phthalate esters (PEs) and polynuclear aromatics (PNAs). The Agency also reviewed the available literature on the biochemical mechanisms of biodegradation for all 13 pollutants, and investigated the adequacy of biological treatment systems at POTWs in effectively treating these pollutants via biodegradation. The Agency included all of its performance data from various data sources as well as information collected from the literature on the biochemical mechanisms of biodegradation of these pollutants in the Record supporting the NOA.

EPA's decision to modify its traditional pass through methodology for phenol and 2,4-dimethylphenol is based on EPA's conclusion that <u>both</u> the data available for these two pollutants and the chemical and engineering analysis performed by EPA indicated that the OCPSF pass through methodology is overly conservative for these pollutants. The data and technical analyses do not support a similar conclusion for the other 11 pollutants.

EPA's analysis focused first on the data from the OCPSF Record relating to phenol removal. A comparison of median removals (the original OCPSF methodology) indicated that phenol passes through POTWs (TSD at 11, Table II-2). However, when EPA arrayed all of the direct discharge and POTW data for phenol, it became apparent, as explained in the NOA, that the pass through conclusion was strictly an artifact of the higher influent concentrations for direct dischargers in EPA's database. Viewing the data as a whole, POTWs appeared to achieve removals that are essentially equivalent to those achieved by direct dischargers (NOA at 56886-87). This conclusion was confirmed by additional data EPA solicited from three POTWs, that demonstrated phenol removals from very high influent concentrations (e.g., 4,043 ppb at the Sheboygan Regional Wastewater Treatment Facility) to below the analytical minimum level. In addition, as explained in the NOA and the accompanying TSD, EPA

determined that 2,4-dimethylphenol would be removed by POTWs to the same degree as phenol, given its similar molecular structure.

Three of the remaining eleven pollutants -- fluoranthene, bis(2-ethylhexyl) phthalate and di-n-butyl phthalate -- were detected in POTW effluent in the 50 POTW Study (TSD at 11, Table II-2). For these pollutants, the results of the pass through determination clearly are not merely an artifact of differing influent concentrations but reflect worse performance by POTWs. EPA has no basis to conclude that these pollutants do not pass through.

With respect to the remaining eight pollutants, EPA does not have data comparable to the data that provided a basis to modify the pass through methodology for the phenols. In addition, EPA's technical analysis confirmed that phenol and 2,4-dimethylphenol are the most readily treatable by POTWs of the 13 pollutants. EPA noted that while phenols are rapidly biodegraded in biological treatment systems due to their simple molecular structure, PEs and PNAs would be expected to biodegrade at a much slower rate because of the additional time required to convert these pollutants into a form that can be readily biodegraded (TSD at 6).

Biodegradation does not commence until a pollutant is "sorbed" by (i.e., attached to) the microorganisms in the biological treatment system that degrade the pollutant. Once sorbed, pollutants degrade at different rates that depend on structural complexity. In order to be biodegraded, a pollutant must be able to pass through the cell wall of a microorganism. This transfer will occur only if the pollutant is compatible with the proteins in the cell wall. While small, simple molecules are generally compatible, the more complex structures typical of PE and PNA organic pollutants must first be broken down into smaller chemical units by extra-cellular enzymes secreted by the microorganisms. Thus, biodegradation depends on the ability of the microorganisms to structurally alter pollutants outside the cell wall while they are sorbed.

As EPA explained in the NOA, the phenols have simple chemical structures that permit them to be rapidly transferred through the cell wall and biodegraded (NOA at 56888). This molecular-level analysis is confirmed by the fact that wastewaters containing phenol and 2,4-dimethylphenol have high "biodegradation rate constants" (id. at 56887). (As explained in the NOA (57 FR at 56887), "biodegradation rate constant" is a measure of how rapidly a compound or mixture of compounds biodegrades). In addition, these two pollutants have the highest compound-specific estimated biodegradation rate constants of the 13 remanded pollutants (TSD at 11, Table II-2)(biodegradation rate constants can be assigned to both individual pollutants and to waste streams containing mixtures of

pollutants). In contrast, the phthalate esters and polynuclear aromatics are structurally more complex, and require additional transformation steps before they can be transferred through the cell wall of the biodegrading microorganisms and biodegraded. These steps require additional time in the aeration basin of a biological treatment system that is generally available at OCPSF direct discharge facilities, which typically have detention times that exceed 24 hours, but may not be available at POTWs, where aeration basin basin detention times are usually four to eight hours.

Thus, based on rate of biodegradation, EPA believes that phenol and 2,4-dimethylphenol are more readily treatable by POTWs than the eight remaining pollutants. EPA recognizes that organic pollutants may be removed from wastewater by biological treatment systems to varying degrees by removal mechanisms other than biodegradation. In particular, pollutants may be removed by volatilization and by adsorption to sludge. However, EPA believes that a pollutant's biodegradation rate is the most accurate indicator of whether the pollutant will pass through POTWs.

In general, volatile pollutants are not readily treated in POTWs; rather, these pollutants are volatilized or "stripped" to the atmosphere. As EPA explained above, EPA applied the volatile override in the 1987 OCPSF guideline to determine that several volatile and semi-volatile pollutants pass through where POTWs showed equal or better percent removals than direct OCPSF dischargers or where no POTW removal data were available. In determining whether to apply the volatile override, EPA considered total estimated volatilization of a pollutant after leaving an indirect discharge facility -- i.e., volatilization in both the aeration basin (i.e., the treatment basin) of the biological treatment system and volatilization in the sewer systems and pre-biological unit treatment operations that convey the pollutant to the aeration basin (1987 DD at VIII-281).

For five of the PNAs that were remanded -- naphthalene, acenaphthene, anthracene, fluorene, and phenanthrene -- EPA would have applied the volatile override in the 1987 OCPSF rule to determine these pollutants passed through if the percent removal analysis had not shown pass through. These pollutants have overall volatilization rates comparable to the rates for which the override was applied. For example, EPA applied the override to hexachlorobenzene, hexachloroethane and hexachlorobutadiene in promulgating the 1987 guideline (1987 DD at VIII-279). These pollutants have a 5 to 10 percent estimated volatilization rate in the aeration basin; the pre-biological volatilization rates for hexachloroethane and hexachlorobutadiene are estimated to range from 19 to 39 percent, 59 to 66 percent, and 48 to 73 percent, respectively (1987 DD at VIII-281). Similarly, the estimated aeration basin volatilization rates for the five remanded PNAs at issue range from 10 to 30

III-9

percent, and the estimated pre-biological volatilization rates range from 12 to 82 percent (id.) EPA notes that estimated volatilization rates for individual pollutants vary depending on the source of the estimate, and the aeration basin volatilization rates that appear in the TSD, at 11, Table II-2, vary from those presented in the 1987 Development Document because they are based on different technical studies. TSD Table II-2, however, does not account for pre-aeration-basin volatilization, and the overall estimated volatility of the five pollutants at issue is comparable to the estimated volatility of the pollutants to which EPA applied the volatile override in 1987. Because these pollutants are chemically more complex than phenol and 2,4-dimethylphenol and, EPA believes, therefore less readily biodegradable in POTWs, and because much of the "removal" of these pollutants prior to and during POTW biological treatment is likely the result of volatilization, EPA continues to conclude, based on its traditional methodology, that these five pollutants pass through POTWs.

EPA believes the remaining three pollutants -- diethyl phthalate, dimethyl phthalate, and pyrene -- are likely adsorbed to sludge in the biological treatment system. A compound's propensity to separate from the water phase and adsorb to sludge (which includes the microorganisms that degrade the compounds) is predicted by its "octanol/water partition coefficient." Pyrene, in particular, has a high estimated octanol/water partition coefficient, and would be expected to adsorb rapidly to the sludge in a biological system (TSD at 11, Table II-2). However, pollutants that are initially adsorbed onto the sludge may become "desorbed" (i.e., may detach from the sludge) and pass through into the receiving stream if they are not rapidly transferred through the cell wall and biodegraded.

The ability of complex, organic pollutants such as phthalate esters and polynuclear aromatics to remain absorbed prior to being converted to simpler compounds for transfer through the cell wall can be affected by many conditions in the treatment system, including the presence of other pollutants, electrolytes, oils and greases and other more highly adsorbent compounds ("Report to Congress on the Discharge of Hazardous Wastes to Publicly Owned Treatment Works," February 1986, (EPA/530-SW-86-004), p 4-5). This can cause the pollutants to desorb prior to conversion and biodegradation and pass through the POTW to the receiving water. EPA believes this phenomenon explains why organic pollutants which are generally considered highly adsorbable can sometimes be found at detectable levels in the POTW effluent. For example, anthracene and phenanthrene have high estimated octanol-water partition coefficients and therefore would be expected to adsorb rapidly to sludge (TSD at 11, Table II-2). POTW Number 6 from the 50 POTW Study shows an average influent concentration of anthracene and phenanthrene of 62.2 ppb and an average effluent concentration of 16.2 ppb, while POTW Number 52 has a much higher average influent concentration of 225.3 ppb for anthracene and 195.8 ppb for phenanthrene, both reduced to not

detected at 10 ppb (1987 Public Record at 115910-115976). Based on these data, the propensity of these pollutants to adsorb to the sludge does not appear to be a good indicator of POTW removal performance. EPA believes that external conditions in a biological treatment system can affect the ability of a POTW to remove more complex pollutants by adsorption or biodegradation.

The overall removal data for the 13 remanded pollutants appears to confirm that octanol/water partition coefficient is not a reliable indicator of pass through. Phenol has the lowest octanol/water partition coefficient of the 13 pollutants but is rapidly and virtually completely removed by biological systems, including POTW systems. In contrast, bis(2-ethylhexyl)phthalate and di-n-butyl phthalate have among the highest octanol/water partition coefficients, but achieved lower POTW removal levels (TSD at 11, Table II-2). In fact, the only pollutants among the 13 remanded that were detected in POTW effluents in the 50 POTW study -- bis(2-ethylhexyl)phthalate, di-n-butyl phthalate and fluoranthene -- also had the highest octanol/water partition coefficients of the 13 pollutants (TSD at 11, Table II-2).

EPA believes that a pollutant's estimated biodegradation rate is the best theoretical indicator of whether it will pass through POTW biological treatment systems. As a result, EPA continues to conclude that diethyl phthalate, dimethyl phthalate, and pyrene pass through based on its traditional pass through methodology. These pollutants are structurally more complex and consequently less readily biodegradable than phenol and 2,4-dimethylphenol, and are therefore more likely to pass through POTW biological treatment systems. Moreover, EPA does not have data demonstrating that these pollutants are adequately treated by POTWs.

Based on these conclusions, final PSES and PSNS limitations are not being promulgated for phenol and 2,4-dimethylphenol because the Agency has concluded that only these two of the 13 remanded PSES pollutants do not pass through POTWs.

D. REVISED BAT SUBPART J AND PSES COMPLIANCE COSTS AND LAND REQUIREMENTS

1. Revised Baseline Costs

For the December 6, 1991 Proposal, EPA presented a set of "revised baseline" OCPSF costs based on the correction of minor inconsistencies discovered in the basis for the 1987 Promulgation cost estimates. The basis for these revised baseline costs is presented below. The compliance cost estimates and corresponding economic impact analyses summarized in the November 5, 1987 <u>Federal Register</u> notice did not include estimated steam stripper and chemical precipitation upgrade costs. During development of the OCPSF guidelines, the steam stripper upgrade costs were developed for existing in-place treatment for three direct discharge plants without end-of-pipe biological treatment and nine indirect dischargers. The cost estimates associated with the steam stripping upgrades are presented in Table III-2.

The chemical precipitation upgrade costs were developed for 20 direct and nine indirect discharging plants with chemical precipitation in place. The cost estimates associated with these chemical precipitation upgrades are presented in Table III-3.

In addition, another BAT (direct) plant, Plant 399, was costed for a complete lime precipitation system since its in-place precipitation unit utilizes sodium hydroxide to facilitate the recovery of zinc; therefore, the plant would not be able to improve its system with the methods used for costing other plants. The costs associated for the complete lime precipitation system for this plant are also shown in Table III-3.

Prior to promulgation a separate economic impact assessment of these upgrade costs generally demonstrated insignificant incremental economic impacts for these plants (1987 Dev. Doc., pp. VIII-118 to 120 and VIII-174 to 181). However, at this time, EPA is including these upgrade costs in the cost estimates for the final regulation.

The revised total cost estimates for all the plants affected by the steam stripping and chemical precipitation upgrades along with the total cost estimates at promulgation are presented in Table III-4.

The Agency also reassessed the procedures used to estimate the BAT and PSES costs of compliance. The procedures generally included the use of reported or projected raw waste concentrations for each toxic pollutant present in each plant's product/process waste streams. Then, depending on the pollutant groups and pollutant concentrations, the Agency selected in-plant and/or end-of-pipe treatment technology for cost estimating purposes (1987 Dev. Doc. pp. VIII-7 to 28). For example, steam stripping was costed for volatile pollutants above selected concentrations and chemical precipitation for metals above selected concentrations. The treatment technology reassessment, which discovered several errors in transferring individual unit operation costs into the final economic impact analysis, resulted in revised plant costs for some plants and decreased costs for others. For example, the technology basis for plant 1718's cost estimate

TABLE III-2

	BAT (Direct Plan	ts)	PSES (Indirect Plants)			
Plant No.	Capital Cost (\$)*	O&M Cost (\$)*	Plant No.	Capital Cost (\$)*	O&M Cost (\$)*	
105 913 1785	4,350 18,000 3,800	70,000 600,000 48,000	72 283 494 702 1657 1740 2635 4014 4047	2,600 9,000 7,800 3,000 8,600 3,300 9,000 2,600 2,600	9,000 420,000 240,000 20,000 295,000 30,000 420,000 5,500 5,500	

COMPLIANCE COST ESTIMATES FOR STEAM STRIPPING UPGRADES

* Cost estimates are presented in 1982 dollars

1987 Dev. Doc. p. VIII-120

TABLE III-3

BAT (D	virect Plants)	PSES (I	ndirect Plants)
Plant No.	O&M Cost* (\$/year)	Plant No.	O&M Cost* (\$/year)
63	4,750	72	1,000
190	1,700	206	1,000
485	3,500	212	1,000
695	60,000	293	1,600
775	4,750	905	1,000
871	3,750	1126	1,600
1059	14,500	1357	1,000
1348	1,000	1534	3,500
1522	48,000	1848	1,000
1572	25,000		
1769	29,000		
1785	7,000		
2030	1,600		
2292	1,000		
2429	1,000		
2447	1,000		
2474	2,850		
2692	1,000		
2739	1,000		

COMPLIANCE COST ESTIMATES FOR CHEMICAL PRECIPITATION UPGRADES

PLANT NO.	CAPITAL COST* (\$)	O&M COST* (\$/YEAR)	LAND COST* (\$)
399	2,000,000	335,000	9,100

* Cost estimates are presented in 1982 dollars.

1987 Dev. Doc. p. VIII-181

TABLE III-4 REVISED PLANT-BY-PLANT COST ESTIMATES FOR PLANTS WITH STEAM STRIPPING AND CHEMICAL PRECIPITATION UPGRADES

BAT (Direct Plants):

	COST ESTIM	ATES AT PROMU	LGATION	RÉV	ISED COST ESTIM	ATES"
PLANT NO.	TOTAL CAPITAL COST (\$)*	TOTAL OAM COSTS (\$/YEAR)*	LAND COSTS (\$)*	TOTAL CAPITAL COSTS (5)*	TOTAL O&M COSTS (\$/YEAR)*	LAND COST (\$)*
63	0	0	0	0	4,750	٥
105	1,079,744	2,052,382	319,782	4,350	70,000	0
190	731,177	1,071,083	66,000	731,177	1,072,783	66,000
399	0	0	0	2,000,000	335,000	9,100
485	1,866,959	2,951,008	114,488	1,886,959	2,954,508	114,488
695	2,383,893	184,490	94,475	2,383,843	244,440	94,475
775	540,068	644,016	3,151	540,068	648,766	3,151
871	451,103	39,242	6,002	451,103	42,992	6,002
913	965,727	195,760	38,423	983,727	795,760	38,423
1059	0	0	0	0	14,500	0
1348	0	0	0	0	1,000	0
1522	811,772	4,092,048	22,573	811,772	4,140,048	22,573
1572	0	1 0	0	0	25,000	{ 0
1769	7,875,173	9,689,672	157,155	7,875,173	9,718,672	157,155
1785	804,353	136,003	19,563	808,155	191,003	19,563
2030	1,312,598	1,387,596	79,420	1,312,598	1,389,196	79,420
2292	623,152	160,108	35,602	623,152	161,108	35,602
2429	577,550	116,539,	62,203	577,550	117,539	62.203
2447	0	0	0	0	1,000	0
2474	740,217	423,814	28,735	740,217	426,664	28,735
2692	0	0	0	0	1,000	0
2739	117,139	86,578	8,235	117,139	87,578	8,235

PSES (Indirect Plants):

	COST EST	INATES AT PROMUL	GATION	REVI	SED COST ESTIMA	TES"
PLANT NO.	TOTAL CAPITAL COST (\$)*	TOTAL OGN COSTS (\$/YEAR)*	LAND COSTS (\$)*	TOTAL CAPITAL COSTS (\$)*	TOTAL OAN COSTS (\$/YEAR)*	LAND COST (\$)*
72 206 212 283 494 702 905 1126 1357 1534 1657 1740 1848 2635 4014 4047	108,989 529,234 33,247 1,929,490 694,026 320,686 45,804 511,629 1,264,676 492,562 509,230 2,124,901 547,859 43,397 2,287,933 352,094 432,266	107, 576 47, 464 31, 778 153, 681 180, 783 44, 996 31, 778 81, 770 2, 361, 477 42, 073 42, 080 295, 903 101, 476 25, 019 193, 123 63, 076 88, 173	21,252 13,519 949 68,756 7,103 5,493 1,315 10,353 53,330 8,574 4,139 25,893 20,347 289 50,626 1,328 1,892	111,589 529,234 33,247 1,938,440 694,026 328,486 48,804 511,629 1,264,676 492,562 509,230 2,133,501 550,859 43,397 2,296,933 354,694 434,868	117,576 48,464 32,778 573,681 182,383 284,996 51,778 82,770 2,363,077 43,073 45,580 590,903 131,476 26,019 613,123 68,576 93,673	21, 252 13, 519 949 68, 756 7, 103 5, 493 1, 315 10, 353 53, 330 8, 574 4, 139 25, 893 20, 347 289 50, 626 1, 328 1, 892

Cost estimates include both stemm stripping and chemical precipitation upgrades cost where applicable.
Cost estimates are presented in 1982 dollars

a combination of in-plant biological treatment and contract hauling at promulgation (1987 Dev. Doc. pp. VIII-B71), but should have been based on contract hauling alone. The basis for plant 2057's cost estimate was steam stripping and in-plant biological treatment at promulgation (1987 Dev. Doc. pp. VIII-B72), but should have been based on steam stripping alone. However, in the case of other plants such as plant 293, cost estimates at promulgation (1987 Dev. Doc. pp. VIII-B46) were based on steam stripping and in-plant biological but should have also included activated carbon and cyanide destruction (1987 Dev. Doc. pp. VIII-B68). These technology corrections were also included in the new baseline analysis for the current remand study and are presented in Table III-5. The revised total cost estimates based on these corrections versus the cost estimates at promulgation for the plants that were affected by the corrections and are shown in Table III-6.

The Agency also reassessed the flow basis used to estimate costs of compliance and found several errors and inconsistencies in rounding off or truncating reported flows. For the new baseline analysis, the Agency corrected the flows used to estimate costs of compliance for 14 indirect discharge plants.

Corrections of these errors also increased costs for some plants and decreased costs for others. For example, the flow for plant 249 was truncated to 0.0162 MGD at promulgation, but should have been 0.01623 MGD; and for plant 438, the flow was rounded off to 0.051 MGD at promulgation, but should have been 0.0508 MGD. The flow corrections for all 14 indirect plants are presented in Table III-7. The revised cost estimates for these 14 plants affected by the flow corrections versus the as-promulgated cost estimates are also shown in Table III-7.

2. Revised In-plant Biological Treatment Costs

Revised compliance costs for BAT Subpart J direct dischargers and PSES indirect dischargers were developed based on in-plant biological treatment systems with 3.5 to 17.2 day detention times (84 hrs. to 413 hrs.). The principal basis for the revised designs includes an analysis of the OCPSF record support related to biological treatment design and performance for the 19 remanded BAT Subpart J pollutants. OCPSF facilities with biological treatment in-place and with relatively high phenol raw waste concentrations were identified from the Verification, 5 CMA/EPA Plant Study, and the EPA 12 Plant Sampling Studies as well as the 308 Questionnaire Data Base. When available, the aeration basin detention time, and the average influent and effluent phenol concentration for each of these plants were identified. Table III-8 presents the results of this analysis. Based on the information obtained, it was

TABLE III-5 TECHNOLOGY CORRECTIONS

A. Direct (BAT) Subpart J Plants:

PLANT NO.	TECHNOLOGIES COSTED AT PROMULGATION ^(I)	TECHNOLOGIES COSTED BASED ON CORRECTIONS ⁽¹⁾	
488	CP, SS, PB	CP, SS, PB, AC, CN	
2660	AC, CH	No costs (zero discharge)	

B. Indirect (PSES) Plants:

PLANT NO.	TECHNOLOGIES COSTED AT PROMULGATION ^(I)	TECHNOLOGIES COSTED FOR REVISED BASELINE COST ⁽¹⁾
58	PB	Monitoring Only
161	SS, CP	CP, AC, SS, CN, PB
293	SS, PB	AC, SS, CN, PB
417	PB	Monitoring Only
607	CP, AC	CP, AC, SS, CN, PB
797	CP, AC	CP, AC, SS, CN, PB
1172	SS, CP	SS, PB
1191	SS, CP, PB	CP, AC, SS, CN, PB
1320	SS, CH	SS, PB, CH
1659	CP, AC	CP, AC, SS, CN, PB
1666	CP, AC	CP, AC, SS, CN, PB
1716	CP, AC	CP, AC, SS, CN, PB
1718	PB, CH	СН
1838	SS, BP, CH	СН
1848	CH Cost = \$592,249	CH Cost = \$396,317
2057	SS, PB	SS
2129	CP, AC	CP, AC, SS, CN, PB
2232	Monitoring Cost=\$29,539	Monitoring Cost=\$26,827
2507	PB	Monitoring Only
2677	SS, CP, PB	CP, AC, SS, CN, PB
4042	PB	Monitoring Only
4072	SS, CP	CP, AC, SS, CN, PB

- CP = Chemical Precipitation SS = Steam Stripping (1)

 - AC = Activated Carbon

- CN = Cyanide DestructionPB = In-Plant Biological
- CH = Contract Hauling

TABLE III-6 REVISED COST ESTIMATES BASED ON TECHNOLOGY CORRECTIONS

A. Direct (BAT) Plants:

	COST ESTIMATES AT PROMULGATION			REVISED COST ESTIMATES		
PLANT No.	TOTAL CAPITAL COSTS (\$)*	TOTAL O&M COSTS (\$/YEAR)*	LAND COSTS (\$)*	TOTAL CAPITAL COSTS (\$)*	TOTAL O&M Costs (\$/YEAR)*	LAND COS T S (\$)*
488	893,795	109,571	34,598	1,154,248	468,093	109,650
2660	12,586	18,853	6,437	0	0	0

B. Indirect (PSES) Plants:

	COST ESTIMATES AT PROMULGATION			REVISED COST ESTIMATES		
PLANT No.	TOTAL CAPITAL COSTS (\$)*	TOTAL O&M COSTS (\$/YEAR)*	LAND COSTS (\$)*	TOTAL CAPITAL COSTS (\$)*	TOTAL O&M COSTS (\$/YEAR)*	LAND COSTS (\$)*
58	34,492	31,778	1,342	0	0	0
161 293 ⁽¹⁾	845,849 694,026	185,652 180,783	16,526 7,103	1,578,954	2,291,710 2,292,150	78,272 26,785
417	91,684	33,044	23,250	0	0	0
607	418,470	258,962	19,007	988,390	336,991	29,710
797	358,393	82,077	6,596	892,176	149,820	11,198
1172	787,371	91,247	8,989	686,681	205,649	14,714
1191	839,997	78,013	3,581	941,311	228,119	91,402
1320	454,324	10,583	2,988	488,265	42,435	4,327
1659	488,007	521,563	32,462	1,093,815	618,591	49,392
1666	408,385	225,344	105,779	972,755	301,179	166,578
1716	455,843	394,172	29,601	1,044,991	481,746	45,385
1718	74,324	32,282	1,784	0	0	0
1838	454,719	10,410	8,460	0	0	0
1848 ⁽¹⁾	43,397	25,019	289	43,397	26,019	289
2057	525,695	62,236	11,176	454,324	29,682	7,056
2129	407,442	222,266	24,552	971,267	297,915	38,692
2232	1,050,903	396,647	18,899	1,050,903	396,647	18,899
2507	73,357	32,245	3,489	0	0	0
2677	913,257	123,267	5,026	1,194,141	920,690	14,997
4042	88,716	32,902	5,308	0	0	0
4072	204,416	74,951	4,316	905,710	170,314	10,817

NOTES:

* Cost estimates presented in 1982 dollars.

(1) Revised cost estimates include upgrades cost also.

PLANT NO.	FLOW AT PROMULGATION (MGD)	FLOW AT REVISED BASELINE COST (1990) (MGD)
249	0.0162	0.01623
310	0.0214	0.02143
438	0.051	0.0508
1194	0.0017	0.00179
1237	0.007	0.00702
1326	0.0161	0.01612
1891	0.233	0.2326
1971	0.016	0.0161
2288	0.00179	0.0018
2293	0.0053	0.00526
2341	0.455	0.4547
2495	0.12	0.1201
2501	0.00794	0.00795
2776	0.00543	0.00551

TABLE III-7 FLOW CORRECTIONS

REVISED COST ESTIMATES BASED ON FLOW CORRECTIONS

	COS PROMULGA	T ESTIMATES AT ATION		REVISED COST ESTIMATES		
PLANT No.	TOTAL CAPITAL COSTS (\$)*	TOTAL O&M COSTS (\$/YEAR)*	LAND COSTS (\$)*	TOTAL CAPITAL COSTS (\$)*	TOTAL O&M COSTS (\$/YEAR)*	LAND COSTS (\$/YEAR) *
249	858,441	86,674	6,528	858,497	86,676	6,529
310	538,978	60,478	7,994	539,026	60,480	7,995
438	579,776	87,484	3,957	579,571	87,473	3,955
1194	486,918	42,078	11,555	487,507	42,078	11,562
1237	508,835	46,872	51,844	508,894	46,872	51,852
1326	530,181	43,045	3,403	530,218	43,047	3,404
1891	734,548	290,010	5,986	734,356	290,000	5,984
1971	858,066	84,780	3,676	858,254	84,787	3,678
2288	487,507	42,354	10,208	487,571	42,354	10,209
2293	503,406	46,420	51,142	503,268	46,420	51,125
2341	1,162,583	335,800	29,891	,162,478	335,795	29,886
2495	985,375	222,026	21,924	985,442	222,029	21,927
2501	839,491	77,377	5,048	840,018	77,377	5,048
776	927,294	207,907	33,901	928,028	209,287	33,983

* Cost estimates presented in 1982 dollars.

TABLE III-8

Plant #	Average Influent Phenol Concentration (ppb)	Average Effluent Phenol Concentration (ppb)	Detention Time (Hours)	Source Document for Detention Time
1650 V	117.33	10.9	72 to 1008 hours	308 supplemental
2430 V	157.50	11.17	4.5 hours	308 supplemental
948 F	239.24	10.2	72 hours	Verification report
384 T	266.18	ND (Not Detected)	16.6 hours	12 plant report
2221 V	487.00	ND	30.6 to 35.7 hours	308 questionnaire C12
2536 T	501.13	ND	25.2 hours	12 plant report
948 V	509.67	ND	72 hours	Verification report
2631 V	709.00	ND	45 hours*	Verification report
296 V	730.67	ND	136.8 hours	Verification report
12 F	760.71	14.9	62/41 (summer/winter)	308 questionnaire C12
267 F	1,645.55	10.7	8.4 hours	308 supplemental
2394 T	1,847.25	58.5	129.6 hours	12 plant report
1609 V	1,864.50	ND	24 hours	. 12 plant report
1769 P	2,108.33		8 hours	308 supplemental
1890 V	2,917.00	10.8	360 hours	Verification report
2445 P	5,810.00		6 hours	308 questionnaire C12
1494 V	18,500.00	ND	18 hours	308 supplemental
306 ∨	53,916.70	13.3	36 hours	Verification report
2711 V	237,500.00	ND	130 hours	308 questionnaire C12
1293 T	836,292.77	ND	412.8 hours	12 plant report

* Detention time calculated based on system volume and average of flow reported in report

determined that plants with raw wastewater phenol concentrations of up to 50 mg/l would comply with the numerical phenol limitations with biological treatment system with detention time up to 72 hours (however, 84 hours or 3.5 days was used as a safety factor), plants with raw waste phenol concentrations up to 300 mg/l would comply with detention times up to 130 hours (5.4 days), and plants with raw waste phenol concentrations over 300 mg/l would comply with detention times up to 413 hours (17.3 days). Similar assessments for the remaining 18 remanded pollutants were conducted to determine necessary detention time as a function of reported or modeled raw waste concentrations. Table III-9 presents the analysis of this assessment. Based on the information presented on Table III-9 it was determined that the costing methodology for revised in-plant biological treatment is as follows:

- For Pollutant #34 (2,4-Dimethylphenol), all BAT Subpart J plants with raw waste concentrations greater than 10 mg/l will be costed for an in-plant biological treatment system with a detention time of 413 hours; plants with raw waste concentrations above trigger levels but below 10 mg/l will be costed for an in-plant biological treatment system with a detention time of 84 hours.
- For Pollutant #55 (Naphthalene), all BAT Subpart J and PSES plants with raw waste concentrations greater than 3 mg/l will be costed for an in-plant biological treatment system with a detention time of 413 hours; plants with raw waste concentrations above trigger levels but below 3 mg/l will be costed for an in-plant biological treatment system with a detention time of 84 hours.
- For Pollutant #80 (Fluorene), all BAT Subpart J and PSES plants with raw waste concentrations greater than 0.5 mg/l will be costed for an in-plant biological treatment system with a detention time of 413 hours; plants with raw waste concentrations above trigger levels but below 0.5 mg/l will be costed for an in-plant biological treatment system with a detention time of 84 hours.
- For the remaining 15 remanded BAT Subpart J pollutants (excluding phenol) and the remaining 9 PSES pollutants, all BAT Subpart J and PSES plants with raw waste concentrations above trigger levels will be costed for an in-plant biological treatment system with a detention time of 84 hours.

Raw waste concentrations for phenol and the remaining 18 remanded pollutants were then obtained for each plant from the plant-by-plant pollutant loading estimates described in Chapter VIII of the 1987 Development Document.

Based on the analyses described above, a detention time was then assigned to each BAT Subpart J and PSES plant for purposes of estimating the revised cost of compliance for the remanded pollutants. As a result of these assessments, 24 BAT Subpart J and 176 PSES plants were assigned an 84 hour detention

DETENTION TIME ANALYSIS FOR THE REMAINING POLLUTANTS

Pollutant No.	Plant No.	Average Influent Concentration (ppm)	Average Effluent Concentration (ppm)	Detention Times (hours)	Source Document for Detention Time
1 (Acenaphthene)	12 F 1293 T 306 V	0.102 0.876 3.850	ND (Not Detected) ND 0.013	62 413 36	308 Questionnaire C12 12 Piant Report Verification Report
34 (2,4-Dimethylphenol)	12 F 3033 T 306 V 1293 T	0.697 4.592 9.967 29.868	0.013 0.014 0.0102 ND	62 NA 36 413	308 Questionnaire C12 Verification Report 12 Plant Report
39 (Fluoranthene)	851 V 1293 T 306 V	0.133 1.572 5.225	0.0102 0.0115 0.0158	34 413 36	Verification Report 12 Piant Report Verification Report
55 (Naphthalene)	2631 V 695 V 2430 V 3033 T 384 T 1650 V 851 V 12 F 1293 T	0.232 0.250 0.327 0.520 1.040 1.411 2.255 2.275 20.964	0.017 ND 0.0112 ND ND ND ND 0.012 ND	45 4.5 17 72 34 62 413	Verification Report 308 Supplemental Questionnaire 12 Plant Report 308 Supplemental Questionnaire Verification Report 308 Questionnaire C12 12 Plant Report
66 (Bis[2-Ethylhcxyl] phthalate)	948 F 948 V	1.097 4.396	0.043 0.053	72 72	Verification Report Verification Report
68 (Di-n-Butylphthalate)	948 F 948 V	0.377 2.265	0.013 0.03	72 72	Verification Report Verification Report
70 (Diethylphthalate)	948 V 948 F	0.433 1.220	0.061 0.023	72 72	Verification Report Verification Report
71 (Dimethylphthalate)	948 V 948 F	0.134 0.207	0.037 ND	72 72	Verification Report Verification Report
72 (Benzo(a)Anthracene)	1293 T 306 V	0.308 1.585	ND 0.056	413 36	12 Plant Report Verification Report

TABLE III-9 (CONTINUED)

DETENTION TIME ANALYSIS FOR THE REMAINING POLLUTANTS

Pollutant No.	Plant No.	Average Influent Concentration (ppm)	Average Effluent Concentration (ppm)	Detention Times (hours)	Source Document for Detention Time
76	1293 T	0,266	ND	413	12 Plant Report
(Chrysene)	384 T	0.312	ND	17	12 Plant Report
	306 V	1.082	ND	36	Verification Report
77	1293 T	0.472	ND	413	12 Plant Report
(Acenaphthylene)	1650 V	0.641	ND	72	308 Supplemental Questionnaire
·	306 V	9.758	0.013	72	Verification Report
78	851 V	0.494	0.0107	34	Verification Report
(Anthracene)	1293 T	0.694	ND	413	12 Plant Report
	306 V	2.105	ND	36	Verification Report
80	1650 V	0.167	ND	42	308 Supplemental Questionnaire
(Fluorene)	851 V	0.475	ND	34	Verification Report
	1293 T	1.232	ND	413	12 Plant Report
81	1650 V	0.166	ND	72	308 Supplemental Questionnaire
(Phenanthrene)	2313 T	0.612	0.025	72	12 Plant Report
·	851 V	2.452	ND	34	Verification Report
	1293 T	3.285	ND	413	12 Plant Report
	306 V	8.450	0.017	36	Verification Report
84	851 V	0.246	0.0165	34	Verification Report
(Pyrene)	1293 T	1.023	0.0103	413	12 Plant Report
· • •	306 V	3.083	0.016	36	Verification Report

.

time, and 6 BAT Subpart J and 26 PSES plants were assigned a 413 hour detention time. The detention times assigned for each BAT Subpart J and PSES plants are shown in Table III-10.

The Agency also investigated the effect of higher detention times on the land requirements for estimating the land costs associated with the revised model in-plant biological treatment systems. Land requirements for small facilities (flow ≤ 0.5 mgd) and costs were estimated applying the same methodologies used at promulgation (1987 Dev. Doc. pp. VIII-35 to 56 and VIII-187 to 196).

For the large facilities (flow ≥ 0.501 mgd) the land requirement calculated applying the same methodologies used at promulgation were considered excessively high (104 acres for a 5.0 mgd flow). An alternative way for estimating land requirements for large plants was investigated and an alternative method was presented in the December 6, 1991 Proposal.

A search of the literature¹ revealed that modern design of aeration tanks requires that the width of the tank be at least 1.5 times its depth and widths as great as 2.15 times the depth have been successfully used. The length of the aeration tanks although not critical are generally 8 to 18 times their widths. Furthermore, for tanks using diffusers, greater widths are permissible. Most diffused-air aeration tanks in the United States have liquor depths of about 15 feet, but it appears that there probably is not much difference in power requirements per million gallons per day of wastewater treated over a practical range in depths. In addition, it has been shown that the transfer efficiency increases with diffuser depth because of increased oxygen partial pressure and increased contact time between the bubble and mixed liquor. Selection of the most economical depth for aeration design must then take into consideration available area, land cost and the difficulty and cost of construction. The most economical depth, especially for large facilities, may be considerably more than 15 feet.

Based on this information, land requirements for large in-plant biological treatment systems were calculated based on 20 feet deep by 45 feet wide diffused aeration tanks. The revised in-plant biological treatment land requirements are presented in Table III-11.

¹ "Sewage Treatment Plant Design" American Society of Civil Engineers and Water Pollution Control Federation (WPCF Manual of Practice No. 8 pg.129-134).

A. BAT Subpart J Plants:

_		84 Hours		130 Hours	413 Hours
76	814	1569	2073		225
1 05	859	1618	2268		260
114	913	1688	2419		447
412	942	1785	2527		2400
446	1249	2030	2735		2590
657	1439	2047	2767		2786

B. PSES Plants:

	84	Hours		130 Hours		413 Hou	irs	
10	717	1 36 1	2250		79	1 163	1534	
22	724	1426	2259		220	1172	1645	
33	743	1432	2261		310	1173	1832	
49	749	1450	2288		430	1194	1904	
51	768	1478	2293		592	1220	2084	
72	771	1504	2311		830	1234	2666	
94	791	1560	231 8		944	1437	2748	
110	797	1575	2341		1047	1507	4027	
119	814	1595	2348		1094	1528		
120	819	1608	2350					
149	862	1622	2442					
155	877	1628	2465					
161	887	1657	2469					
163	905	1659	2485					
196	987	1666	2487	ŀ				
206	992	1667	2498					
212	1018	1706	2517					
214	1052	1716	2524					
221	1053	1744	2539					
240	1057	1751	2548					
249	1083	1773	2565					
262	1085	1788	2635					
266	1086	1793	2646					
283	1091	1826	2677					
293	1117	1853	2714					
326	1126	1876	2736					
334	1181	1891	2741					
354	1191	1894	2756					
433	1197	1899	2 776					
438	1202	1931	2793					
458	1219	1971	4001					
468	1236	1993	4006		ł			
492	1237	2004	4007					
494	1249	2007	4008					
522	1264	2037	4014					
536	131 0	2070	4024]			
543	1313	2093	4026					
567	1320	2117	4032					
607	1322	2129	4044		1			
611	1326	2176	4047					
624	1351	2184	4050	1	1			
658	1352	2232	4057					
661	1356	2241	4070					
706	1357	2243	4072					

TABLE III-11

REVISED LAND REQUIREMENT ESTIMATES FOR IN-PLANT BIOLOGICAL TREATMENT SYSTEMS

REVISED LAND REQUIREMENTS FOR IN-PLANT BIOLOGICAL TREATMENT SYSTEMS					
A. Small Faciliites: Flow < 0.5 MGD					
	td = 84 hours	td = 130 hours	td = 413 hours		
FLOW (MGD)	Land Requirement in Acres	Land Requirement in Acres	Land Requirement in Acres		
0.001 0.005 0.010 0.050 0.10 0.5	0.075 0.075 0.100 0.200 0.275 0.350	0.075 0.100 0.125 0.250 0.375 1.25	0.075 0.150 0.200 0.500 0.850 3.25		
B. Large Facilities: Fl	B. Large Facilities: Flow $\geq 0.501 \text{ MGD}$				
0.75 2.2 3.1 8.9 1.0 2.8 3.9 11.7 1.5 4.1 5.7 17.3 2.0 5.3 7.5 22.9 3.0 7.7 10.9 34.2 4.0 10.1 14.4 45.1 5.0 12.5 17.9 56.2					

* td = detention time

ł

· - --

The Agency then developed cost estimates based on the new detention times using the same methodologies as those used at promulgation (1987 Dev. Doc. pp. VIII-40 to 44, VII-187 to 196). All costs estimates were generated using the CAPDET design program and are presented in Table III-12. Cost equations were developed from the costs presented in Table III-12 using the formula:

Cost = EXP (A + B (LN (FLOW) + C (LN (FLOW)²))) where Flow = wastewater flow in million gallons per day (MGD)

A simple regression analysis was performed on the data and the resulting coefficients to be used in the cost equations are as follows:

Detention	<u>Small Facilities (≤ 0.50 MGD) Capit</u>	al Cost Equations	
<u>Detention</u> <u>Time (hours)</u>	<u>Α</u>	<u>B</u>	<u>C</u>
84	13.601423	0.495704	0.006896
130	13.869229	0.534216	0.011285
413	14.614746	0.621062	0.018345
	Small Facilities (≤ 0.50 MGD) O&N	Coat Equations	
Detention	Sman Factures (S 0.30 MOD) Oak	A Cost Equations	
<u>Time (hours)</u>	A	<u>B</u>	<u>C</u>
84	10.895981	0.195023	0.018721
130	10.916619	0.196361	0.018704
413	10.979743	0.192164	0.017507
	Large Facilities (≥ 0.501 MGD) Capi	tal Cost Equations	
Detention	· ·		
Time (hours)	Δ	<u>B</u>	<u>C</u>
84	15.937751	0.850382	0.038533
130	16.260803	0.899157	0.022164
413	17.334281	0.998243	0.009300
	Large Facilities (≥ 0.501 MGD) O&	M Cost Equations	
Detention		<u> </u>	
Time (hours)	Δ	<u>B</u>	<u>C</u>
84	12.953531	0.747813	0.035124
130	13.186191	0.765472	0.028102
413	14.027799	0.807600	0.015157

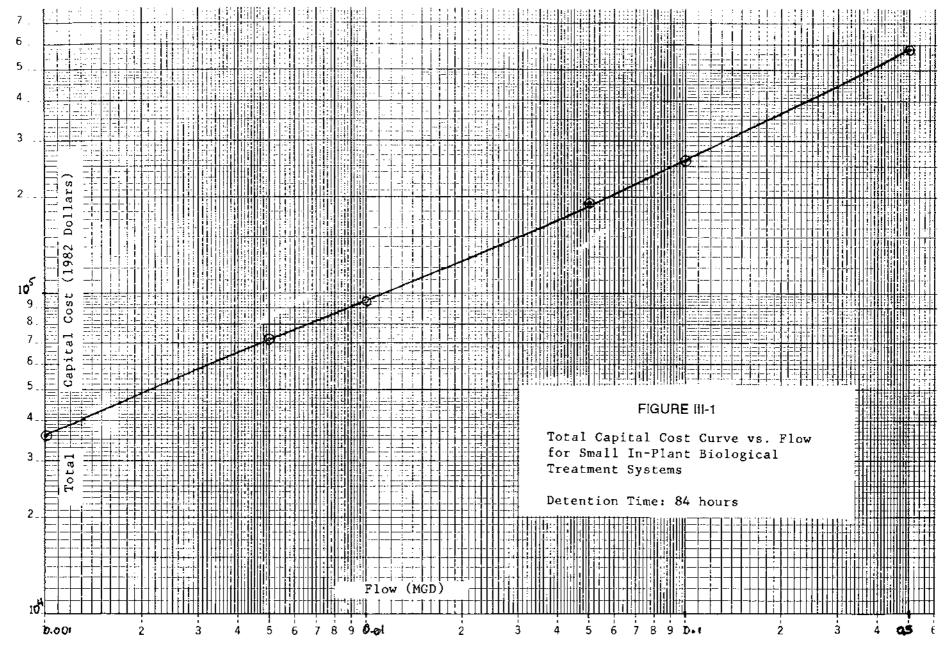
REVISED CAPITAL AND O&M COST FOR IN-PLANT BIOLOGICAL TREATMENT SYSTEMS						
SMALL FACIL	ITIES: FLOW <	0.5 MGD				
-	td = 84 hours		td = 130 hours		td = 413 hours	
FLOW (MGD)	CAPITAL COST (\$)	O&M COST (\$/YEAR)	CAPITAL COST (\$)	O&M COST (\$/YEAR)	CAPITAL COST (\$)	O&M COST (\$/YEAR)
0.001 0.005 0.01 0.05 0.1 0.5	36,102 72,640 95,471 193,556 261,944 581,049	33,207 33,858 34,021 34,953 35,524 49,322	44,601 87,942 114,023 233,064 324,073 733,979	33,598 34,238 34,477 35,540 36,245 50,239	72,640 139,568 189,968 406,610 576,732 1,470,963	34,870 35,733 36,762 37,876 38,810 53,588
LARGE FACILI	TIES: FLOW ≥	0.501 MGD		T		·
0.75 1.0 1.5 2.0 3.0 4.0 5.0	6,565,929 8,351,329 11,802,309 15,397,620 22,195,087 29,445,593 36,097,246	341,867 422,220 573,540 722,754 1,001,554 1,277,468 1,538,101	8,963,250 11,444,568 16,720,920 21,699,793 31,808,299 42,173,774 51,645,705	429,486 531,214 730,876 918,061 1,278,526 1,629,747 1,960,910	25,426,593 33,663,672 50,522,129 67,338,461 102,813,111 138,458,709 170,742,915	982,196 1,234,987 1,719,570 2,182,090 3,052,376 3,912,749 4,709,662

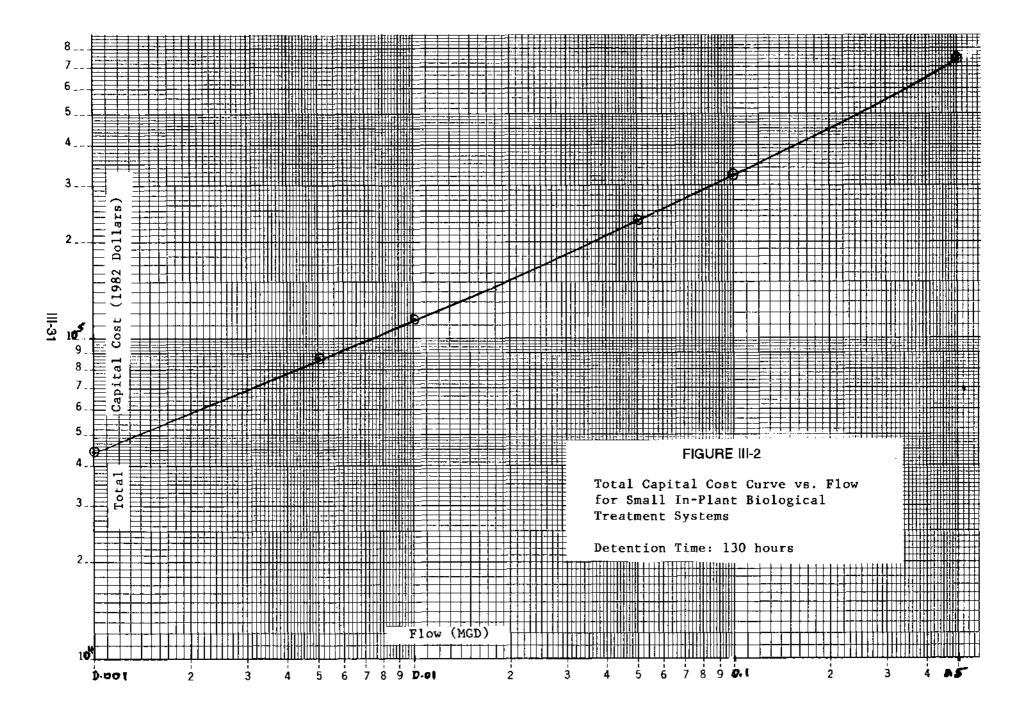
TABLE III-12

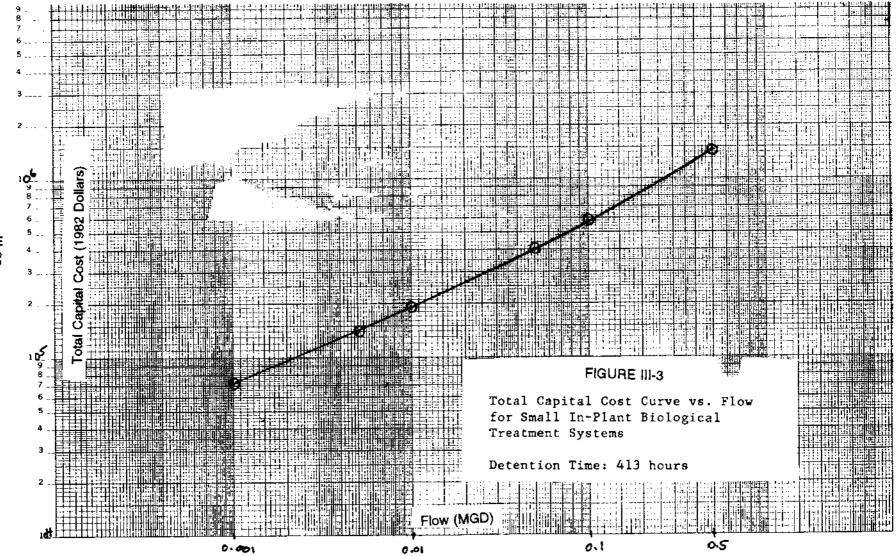
NOTE: Cost estimates are presented in 1982 dollars.

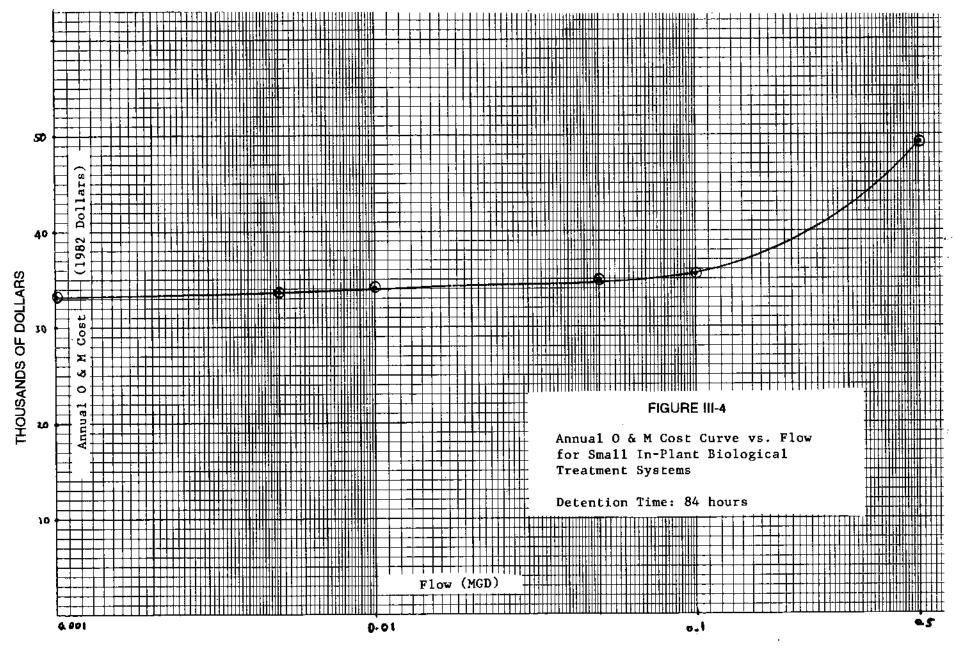
The corresponding cost curves are presented in Figures III-1 through III-12. A series of cost estimation analyses were completed to assist in performing various economic impact analyses to respond to public comments on the December 6, 1991 Proposal. These cost estimation analyses are presented below.

3. The Initial Analysis

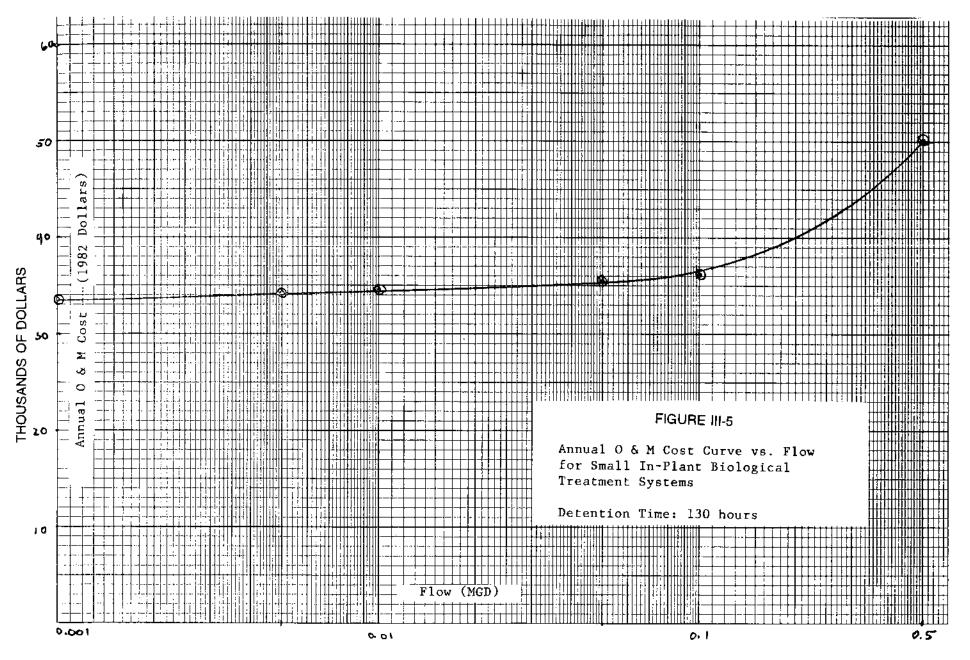

This analysis was performed to estimate the economic impacts associated with only the portions of the regulation that were unaffected by the Court's remand decision. This involved updating the applicability of BAT Subpart I and Subpart J and PSES based on the April 1991 survey results, estimating revised compliance costs for those plants whose Subpart applicability had changed and then eliminating all inplant biological-related treatment costs for the BAT Subpart J and PSES plants. In addition, for the plants that switched from BAT Subpart I to BAT Subpart J based on the April 1991 survey results, the end-of-pipe (EOP) biological treatment costs estimated for compliance with BPT and the in-plant BAT treatment costs (with the exception of any in-plant biological treatment costs) were retained to serve as a conservative cost estimate to cover whatever these plants did to comply with BPT/BAT Subpart J without installing EOP biological treatment. This estimate is conservative because it is unlikely that plants chose a more expensive alternative to the model technology to achieve compliance. Finally, it also includes the corrections as outlined in Sections III.D.1 of this document. "Revised Baseline Costs". This "initial analysis" estimates the cost of compliance with the entire OCPSF rule with the exception of the remanded limitations and standards based on current information on plant status. The compliance costs associated with the "initial analysis" are presented in Appendix III-B.

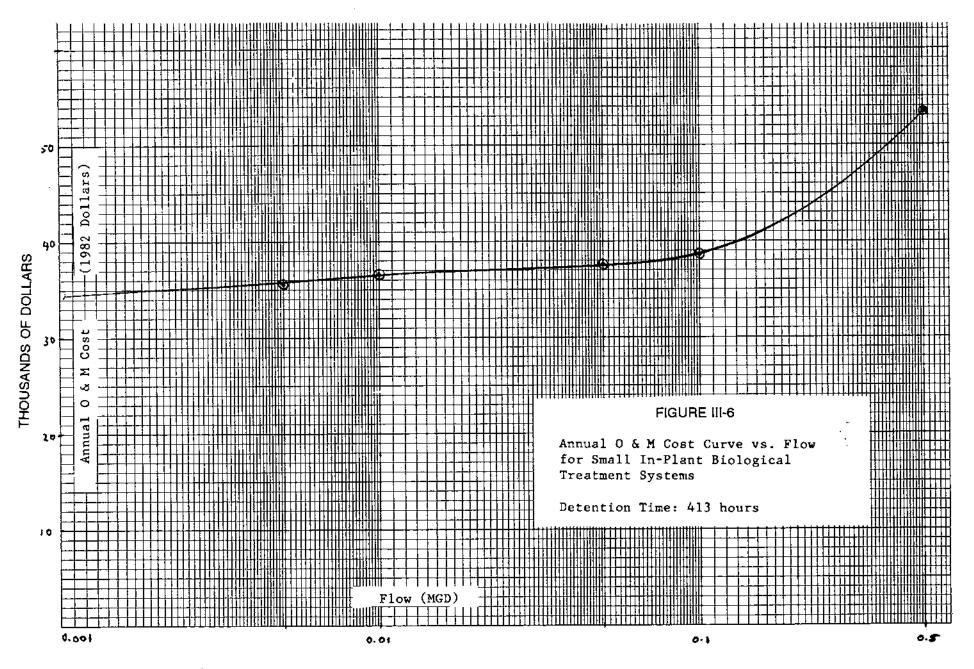

4. The RIA Analysis

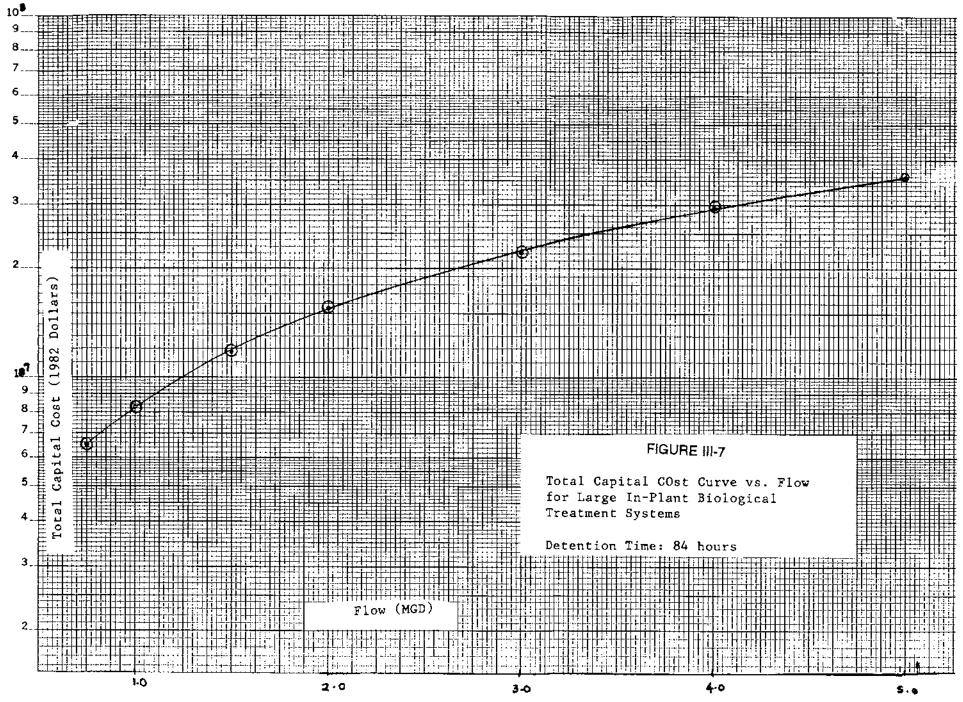

This analysis was performed to determine if an RIA was required for the amendments that were to be promulgated and involved estimating revised in-plant biological treatment costs for the 19 remanded BAT Subpart J and 11 PSES parameters for the all affected PSES plants and BAT Subpart J plants. These plants were determined based on the results of the April 1991 survey. The "RIA Analysis" presents the cost of this rule segregated from the costs of the remainder of the OCPSF regulation. The costs associated with the RIA Analysis are presented in Appendix III-C.


5. The Preamble Economic Impact Analysis

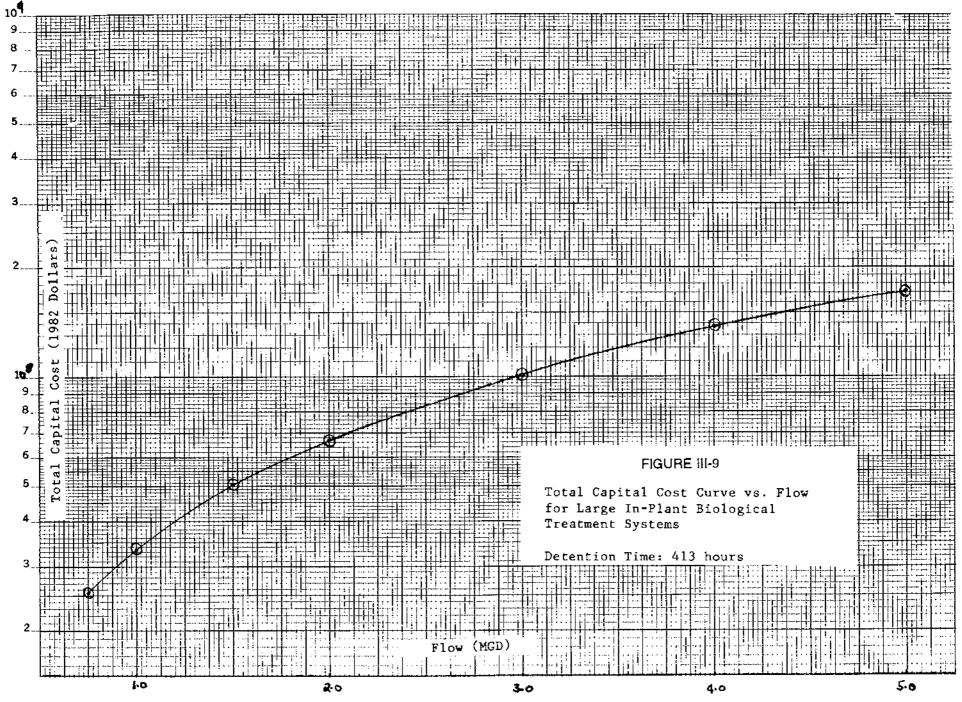
This analysis was performed to estimate the economic impacts associated with the OCPSF regulation as amended by this rule and involved adding the costs from the Initial Analysis and the RIA Analysis. The

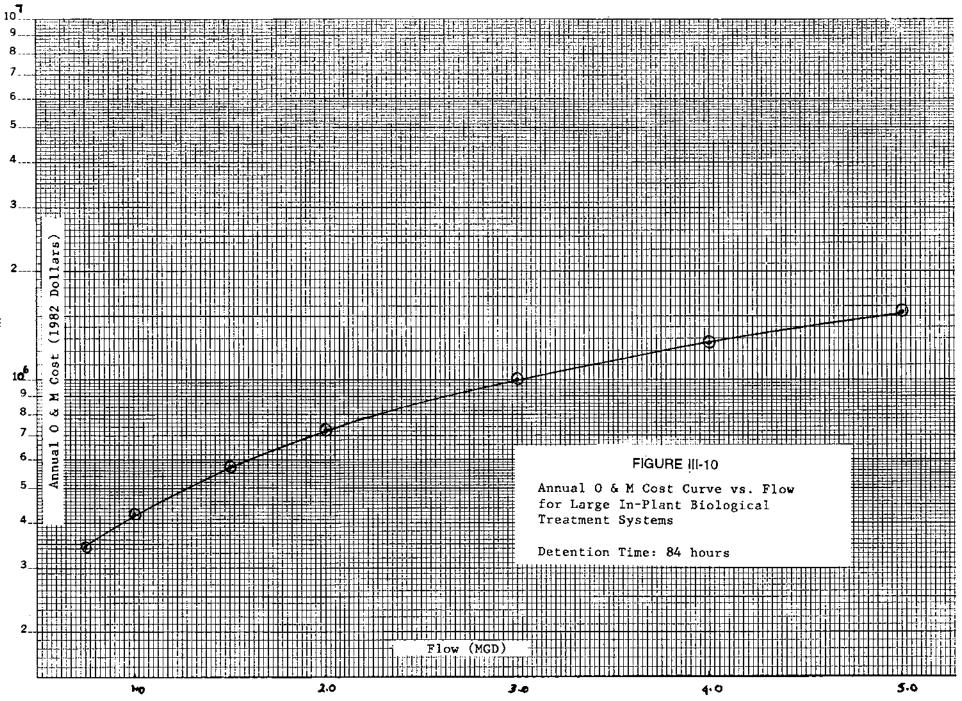


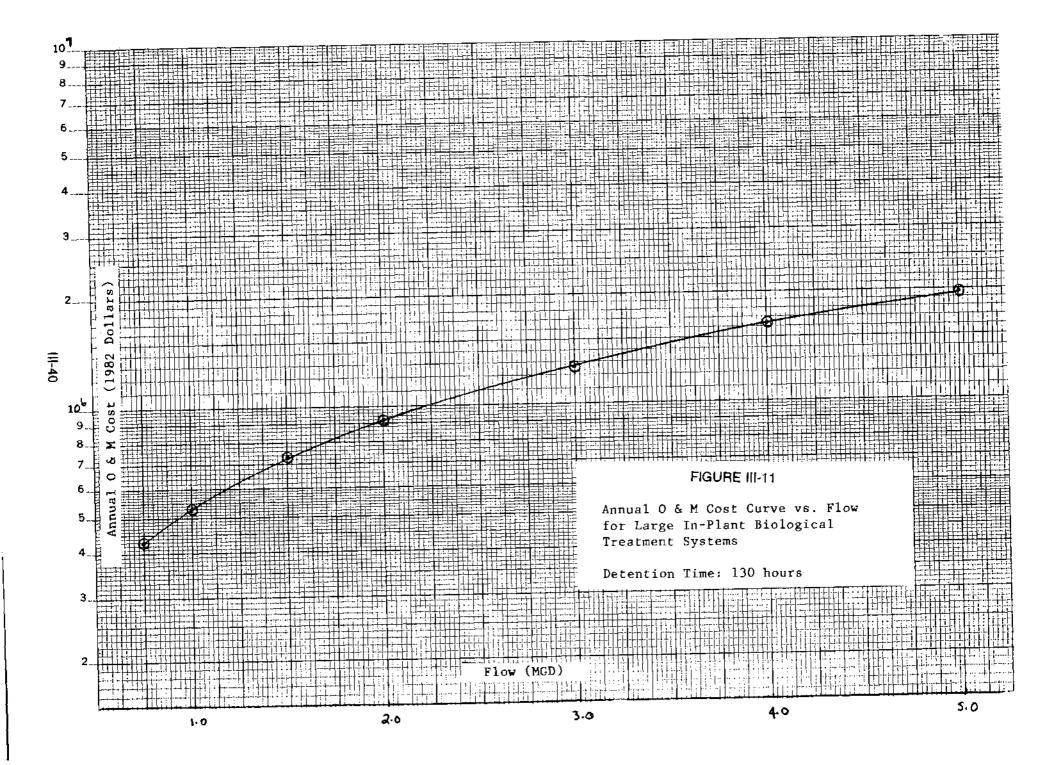


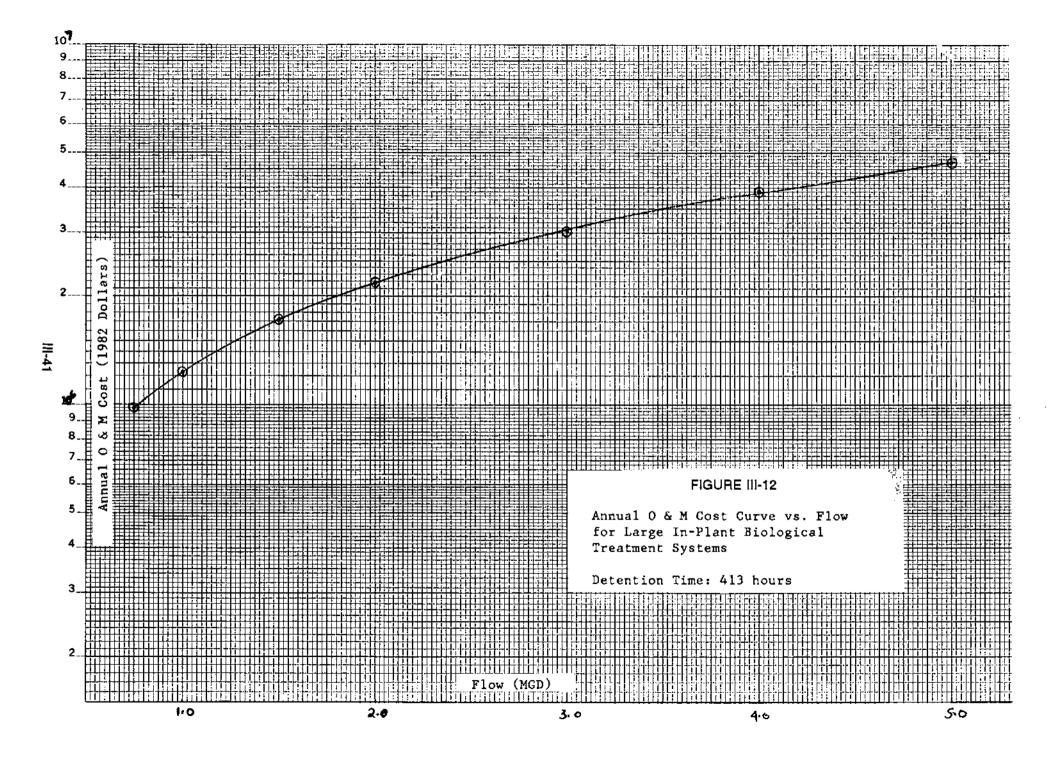



111-33






ð



φ

revised BPT, BAT, and PSES costs estimated for the Preamble Economic Impact Analysis are presented Appendix III-D while the technologies associated with these revised BPT, BAT and PSES costs are presented in Appendix III-E.

6. Land Availability

For the December 6, 1991 Proposal, EPA investigated whether land availability would be a constraint on the ability of OCPSF plants to install in-plant biological treatment. EPA's investigation included the land requirements for treatment of all 13 of the remanded PSES pollutants, including phenol and 2,4dimethylphenol, which are not being regulated in the final regulation. At that time, 20 of the 242 indirect discharge plants costed for in-plant biological treatment were projected to require more than one acre of land. EPA projected land requirements for individual facilities based on the modeled raw waste concentrations for the facilities developed hy the Agency for purposes of costing compliance with the 1987 OCPSF guideline. The Agency visited the eight indirect discharge facilities with land estimates greater than one acre in the three-state area of New York, New Jersey, and Delaware. Indirect discharge facilities were selected because their typical location in urban areas makes them more likely than direct dischargers to have land-availability constraints. EPA believes the combination of large land requirements and an urban setting makes these eight plants a "worst case" sample of land availability. A summary of the results from the site visits is presented in Table III-13.

Five of the plants visited had sufficient land based on the land requirements projected from their modeled raw waste concentrations (the remaining three had from 78 to 96 percent of the projected requirements). The remaining three had enough land based on their actual reported raw waste concentrations (the three plants had from 1.9 times to 3.7 times more than the required land). EPA generally was conservative in projecting raw waste characteristics in order to err on the side of overestimating rather than underestimating plant compliance costs. EPA thus believes its raw waste projections will often be higher than actual loadings (April 19, 1993 Memorandum to the OCPSF Record "Estimation of BAT and PSES Compliance Costs"). Based on this assessment, the Agency concluded that land availability was not a constraint for installing the model treatment technology (56 FR 63904).

CMA comments on the December 6, 1991 Proposal asserted that EPA overestimated the land available for the construction of biological treatment systems in its survey of eight indirect discharge facilities by including in its analysis parcels of non-contiguous land and land that is obstructed by railroad tracks, buildings and other physical obstacles. (CMA Comments at 39-41). This is not true. Each of the eight

TABLE III-13

PLANT NO.	LOCATION	ESTIMATED <u>LAND</u> <u>REQUIREMENT</u> REVISED IN-PLANT BIOLOGICAL TREATMENT	LAND AVAILABLE (ACRES)
257	New Jersey	1.93/(0.55)*/(0)**	1.5
2756	New Jersey	1.61	5
1853	New Jersey	8.77/(2.16)**	8
2300	Delaware	1.93/(0)**	11
1706	Delaware	1.8	5.2
1667	New Jersey	1.25/(0.38)**	1.2
2485	New Jersey	6.64/(1.68)**	>20
814	New York	2.19/(1.55)**	13

LAND AVAILABILITY OF SELECTED OCPSF PLANTS

()* Land requirement calculated based on reported raw waste concentrations.

.

()** Revised land requirement based on Agency decision <u>not</u> to regulate phenol and 2,4dimethylphenol for PSES. facilities EPA surveyed has sufficient contiguous, unobstructed land for the installation of the model biological treatment system costed by EPA at proposal. Furthermore, the available land is configured such that it can accommodate the costed biological treatment systems (Plot plans are contained in the Confidential Record).

Three plants for which CMA asserted the record shows insufficient contiguous land -- Plants 257, 1853, and 1667 -- are the plants for which EPA determined that there is sufficient land based on the plants' reported raw waste concentrations (id.). CMA apparently overlooked this portion of the analysis and based its comments on the land estimates based on the plants' projected raw waste concentrations. As described in more detail below, all of the plants EPA visited have more than sufficient contiguous land to install in-plant biological treatment systems to comply with the land requirements estimated by EPA for compliance with the 13 remanded pretreatment standards.

Furthermore, based on the Agency's decision not to promulgate pretreatment standards for phenol and 2,4-dimethylphenol, the estimated land requirements are lower for six of the eight plants visited than the requirements estimated at proposal for these plants based on their projected raw waste concentrations. Two plants no longer require in-plant biological treatment (257 and 2300), reducing their land requirements to zero. The estimated land requirements for four additional plants were reduced by 29, 69, 75 and 74 percent (plants 814, 1667, 1853 and 2485, respectively). The estimated land requirements for the remaining two plants have not changed from the 1991 estimates.

Addressing the plants individually, the commenter states that the available land claimed by the Agency for Plant 257 was made up of three parcels, that one parcel would require demolishing two buildings and that another parcel is crisscrossed by railroad tracks. At the time of the site visit, plant personnel informed EPA that plans called for the demolition of the two buildings in question and in fact demolition was already underway at the time of the site visit; the Agency reasonably concluded that the land made available by the demolition of these two buildings would be available, and notes that the pretreatment standards to which this plant was to be subject do not become effective until three years after the promulgation of today's amendments. The area made available by the demolition of these buildings in addition to the contiguous, open area designated as "A" to the left of the railroad tracks on the plot plan submitted by the facility will more than accommodate EPA's land requirement estimate of 0.55 acres for Plant 257. This land is contiguous and is not intersected by the railroad tracks. Finally, based on the Agency's decision not to promulgate pretreatment standards for phenol and 2,4-dimethylphenol, Plant 257 no longer is projected to install in-plant biological treatment.

The commenter also claims that "part" of one of the parcels of land at Plant 1706 is unavailable because of a nearby flare stack. But the commenter does not explain, and EPA does not understand, how a nearby flare stack would prevent installation of a biological treatment system. Nor did it indicate how much of the four-acre parcel in question it considered to be unavailable, and EPA has no basis to conclude that the presence of a nearby flare stack renders unavailable the 1.8 acres estimated as necessary for Plant 1706 to install the costed biological treatment system.

The commenter also states that the Agency unrealistically utilized two parcels of land (1 acre and 0.2 acres) to meet the estimated land requirement of 1.25 acres for Plant 1667 (CMA Comment at 41). In addition to stating that the two parcels of land are not contiguous, the commenter states that the 0.2 acre parcel contains a 2 story brick building and the 1 acre parcel has a railroad track running through it. Again, the commenter has overlooked portions of the Agency's analyses contained in its Record. Even if the railroad track bisected the 1 acre parcel, the Agency's revised land estimate of 0.38 acres based on the facility's reported raw waste concentration and/or the Agency's decision not to regulate phenol and 2,4-dimethylphenol under PSES (each factor reduces the original land estimate to 0.38 acres) could still be accommodated by either one of the two 0.5 acre parcels. Moreover, the Agency's Record clearly states that the 2 story brick building was confirmed as not in use and available (1991 Proposal Record, p R01236).

In a related argument, the commenter argues that EPA has included land in its analysis that is unavailable because of contamination and related factors. EPA disagrees with this analysis of the record, as explained below.

The commenter states that personnel from Plant 2756 informed EPA that the availability of its land depended on getting clearance from the state agency because contamination was suspected. However, the plant provided no information during EPA's site visit or in comments regarding the likelihood, nature or extent of the suspected contamination, the procedures involved in obtaining clearance from the state, or the extent to which the contamination might preclude the installation of a biological treatment system to comply with today's regulations within the three years allotted. The Agency has conservatively estimated that 32 percent of the facility's unused land (equal to the 1.61 acres required) will be available to accommodate the installation of in-plant biological treatment.

The commenter also states that "... Four of the eight acres identified for Plant 1853 were under investigation for possible contamination. EPA was told by plant personnel that the availability of the land

was dependent on the results of the investigation..." (CMA Comment at 41). However, the Agency's Record shows that the uncontaminated 4-acre parcel at the site will accommodate EPA's estimated revised land requirement of 2.16 acres, based on reported raw waste concentrations for Plant 1853 and/or the Agency's decision not to regulate phenol and 2,4-dimethylphenol under PSES (each factor reduces the original land estimate to 2.16 acres). In addition, EPA has insufficient information regarding the "possible" contamination to evaluate its effect on compliance with today's amendments.

The commenter also states that plant personnel informed EPA that of the 130 acre site for Plant 2485, some unspecified portion of the plant site was under investigation for contamination and 30 percent of the site was considered fresh water wetlands. Since 30 percent of the total plant site totals 39 acres and since no accurate estimate of the extent of the contamination at the 130 acre plant site could be made by plant personnel, the Agency has conservatively estimated the amount of land available at 20 acres or about 15 percent of the total plant site, which is more than adequate for the 6.64 acres projected to be required. EPA also notes that no comments have been received to date regarding the results of the site investigation of potential contamination which was scheduled for completion in 1991. Finally, based on the Agency's decision not to promulgate pretreatment standards for phenol and 2,4-dimethylphenol, the land requirements for Plant 2485 have been reduced from 6.64 acres to 1.68 acres.

The commenter also states that plant personnel at Plant 814 informed EPA that 11 of the 13 acres EPA included in its available area was under investigation for possible contamination. Subsequent correspondence from Plant 814 confirmed the presence of contamination but did not detail the extent of the contamination, only that remediation would be necessary and "... a large portion of these areas will not be available for future construction other than that related to remediation..." (1991 Proposal Record, p R01210). However, even according to the plant's information, 2.3 acres of land are not under investigation for contamination. Although this land is comprised of two separate parcels, the larger of the two alone is sufficient to install the costed biological treatment system. Based on the Agency's decision not to promulgate pretreatment standards for phenol and 2,4-dimethylphenol, this plant only requires 1.55 acres of land to install the Agency's current model treatment system. Subtracting the smaller of the two available parcels (designated as area "J" on the facility plot plan, estimated at 0.5 acres) from the 2.3 acre total, approximately 1.8 contiguous, uncontaminated acres remain available, which will accommodate the current land requirement (1991 Proposal Record, p R01243). Moreover, only 14 percent of the 11 contaminated acres would be required to install the entire treatment system, not counting any of the 2.3 acres which the facility admits is available. The information that "a large portion" of the 11 acres is unavailable does not provide a basis to conclude that the facility could not

install a biological treatment system to comply with the promulgated pretreatment standards within three years.

Overall, EPA reasonably concluded that each of the plants visited should have sufficient contiguous, unobstructed, uncontaminated land to install the costed biological treatment systems. In addition, even if EPA's analysis indicated a lack of contiguous, available land, this would not necessarily preclude installation of the costed biological treatment systems. Individual pieces of a plant's treatment system, including separate aeration basins, can be physically located on non-contiguous parcels, or on different portions of a single parcel. In the OCPSF industry, plant manufacturing and/or treatment areas are often segmented or separated by such things as utility roads, railroad tracks, canals, parking lots, warehouses, or other unrelated parcels of land. EPA cannot perform a detailed evaluation, in a national guideline, of how individual facilities in the industry can best comply with the promulgated limitations and standards. Especially with considerations as inherently plant-specific as land availability and potential contamination and remediation requirements, EPA can only assess whether, for the industry as a whole, sufficient land should be available to comply with the requirements of the guideline. EPA has performed such an assessment and has concluded that land availability will not be a constraint on compliance with today's limitations and standards. To the extent that an individual plant determines, after making a good faith effort to use the land available to it, that it is unable to comply with the requirements of today's rule, the plant may apply for an FDF variance.

E. FINAL BAT SUBPART J AND PSES LIMITATIONS

The final BAT Subpart J and PSES limitations are presented below.

	BAT Subpart J Effluent Limitations (micrograms per liter)			
Effluent Characteristics	Maximum for any one day	Maximum for monthly average		
Acenaphthalene	47	19		
2,4-Dimethylphenol	47	19		
Fluoranthene	54	22		
Naphthalene	47	19		
Phenol	47	19		
Bis(2-ethylhexyl)phthalate	258	95		
Di-n-butyl phthalate	43	20		
Diethyl phthalate	113	46		
Deimethyl phthalate	47	19		
Benzo(a)anthracene	47	19		
Benzo(a)pyrene	48	20		
3,4-Benzofluoranthene	48	20		
Benzo(k)fluoranthene	47	19		
Chrysene	47	19		
Acenaphthylene	47	19		
Anthracene	47	19		
Fluorene	47	19		
Phenanthrene	47	19		
Pyrene	48	20		

Effluent Characteristics	Maximum for any one day	Maximum for monthly average	
Acenaphthene	. 47	19	
Fluoranthene	54	22	
Naphthalene	47	19	
Bis (2-ethylhexyl) phthalate	258	95	
Di-n-butyl phthalate	43	20	
Diethyl phthalate	113	46	
Dimethyl phthalate	47	19	
Anthracene	47	19	
Fluorene	47	19	
Phenanthrene	47	19	
Pyrene	48	20	

۰.

Pretreatment Standards for Existing and New Sources (micrograms per liter)

١

1

-

IV. NEW SOURCE PERFORMANCE STANDARDS AND PRETREATMENT STANDARDS FOR NEW SOURCES

In the 1987 OCPSF promulgation, the Agency promulgated NSPS for all direct discharging sources based on the best available demonstrated technology, as required by CWA § 306 (52 FR at 42545). NSPS was established for the three conventional pollutants regulated under the OCPSF guideline on the basis of BPT model treatment technology, and for the 63 OCPSF-regulated priority pollutants on the basis of BAT model treatment technology. The numerical standards are equivalent to the BPT and the BAT limitations (52 FR 42545). EPA also promulgated PSNS on the same technology basis as PSES; the numerical standards for 47 priority pollutants that were determined to pass through or otherwise interfere with the operation of publicly owned treatment works (POTWs) are equivalent to the PSES standards (52 FR 42549).

The Natural Resources Defense Council (NRDC) challenged the final NSPS and PSNS standards arguing, in part, that the Agency failed to give adequate consideration to better pollution control technologies that could be used by new sources.

On March 30, 1989, the Fifth Circuit rejected all but one of NRDC's challenges to the NSPS standards and remanded the NSPS standards to EPA "for consideration of whether zero discharge limits would be appropriate for new plants in the OCPSF industry because of the existence of recycling" (870 F.2d at 264). However, the Court left the standards in place during the Agency's response to the remand (870 F.2d at 266).

The Agency has reconsidered the issues related to establishing new source zero discharge standards based on process wastewater recycle and, as proposed, has decided not to revise the existing NSPS and PSNS standards for the same reasons presented in its December 6, 1991 Proposal. EPA received comments from NRDC urging EPA to promulgate zero discharge standards based on recycle of process wastewater, and from numerous industry comments supporting EPA's proposal to retain the existing NSPS and PSNS standards. As explained more fully in Section VIII.B. of the Preamble to the Final Regulation, the Agency has concluded that it has no basis to impose a zero discharge technology-based NSPS standard on any OCPSF source, and that, even if it were to undertake an extensive data collection and technical development effort, it is unlikely EPA could impose a zero discharge standard on more than a few of the 25,000 product/processes in the OCPSF industry. First, the "concentration-based" approach which forms the framework of the OCPSF guideline limits the opportunities for the promotion of recycling and re-use of wastewater through a national guideline, in contrast to the "mass-based" approach adopted in other guidelines. The Agency explicitly recognized this limitation during the guideline development process, but opted for this approach nonetheless, because it provided the basis for a guideline with more expansive coverage. This was a rational regulatory decision made by the Agency. Moreover, because the OCPSF record was imprecise with regard to its use of the term "recycle," both NRDC and the Fifth Circuit in its remand order, misinterpreted the support in the database for zero discharge through recycling. In fact, the record contains very few reports of complete recycle and does not demonstrate that recycle is a demonstrated technology on which EPA can base a zero discharge standard.

APPENDIX I-A

GUIDANCE FOR LABORATORY ANALYSIS OF COMPLEX MATRICES

.

APPENDIX I-A GUIDANCE FOR LABORATORY ANALYSIS OF COMPLEX MATRICES

Several commenters stated that they were unable to measure some of the regulated pollutants in OCPSF wastewater at the concentrations required by the regulation due to matrix interferences, i.e., that the composition of wastewater samples complicates measurement of OCPSF-regulated pollutants at the low levels required to show compliance with the rule. They suggested that EPA provide notice that relief is available to the regulated community under this regulation when a permittee is unable to measure pollutants due to matrix problems.

At the time of promulgation of the OCPSF guideline in 1987, EPA found that for well-designed, well-operated treatment systems, matrix interferences should not present a problem. The limitations were based upon data that demonstrated that the pollutants have been and thus can be measured at the regulatory levels (52 FR 42563). EPA's determination that the regulated pollutants could be measured at the compliance levels was upheld by the Fifth Circuit (CMA v. EPA, 870 F.2d at 231).

Since promulgation of the OCPSF guideline, the Analytical Methods Staff of the Engineering and Analysis Division has been assisting EPA Regions and States in evaluating claims of matrix interferences and other analytical difficulties associated with OCPSF compliance monitoring. Since 1990, the Analytical Methods Staff has issued a series of draft reports that provide guidance to control authorities and laboratories for accommodating matrix-related problems that complicate laboratory measurements of the analytes of interest. These documents have been updated and expanded in one final publication, the May 1993 "Guidance on Evaluation, Resolution, and Documentation of Analytical Problems Associated with Compliance Monitoring," (EPA 821-B-93-001) that is available from Mr. William A. Telliard, Chief, Analytical Methods Staff, Engineering and Analysis Division (WH-552), USEPA, Washington, DC 20460. The document includes (1) a checklist of laboratory data required to support a claim that a permittee was unable to measure pollutants due to matrix problems, (2) guidance for analysts attempting to identify and quantify pollutants in wastewaters discharged from plants manufacturing OCPSF products, (3) cost estimates for resolving matrix interferences, (4) guidance for reviewing data from the analysis of organic compounds using EPA 600/1600 series analytical methods, (5) case histories of data submitted for claims of matrix interferences under the OCPSF rule, and (6) guidance on contracting for analytical services.

The Agency's past experience is that nearly all matrix interference problems can be resolved when industries and their laboratories apply the philosophy and techniques suggested in the draft documents. Based on this experience, EPA does not believe matrix interferences will present a problem in demonstrating compliance with the OCPSF guideline.

Finally, EPA notes that this guidance regarding matrix interference is beyond the scope of the Fifth Circuit's remand and today's rule. As stated above, the Fifth Circuit upheld EPA's determination that the OCPSF-regulated pollutants can be measured at the compliance levels, and no issues relating to measurement were remanded. The above discussion is guidance only, and it relates only to implementation and enforcement issues; it does not provide a basis to challenge today's amendment.

APPENDIX I-B

GUIDANCE FOR THE APPROPRIATE FLOW BASIS FOR CONVERTING CONCENTRATIONS INTO MASS-BASED LIMITATIONS AND STANDARDS

.

APPENDIX I-B GUIDANCE FOR THE APPROPRIATE FLOW BASIS FOR CONVERTING CONCENTRATIONS INTO MASS-BASED LIMITATIONS AND STANDARDS

The Passaic Valley Sewerage Commissioners, referring to supporting correspondence from the State of New Jersey, complained about conflicting guidance and differing interpretations of the appropriate flow basis for calculating the mass-based permit limits. They requested that the Agency clarify its guidance for (1) determining the appropriate flow basis for establishing the permit limitations and standards as well as (2) the appropriate flow basis for converting compliance monitoring concentration data into mass-based figures.

Regarding the first issue -- the appropriate flow basis for establishing permit limits -- the promulgated OCPSF effluent limitations guidelines and standards listed in 40 CFR 414 are concentration-based and thus do not regulate flow. As required by the regulation, the permitting or control authority must multiply a reasonable estimate of a plant's regulated process wastewater discharge by the concentration limitations to develop mass limitations for each NPDES or industrial user permit.

The appropriate process wastewater flow to be used must be determined by the permitting or control authority on a case-by-case basis using current information provided by the applicant and other available data. EPA strongly urges the permit writer or control authority to develop an appropriate process wastewater flow for use in computing the mass effluent or internal plant limitations based on water conservation practices. The factors that should be considered in developing the appropriate process wastewater flow include: review of the component flows to ensure that the claimed flows are, in fact, process wastewater flows as defined by the regulation; review of plant operations to ensure that sound water conservation practices are being followed (examples include minimization of process water uses; cascading or countercurrent washes or rinses, where possible; reuse or recycle of intermediate process waters or treated wastewaters at the process area and in wastewater treatment operations (e.g., pump seals, and equipment and area washdowns)); and review of barometric condenser use at the process level (barometric condensers often generate relatively large volumes of slightly contaminated wastewater; replacement of barometric condensers with surface condensers can reduce wastewater volumes significantly and result in collection of condensates that may be returned to the process). (1987 DD, p IX-9 - 10)

Assuming proper water conservation is being practiced, the 1987 OCPSF Development Document accurately advises the control authority to "use the plant's annual average process wastewater flow to convert the concentration-based limitations into mass-based limitations" (p IX-10). To clarify, the annual average flow is defined as the <u>average of daily flow measurements</u> calculated over at least a year. These average flows could be based on a single year's data; however, if available, multiple years' data are preferable to obtain a representation of annual average flow. The regulated OCPSF process wastewater flows, as defined by 40 CFR 401.11(q), are the process waste streams that are subject to 40 CFR Part 414.

Based on current guidance issued by the Office of Water Enforcement and Compliance, the permitting or control authority is advised to establish, for each direct or indirect point source discharge, a single estimate of the regulated long-term average of daily flow measurements based on three to five years of facility data. In the event that no historical or actual process wastewater flow data exists, such as for a new source, the permitting or control authority is advised to establish a reasonable estimate of the facility's projected flow. Historical or projected daily maximum, weekly maximum, or monthly maximum flows and design-based or plant-capacity-based flows are not recommended as appropriate bases for determining a facility's regulated long-term or annual average of daily flow measurements and corresponding mass limits. The permitting or control authority is advised to establish a flow rate that is expected to be representative during the entire term of the permit or other individual control mechanism. If a plant is planning for significant changes in production during the effective period of the permit, the permitting or control authority may consider establishing multiple tiers of limitations as a function of the significant, projected changes in production. In addition, or in the alternative, a permit may be modified during its term, either at the request of the permittee (or another interested party) or on EPA's initiative, to increase or decrease the flow basis in response to a significant change in production (40 CFR 124.5, 122.62). A change in production could be an "alteration" of the permitted activity or "new information" that would provide the basis for a permit modification (40 CFR 122.62(a)(1), (2)).

Guidance for determining appropriate process wastewater flow is presented in several documents published by the EPA Office of Wastewater Enforcement and Compliance, Washington, DC: "Guidance Manual for the Use of Production-Based Pretreatment Standards and the Combined Wastestream Formula," 1985 (NTIS Order No. PB92-114438) and "Training Manual for NPDES Permit Writers, 1993 (EPA 833-B-93-003).

Confusion as to the recommended basis for determining appropriate process wastewater flow has arisen. however, due to several OCPSF guidance memoranda that present guidance that is in conflict with the guidance presented in the OCPSF preamble and the above-mentioned guidance documents. Specifically, two EPA guidance memoranda recommend, as a basis for establishing long-term average flow, that the permit writer or control authority use "the highest monthly average flow during the past twelve (12) months or the highest yearly mean of the twelve monthly average flows during the past five (5) years." These incorrect examples were listed in the February 16, 1989 memorandum to Regional Water Management Division Directors and NPDES Authorized State Directors from James R. Elder, Director, Office of Water Enforcement and Permits, entitled "NPDES Permitting Strategy for OCPSF Direct Dischargers" (pp 29, 40, & 44), and in the October 12, 1988 memorandum to Regional Water Management Division Directors and NPDES State Directors from Mr. Elder entitled "Questions and Answers Regarding the OCPSF Effluent Limitations Guidelines" (p 4). This guidance establishes an inappropriate basis for determining permit limits because the promulgated OCPSF maximum daily and maximum monthly average limitations were derived by multiplying the long-term average performance level of well-designed, well-operated treatment systems by the respective variability factors for the treatment system. The variability factors already include, among other components, the variability associated with day-to-day and month-to-month production and flow variations. As a result, the OCPSF limits and standards are, in general, considerably less stringent than the long-term averages achieved by the plants on which the limits and standards were based, and plants that design their operations and treatment systems to achieve the long-term averages for individual pollutants should be able to achieve the OCPSF limits and standards even during high-flow days and months. The data from any given day or month may not be representative of the plant's annual or long-term flow. Use of the highest monthly mean to set permit limits would "double count" the effect of flow variability, since the potential for high flow periods is already accounted for in the promulgated limits and standards. The approach presented in the two memoranda from Mr. Elder results in an overly generous permit limit. Therefore, the time period of the measure of production or flow should correspond to the time period used to derive the promulgated limitations, which is an annual average or long-term average measure.

Regarding the second issue -- the correct flow basis for determining compliance -- the Agency intends that compliance with the OCPSF standards should be evaluated based on the actual total applicable OCPSF-regulated flow discharged during the period for collecting the effluent sample, typically 24 hours. The cumulative 24-hour flow corresponding to the day on which sampling is performed, when combined with concentration data from 24-hour sampling, gives the best indication of the actual mass of pollutants discharged on a given day. The OCPSF mass-based permit limits are calculated using the regulated longterm or annual average of daily flow measurements, adjusted downward as appropriate based on potential for flow reduction, as discussed above. The limits in 40 CFR Part 414 are expressed as maximum for any one day and maximum for monthly average values. Since the limits in the permits are mass-based, the compliance data must also be mass-based. A daily mass value is defined as the total mass discharged over a 24-hour period (unless the operating day is less than 24 hours). Similarly, the monthly average is derived from averaging the available daily mass values in each calendar month. Compliance with the mass-based limits should be based on the actual total applicable OCPSF-regulated flow discharged on the day of sampling, not on the long-term average flow rate that provided the basis for establishing the permit limitations and standards.

Therefore, to determine compliance for OCPSF facilities, the measured concentration of the pollutant in question in the effluent sample should be multiplied by the total applicable OCPSF-regulated flow during the effluent sampling period. For example, if analytical data from a 24-hour sample period for a particular plant demonstrates a pollutant concentration of 0.055 mg/l, and the measured process wastewater flow for the same 24-hour period is 0.600 million gallons, then the plant's reported mass compliance value for that day is 0.275 pounds of the pollutant.

EPA notes that this guidance regarding the proper flow basis is beyond the scope of the Fifth Circuit's remand and today's rule. This guidance simply addresses conflicts in existing guidance and reaffirms that the contemporaneous guidance presented in the 1987 OCPSF Development Document correctly reflects EPA's judgment regarding appropriate implementation of the OCPSF guideline. The above discussion is guidance only, and it relates only to implementation and enforcement issues; it does not provide a basis to challenge today's amendments.

APPENDIX III-A

TECHNICAL SUPPORT DOCUMENT FOR THE ORGANIC CHEMICALS, PLASTICS AND SYNTHETIC FIBERS POINT SOURCE CATEGORY DECEMBER 1, 1992 NOTICE OF AVAILABILITY OF NEW INFORMATION

i.

7

TECHNICAL SUPPORT DOCUMENT FOR THE ORGANIC CHEMICALS, PLASTICS AND SYNTHETIC FIBERS POINT SOURCE CATEGORY NOTICE OF AVAILABILITY OF NEW INFORMATION

Engineering and Analysis Division Office of Water U.S. Environmental Protection Agency 401 M Street, SW Washington, DC 20460

November 30, 1992

TABLE OF CONTENTS

			Page
I.	Back	cground	
II.	Tech	unical Ap	proach and Analysis
	Α.	Remo	wal Mechanisms for 47 PSES Pollutants
	В.		t of Biodegradation of 13 PSES Pollutants Controlled Plant Biological Treatment
		1. 2. 3. 4. 5.	Biodegradation Principles for Organic Chemicals9Biodegradation of Phenols10Biodegradation of Phthalate Esters10Biodegradation of Polynuciear Aromatics13Summary of Biodegradation Potential of 13 PSES Pollutants13Controlled by In-Plant Biological Treatment13
	C.		Tence and Fate of Phenol and 2,4-Dimethylphenol at OCPSF ties and POTWs
		1. 2.	Frequency of Occurrence of Phenol and 2,4-Dimethylphenol
		3. 4.	Ability of POTWs to Biodegrade Phenol and 2,4-Dimethylpheno 20 POTW Performance Data
	D.	Summ	ary of Technical Findings 30
ΙП.	Refe	rences	

.

_

.

I. BACKGROUND

A summary of the regulatory history of the OCPSF guidelines is found in the December 6, 1991 proposal (56 FR 63897). Briefly, on November 5, 1987, EPA promulgated effluent limitations, guidelines, and standards under the Clean Water Act for the OCPSF industry (52 FR 42522). The guidelines were challenged by industry petitioners and the Natural Resources Defense Council in consolidated litigation in the United States Court of Appeals for the Fifth Circuit (CMA v. EPA, 870 F.2d 177, rehearing granted in part, 885 F.2d 253). The Court upheld most of the provisions of the guidelines, but remanded several portions for further proceedings by EPA, including 19 best available technology economically achievable ("BAT") limitations and 13 pretreatment standards (including phenol and 2,4-dimethylphenol) (885 F.2d at 265). EPA based these limits and standards on data demonstrating removals achieved by end-of-pipe biological treatment systems, which typically have longer detention times than in-plant biological treatment systems to estimate the cost of the technology (id.). The Court concluded that EPA had not demonstrated that the costed system could eliminate pollutants as effectively as the end-of-pipe systems with longer detention times on which the limitations and standards were based (id.).

The December 6, 1991, proposal responded to the Court's remand; for the remanded limitations, EPA re-costed the treatment technology based on the longer detention times of the end-of-pipe systems on which the limitations were based and proposed the same limitations. EPA explained in the preamble to the proposal that it was soliciting comments only on the costing and related issues, based on the fact that the Court had found the limitations to be achievable except for the discrepancy between the detention times of the costed treatment system and the treatment systems on which the limitations were based. Notwithstanding the limited scope of the proposal, a large number of the comments on the proposal challenged EPA's determination on the original 1987 OCPSF promulgation that phenol, one of the 13 pollutants for which pretreatment standards were remanded - passes through POTWs. Several comments raised the same issue with respect to 2,4-dimethylphenol. Despite the fact that the comments were not solicited, EPA has evaluated them and, as explained above, concluded that they may have merit.

EPA recognized in developing the OCPSF rule that the methodology for determining pass through might tend to understate removals of pollutants from POTWs where both POTW and direct discharge effluents were below the analytical minimum level. EPA proposed several modifications of the pass through analysis to address this phenomenon, including applying a "removal differential" under which EPA would determine that a pollutant passed through only if the analysis found a difference in removals achieved by direct dischargers and POTWs that exceeded 5% or 10% (48 Fed. Reg. at 11841-42 (March 21, 1983); 50 Fed. Reg. at 29084-85 (July 17, 1985); 51 Fed. Reg. at 44089-90 (December 8, 1986)). However, after carefully reviewing comments received on these notices arguing, among other things that this approach would bias the analysis against a finding of pass through, EPA decided to employ its historical approach to pass through, with one variation.

In previous effluent guidelines, EPA had made pass through determinations based on data from POTWs with influent concentrations greater than 20 ppb (52 FR 42546). In the final OCPSF rule, EPA edited its database to exclude POTWs at which the influent concentrations were less than ten times the analytical minimum level (typically 100 ppb), unless there was no plant in the data base with influent concentrations that high, in which case EPA retained the 20 ppb cut-off (D.D. at VI-33). With respect to pollutants for which EPA had influent data that were at least ten times the analytical minimum level, this editing rule eliminated the significant underestimation of removals that could occur when comparing lower influent concentrations to the analytical minimum level. EPA determined and the Fifth Circuit agreed, that with this modification, the methodology represented a reasonably conservative, permissible approach to determining pass through (270 F.2d at 246).

EPA is considering augmenting this methodology for phenol and 2,4-dimethylphenol because commentors have focused EPA's attention on these pollutants, and EPA agrees they may not pass through POTWs even though the pass through analysis employed at promulgation indicated they did. EPA has re-evaluated data from the database used in promulgating the 1987 OCPSF rule, and has collected additional data, related to removal of phenol and 2,4-dimethylphenol by POTWs. In addition, EPA has performed an analysis based on the chemical structures of phenol and 2,4-dimethylphenol in relation to other pollutants to determine their fate in biological treatment systems.

The following sections present the results of this analysis.

II. TECHNICAL CONSIDERATIONS

The following sections discuss the fate of all pollutants which were regulated under PSES and the basis for reconsidering the regulation of phenol and 2,4-dimethylphenol.

A. REMOVAL MECHANISMS FOR THE 47 PSES POLLUTANTS

PSES regulations were promulgated for 47 toxic pollutants as part of the final OCPSF regulation. The remaining 79 toxic pollutants were eliminated from regulatory consideration based on the various sections of Paragraph 8 of the NRDC Settlement Agreement. The regulated PSES pollutants are removed from wastewaters by a variety of removal mechanisms and fall into four general groups:

- Pollutants which are primarily volatile and removed by stripping
- Pollutants which are primarily biodegradable.
- Pollutants which are generally adsorbable and can be removed by adsorption.
- Pollutants which can be removed primarily by settling or filtration such as metals.

Table II-1 presents the 47 toxic pollutants regulated under PSES and the technology basis for the final PSES limitations. These technologies generally take advantage of the chemical characteristics of each pollutant, e.g. volatile pollutants are removed via steam stripping, metals are removed via chemical precipitation. Also used as a technology basis was in-plant biological treatment, which included a biological treatment system with longer detention times than a POTW and a biomass which is acclimated to the toxic pollutants being discharged. As noted in Section I, the PSES regulations for these 13 pollutants were remanded by the Fifth Circuit U.S. Court of Appeals.

Since the promulgation of the final OCPSF regulation, the subsequent remand of the PSES limitations for the 13 pollutants controlled by in-plant biological treatment and the reproposal in December, 1991, no additional data has been submitted for alternatives to in-plant biological treatment for polynuclear aromatics (PNAs) and phthalate esters (PEs); however, as noted in previous sections, commentors have noted that biological treatment systems at POTWs can effectively treat phenols without any adverse effects, regardless of the results of the pass through analysis.

TABLE II-1

LIST OF REGULATED TOXIC POLLUTANTS AND THE TECHNOLOGY BASIS FOR PSES

POLL'T NO.	POLLUTANT NAME	PSES TECHNOLOGY BASIS
1	A	In Plant Biological
4	Acenaphthene Benzene	In-Plant Biological Steam Stripping
6	Carbon Tetrachloride	Steam Stripping*
7	Chlorobenzene	4
8	1,2,4-Trichlorobenzene	Steam Stripping* Steam Stripping*
9	Hexachloroethane	Steam Stripping
10	1,2-Dichloroethane	Steam Stripping*
10	1,1,1-Trichloroethane	Steam Stripping
11	Hexachloroethane	Steam Stripping*
12	1,1-Dichloroethane	Steam Stripping
13	1,1,2-Trichloroethane	Steam Stripping
16	Chloroethane	Steam Stripping
23	Chloroform	Steam Stripping
25	1.2-Dichlorobenzene	Steam Stripping*
26	1.3-Dichlorobenzene	Steam Stripping*
27	1.4-Dichlorobenzene	Steam Stripping*
29	1,1-Dichloroethylene	Steam Stripping
30	1,2-Trans-Dichloroethylene	Steam Stripping
32	1,2-Dichloropropane	Steam Stripping*
33	1.3-Dichloropropene	Steam Stripping*
34	2,4-Dimethylphenol	In-Plant Biological
38	Ethylbenzene	Steam Stripping*
39	Fluoranthene	In-Plant Biological
44	Methylene Chloride	Steam Stripping
45	Methyl Chloride	Steam Stripping
52	Hexachlorobutadiene	Steam Stripping*
55	Naphthalene	In-Plant Biological
56	Nitrobenzene	Steam Stripping & Activated Carbon
57	2-Nitrophenol	Activated Carbon
58	4-Nitrophenol	Activated Carbon
60	4,6-Dinitro-o-Cresol	Activated Carbon
65	Phenol	In-Plant Biological
66	Bis(2-Ethylhexyl)Phthalate	In-Plant Biological
68	Di-N-butyl Phthalate	In-Plant Biological
70	Diethyl Phthalate	In-Plant Biological
71	Dimethyl Phthalate	In-Plant Biological
78	Anthracene	In-Plant Biological
80	Fluorene	In-Plant Biological
81	Phenanthrene	In-Plant Biological
84	Pyrene	In-Plant Biological
85	Tetrachloroethylene	Steam Stripping
86	Toiuene	Steam Stripping
87	Trichloroethylene	Steam Stripping
88	Vinyl Chloride	Steam Stripping
121	Total Cyanide	Alkaline Chlorination**
122	Total Lead	Hydroxide Precipitation**
128	Total Zinc	Hydroxide Precipitation**

Steam stripping performance data transferred based on Henry's Law Constant groupings
Metals and cyanide limitations based on hydroxide precipitation and alkaline chlorination, respectively, only apply at the process source.

The Agency has investigated these commentors' claims regarding the biodegradability of phenol and 2,4-dimethylphenol. EPA has also examined the ability of POTWs to biodegrade the remaining 11 PSES pollutants which are controlled by in-plant biological treatments. The results of this analysis are discussed in the following section.

5.

1. 18.

B. EXTENT OF BIODEGRADATION OF THE REMANDED 13 PSES POLLUTANTS

The following sections describe the mechanisms behind biodegradation of organic chemicals and how these mechanisms act on the three main groups of remanded pollutants--phenols, PNAs and phthalate esters.

1. Biodegradation of Organic Chemicals

All of the 13 remanded pollutants share the same aromatic structure, represented by the so-called benzene nucleus. The degradation of aromatic compounds by aerobic bacteria initially involves chemical reactions catalyzed by extra-cellular enzymes. These reactions occur in several steps and result in cleavage of the benzene nucleus to form compounds that will transfer through the cell wall and be compatible with the intra-cellular tricarboxylic acid (TCA) cycle. Assimilated into this cycle, these compounds serve as substrates for growth and energy production via oxidative phosphorylation (Krebs cycle).

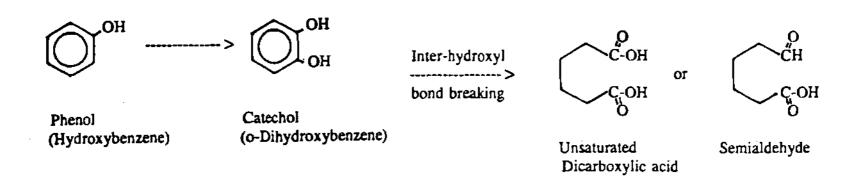
Before the benzene nucleus can be cleaved, it generally must have at least two hydroxyl groups that are either ortho (as in catechol) or para (as in hydroquinone) to one another. If the substrate (aromatic molecule) does not meet this requirement, one or both hydroxyls must be substituted in the proper position. Enzymes that catalyze placement of <u>one</u> hydroxyl group on a benzene nucleus are called *monooxygenases* (or sometimes hydroxylases). *Dioxygenases* catalyze the substitution of <u>two</u> hydroxyl groups on adjacent carbons of the aromatic ring. In general, monooxygenase-catalyzed reactions are completed more quickly than dioxygenase-catalyzed reactions because only one hydroxyl group needs to be substituted for conversation of the compound.

2. Biodegradation of Phenols

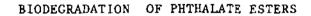
In general, biodegradation rates for phenol and 2,4-dimethylphenol are among the highest of all organic chemicals. Both already have one hydroxyl group on a benzene nucleus; this facilitates the substitution of a second hydroxyl group and the resulting monooxygenase-catalyzed reaction converts the phenol and 2,4-dimethylphenol to catechols. The resulting catechols then undergo inter-hydroxyl cleavage of the benzene nucleus by extra-cellular enzymes secreted by the biomass microorganisms to form unsaturated dicarboxylic acids or semialdehydes which are capable of being transferred through the cell wall and metabolized by the biomass. Figure H-1 illustrates these chemical and biological processes.

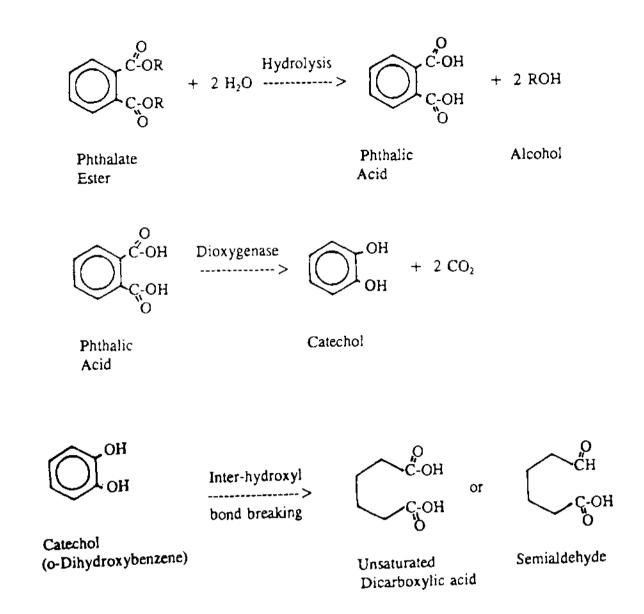
3. Biodegradation of Phthalate Esters

Phthalate esters are considered biodegradable but at a much slower rate than the phenols. This occurs because phthalate esters must first be hydrolyzed into phthalic acid. An extra-cellular enzyme secreted by the biomass microorganisms catalyzes the hydrolysis of the diesters to phthalic acid and alcohol. The phthalic acid then undergoes a dioxygenase-catalyzed reaction (substitution of 2 hydroxyi groups on the benzene nucleus) converting the phthalic acid to catechols and carbon dioxide. The catechols then to follow the same steps detailed above for the phenols, undergoing inter-hydroxyl cleavage of the benzene nucleus by extra-cellular enzymes secreted by the biomass microorganisms. The unsaturated dicarboxylic acids or semialdehydes formed are then capable of transfer through the cell wall and can be metabolized by the biomass. Figure H-2 illustrates these chemical and biological processes.


4. <u>Biodegradation of Polynuclear Aromatics</u>

Polynuclear aromatics (PNAs) are more chemically complex than both phenols and phthalate esters and are generally more difficult to biodegrade. Specifically, PNAs initially have no hydroxyl or carboxyl substituents and require more than one benzene nuclei to be sequentially broken in order to form compounds which are capable of being transferred through the cell wall and metabolized by the biomass. This requires extended detention times under favorable conditions for biodegradation of PNAs to occur. Extended detention times are often present at OCPSF biological treatment systems but seldom occur at POTWs whose detention times generally range from four to eight hours. Therefore, while complete biodegradation of PNAs can occur at OCPSF biological treatment systems, due to the lower detention times at POTWs, PNAs are not adequately biodegraded in biological treatment systems at POTWs.


FIGURE II ~ 1


BIODEGRADATION OF PHENOL

 $\overline{}$

SOURCE: H. Wise, USEPA (1992)

SOURCE: H. Wise, USEPA (1992)

Biodegradation of naphthalene, acenaphthene and fluorene, in addition to being limited by the shorter POTW biological treatment system detention times is further reduced by air stripping in the biological treatment systems at both POTWs and OCPSF facilities. The removal/fate mechanisms for these PNAs are supported by the observed air stripping percentages at POTWs, e.g., naphthalene at 30%, and Henry's Law Constant values that are one to two orders of magnitude higher than the other PNAs.

5. <u>Summary of Biodegradation Potential of 13 Remanded PSES Pollutants</u>

To further confirm the biodegradability of the 13 remanded PSES pollutants, the Agency searched a number of data sources. The most extensive information source was the "Report to Congress on the Discharge of Hazardous Wastes to Publicly Owned Treatment Works" (EPA/530-SW-86-004), also known as the Domestic Sewage Study. This study, which evaluated the fate and effects of the discharge of hazardous waste to municipal sewers, predicted the overall removal of hazardous constituents by POTWs and the mechanisms by which they were removed using all available sampling data, laboratory research and the physical/chemical constants associated with the pollutants of interest. Sampling data reviewed was primarily from the "Fate of Priority Pollutants in Publicly Owned Treatment Works" (EPA 440/1-82/303), also known as the 50 POTW Study. This data base was also used to estimate POTW removals for the OCPSF pass-through analysis. Data from laboratory research performed at the EPA Risk Reduction Engineering Laboratory in Cincinnati, Ohio, were also reviewed. Finally, physical/chemical constants such as Henry's Law Constants (H.) and Octanol Water Partition Coefficients (K...) were consulted to confirm the data collected and to identify removal trends for those pollutants with incomplete or missing data. The propensity of an organic chemical to evaporate or air strip from wastewater depends upon both the chemical's volatility (tendency to escape as a gas) and its solubility in wastewater. A relative measure of this propensity is indicated by Henry's Law Constants. The higher the value of this number, the greater the propensity of an organic pollutant to be removed (transferred) from the wastewater by evaporation/air stripping. The relative propensities of organic chemicals in wastewater to be sorbed upon an organic substrate may be estimated by comparing their individual octanol-water partition coefficients. An organic chemical that partitions itself equally between the octanol and water phases will have a K_w of 1. Organic chemicals with values greater than 1 will favor partitioning (transfer) from wastewater to organic substrates.

Table II-2 presents pollutant fate data collected from the Domestic Sewage Study for the 13 remanded PSES pollutants as well as the median influent and effluent concentrations for the POTW and OCPSF data bases used for the pass-through analysis, the median POTW and OCPSF percent removals calculated in the pass-through analysis and Henry's Law Constants and Octanol Water Partition Coefficients obtained from the RREL Treatability Data Base (Version 4.0). Also included when available are estimated biodegradation rate constants which were developed for the "<u>CERCLA Site Discharges to</u> <u>POTWs Treatability Manual</u>" (EPA 540/2-90-007).

Using the overall removal and pollutant fate data collected as well as the individual pollutant biodegradation rate constant, Henry's Law Constant and Octanol Water Partition coefficient values presented in Table II-2 and, based on the previous discussions of biodegradation mechanisms, two pollutants--phenol, and 2,4-dimethylphenol,--are capable of being biodegraded in well-operated biological treatment systems at POTWs. The following section discusses if biodegradation of these compounds actually occurs at POTWs.

C. OCCURRENCE AND FATE OF TWO REMAINING PSES POLLUTANTS AT OCPSF FACILITIES AND POTWS

After determining that the two remaining PSES pollutants--phenol and, 2,4-dimethylphenol,--are highly biodegradable, the remaining task is to determine if OCPSF discharges containing these pollutants are adequately controlled both on a technological basis, i.e., POTW biological treatment systems, and a regulatory basis, i.e., General Pretreatment Regulations (40 CFR 403). This section will discuss the frequency of occurrence of these pollutants in OCPSF discharges to POTWs, the maximum estimated influent concentrations of these pollutants to be treated at POTWs and the observed performance of POTWs in biolograding these pollutants at the maximum estimated influent levels.

	Detection	election Median POTW		Media OCFSF		Median	Median	Total	POTW #	POTW	Biodegradation	Octagel/	Harry's Law
Composind	Limit (rph)	Laftwood (pph)	Etriment (ppb)	Jasffinent (app)	Eitheant (ppb)	OCPSF ** Removal**	POTW 6 Remynd**	POTW S Removal**	Stadge Partition*	% Alr Stripping*	Rate Constant	Water Partition Coefficient	Constant (ATMuM' mole") ⁴
Pheaol	10	251.25	10.0	1638.00	10.68	98.4	95.2	50 to 95%	1596	0%+	10.	1.46	1.3x10*@25*C
Directlyl Phenot-2,4	10	20.5	10.0	2644.2	11.69	99.8	51.2	60 to 95%	896	0%+	10 ⁻¹	2.47	1.7x10*@25*C
Naphthalene	10	1\$8.33	10,0	1040.2	10.0	99.0	94.7	70 to 95%	28%	30%+	10 ¹	3.97	4.8x10*@25*C
Acusaphthese	jO	584.17	t0.0	\$13.0	tö.0	98.9	98.3	985.**	NA ·	10%*	10 2	3.92	2.4110*@25*C
Fluorenz	10	33.2	10.0	166.63	10.0	97.9	69.8	705++	NA	NA	10-1	4.18	1.2.10*@25*C
Anthracene	10	225.33	10.0	69 3.61	10.0	98.6	95.4	90 to 95%	55%	0%+	10"	4.45	1.6x10 1@25°C
Pluonathene	10	29.1	17.2	852.49	11.69	99.3	42.2	42%**	NA	NA	10 23	5.33	6.5x104@25*C
Phenanthene	10	195.83	10.0	2452.00	10.00	99.6	94.9	959.**	NA	NA	10'23	4.46	3.9x10'@25*C
Рукте	i0	NA	NA	1022.5	1 5.92	99.0	95.0***	95%***	NA	NA	10,23	5.18	5.1x10*@25*C
Bis(2-ethylhexyl)Phthalate	10	213.08	68.00	2746.5	48.2	97.4	59.4	90%	73%	0%+	10 *	5.3	3.0x10'/@25*C
Di-n-Butyt Phihalase	10	44.33	10.25	1321.0	21.5	97.6	79.3	90%	224	0%+	101	5.2	2.8x10'@25℃
Diethyl Phthalase	10	24.8	10.0	\$26.5	42.4	92.0	59.7	70 ю 90%-	15	NA	NA	2.96	t.(4x10 ⁴ *
Dimethyl Phthalate	10	77.2	10.0	170.5	23.4	87.4	63.2	60 to 95%	0%	NA	103	1.87	2.tx10' •

TABLE II-2 POLLUTANT CHARACTERISTIC AND TREATABILITY DATA FOR THE 13 PSES TOXIC POLLUTANTS

Source: Domestic Sewage Study, unless otherwise noted Source: OCPSF DD, Chapter VI $\ensuremath{\mathsf{Source:}}$

.

٠ •• ...

11

Beach- or Laboratory-Scale Data

NA - Not Available

1 -- Source: Section 10 of Record Volume for the Pass-Thru Analysis (Volume 8)

.

- Physical Occurcal Treatment Technology Removals

.

A - Source: CERCLA Site Discharges to POTWs Treatability Manual
B - Source: RREL Treatability Data Base, Version 4.0, unless otherwise noted

1. Frequency of Occurrence of the Two Remaining PSES Pollutants

Phenol and 2.4-dimethylphenol are commonly used chemicals or products of organic chemicals, plastics, and synthetic fibers processes. 230 OCPSF facilities out of a total of 393 OCPSF indirect dischargers have been estimated to have detectable levels of phenol in their wastewater discharges to POTWs. 46 OCPSF facilities have been estimated to have detectable levels of 2.4 - dimethylphenol. Tables II-3 and II-4 present OCPSF product/processes whose process wastewaters contain phenol and 2.4-dimethylphenol, respectively. (Note: These tables are not complete inventories of product/process wastestreams containing these pollutants but rather a select sample.) Also included are estimated concentrations for these pollutants. The concentrations listed were observed at the process prior to commingling with other process wastewaters at the plant and discharge to either an on-site treatment system or a POTW.

These concentrations were used to estimate OCPSF raw waste and current discharge loadings to POTW. Current loadings of phenol and 2, 4 - dimethylphenol to POTWs have been estimated as follows:

- Phenol 7,560,962 lbs/yr.
- 2,4-Dimethylphenol 93,052 lbs/yr.

By using the individual OCPSF plant loadings for each of these pollutants and knowing the POTW that each plant discharges to, a conservative estimate of the influent concentration at the POTW headworks can be calculated if the total flow to the POTW can be obtained. The following section discusses how this analysis was performed and its results.

2. Predicted POTW Headworks Concentrations of Phenol and 2,4 - Dimethylphenol

Using OCPSF facility responses to the 1983 308 Questionnaire, a total of 195 and 40 OCPSF indirect dischargers projected to discharge phenol and 2,4-dimethylphenol respectively, were linked to their respective POTWs. Using EPA's Permit Compliance System (PCS) Data Base, the estimated average daily flow for each identified POTW was then determined.

TABLE 11-3 PRODUCT/PROCESS WASTESTREAMS WITH PHENOL

PRODUCT/PROCESS NAME	PHENOL CONCENTRATION (NG/L)
CO7695707PMENGLIC RESING	16995.30
P-NITROPHENOL & BODIUM BALT/PROCESS UNDER REVIEW	9647.78
M-XYLENE (IMPLAE)/FRACTIONATION OF MIXED XYLENES	3748.33
ALKYL PHENOLS/NONYL-OCTTL ALKYLATION OF PHENOL	3594.79
ETHOXYLATES/ALKYLPHENOL & ETHYLENE OXIDE	3594.79
SALICYLIC ACID/PROCESS UNDER REVIEW	2016.72
CREGROTE/DIST. OF COAL TAB LIGHT OIL	1210.57
PITCH TAK RESIDUE/SEP.FROM COAL TAR LIGHT OIL DISTILLATE	1210.37
EPOXY REBING/EPICHLOROHYDRIN AND NOVOLAK BERINE	892.74
EPOXY RESING/SPOXIDATION OF POLYMERS	892.74
BENZENE/DIST. OF BTX EXTRACT-COAL TAR LIGHT OIL	863,19
NAPHTHALENE/SEPARATION FROM COAL THE DISTILLATE	843.19
TOLUENE/DIST. OF BIX ENTRACT-COAL TAR LIGHT OIL	863.19
XYLENES, MIXED/SOTTON BTX EXTRACY-COAL TAR LIGHT OIL	883,19
POLYCARBONATES/PROCESS UNDER REVIEW	537.00
008007492COAL TAR	539.42
EPOXY RESINS/SPICHLOROHYDRIN + SISPHENOL A	450.20
NONYL PHENOL/ALKYLATION OF PHENOL WITH PROPYLENE TRIMER	410.29
POLTESTER FIBER/MELT OPINNING FROM PURCHASED REGIN	340.34
PHENOLIC RESINS/POLYCONDENSATION OF PHENOL WITH FORMALDENYOR	3(9.79
ALKYLPHENOLS, T-ANYL/ALKYLATION OF PHENOL WITH ISOANTLENE	249.00
EPOKY REG (NB	232.69
DIPHENYL PHTHALATE ESTER/PHENOLEPHTHALYL CHLORIDE ISTERIFICATION	217.35
POLYESTER RESIN/POLYCOND. PRON TPA & ETHTLENE OLYCOL	121.15
BISPHENOL-A/CONDENSATION OF ACEYONE WITH PHENOL	80.98
CYCLOREXANE/NYDROGENATION OF BENZENE	76.53
ACETALDEHYDE/BY-PRODUCT OF ACROLEIN BY PROPYLENE OXID	62.64
ACROLEIN/OXIDATION OF PROPYLENE	62.64
METHYL BALICYLATE/EBTERIFICATION OF BALICYLIC ACID	50.26
CKLOROSENZENE/PROCESS UNDER REVIEW	49.98
BTX-BENZEXE, TOLUENE, KYLENE(HIXED)/PTROLITELE GASOLINE FROM OLEFINE MARUFACTURE	49.15
BENZOIC ACID/OKIDATION OF TOLUENE	32.15
ALKYD RESIN/COMDENSATION POLYMERIZATION	30.99
ALLTE ALCONOL/REDOX OF ACROLEIN AND BEC-BUTANOL	19.25
METHIL ETHIL RETONE/REDOX, OF ACROLEIN & SEC-BUTANOL	19.25
CTCLOHEXANOL/ONE(HIXED)/OXIDATION OF CCTCLOHEXANE	16.01
VINYL ACETATE/LIQUID PHASE ETHYLENE & ACETIC ACID	14.71
CAPROLACTAN/FROM PREMOL VIA CYCLOREXANONE OXIME	4.03
C11+C14 PHTMALATE ESTER/ESTERIFICATION OF PHTMALIC ANNYDRIDE + C11+C14 ALCONOLS	7.66
STYRENE/DENTDEDIATION OF ETHYLBENZENE	7.47
METHANOL/H.P. SYNTHESIS FROM WAT GAS VIA SYN GAS	6.41
UNBATURATED POLYROTER RESIN/REACT MALSIC ARKTD + PHYNALIC ANNYD. + PROPYLENE GLY	6.23
NYDRONYPROPYL CELLULOBE/ESTERIFICATION OF CELLALOBE	4.92
ETHYLENE/PYROLYSIS OF ETHANE/PROPANE/BUTANE/LPG	3.59
PROPYLENE/PYROLYSIS OF ETHANE/PROPANE/BUTANE/LPG	3.59
POLYESTER FISER	3,34
ANTHRACENE/COAL TAR DISTILLATION	1.30
VINYL AGETATE/REDUCTION OF AGETYLENE + AGETIC AGID	2.79
PHOSPHATE ESTERS/DIPHENTLISCORCYL - POCLJAPHENOLAISODECANOL	2.32
ACETYLENE/ST-PRODUCT OF ETHYLERE BY PROPANE PYROLYBIS	2.25
ETHYLENE/PYROLYSIS OF NAPHTHA, PROPANE, ETHANE, SUTANE	2.25
PROPYLINE/PYROLYSIE OF HAPHYNA, PROPANE, ETHAME, BUTAME	2.25
ACRYLANIDE/CATALYTIC HYDRATION OF ACRYLONITRILE	2.02
ACRYLONITRILE/PROPYLENE ANNOXIGATION	20.5

τ.

TABLE 11-3 PRODUCT/PROCESS WASTESTREAMS WITH PHENOL

PRODUCT/PROCESS NAME	PHENOL CONCENTRATION (NG/L)
ETHYLENE/PYROLYSIS OF NAPHTNA AND-OD CAS OIL	1.832
PROPTLENE/PYROLYSIS OF HAPHTHA AND OR GAS OIL	1.832
BENZYL ALCOHOL/HYDROLYSIS OF BENZYL CHLORIDE	1.732
ETHTLBENZENE/BENZENE ALKYLATION LIG. PHASE	1.643
DIMETHYL TEREPHTHALATE/ESTERIFICATION OF TPA-METHAROL	1,426
ADIPONITRILE/ANMONOLYSIS AND DENYDRATION OF ADIPIC ACID	1.243
STYRENE-BUTADIENE RESIN/ ENULSION POLYMERIZATION	U.924
CAPROLACTAN/FROM CYCLOHEXANE VIA CYCLOHEXANGHE AND CHIME	0.728
HYDROXYETHYL CELLULOSE/ETHOXYLATION OF ALXALI CELLULOSE	0.683
A-METHYLSTTREME/BY-PROD OF ACETONESPHENOL BY CUMENE OXID	0.386
ACETONE/CUMENE OXIDATION AND ACID CRT. CLEAVAGE OF CUMENE HYDROPEROXIDE	0.386
PHENOL/CLARENE OXIDATION AND ELEAVAGE	0.386
SAN REBIN/BUSPENSION POLYMERIZATION	0.374
ETHYLENE GLYCOL/HYDROLYSIS OF ETHYLENE OXIDE	0.354
ETHYLENE GRIDE/DIRECT GRIDATION OF ETHYLENE	0.354
PETROLEUN NYDROCARBON RESINS/FROM C5-C8 UNSATURATES	0.354
POLYOXYPROPYLENE QLYCOL/REACTION OF PROPYLENE BLYCOL & PROPY OXIDE	0.224
POLYSTYRENE + COPOLYNERS/BULK POLYMERJZATION U-O RUBBER	0.224
N-BUTYL ALCOHOL/HYDROGENATION OF N-BUTYRALDEHYDE, ONO PROCESS	0.220
BENZENE/DIST OF BIX EXTRACT.CAT. REFORMATE	0.182
TOLUENE/DIST OF STX EXTRACT-CAT REFORMATE	Q. 162
XTLENES, NIXED/BOTTON STX EXTRACT-CAT REFORMATE	0.162
POLYMERIC METHYLENE DIANILING/BEACTION OF ANILINE & FORMALDEHYDE	0. 143
NEOPENTONGIC ALICO/FROM ISOBUTTLENE VIA ONG PROCESS	0.142
NGDACRYLIC FIBER/POLYACRYLONITRILE & CORDWONUN	0.109
ACETYLENE/PARTIAL OXIDATION OF METHOME	0.107
ABS RERIN/ENULRICH POLYMERIZATION	0.096
NITROBENZENE/NITRATION OF BENZENE	0.091
POLYSTYRENE + COPOLYMERS/SLISP POLYMER12ATION W-C BUBBER	0.090
TRICHLORDETHYLENE/CHLOR.OF EDC AND OTHER CHLONINATED NG	0.062
PHTHALIC ANNYORIOE/OXIDATION OF NAPHTHALENE	0.073
ADIPIC ACID/OXIDATION OF CYCLOHEXANOL	0.071
VINYL AGETATE/VAPOR PHASE RX OF ETHYLENU & AGETIC AGID	0.066
GLYCERINE (SYNTHETIC)/NYDROXYLATION OF ALLYL ALCONOL	0.043
BENZYL CHLORIDE/CHLORINATION OF TOLUENE Butylbenzyl Phynalate Ebter/Phynalic Amnyd. + Benzyl Chloride + Butanol	0.060
	0.060 0.068
	0.046
ACETALDENYDE/CONIDATION OF ETNYLENE WITH CUCL2 CATALYEY	0.045
DIS 2-ETHYLNEXYL PHTHALATE ESTER/ESTERIFICATION OF PHTHALICANHYD + 2-ETHYL NEXAN DI-ETHYL PHTHALATE ESTER/ESTERIFICATION OF PHTHALIC ANHYD. WITH ETHANOL	0.043
	0.042
ANYL ACETATES/RADIOF ACETIC ACID & ANYL ALCONOLS	0.042
METHYL METNACRYLATE/METNANOLYSIS OF ACETOME CYANONYDRIN Acrylic Acid/From Acetylens.carnon Romoniog and Mayer	0.342
DIKETENE/DINERIZATION OF KETENE-ACETIC ACID	0.036
SEC-BUTYL ALCOHOL/INDIRECT HYDRATICH OF BUTENES	0.034
2,4-TOLUENE DIISOCYANATE/PHOSGENATH OF 2,4-TOLUENE DIAMINE	0.029
BENZENE/NYDRODEALKYL (ZATION OF TOLULUNE AND/ON XYLENU	0.025
HTOROGUINONE/OXIDATION OF ANILINE VIA GUINGNE	0.024
POLYETHYLENE REGINS/HIGH PARSAURE POLYMERIZATION (LDPE)	0.024
ANILINE /WITROBINZENE HYOROGENATION	0.023
TOLUENE/DIST OF BTX EXT-PYROLYSIS GASCLINE	0.019
XTLENES-NIXED/BOTTON BTX EXT-PYROLYBIS GASOLINE	0.019
ISOPRENE/EXTRACTIVE DIST CS PTROLVZATE	0.018
ETHONYLATES/C11,C12-LINEAR ALCOHOLS AND ETHYLENE GRIDE	0.017

TABLE 11-3 PRODUCT/PROCESS WASTESTREAMS WITH PHENOL

	PHENOL CONCENTRATION
PRODUCT/PROCESS NAME	(MG/L)
TETRAETHILENE GLYCOL/FROM ETHYLENE GLYCOL STILL BOTTONS	0.017
ACETIC ACID/CAIDATION OF ACETALDENTDE	0.016
BENZENE/DIST OF BTX EXTRACT-PYROLYSIS GASOLINE	0.013
P-XYLENE/ISONERIZAT-CRYBTALLIZAT OF HIXED XYLENES	0.012
PITCH TAR RESIDUE, ROD PITCH/DISTILATION OF COAL TAR CONDENSATE	0.011
CELLULOSE ACETATES FISERS/SPINNING FROM ACETYLATED CELLU	0.009
POLYETHYLENE REDINS/SOLUTION POLYMERIZATION(HOPE)	0,009
SUTADIENE (1,3)/EXT.DIST. OF C-4 PYBOLYZATES	0.008
CELLULOBE ACETATE RESIN/ACETYLATION OF CELLULOSE W/ACETIC ANNYDRIDE	0.004
POLYETHYLENE GLYCOL/ETHYLENE GLYCOL + ETHYLENE GXEDE	0.003
ACETIC ACID/BY-PRODUCT OF POLYVINYL ALCOHOL	0.000
ACETIC ANHYDRIDE/FROM ACETIC ACID BY KRTENE PROCESS	0,000
ACETONE/SYPRODUCT OF H202 BY OXIDATION OF ISOPROPANOL	0.000
ACRYLIC FIBER(45% POLYACRYLONITRILE)/SUSP POLY-WET SPINN	0.000
AGRYLIC LATEX/EMULSION POLYMERIZATION	0,000
CARBON TETRACHLORIDE/CHLORIMATION OF METKANE	0.000
CARBON TRTRACKLORIDE/CO-PRODUCTION OF TETRACHLOROETHYLENE	0.000
CHLOROBENZENE/CHLORINATION OF BENZENE	0.000
CHLORDFORM/CHLORIMATION OF METHANE	0.000
ETHYLENE CHIDE/VIA ETHYLENE CHLORONYDRIN PROCESS	0.000
GLYCERINE(SYN)/NYDROL OF EPICHLORONY VIA ALLYL CHLORIDE	0.000
IBOBLITYLENE/EXTRACT FROM C4 PYROLYZATE	0.000
M-CHLORONITROBENZENE/CHLORINATION OF NITROBENZENE	0.000
HALEIC ANNYDRIDE/BENZENE ONIDATION	0,000
METNACRYLIC ACID ESTERS/BUTYMETNACRYLATES - ESTERIFICATION OF METNACRYLIC ACID &	0000
METNYL CHLORIDE/CHLORINATION OF METNAME	0.000
HETHYL ISCOUTYL CARDINAL/PROCESS UNDER REVIEW	0.000
METNYLENE CHLORIDE/CHLORINATION OF METNAME	0.000
NYLON & RESIN/POLYCONDENSATION FROM CAPROLACTAN	0.00
G-DICHLONGNENZENE/CHLORINATION OF RENZENE	0.300
OXO ALDEN: DES-ALCONOLS/ANTL ALCONOL (NIXED)	0.000
P-DICHLORGBENZENE/CHLORINATION OF BENZENE	0.000
POLYOXYPROPYLINE SLYCOL/PROPORYLATION OF SLYCERINE	0.000
POLYPROPYLENE RESIN/SOLUTION POLYMERIZATION	0.000
POLYVINYL ALCOHOL REBIN/BOLN POLYN(NETNANOL)OF VINYLACETATE - CAUSTIC NETNANOLYS	0.000
POLYVINYL CHLORIDE/BULK POLYNERIZATION	0.000
POLYVINYL CHLORIDE/ENULSION POLYNERIZATION	Q.000
PROPYLENE ONIDE/FROM PROPYLENE VIA CHLOROWYDBIN	0.000
TETRACHLORDETHYLENE/CHLORINATION OF EDC AND OTHER CHLORINATED HYDROCARBONS	0.000
TETRAETHYL LEAD/ALKYL HALIDE + RODIUN-LEAD ALLOY	0,000
1,2-DICHLOROETHANE/DIRECT CHLORINATION OF ETHYLEHE	0.00
1,2,4-TRICHLOROMENZENE/CHLORIMATION OF 1,4-DIENLOROBENE.	0.00

I

TABLE 11-6 PRODUCT/PROCESS WASTESTREAMS WITH 2,4-DIMETHYLPHENOL

PRODUCT PROCESS NAME	CONCENTRATION	UNITS
	2398320.000	MG/L
CREDGOTE/DIST. OF COAL TAR LIGHT DIL	922205.000	MG/L
PITCH TAR RESIDUE/SEP.FROM COAL TAR LIGHT OIL DISTILLATE	922205.000	MQ/L
BENZENE/DIST. OF BIX EXTRACT-COAL TAR LIGHT OIL	154571.000	MG/L
XAPHTNALENE/SEPARATION FROM COAL TAR DISTILLATE	154571.000	NG/L
TOLUENE/DIST. OF BIX EXTRACT-COAL TAR LIGHT DIL	154371.000	NG/L
XYLEMES,MIXED/NOTTON STX EXTRACT-COAL TAR LIGHT OIL	154571.000	M0/L
ETHYLENE/PYROLYSIS OF WAPHTMA AND-OR GAS DIL	1407.000	NG/L
PROPYLENE/PYROLYSIS OF NAPHTHA AND OR GAS OIL	1407.000	HG/L
C11-C14 PHTHALATE BETER/ESTERIFICATION OF PHTHALIC ANNYDRIDE + C11-C14 ALCOHOLS	586.000	HQ/L
COAL THE PRODUCTS (NISC.)/COAL THE DISTILLATION	490.000	MQ/L
P-XTLENE/ISOMERIZAT-CRYSTALLIZAT OF MIXED XYLENES	54.000	MQ/L
MALEIC ANNYDRIDE/BENZEXE OXIDATION	30.000	MG/L
METHANOL/L.P. BYTHESIS FACH NAT GAS VIA BYN GAS Acetylene/by-product of ethtlene by propage pyrolysis	10.000	NG/L
ACETYLENB/BY-PRODUCT OF ETKYLENE BY PROPABE PYROLYSIS	5.000	NG/L
ETHTLENS/PYROLYSIS OF NAPHTNA, PROPANE, STRAME, BUTANE	5.000	NG/L
PROPYLENE/PYROLYSIS OF NAPHINA, PEOPARE, ETHANE, BUTANE	5.000	MG/L
ANING RESINS	3.(00	MG/L
ACETIC ACID/BY-PRODUCT OF POLYVINYL ALCONOL	0.000	MG/L
JENZENE/UIST OF STX EXTRACT.CAT. REFORMATE	0.000	MG/L
BISPHENOL-A/COMPENSATION OF ACETORY WITH PHENOL	0.000	HG/L
N-BUTYL ALCOHOL/HYDROGENATION OF N-BUTYRALDEHYDE, ONO PROCESS	0.000	MG/L
CHLORODENZEWE/CHLORINATION OF BENZEWE	0.00	MG/L
M-CHLORONITROBENZENE/CHLORINATION OF NITROBBNZENE	0.000	NG/L
O-DICKLORODENZENE/CHLORINATION OF BENZENE	0.000	MG/L
P-DICHLOROGENZEWE/CHLORINATION OF BENZENB	0.000	ĦG/L
LEGENTANGL/HYDROG OF ISOBNYYRALDENYDE-CXC PROCEER	0.000	KQ/L
ISOBUTYLENE/EXTRACT FROM C4 PYROLYZATE	0.000	MG/L
ISOBUTYLENE/DENYDRATION OF PURCHAGED TERT-BUTANOL	0.000	MG/L
ISOPREME/EXTRACTIVE DIST CS PYROLYZATU	0.000	NG/L
ISOPROPANOL/DIRECT HYDRATION OF PROPYLENE	0.010	MQ/L
NEOPENTONOIG ALICO/FROM IBOBUTYLENE VIA DED PROCESS	0.010	MG/L
PETROLEUM NYDROCARBON RESINE/FRON C3-CB LINGATURATES	0.010	ME/L
POLYPROPYLENE REGIN/SOLUTION POLYMERIZATION	0.000	MG/L
POLYVINYL ALCONOL REBIN/BOLN POLYN(NETHABOL)OF VINYLACETATE - CAUBTIC NETHABOLYS		HG/L
TOLUENE/DIST OF STX EXTRACT-CAT REFORMATE	0.000	HG/L
1,2,4-TAI:RLOROBENZENH/CHLORINATION OF 1,4-DICHLOROBENZ.	0.000	MG/L
XYLENES,HIXED/BOTTON BTX EXTRACT-CAT REFORMATE	0.010	MG/L

By aggregating the loadings for the OCPSF facilities discharging to a POTW, an estimated total annual loading to the POTW (in lbs/yr) for each pollutant can be determined. Using this loading estimate and the average daily flow to the POTW, an influent concentration for each pollutant at the POTW headworks can be calculated as follows:

HC	=	TAL
		APF X 365 days/year x 8.34
where:	HC =	Estimated POTW Headworks Concentration (in mg/l)
	TAL =	Total Annual Pollutant Loading (in lbs/year)
	APF =	Average POTW Flow

(in million gallons per day)

The results of this analysis, which are presented in Table II-5, show that a total of 11 POTWs had estimated influent headworks concentrations greater than 1,000 ppb out of a total of 105 POTWs included in the analysis. A total of 10 POTWs had estimated influent headworks concentrations of 2,4-dimethylphenol greater than the analytical minimum level of 10 ppb, with only 2 being greater than 100 ppb. Two POTWs showed influent headworks concentrations of phenol greater than 10,000 ppb (one of these POTWs also showed 2, 4 - dimethylphenol greater than 10,000 ppb); based on the size and location of the POTWs and the basis for the OCPSF loadings estimates (one POTW's cumulative headworks loading was made up of loadings from four OCPSF facilities with Part A loadings estimates (DD at VIII-260) which were estimated conservatively on the high side), these two POTWs were contacted to confirm the accuracy of their estimated influent headworks concentrations. Representatives from both POTWs (located in Tennessee and New Jersey) confirmed that the predicted influent headworks concentrations were overestimates; although actual influent headworks concentrations were well below 1000 ppb.

Based on the results of this analysis, a concentration range of phenol of 1,000 to 4,000 ppb will generally be the highest raw waste level that the average POTW receiving OCPSF wastewaters will have to treat. The following section discusses the ability of POTWs receiving OCPSF wastewaters to treat phenol and 2,4 - dimethylphenol.

TABLE 11-5 RESULTS OF POTH HEADWORKS ANALYSIS

	OCPSF Plants Discharging	Annual Current	Deily Flow	Concentra: ion
POIV	to this POTW	Load (Lbs/YR)	(NCD)	(R)/L)
t	4066	0.01	385.00	0.000
2	1793	61.77	37.50	0.001
3	326	617.73	15.60	0.013
4	2465	200.76	90,00	0.001
5	1888	0.00	10.00	0.000
6	196	7258.38	13.50	0.177
7	4009	0.01	5.50	0.000
8	110,508	115.84	1200.00	0,000
9	1126	7876.12	27.00	0.095
10	2677	3505.64	60.00	0.019
19	1437	11732.35	920.00	0.004
62	240,2548	8443.07	248.00	0 011
15	293	9729.32	40,00	0.080
16	149,1085,1848	598.28	120.00	0.002
15	51,72,1666,1716,1766,4026	7356.42	330.00	0.007
16	1026	10.01	3.60	0.000
17	768	46.33	6.00	0.004
18	40 64	0.00	16,50	0.000
19	618	g.01	75,00	0.000
20	162	0.00	48.00	0.000
21	2184	25743.69	155.00	0.055
22	468	1166.24	120.00	0.003
23	2609	20.81	3.75	0.002
24	4006	540.52	8.30	0.021
25	433, 1361, 1608, 1876	6270.01	0.05	45.772
26	2007	262.54	4.50	0.013
27	1560	77.22	17.18	0.001

Chemical Number=34(2,4-DIMETHYLPHENCL)

----- Chemicol HumberedS(PHEHOL) -----

	OCPSE Plents Discharging	Annual Current	Daily Flow	Concentration
POTH	to this POTU	Loed (ibs/YR)	(NGD)	(Mg/l)
1	1117	497.01	1.30	0.126
z	11 95	24.36	6.00	0.001
3	2037	2444.14	24.00	0,033
4	929, 1931, 2033, 2241, 4066	163074.88	385.00	0.139
5	79, 220, 321, 1173, 1628, 1793, 2086, 2659	34777.13	37.50	0.305
6	2108	0.75	1,81	0.000
7	1808	0.02	227.00	0.000
	526	5468.62	15.60	0.115
9	2300,2445	2555.00	90.00	0.009
10	2796	336.51	15.00	0.007
11	1507	7083.94	1.00	2.327
12	111	0,00	36.00	0.000
13	1886	0.00	10.00	0.000
14	196	64256.25	13,30	1.564
15	1751	1.12	40.00	0.000
16	1812	0.00	6.20	0.000
17	4009	0.01	5.50	0.000
16	1861	1334.80	37.00	0.012

TABLE 11-5

REGULTS OF POTH HEADWORKS ANALYSIS

Chemical Number=65(PHENOL)

(continued)

PDTU Contribution Load (Lba/TR) (MED) (MED) 19 1043, 2317 11893.09 25.00 0.136 20 2410 0.01 7.35 0.000 21 71 0.56 13.94 0.000 22 110, 500, 791, 2050, 2232, 2409, 2444 13702, 100 1200.00 0.055 23 1234, 2022 375.06 354.00 0.060 24 1224, 2477 31116.37 40.00 0.077 25 1337 805.46 120.00 0.077 24 1220 48.28 46.00 0.000 25 355 22.31 105.00 0.000 26 1220 43.28 14.60 0.000 27 1313 805.46 120.00 0.231 28 159 9.40 0.000 0.000 28 220 6.35 0.000 0.000 28 1200 8.450 0.000 0.734		CCPSF Plants Discharging	Annual Current	Daily Flow	Concentration
1 0.01 7.35 0.002 21 71 0.56 15.94 0.002 21 10,508,791,2050,2232,2608,2644 132021.00 10.003 0.005 23 124,2022 375.66 354.00 0.006 24 1377 5968,109 19.40 0.007 25 1124 69754,47 27.00 0.648 26 1224,2477 31116,37 64.00 0.102 28 1226,0477 685.46 120.00 0.000 28 1225 68.28 46.00 0.000 29 2559 0.03 12.00 0.000 2435 22.21 105.00 0.000 2435 22.21 105.00 0.000 241 223 43.46 0.000 241 223 43.46 1.40 0.007 241 2335 16909 17.50 0.000 241 1.337 7.56.00 0.028 0.028	POTH		Load (1be/TR)	(NGD)	(mg/1)
1 0.01 7.35 0.002 21 71 0.56 15.94 0.002 21 10,508,791,2050,2232,2608,2644 132021.00 10.003 0.005 23 124,2022 375.66 354.00 0.006 24 1377 5968,109 19.40 0.007 25 1124 69754,47 27.00 0.648 26 1224,2477 31116,37 64.00 0.102 28 1226,0477 685.46 120.00 0.000 28 1225 68.28 46.00 0.000 29 2559 0.03 12.00 0.000 2435 22.21 105.00 0.000 2435 22.21 105.00 0.000 241 223 43.46 0.000 241 223 43.46 1.40 0.007 241 2335 16909 17.50 0.000 241 1.337 7.56.00 0.028 0.028					
0.54 15.4 0.56 15.4 0.000 21 110,508,791,2050,2232,2668,2644 132021.60 1200.00 0.005 23 1335,702 39561.00 19.60 0.007 24 1327 39561.00 19.60 0.007 25 1126 69764.87 27.00 0.6468 2122,20 68.28 46.00 0.000 24 1220 68.28 46.00 0.000 2559 0.033 12.00 0.000 0.000 24 2223 63.28 46.00 0.000 2559 0.033 12.00 0.000 0.001 2431 1099 35878.69 52.00 0.214 322 2285 6.24 6.60 0.000 34 1223 43.84 1.60 0.000 35 19.84 17.50 0.000 0.228 36 211 60297.06 4.50 0.028 36 213	19	1083,2517	11893.09		
22 110,508,791,2250,2252,2608,2644 132021.00 1200.00 0.055 23 1224,2022 375.05 354.00 0.0607 24 1357 3980.09 19.40 0.067 25 1126 66774.47 27.00 0.848 24 1224,2677 31116.37 60.00 0.170 27 1313 805.64 120.00 0.002 28 1220 68.28 46.00 0.000 26 2359 0.03 12.00 0.000 21 1220 68.28 46.00 0.000 23 1699 35878.49 52.00 0.214 22 228 5.24 8.60 0.000 31 1699 35878.49 52.00 0.214 22 228 5.24 8.60 0.000 31 14900 15.00 0.001 35.33 31 1595 3.03 56.00 0.28 32 <td< th=""><th>20</th><th>2810</th><th></th><th></th><th></th></td<>	20	2810			
101 175.06 375.06 354.00 0.007 24 1337 3988.09 19.46 0.067 25 1124 6974.47 27.00 0.648 26 1224,2477 31114.37 40.00 0.107 27 1313 65.4.64 120.00 0.002 28 1220 65.2.8 46.00 0.000 10 2359 0.05 12.00 0.000 10 2359 0.25 12.00 0.000 11 1009 35978.69 52.00 0.214 12228 4.24 8.60 0.000 33 1505 12.00 0.000 34 1223 4.3.84 1.460 0.009 35 1355 12.00 0.000 0.000 34 1223 4.3.84 1.461 0.000 35 120.00 0.128 3.03 0.000 36 211 8220.00 0.028 3.0	21	71			
24 137 3988.09 19.40 0.047 25 1126 69724.87 27.00 0.846 21 1313 805.68 120.00 0.002 28 1220 68.28 48.00 0.002 29 2359 0.03 12.00 0.000 20 24.81 22.21 105.00 0.000 21 2284 6.24 8.60 0.000 21 1999 33278.49 52.00 0.020 22 2284 6.24 8.60 0.000 24 1337 19.49 17.50 0.000 23 1333 1469040.51 44.70 0.724 24 1437 79493.16 920.00 0.023 24 1437 79493.16 920.00 0.023 24 1437 79493.16 920.00 0.023 24 1437 79493.16 920.00 0.024 24 1437 3.97	22	110,508,791,2050,2 232,2608,2646			
102 102 4774.87 27.00 0.448 26 1226,2477 31116.37 60.00 0.170 27 1313 805.64 120.00 0.002 28 1220 68.28 45.00 0.000 2359 0.03 12.00 0.000 2455 22.21 105.00 0.000 31 1699 35878.49 52.00 0.216 32 2284 6.24 8.60 0.000 34 1223 43.84 1.40 0.009 35 1333 14090.51 44.70 0.734 36 211 402877.64 6.56 4.038 37 22.1437 79493.16 920.00 0.028 38 4050 3.03 3.0.00 0.000 39 603 0.01 33.30 0.000 40512 38.73 56.00 0.000 41 152.25 36.17 4.60 0.055	23	1234,2022			
24 122, 2477 31114.37 40.00 0.170 27 1313 205.44 120.00 0.002 21 1220 68.28 48.00 0.000 23 1220 68.28 48.00 0.000 2458 22.21 105.00 0.000 21 1099 33078.49 52.00 0.214 32 2284 6.24 8.60 0.000 33 1505 19.69 17.50 0.000 34 1220 43.84 1.60 0.009 35 1333 149940.51 46.70 0.734 36 211 80277.04 4.50 0.000 37 22.1437 79493.16 920.00 0.028 38 4050 3.00 0.000 0.000 403 0.01 33.30 0.000 403 0.01 33.30 0.000 41 452 3.97 0.30 0.004	24	1357			
Box Box <th>25</th> <th></th> <th></th> <th></th> <th></th>	25				
24 1220 48.28 44.00 0.000 29 2359 0.03 12.00 0.000 1 1999 33078.49 52.00 0.214 32 2224 6.24 8.60 0.000 33 1699 17.50 0.000 0.214 32 2224 6.24 8.60 0.000 34 1223 43.86 1.40 0.009 35 1533 1469040.51 64.70 0.734 46 221 80.00 0.000 0.000 36 221 80.00 0.000 0.002 37 22,1437 74693.16 920.00 0.028 38 4050 0.01 33.30 0.000 405 0.01 153.30 0.000 41 645 0.07 0.30 0.044 1652 36.73 56.00 0.000 41 645 23.97 0.30 0.044 1	26	1226,2677			
23 2359 0.03 12.00 0.000 30 24.35 22.21 105.00 0.000 31 1669 35078.49 52.00 0.214 32 2284 4.24 8.60 0.000 33 155 19.89 17.50 0.000 34 1223 43.86 1.40 0.009 35 1333 1459640.51 46.70 0.734 36 221 80297.66 6.51 4.038 37 22,1437 774673.16 920.00 0.028 36 2050 3.03 50.00 0.000 36 4050 3.03 50.00 0.000 4052 38,77 0.30 0.000 0.000 41 641,743,2571 1.42 67.50 0.000 42 1595 3.07 0.30 0.004 43 240,592,2148 427364,18 242.00 0.566 44 1532,45	27	1313			
20 2435 22.21 105.00 0.000 31 1699 33878.49 52.00 0.214 32 2288 6.24 8.60 0.000 33 1535 19.69 17.50 0.000 34 1223 43.86 1.60 0.000 34 1223 43.86 1.60 0.000 35 1333 1690.40.51 64.70 0.754 36 2211 80297.04 6.50 4.058 37 22,1437 79693.16 92.00 0.000 36 643 0.01 53.30 0.000 37 22,153 1.42 87.50 0.000 4052 38.77 0.30 0.004 0.005 41 641,725,2571 1.42 87.50 0.000 42 1593 3.97 0.30 0.064 43 240,592,2164 427364.18 248.00 0.564 44 152,2 <t< th=""><th>28</th><th></th><th></th><th></th><th></th></t<>	28				
31 1690 3377.69 52.00 0.214 32 2286 6.24 8.60 0.000 33 19.89 17.50 0.000 34 1221 43.46 1.60 0.009 35 1333 145040.51 46.70 0.734 36 221 80297.04 6.50 4.038 37 22,1437 79473.16 920.00 0.028 38 4050 3.03 30.00 0.000 39 603 0.01 53.30 0.000 1052 38.77 7.42 87.50 0.000 41 641,763,2371 1.42 87.50 0.000 42 1593 3.27 0.30 0.004 43 20,592,2463 42756.18 248.00 0.566 44 1632 64.17 4.60 0.056 44 233 2545.22 22.00 0.334 45 2318 152.65 4.00 0.128 45 2318 6451.27 0.000 1.41 <th>29</th> <th>2359</th> <th></th> <th></th> <th></th>	29	2359			
31 2284 6.24 8.60 0.000 33 105 19.89 17.50 0.000 34 1223 63.84 1.60 0.009 35 13223 149060.51 64.70 0.724 36 211 80297.04 6.50 4.039 37 72,1437 79693.16 920.00 0.028 38 4050 3.03 50.00 0.000 403 0.01 53.30 0.000 0.000 403 240,592,2914 48.73 56.00 0.000 41 641,743,2971 1.42 87.50 0.000 43 240,592,2948 442756.18 248.00 0.054 43 240,592,2948 442 7.50 0.000 441 1632 451.7 4.60 0.055 5218 152.65 4.00 0.128 644.1 10.00 7973 22345.22 22.00 0.314 242 10.00 1.34 4242 0.00 8.00 0.000 1.43 1.	30	2635			
133 13.55 19.59 17.50 0.000 34 1223 43.56 1.60 0.0754 35 1333 146940.51 64.70 0.754 36 211 80297.64 6.50 4.038 37 32,1437 79693.16 920.00 0.028 38 4050 3.03 50.00 0.020 39 605 0.01 33.30 0.000 40 1052 38.73 56.00 0.000 41 641,763,2371 1.42 87.50 0.000 42 1995 3.97 0.30 0.004 43 240,592,2543 427364.18 248.00 0.564 44 1832 66.17 4.60 0.005 45 2316 152.45 4.00 0.128 46 143 8.42 7.50 0.000 47 2793 22345.22 22.00 0.334 48 267 5.00	31	1899			
35 1.52 43.84 1.60 0.009 35 1333 145040.51 64.70 0.734 36 2:1 80297.04 6.50 4.058 37 22,1437 79673.16 920.00 0.023 38 4050 3.03 50.00 0.005 39 603 0.01 53.30 0.000 401 1.42 87.50 0.000 40 1052 38.73 56.00 0.000 40 1052 38.77 0.30 0.004 43 240,592,2248 427584.18 248.00 0.564 43 240,592,2248 427584.18 248.00 0.564 43 1.52 66.17 4.60 0.005 43 240,592,2248 4.00 0.128 4.42 0.00 0.777 44 143 1.52,45 4.00 0.777 4.64 0.00 777 44 143 8.42 7.50 0.000 777 6.61 177 6.61 0.00 777	32	2288			
1420 149040.51 44.70 0.734 36 2:1 80297.06 6.50 4.038 37 22,1437 79975.16 920.00 0.028 38 4050 3.03 50.00 0.000 39 603 0.01 53.30 0.000 40 1052 38.73 56.00 0.000 41 641,743,2371 1.42 87,750 0.000 41 641,743,2371 1.42 87,750 0.000 43 240,592,2348 427384.18 248.00 0.566 44 1832 66.17 4.60 0.005 43 240,592,2348 8.42 7.50 0.000 44 1832 64.17 4.60 0.056 44 1832 8.42 7.50 0.000 44 2753 86130.72 40.00 0.707 50 7442 0.00 8.00 0.000 51 2442 0.00	33	, 505			
35 211 80297.04 4.50 4.038 37 22,1437 79693.16 920.00 0.028 38 4050 3.03 50.00 0.028 39 605 0.01 33.30 0.000 40 1052 38.73 56.00 0.000 41 641,743,2371 1.42 87.50 0.000 42 1595 3.07 0.30 0.066 44 1432 641,743,2371 1.42 87.50 0.000 42 1595 4.00 0.1566 0.005 0.566 44 1432 641,73 4.60 0.056 44 143 8.42 7.50 0.000 45 2318 1552.65 4.00 0.131 442 2753 22345.22 22.00 0.334 48 275 38.130.72 40.00 0.400 50 19793 6443.254 12.000 1.141 5	34	1223			
37 22,1437 79493.16 920.00 0.028 38 4050 3.03 50.06 0.000 405 0.01 53.30 0.000 40 1052 38.73 56.00 0.000 40 1052 39.73 56.00 0.000 42 1595 3.97 0.30 0.004 43 240,392,2343 427364.18 248.00 0.564 44 1822 64.7 4.40 0.005 45 2318 1552.65 4.00 0.128 44 143 5.42 7.50 0.000 45 2318 1552.65 4.00 0.128 44 143 5.42 7.50 0.000 44 257 84130.72 40.00 0.707 19793 6445.29 19.00 0.100 7.07 19793 6445.29 19.00 0.000 1.11 50 3.642 0.00 2.60 0.000 51 197.64, 1983, 2359, 1667, 1848, 2348, 412087.55 <	35	1833			
31 4.050 3.03 50.06 0.000 39 603 0.01 53.30 0.000 40 1052 34.73 56.00 0.000 41 641,743,2371 1.42 87.50 0.000 42 1593 3.97 0.30 0.004 43 240,592,2348 627364.18 248.00 0.566 44 1852 66.17 4.60 0.005 44 1852 66.17 4.60 0.005 44 1852 66.17 4.60 0.005 44 1832 64.17 4.60 0.005 44 1832 64.17 4.60 0.005 44 1985 223.52 22.00 0.334 44 263 31.00 0.134 50 2642 0.00 8.00 0.000 51 2442 49.69 33.00 1.128 54 2483,2495 - - -<	36	211			
35 6.03 0.01 53.30 0.000 40 1052 38.73 56.00 0.000 41 641,763,2371 1.42 87.50 0.000 42 1595 3.97 0.30 0.004 43 240,592,2348 427384.18 248.00 0.566 44 1832 664.17 4.60 0.005 45 2318 1552.65 4.00 0.128 44 1832 664.17 4.60 0.000 44 273 86130.72 40.00 0.7334 44 273 86130.72 40.00 0.777 49 1995 6443.29 13.00 0.141 50 2442 0.00 8.00 0.000 51 2442 0.00 8.00 0.000 52 265 0.00 2.60 0.000 53 541,72,57,796,944,997,1047,1141,1426, 1138109,80 330.00 1.128 54	37	22,1437			
1052 38.73 56.00 0.000 41 641,743,2371 1.42 87.50 0.000 42 1595 3.97 0.30 0.004 43 240,592,2148 427384,18 248.00 0.564 43 240,592,2148 427384,18 248.00 0.128 44 1632 66.17 4.60 0.000 45 2318 1552.45 4.00 0.128 44 143 8.42 7.50 0.000 47 2793 22345.22 22.00 0.141 50 2642 0.00 8.00 0.000 51 242 0.00 8.00 0.000 52 285 12.00 1.413 54 2483,2495 12.00 1.128 2483 2495 12.00 1.128 54 2483,2495 12.00 1.128 54 2483,2495 12.00 1.128 54 12.05,1575	34	4050			
1024 1024 87.50 0.000 41 641, 743, 2371 1.42 87.50 0.000 42 1595 3.97 0.30 0.004 43 240, 592, 2348 627384, 16 24.80, 00 0.566 44 1832 64, 17 4.40 0.005 45 2318 152, 45 4.00 0.128 44 1832 64, 17 4.40 0.000 44 1833 8.42 7.50 0.000 44 275 22345, 22 22.00 0.334 44 275 6443, 29 15.00 0.707 49 1975 6442, 29 15.00 0.707 50 7442 0.00 8.00 0.000 51 2442 0.00 2.60 0.000 52 285 0.00 2.60 0.000 54 149, 1085, 1219, 1352, 1539, 1667, 1848, 2348, 412087, 153 10.20 1.128 54 2442 0.00 330.00 1.133 54 1646, 1716, 1744, 1833, 2539, 4026 <th>39</th> <th>603</th> <th></th> <th></th> <th></th>	39	603			
3.97 0.30 0.004 42 1595 3.97 0.30 0.004 43 240,592,2543 427364.18 248.00 0.566 44 1632 66.17 4.60 0.005 45 2318 1552.65 4.00 0.128 44 143 8.42 7.50 0.000 47 2793 22345.22 22.00 0.334 48 273 86130.72 40.00 0.707 49 1993 6445.29 15.00 0.101 50 2442 0.00 8.00 0.000 51 2422 49.49 33.00 0.000 52 245 0.00 2.60 0.000 53 51,72,257,796,944,997,1047,1141,1424, 1138109.80 330.00 1.133 54 2445,2495 - - - - 55 51,72,257,796,944,997,1047,1141,1424, 1138109.80 330.00 1.133 54 2445,157 4.78 3.60 0.000 59 764 <t< th=""><th>40</th><th>1052</th><th></th><th></th><th></th></t<>	40	1052			
1392 1392 1392 1392 1392 43 240, 592, 2343 427364, 18 248.00 0.566 44 1832 66, 17 4.40 0.005 45 2318 1552.65 4.00 0.128 44 143 8.42 7.50 0.000 47 2793 22345.22 22.00 0.334 48 263 36130.72 40.00 0.707 49 1993 6445.29 13.00 0.141 50 2442 0.00 8.00 0.000 51 2442 0.00 8.00 0.000 52 285 0.00 2.60 0.000 53 149, 1085, 1219, 1352, 1359, 1667, 1848, 2348, 412087.55 120.00 1.128 54 2483, 2465 - - - - 55 51, 72, 257, 796, 944, 997, 1047, 1181, 1426, 1138109,80 330.00 1.133 54 1464, 1714, 1833, 2539, 4026 - <t< th=""><th>41</th><th>661,743,2371</th><th></th><th></th><th></th></t<>	41	661,743,2371			
640, 197, 12, 100 152, 100 0.005 44 1832 1552, 65 4.60 0.128 44 143 8.42 7.50 0.000 47 2793 22345, 22 22.00 0.334 48 273 26130, 72 40.00 0.707 49 1993 6445, 29 13.00 0.141 50 2442 0.00 8.00 0.000 51 2442 0.00 8.00 0.000 52 265 0.00 2.40 0.000 53 149, 1045, 1219, 1352, 1339, 1667, 1848, 2348, 412087, 55 120.00 1.123 54 2483, 2495 - - - 55 51, 72, 257, 796, 944, 997, 1047, 1141, 1424, 1138109, 80 330.00 1.133 54 1464, 1716, 1744, 1835, 2539, 4026 - - - 57 1936 8.21 0.85 0.003 58 771, 1024, 1835, 2539, 4026 - - - 59 764 640, 1013 4.00 0.034 610 1322 <th>42</th> <th>1595</th> <th></th> <th></th> <th></th>	42	1595			
1552 1552,65 4.00 0.128 45 2318 1552,65 4.00 0.128 44 143 8.42 7.50 0.000 47 2793 22345,22 22.00 0.334 48 273 86130,72 40,00 0.707 49 1993 6445,29 13.00 0.141 50 2442 0.00 8.00 0.000 51 2442 49.49 33.00 0.000 52 265 0.00 2.60 0.000 53 149,1085,1219,1352,1539,1667,1848,2348, 412087,55 120.00 1.128 54 2483,2495 - - - - 55 51,72,257,796,944,997,1047,1181,1426, 1136109,80 330.00 1.133 56 1644,1716,1764,1835,2539,4026 - - - 57 1926 8.21 0.85 0.003 58 771,1024,1373 4.72 3.60 0.003	43	240,592,2948			
13 8.42 7.50 0.000 44 143 8.42 7.50 0.000 44 2793 22345.22 22.00 0.334 44 273 86130.72 40.00 0.707 49 1993 6445.29 13.00 0.141 50 2442 0.00 8.00 0.000 51 2442 0.00 8.00 0.000 52 285 0.00 2.60 0.000 53 149,1065,1219,1352,1539,1667,1848,2348, 412087.55 120.00 1.128 54 2483,2495 - - - - 55 51,72,257,796,944,997,1047,1181,1426, 1138109.80 330.00 1.133 56 1644,1716,1744,1833,2539,4026 - - - 57 1936 8.21 0.485 0.003 58 771,1024,1575 4.72 3.60 0.0034 60 1322 2945.52 3.00 0.3325	44	1832			
103 22345.22 22.00 0.334 47 2793 265.22 22.00 0.334 48 273 86130.72 40.00 0.707 49 19973 6445.29 15.00 0.141 50 2442 0.00 8.00 0.000 51 2442 2442 0.00 8.00 0.000 52 265 0.00 2.60 0.000 53 $149, 1085, 1219, 1352, 1339, 1667, 1848, 2348, 412087.55$ 120.00 1.128 54 $22483, 2495$ $ 51$ $77, 257, 796, 944, 997, 1047, 1181, 1426, 11380109.80$ 330.00 1.133 56 $1644, 1716, 1744, 1833, 2539, 4026$ $ 57$ 1934 8.211 0.855 0.003 58 $771, 1026, 1575$ 4.78 3.60 0.000 59 768 610.15 4.00 0.034 4064 0.00 16.50 0.000 62 $618, 1194$ 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 44 1432 $611742, 76$ 10.00 13.524 45 2117 646.19 34.40 0.004 433 0.00 6.00 0.002 433 0.00 6.00 0.002	45	23 14			
47 2753 84130,72 40.00 0.707 48 275 84130,72 40.00 0.707 49 1993 6445.29 15.00 0.141 50 2442 0.00 8.00 0.000 51 2442 49.49 35.00 0.000 52 245 0.00 2.60 0.000 53 149,1045,1219,1352,1539,1667,1848,2348, 412087.55 120.00 1.128 54 2483,2495 - - - - 55 51,72,257,798,944,997,1047,1181,1426, 1138109.80 330.00 1.133 56 2483,2495 - - - - 57 19386 8.21 0.85 0.003 58 771,1024,1375 4.78 3.60 0.000 59 764 0.00 16.50 0.000 61 1322 2945.52 3.00 0.323 61 4064 90.99 75.00 0.000 62 618,1194 90.99 75.00 0.000	46	143	_		
49 1993 6445.29 15.00 0.141 50 2642 0.00 8.00 0.000 51 2442 49.49 33.00 0.000 52 265 0.00 2.60 0.000 53 149,1085,1219,1352,1539,1667,1848,2348, 412087.55 120.00 1.128 54 2485,2495 - - - - 55 51,72,257,796,944,997,1047,1181,1426, 1138109.80 330.00 1.133 56 1644,1716,1764,1833,2539,4026 - - - 57 1934 8.21 0.85 0.003 58 771,1024,1575 4.72 3.60 0.000 59 765 610.15 4.00 0.035 61 4322 2945.52 3.00 0.323 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.524	47	2793			
197 0.00 8.00 0.000 50 2642 49.49 33.00 0.000 51 2642 0.00 2.60 0.000 52 285 0.00 2.60 0.000 53 149,1085,1219,1352,1539,1667,1848,2348, 412087.55 120.00 1.128 54 2463,2695 - - - - 55 51,72,257,796,944,997,1047,1181,1426, 1138109,80 330.00 1.133 56 1644,1716,1744,1853,2539,4026 - - - 57 1536 8.21 0.85 0.003 58 771,1026,1575 4.78 3.60 0.000 59 766 610.15 4.00 0.334 60 1322 2945.52 3.00 0.323 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.024 64 1432 611742.76 10.00 13.526 64 <th>44</th> <th>253</th> <th></th> <th></th> <th></th>	44	253			
50 X002 49.49 33.00 0.000 51 2442 49.49 33.00 0.000 52 285 0.00 2.40 0.000 53 149,1085,1219,1352,1539,1667,1848,2348, 412087.55 120.00 1.128 54 2483,2405 - - - - 55 51,72,257,796,944,997,1047,1181,1426, 1138109.80 330.00 1.133 56 1644,1716,1744,1833,2539,4026 - - - 57 1934 8.21 0.85 0.003 58 771,1026,1375 4.78 3.60 0.000 59 766 610.15 4.00 0.334 60 1322 2945.52 3.00 0.323 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.526 65 2117 646.19 34.40 0.004	49	1993			
51 244 0.00 2.40 0.000 52 265 0.00 2.40 0.000 53 149,1085,1219,1352,1539,1667,1848,2348, 412087.55 120.00 1.128 54 2488,2495 55 51,72,257,796,944,997,1047,1181,1426, 1138109.80 330.00 1.133 56 1644,1716,1744,1833,2539,6026 . . . 57 1934 8.21 0.85 0.003 58 771,1024,1575 4.78 3.60 0.000 59 768 610.15 4.00 0.334 60 1322 2945.52 3.00 0.323 61 4064 0.000 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 15.526 65 2117 646.19 34.40 0.004 66 679 0.01 200.00 0.004	50	2642			
52 200 1.128 53 149, 1005, 1219, 1352, 1539, 1667, 1848, 2348, 4.12087, 55 120.00 1.128 54 2483, 2495	51	2442			
53 147, 1627, 127, 127, 127, 127, 127, 127, 127, 1	52		-		
34 330,00 1.133 35 51,72,257,796,944,997,1047,1181,1426, 1138109.80 330.00 1.133 56 1664,1716,1744,1833,2539,4026 8.21 0.85 0.003 57 1936 8.21 0.85 0.003 58 771,1026,1575 4.78 3.60 0.000 59 768 610.15 4.00 0.034 60 1322 2945.52 3.00 0.323 61 4064 0.000 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.526 64 1432 644.19 34.40 0.046 65 2117 646.19 34.40 0.046 66 639 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433	53	149,1085,1219,1352,1539,1667,1848,2348,	412087.55	120.00	1.160
53 54,72,53,754,764,762,762,762,762,762,762,762,771,1024,1833,2539,4024 8.21 0.85 0.003 57 1934 8.21 0.85 0.000 58 771,1024,1575 4.78 3.60 0.000 59 768 610.15 4.00 0.323 60 1322 2945.52 3.00 0.323 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.524 65 2117 646.19 34.40 0.004 66 679 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	54				
57 1936 8.21 0.85 0.003 58 771,1026,1575 4.78 3.60 0.000 59 768 610.15 4.00 0.034 60 1322 3.00 0.325 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.526 65 2117 6464.19 34.40 0.006 66 679 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	35		1138109.80	330.00	
37 1938 3.60 0.000 58 771,1024,1575 4.78 3.60 0.000 59 768 610.15 4.00 0.036 60 1322 2945.52 3.00 0.323 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.526 65 2117 6461.19 34.40 0.004 66 679 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	56	1664,1716,1744,1853,2539,4026			
50 771,1022,1373 610.15 4.00 0.034 59 768 2945.52 3.00 0.323 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.524 65 2117 646.19 36.40 0.006 66 679 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	57				
39 768 2945.52 3.00 0.323 60 1322 0.00 16.50 0.000 61 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.526 65 2117 646.19 36.40 0.006 65 2117 646.19 36.40 0.006 64 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	58	771,1026,1575			
50 1342 0.00 16.50 0.000 63 4064 0.00 16.50 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611762.76 10.00 13.526 65 2117 646.19 36.40 0.006 66 6/9 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 *433 0.00 6.00 0.000	59	768			
63 4004 90.99 75.00 0.000 62 618,1194 90.99 75.00 0.000 63 1528 506.69 4.00 0.042 64 1432 611742.76 10.00 13.526 65 2117 646.19 34.40 0.006 66 679 200.00 0.000 0.000 67 1773 29415.49 13.00 0.743 68 *433 0.00 6.00 0.000	60	1322			
62 63 1528 506.69 4.00 0.042 63 1528 506.69 4.00 13.526 64 1432 611762.76 10.00 13.526 65 2117 646.19 34.40 ⁻¹ 0.006 66 609 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	61	4064			
63 1348 611762.76 10.00 13.526 64 1432 611762.76 10.00 13.526 65 2117 646.19 34.40 0.006 66 609 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	62	618,1194			
44 1412 646.19 36.40 0.006 65 2117 0.01 200.00 0.000 66 679 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	63				
65 2117 0.01 200.00 0.000 66 679 0.01 200.00 0.000 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000	- 44				
30 279 13.00 0.743 67 1773 29415.49 13.00 0.743 68 1433 0.00 6.00 0.000					
67 1773 68 1433 0.00 6.00 0.000					
66 ⁻ 433 (4 /4) 2 /37					
69 162,543 334679.30 KG.W 2.427	68				
	49	162,343	1340\A'3A	40100	*** * 1

TABLE II-5 RESULTS OF POTH HEADWORKS AMALYSIS

	OCPSF Plants Discharging	Annual Current	Dafly Flow	Concentration
POTW	to this POTW	Load (Lbs/YR)	(HGD)	(mg/l)
70	1351	813.02	92.00	0.003
71	2191	275.90	1.60	0.057
72	1320	657.04	14.08	0.015
73	2261	363.23	135.00	0.001
74	1069	209167.08	160.00	0.382
75	199,702	13351,78	90.00	0.049
76	1316	5.78	12.00	0,000
77	2184,4014,4070	39110.96	155.00	0.063
78	4024	1434.10	4.40	0.107
79	468,749,1534,2243	36583.61	120.00	0.100
80	2609	2861.86	3.75	0.251
81	987	1160.17	8.00	0.048
82	2147	0.00	1.67	0,000
83	830	6.46	108.30	0.000
84	4006	4785.04	8.30	0.189
85	4047	22259.66	3.75	1,750
86	1971,2666	15.20	200.00	0.000
87	1255	27.82	26.00	0.{:00
58	1 057	126.09	42.75	0.001
6 9	887,975	55676.92	200.00	0.091
20	93	15.83	10.00	0,001
21	2016	19801.48	6.00	5.084
92	214	4772.96	40.00	0.039
93	1277	8602.72	65.00	0.043
94	433,1361,1608,1876	55506.46	0.05	405.203
95	1202	190,40	7.14	0.009
96	206	24170,26	30.00	0.265
97	958	0.99	20.00	0.000
98	2259	1568.45	120.00	0.004
99	2007	2324.16	6.50	0.17
1 00	2250	1503.86	24.00	0.021
101	976	40.73	10.00	0.001
102	249,722	10767.11	50.00	0.671
113	4048	0.00	0.40	0.000
114	1650	605.68	5.00	0.053
1 25	2498	12065.13	120.00	0.033
176	658,706	174069.78	18.39	3.109
1ú7	1560	683.58	17.18	0.013

ï

3. Ability of POTWs to Biodegrade the Two Remaining PSES Pollutants

In theory, most organic pollutants can be biodegraded with adequate detention times and favorable operating conditions. The general design equation for an activated sludge system is:

$$\frac{So - Se}{Xv t} = k \frac{Se}{So}$$

where:	Şo	=	influent concentration
	Se	=	effluent concentration
	Xv	=	mixed liquor volatile suspended solids
	k	=	biodegradation rate constants
	t	=	detention time

Given that pollutant influent concentration will remain fairly constant with steady industrial user discharges, that permit conditions fix the pollutant effluent concentration and that the POTW is already built with a given aeration basin volume and detention time, the parameters k, biodegradation rate constant and Xv, mixed liquor volatile suspended solids, generally will control the removal of organic pollutants.

The biodegradation rate constant, k, is a measure of the growth rate of biomass microorganisms based on a given substrate or food source and varies depending on the composition of the wastewater to be treated. When designing a biological treatment system, laboratory-scale pilot studies are performed on the wastewater to determine the value to be assigned to the biodegradation rate constant. However, after the rate constant has been established and the treatment system has been designed and constructed, changes in the composition of the wastewater to be treated are accommodated by adjustment of operational parameters such as mixed liquor suspended solids.

Table II-6 presents biodegradation rate constants for various types of wastewaters; in general the higher the value of k, the more biodegradable the wastewater. For example, potato processing wastewater, which contains simple carbohydrates and starches that are easy to biodegrade, has a biodegradation rate constant of 36.0 day⁻¹, while wastewaters generated in the manufacture of cellulose acetate, a more chemically complex compound, has a biodegradation rate constant of 2.6 days⁻¹. Rate constants for organic chemicals intermediates wastewaters, which can include a wide variety of compounds, range from 5.8 to 20.6 days⁻¹.

TABLE II-6

BIODEGRADATION RATE CONSTANTS FOR VARIOUS TYPES OF WASTEWATERS

Wastewater	k days' ¹
Potato processing	36.0
Peptone	4.03
Sulfite paper mill	5.0
Vinyl acetate monamer	5.3
Polyester fiber	14.0
Formaldehyde, propanol, methanol	19.0
Cellulose acetate	2.6
AZO dyes, epoxy, optical brighteners	2.2
Petroleum refinery	9.1
Vegetable tannery	1.2
Organic phosphates	5.0
High nitrogen organics	22.2
Organic intermediates	20.6
-	5.8
Viscose rayon and nylon	8.2
· ·	6.7
Soluble fraction of domestic sewage	8.0

Source: Eckenfelder, Biological Waste Treatment

OCPSF wastewaters with known concentrations of phenol and 2,4-dimethylphenol are highly biodegradable and, in fact, appear to be comparable in biodegradability to domestic sewage based on biodegradation rate constants. For example, from Table II-3, polyester fiber is listed as generating raw wastewater with a phenol concentration of 340,300 ppb; polyester fiber is also listed in Table II-6 as generating wastewaters with an associated biodegradation rate constant of 14.0 days⁻¹ which would be considered more biodegradable than domestic sewage at 8.0 days⁻¹. Also, production of methanol is listed in Table II-4 as generating raw wastewater with a 2,4-dimethylphenol concentration of 10,000 ppb; methanol production is also listed as generating wastewaters with an associated biodegradation rate constant of 19.0 day⁻¹ which would also be considered more biodegradable than domestic sewage.

Thus, even at concentrations higher than those estimated to occur at POTW headworks, phenol and 2,4-dimethylphenol should biodegrade more easily than the typical constituents of domestic sewage, which POTWs were specifically designed to handle.

4. <u>POTW Performance Data</u>

In 1978, EPA initiated a program to study the occurrence and fate of the then 129 priority pollutants in 40 POTWs. This study was subsequently expanded to include ten additional plants to support the Agency's database. In 1982, EPA published the findings of the 50 POTW Study (EPA 440/1-82/303), which provided the data that was the basis for the pass through determination for priority pollutants in the OCPSF guidelines and the proposed pesticide guidelines.

Sampling data collected during the 50 POTW Study showed that biological treatment systems at POTWs are capable of reducing influent phenol concentrations of over 1,000 ppb to below the analytical minimum level in the effluent. The main reason for the finding of pass through for phenol and 2,4-dimethylphenol at promulgation of the OCPSF guideline was the significantly higher influent concentrations used to calculate direct discharger removals in comparison with concentrations used to calculate II-7 presents the data to perform this comparison.

Out of a total of 28 POTWs that had phenol detected at least once in their influent, only 15 POTWs had average influent phenol concentrations greater than 20 ppb and only eight POTWs had average influent phenol concentrations greater than 100 ppb. Of these eight, six had concentrations between 100 and 500 ppb, and only two had concentrations between 500 and 1,000 ppb. In contrast, out of 25 OCPSF direct discharge facilities that had phenol concentrations detected in their influent, 23 OCPSF plants had influent concentrations greater than 20 ppb and 19 OCPSF plants had influent phenol

TABLE 11-7 OCPOF AND POTH INFLUENT AND EFFLUENT DATA FOR PHENCL AND 2,4-DIEMETHYLPHENCL USED IN THE PAGE-THROUGH ANALYSIS AT PROMULOATION

					WT+165, 1		ETECTION LIP					*******
	# 085.	NUMBER	NININUN	MEAN	MEDIAN	HAXINUR	# 088.	NJ. MOER	NINIMUM	MEAN	MEDIAN	KAXEHU
OCPEF	OF	INFLUENT	INFLUENT	INFLUENT	INFLUENT	INFLUENT	OF	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
KU, MIDER	INFLUENT	(>ůL)	(PPE)	(PP8)	(P PS)	(PP8)	[EFFLUENT	(>DL)	(PPB)	(PPB)	(PPS)	(PPB)
23941	4	4	616	1847	2088	2597	20	20	13	58,500	43.50	205.000
25 36 T	15	15	257	501	525	715	j 15	•	10	10.000	10.00	10,000
30 33 7	13	13	245	5059	3116	15961	12	2	10	13.167	10.00	42.000
384 T	13	11	10	227	162	985	[15	•	10	10.000	10.00	10,000
24817	7	7	13	85	23	54	7	•	10	10.000	10.00	10.000
948P	34	34	19	233	149	1040	33	3	10	10,162	10.00	14.333
2675	12	12	20	1638	1679	4300	11	2	10	10.682	10.00	15.000
12F	7	7	324	761	651	1477	7	4	10	14.929	17.50	22.000
1293T	13	13	698564	836293	847027	978672	15		10	10.000	10,00	10.000
17699	4	3	10	1584	1093	£140	(4	2	10	25.230	12.00	67.000
2445P	10	10	2100	5860	5225	10000	į 10	4	10	20.900	10,00	60.000
222 tv	3	3	140	292	250	487	[1	•	10	10.000	10.00	10.000
2711V	3	3	190000	221667	Z30000	245000	[2	•	10	10.000	10,00	10.000
4444	3	3	31	48	35	78] 3	1	10	12.000	10.00	16.000
695V	3	3	3900	3667	5600	7500	j 3	3	100	120.000	120.00	140.000
1650V	3	3	50	117	111	191	3	1	10	10.867	10.00	12.600
94.EV	6	6	36	510	172	1675	6		10	10.000	10.00	10,000
683V	3	5	62	64	63	67] 2	1	10	10,250	10.25	10.500
1890V	3	3	46	84	56	150	[3	2	10	13.733	17.20	20.000
1890V	3	3	290	2917	1727	6734	[]	2	10	10.847	10.02	12.400
2631V	3	3	637	709	680	810	3	•	10	10.000	10.00	10.000
296V	3	3	259	731	636	1297	j J		10	10.000	10.00	10.000
306V	3	3	28500	53917	58000	75250	į 3	1	10	13.333	10.00	20.000
	# 688.	NUMBER	MINIMUM	MEAN	NEDIAN	MAXINUM	j # 085.	NUMBER	MININ	NEAN	MED LAN	HAXINUN
POTH	OP	INFLUENT	INFLUENT	INFLUENT	INFLUENT	INFLUENT	07	EFFLUENT	EFFLUENT	EFFLUE	EFFLUENT	EFFLUENT
AMBER	INFLUENT	(>0L)	(PP8)	(PPB)	(PPB)	(PPS)	EFFLUENT	(>PL)	(PPS)	(PPB)	(PPE)	(PPB)
16	6	5	10	44.833	43.5	п	1 6	Ð	10	10.0010	10.0	10
18	6	2	10	25.333	10.0	85	6	0	10	10,0030	10.0	10
19	6	6	19	130.000	115.0	300	6	Ū.	10	10.0000	10.0	10
21	i i	6	34	54.667	55.0	76	i 6	¢.	10	10.0000	10.0	10
25	4	à	640	908.335	775.0	1400	6	å	10	10,0000	10.0	10
30	6	6	16	123.667	64.5	382	6	Ū.	10	10,0000	10.0	10
31	6	5	20	58.833	58.0	110	6	0	10	10.0000	10.0	10
36	4	د ن	220	448.333	405.0	720	[6	3	10	27.535	12.5	76
38 38	• •	ں بر	46	185.667	180.0	320	•	, 0	10	10.0000	10.0	10
	•	9							10	10.0000	10.0	10
52	•	0	30	260.000	244.0	700		0				
53	•	0	28	51.167	48.0	97		0	10	10.0000	10.0	10
55 58	•	5	10	43.500	42.5	90	6	0	10	10.0000	10.0	10
	6	6	520	795.000	773.0	1200	6	1	10	14.1667	10.0	39
59		6	23	69.83Y	52.0	160	6	0	10	10.0000	10.0	10

TABLE II-7 OCPSF AND POTU INFLUENT AND EFFLUENT DATA FOR PHENOL AND 2,4-DIEMETHYLPHENOL USED IN THE PASS-THROUGH ANALYSIS AT PROMUGATION

			90L	LUTAKT=*34	. 2,4-DIN	RTHYLPHENO	L'	DETECTI	ON LINETCP	PB)=10	*******		••••
	# 085.	NUMBER	MINIMUM	MEAN	HED I AN	MAXIMUM	ł	# 085.	NUMBER	HININUM	MEAN	MEDIAN	MAXINUM
OCPEF	OF	INFLUENT	INFLUENT	INFLUENT	INFLUENT	INFLUENT	1	OF	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
ilimber	INPLUENT	(>0L)	(PPB)	(PPB)	(PPE)	(PPB)	ł	EFFLUENT	(>DL)	(898)	(PPB)	(PPB)	(PPB)
30331	13	13	542	4592	3640	8787	{	12	đ	10	14.9167	10	40.0
12F	7	7	386	697	618	1134	Ì	7	3	10	13.2143	10	17,5
12931	14	14	14216	29868	26637	73537	i	15	•	10	10,0000	10	10.0
306¥	3	3	5600	9967	9800	14500	į	3	٦	10	10.1667	10	10.5
	# 085.	HJARER	NERTHUR	NEAN	HEDIAN	HAXINUN	1	# 085.	KINSER -	MINIPALIN	HEAN	HEDIAN	MAXIMUM
POTY	ÓF	INFLUENT	INFLUEBT	INFLUENT	INFLUENT	INFLUENT	İ	90	EFFLUENT	EFFLUENT	EFFLUENT	EPFLUENT	EFFLUENT
NUMBER	INFLUENT	(HOL)	(PPB)	(P PB)	(PPS)	(PPB)	İ	EFFLUENT	(>OL)	(PPI)	(PPB)	(PPB)	(PP8)
52	6	3	10	20.5	11.5	56	ł	6	٥	10	10	10	10

1

concentrations greater than 100 ppb. Of these 19, only four plants had influent phenol concentrations between 100 and 500 ppb, five had influent phenol concentrations between 500 and 1000 ppb, and 10 had influent phenol concentrations greater than 1000 ppb. The direct discharge facility with the highest percentage removal (99.9988%) had an influent concentration of over 836,000 ppb, which was 836% higher than the highest POTW influent concentration. For 2,4-dimethylphenol, the median percent removal of this pollutant demonstrated by direct dischargers was 99.8%. This was based on data from four OCPSF plants with average influent concentrations ranging from 697 to 29,368 ppb, and with 30 of 37 effluent values of 10 ppb. For POTW performance, EPA had a single observation of a POTW with an average influent concentration of 20.5 ppb and an average effluent concentration below the analytical minimum level, which was also assigned a value of 10 ppb. Thus, POTW removal was calculated at 51.2%, and the pollutant was determined to pass through.

Given the far higher influent concentrations for the direct dischargers in comparison with the POTWs, and the fact that many of the effluent values for both the direct dischargers and POTWs were below the analytical minimum level, it was inevitable that the analysis would conclude that phenol and 2,4-dimethylphenol pass through.

Stating that the analysis in the proposal did not present a fair comparison of percent removals, the Allied Signal Co. and other commentors on the December 6, 1991 proposed rule identified three POTWs currently treating wastewaters with high OCPSF contributions of phenol while still discharging below the analytical minimum level. The Agency solicited data from these POTWs. A discussion of their submissions is presented below.

A. <u>Philadelphia, Pennsylvania</u>

ł

The Northeast Water Pollution Control Plant (NEWPCP) in Philadelphia, Pennsylvania currently receives wastewater containing phenol from two OCPSF facilities; NEWPCP identified Allied Chemical as the major contributor of phenol to its system.

The NEWPCP operates under NPDES Permit Number PA0026689, issued by the Pennsylvania Department of Environmental Resources. Unit operations of the plant include grit removal, primary gravity settling, activated sludge (both fixed film and suspended in one system). secondary gravity settling, anaerobic digestion after dissolved air flotation and raw sludge thickening and chlorination of the effluent prior to discharge to the Delaware River. The NEWPCP has indicated no problems in handling and treating its current phenol levels. Allied Chemical phenol loadings to the NEWPCP average 239.57 pounds per day which equate to an average concentration at the NEWPCP headworks of 162.71 ppb. (Allied is currently required to monitor its discharge for phenol every 2 hours, 24 hours per day.) Data submitted by the NEWPCP indicate that effluent phenol concentrations were not detected above the analytical minimum level by either the 4AAP Method (50 ppb) or GC/MS Method 625 (5 ppb and 10 ppb).

Control of phenol discharges to the NEWPCP by Allied is set out in the local wastewater discharge permit issued to Allied under NEWPCP's pretreatment program. In addition to setting monitoring requirements, local limitations for phenol have been set at levels that NEWPCP feels will adequately protect the facility.

B. <u>Hopewell, Virginia</u>

The Hopewell Regional Wastewater Treatment Facility (HRWTF) currently receives wastewater discharges containing phenol for two OCPSF facilities. HRWTF identified one of these dischargers as the Allied Chemical facility in Hopewell, Virginia.

The HRWTF operates under NPDES Permit Number VA 0066630, issued by the Virginia State Water Pollution Control Board. Unit operations of the plant consist of screening, grit removal, primary settling, covered aeration basins and secondary settling tanks. Primary sludge is thickened in gravity thickeners with the overflow being returned to the head of the aeration basins. Waste secondary sludge is thickened with the underflow being sent to the gravity thickeners. Thickened sludge is sent to sludge holding tanks where it is pumped through heat exchangers to a sludge heat treatment unit. Heat treated sludge is sent to a decant tank and then through vacuum filters to incineration, with decant and filtrate water being returned to the gravity thickeners.

The HRWTF has reported no problems in handling and treating its current levels of phenol. Current industrial loadings of phenol to the HRWTF as calculated from industrial user data is 132.31 pounds per day which equates to an average concentration at the HRTWF headworks of approximately 500 ppb. Data submitted by HRWTF indicate that effluent phenol concentrations were not detected above the analytical minimum level by GC/MS Method 625, which ranged from 1.5 ppb to 50 ppb.

Control of all industrial discharges to the HRWTF is set out in local wastewater discharge permits issued under HRWTF's approved pretreatment program. This program has been audited and found to be

satisfactory by the State Water Pollution Control Board. Pretreatment Program Annual Reports for 1989, 1990, and 1991 state that "...there were no known industrial user discharges which interfered with the Regional plant and caused a violation of any requirement of the NPDES permit."

C. Sheboygan, Wisconsin

The Sheboygan, Regional Wastewater Treatment Facility (SRWTF) in Sheboygan, Wisconsin currently receives wastewater containing phenol from two OCPSF facilities; SRWTF identified PLENCO as the major contributor of phenol to their system.

The SRWTF operates under NPDES Permit Number WI 0025411, issued by the Wisconsin Department of Natural Resources. Unit operations of the plant include bar screens, grit removal, primary clarification, diffused aeration activated sludge, secondary clarification and effluent chlorination; primary sludge is thickened in gravity thickeners and combined with thickened waste secondary sludge (dissolved air flotation) prior to anaerobic digestion.

The SRWTF has indicated no problems in handling and treating its current levels of phenol. PLENCO concentrations measured at their discharge manhole ranged from not detected (10 ppb) up to a high of 10,842 ppb. Phenol concentration measured at the SRWTF headworks ranged from 23.3 ppb up to a high of 4043 ppb. Data submitted by SRWTF indicate that phenol concentrations in their effluent discharge during this same sampling period were never found above the analytical minimum level for GC/MS Method 625 (5 ppb and 10 ppb) demonstrating removals of at least 99.8 percent. Control of phenol discharges to SRWTF by PLENCO is set out in their approved pretreatment programs.

These three POTWs represent typical POTW performance in treating phenol; each has classic textbook secondary treatment which consists of primary and secondary clarification along with some form of biological treatment. 80 percent of the POTWs sampled in the 50 POTW study had the same treatment train (The remaining 20% had some form of advanced wastewater treatment (AWT) in addition to this treatment train). In addition, EPA believes these three POTWs represent examples of typical pretreatment programs. All three POTWs report having approved pretreatment programs with wastewater discharge permits issued to significant industrial users (SIUs) that specify monitoring and reporting requirements and in some situations, discharge limitations for certain pollutants. It should be noted that despite the relatively low phenol concentrations in the raw wastewaters of two of the three POTWs, fairly sophisticated pretreatment programs were developed and are in place; it seems that the presence of SIUs with large discharges and not the POTW influent concentrations of toxic pollutants drives the

28

implementation of effective pretreatment programs. The Agency believes that POTWs with significant industrial contributions have established local pretreatment programs that will ensure that pass through of pollutants will not occur.

The data from these three POTWs are consistent with the performance shown in the 50 POTW Study data, with 13 POTWs out of 15 POTWs with influent phenol concentrations above 20 ppb having effluent concentrations below the analytical minimum level. The 50 POTW Study plant (#28) with the highest average influent phenol concentration, 908 ppb, consistently removed phenol to below the analytical minimum level, thus achieving at least 98.8 percent removal.

Of the two POTWs with measurable phenol in the effluent, one (#36) had 3 of 6 effluent phenol concentration values greater than the analytical minimum level with an average phenol percent removal of only 93 percent. Although this POTW was initially selected for sampling in the 50 Plant POTW Study because it was considered a good performer, there is evidence that the POTW was not a well-operated, good performer during the sampling period. At the time of the sampling, this POTW was receiving 2.5 million gallons per day (MGD) over its design capacity. In addition, BOD and TSS effluent concentrations for this POTW (87 ppm and 38 ppm, respectively) were significantly above secondary treatment requirements of 30 ppm for both BOD and TSS.

The other POTW (#58) had only one effluent phenol concentration value above the analytical minimum level out of a total of six effluent phenol concentration measurements with an average percent removal of at least 98 percent. This POTW was a good performer during the sampling period attaining BOD and TSS effluent concentrations of 16 and 11 ppm, respectively.

Overall, EPA's data from the 50 POTW Study and the three additional POTWs show only four phenol effluent data points above the analytical minimum level out of a total of 83 measurements, and three of these points are from a plant that does not appear to have been well operated. Eleven direct discharge plants out of a total of 25 OCPSF facilities that had phenol detected in their influent had measurable phenol in one or more effluent measurements, with removals ranging from 91.5% to 99.9988%. While seven of these plants showed phenol removals slightly higher than that demonstrated by any POTW (ranging from 99.3% to 99.9988%, compared to 99.2% for the Sheboygan Regional Wastewater Treatment Facility), these levels of removals could not be demonstrated by POTWs because, as explained above, none had influent concentrations high enough to demonstrate removals at these higher

29

levels. Overall, EPA believes the data demonstrate comparable removals of phenol by direct dischargers with BAT-level treatment and POTWs.

D. <u>Summary of Technical Findings</u>

Based on the analyses presented above, EPA believes that phenol and 2,4-dimethylphenol are simple, easily treated, highly biodegradable compounds that are readily consumed (treated) by the microorganisms cultured in biological treatment systems. Thus, a well operated POTW biological treatment system should be able to rapidly achieve almost complete biodegradation of phenol and 2, 4 - dimethylphenol, and should therefore achieve removal levels that are essentially equivalent to those achieved by direct dischargers employing BAT-level treatment. Based on these conclusions, phenol and 2,4-dimethylphenol should not be considered to pass through POTWs and should not be regulated by categorical pretreatment standards.

III REFERENCES

- Development Document for Effluent Limitations Guidelines and Standards for the Organic Chemicals, Plastics and Synthetic Fibers Point Source Category, Volumes I and II, EPA 440/1-87/009, October 1987
- Report to Congress on the Discharge of Hazardous Wastes to Publicity Owned Treatment Works, EPA/530-SW-86-004, February 1986
- CERCLA Site Discharges to POTWs Treatability Manual, EPA 540/2-90-007, August 1990
- Fate of Priority Pollutants in Publicly Owned Treatment Works, EPA 440/1-82/303, September 1982
- Wastewater Treatment Plant Design, Joint Committee of the Water Pollution Control Federation (WPCF) and the American Society of Civil Engineers, WPCF Manual of Practice No. 8, 1977
- Operation of Wastewater Treatment Plants, Water Pollution Control Federation (WPCF), WPCF Manual of Practice No. 11, 1976
- Environmental Engineering, Howard S. Peavy, Donald R. Rowe, George Tchobanoglous, McGraw-Hill, 1985
- Biological Waste Treatment, W. W. Eckenfelder, McGraw-Hill
- Letter to George M. Jett, USEPA, from City of Philadelphia, Mr. Thomas F. Healey, Manager, Industrial Waste, September 17, 1992
- Letter to George M. Jett, USEPA, from City of Hopewell, Virginia, Mr. Mark A. Haley, Director, September 14, 1992
- Letter to Dave Griffin, Plastics Engineering Company (PLENCO), from Donohue Engineers, Architects, Scientists, Loren C. Trick, Project Manager, May 19, 1989

APPENDIX III-B

BAT AND PSES INITIAL ANALYSIS COST DATA

.

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
1	0	0	0	0	0	. 0	29539
12	583212	77154	8994	0	0	0	29539
15	881544	128618	4324	3536	762	0	29539
61	912274	115757	4653	37220	8016	0	29539
63	0	4750	0	0	0	0	33782
76	1277396	1524624	39928	193544	41683	0	2953 9
83	328468	31298	310	11724	2525	0	33782 26827
87	541052	196316	1937	0	0 0	0 222650	26827
101	0	0	0	0	0	222030	29539
102	0	0	0	276731	59599	0	41206
105	903191	2084544 0	280375 0	0	0	111325	26827
112	0	330915	20022	472694	101803	0	26827
114	865094	33389	20022	74440	16032	õ	26827
154	328468	3330 7 0	2412	0	0	ů	29539
159	0	103592	21556	48386	10421	ũ	29539
177	1011495		27831	-0500	0	0	29539
183	862959	451849 1072783	66000	0	0	0	41206
190 205	731177	757824	86733	193544	41683	0	29539
205	821587 401831	76617	2557	375178	80801	0	29539
225 22 7	454726	28989	2124	0	0	0	41206
227	354104	50601	8063	385227	82966	0	33782
250	366729	54659	3248	470833	101402	0	26827
254 259	0	0	0	0	0	0	33782
260	849575	109273	15994	81884	17635	0	29539
267	1411929	651263	13206	776832	193075	0	51259
269	60026	31856	626	0	0	0	29539
284	384432	67491	5018	111660	24048	0	26827
294	0	0	0	0	0	0	29539
296	594489	119654	21801	661521	164416	0	41206
301	8973044	3754917	96349	329397	116988	0	41206
352	405958	63704	1466	3908	842	0	29539
384	6856767	3047519	248419	358431	127299	0	512 59
387	2969660	841368	37964	1827258	888306	0	65286
392	450142	33874	2736	0	0	0	26827
394	461491	47794	8211	0	Q	0	26827
399	2000000	335000	9 100	0	0	0	36574
412	456840	47620	35205	0	0	0	26827
415	3551871	3621418	129088	660906	234725	0	51259
443	868975	154617	28737	7816	1683	0	29539
444	110889	34022	6542	0	0	0	29539
446	785050	49105	3386	28101	6052	0	26827
447	1186543	897933	15644	545805	135655	0.	41206
451	0	0	0	0	0	44530	26827
481	498116	37693	2374	0	0	0	29539
485	1866959	2954508	114488	0	0	0	41206
486	872185	102024	27793	10608	2285	0	29539
488	1154248	468093	109650	82256	17715	0	29539
500	328709	38823	5380	163396	35190	0	29539 26827
518	1950998	2281636	14440	329397	70942	0	29539
523	72315	42686	7095	0	0	0	29539
525	0	0	0	0	0	0 Ó	29539
569	0	0	0	0	0	U	67237

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	A 11 1 1 1
NUMBER	CAPITAL COSTS	ORM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	ANNUAL MONITORING COSTS
Herbert					3000E 00313		HONTTOKING COSTS
580	116439	34318	2395	٥	0	0	29539
602	0	0	0	0	0	57889	29539
608	655540	1052470	1497 0	0	0	0	41206
614	3284 68	34168	1578	87095	18757	0	29539
633	809133	73458	12751	2 68 0	577	0	29539
657	652872	134407	23673	374795	133111	0	29539
659	454557	52002	2826	0	0	0	33782
662	1247646	42 8399	22673	764871	164729	0	29539
663	858500	692391	18605	115382	24850	0	26827
664	919793	530584	10537	716485	154308	0	26827
669	0	0	0	0	0	124684	29539
682	697987	146981	15825	429694	152609	0	51259
683	1403937	781729	40680	866856	215450	0	51259
695	2383 893	244490	94475	0	0	0	51259
709	0	0	0	0	0	151402	29539
727	471403	84419	5792	651406	161902	0	51259
741	0	0	0	0	0	0	41206
758	0	0	0	0	0	0	29539
775	540068	648766	3151	0	0	0	29539
802	551554	106422	6680	984190	244612	0	29539
811	0	D	0	0	0	0	33782
814	1462857	1074671	22443	604877	150337	0	41206
825	837227	151315	4430	346146	74549	0	29539
844	0	0	0	0	0	0	33782
851	3377409	3155331	138805	0	0	0	41206
859	D	0	0	0	0	0	41206
866	0	0	0	0	0	0	33782
871	451103	42992	6002	0	0	0	33782
876	552177	305539	6730	0	0	0	29539
883	0	0	0	0	0	0	29539
888	0	0	0	0	0	0	26827
908	448303	78050	8660	560371	139276	0	51259
909	2743896	1079582	101930	372200	80160	0	41206
913	743895	754798	26684	464270	164889	0	41206
938	115653	84916	1951	0	0	0	29539
942	0	0	0	0	0	0	29539
948	1291236	448579	13690	850672 558 3 0	211427 12024	0 0	51259 26827
962	782986	67022	2865 6785	642303	159639	0	29539
970	469119	83791	45089	604825	130260	0	41206
973	828624 328468	275200 32299	1695	55830	12024	0	26827
984 990	328468	35924	1112	115382	24850	ů	33782
990 992	454719	22868	2736	0	0	Ċ	29539
1012	454779	79839	6443	585659	145561	ů 0	29539
	349821	49140	8310	355451	76553	ő	29539
1020 10 33	0	49140	0	0	0	89060	29539
1033	972717	207113	14621	524713	186355	0	51259
1058	9/2/17	14500	0	0	0	0	41206
1059	458705	113196	8284	488885	105290	ů O	26827
1067	0	0	0		0	0	29539
1067	438206	65409	6155	37220	8016	ů 0	29539
1133	139529	35574	1079	0	0	ů	29539
1133	2219293	246146	24383	278325	98849	ů O	51259
1157	2617693	240140	54303	LIUJEJ	700 m 7	U	2 . C.3 5

÷

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	D&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
							HONITORING COSTS
1139	479801	60911	12220	0	0	0	33782
1148	835903	185891	4611	604423	214665	0	41206
1149	833465	4798387	23760	0	. 0	0	41206
1157	0	0	0	0	0	44530	33782
1203	332097	41724	2210	214015	46092	0	26827
1241	635556	99018	24064	521080	112224	0	26827
1249	850371	88671	15310	24565	5291	0	33782
12 67	0	0	0	0	0	0	26827
1299	0	0	0	0	0	0	29539
1319	0	0	0	0	0	0	29539
1323	544754	69758	1879	0	0	0	26827
1327	2953691	1186459	117597	617015	153354	0	41206
1340	1199794	466637	24908	409104	88108	0	33782
1343	1740987	2625061	58497	541551	116633	0	33782
1348	0	1000	0	0	0	0	26827
1349	0	0	0	0	0	0	26827
1389	411405	67752	3220	772315	166332	0	26827
1407	1002773	580864	9225	772315	166332	0	29539
1409	4106377	2354667	147923	287695	102177	0	41206
1414	454719	14197	8460	0	0	٥.	26827
1438	373116	56619	3606	513636	110621	٥	33782
1439	1470942	1876635	68080	195405	42084	0	29539
1446	350850	718244	42480	0	0	0	26827
1464	482849	89871	8602	0	0	0	29539
1494	8463828	2288557	84297	340219	120831	0	41206
1520	1004495	252421	45473	30334	6533	0	29539
1522	811772	4140048	22573	0	0	0	57597
1524	328468	36119	2583	118546	25531	0	26827
1532	425575	75044	11239	217737	46894	0	29539
1569	841538	138813	5073	186100	40080	0	29539
1572	0	25000	0	0	0	0	51259
1609	905355	268820	19941	502470	108216	0	29539
1616	331423	41307	3524	206571	44489	0	26827
1617 1618	576429 4619 3 9	1291980 68188	42 96 6231	0	0	0	29539
1624	778349	41593	2855	0 1359	0 293	0	26827
1643	0 D	0	0	0	2 7 3 0	0 0	33782
1647	912609	479951	10155	232625	50100	0	26827 29539
1650	20575507	4527482	1058825	1732309	645153	0	57597
1656	0	0	0	0	0	ů Č	29539
1670	ő	0	0	Ó.	0	4453	29539
1684	73357	32245	694	0	0	133590	33782
1688	343107	46699	7103	307065	66132	0	26827
1695	4893992	1257500	26851	276873	98333	0	51259
1698	449881	13302	13086	0	0	0	26827
1714	778349	56004	9912	33684	7254	0	26827
1717	328468	31437	826	36848	7936	0	26827
1724	841150	105982	21038	3350	721	0	29539
1753	671437	139572	15144	397230	141079	0	41206
1766	378121	58125	6076	547134	117835	0	26827
1769	7875173	9718672	157155	0	0	0	41206
1774	1035891	243484	13226	871002	309342	0	29539
1785	501701	146697	10258	758625	188550	0	51259

÷

·) ...

3

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
1802	444655	77041	13785	546210	135756	0	29539
1839	782792	44868	8886	9863	2124	0	26827
1869	618340	705348	3628	0	0	0	51259
1877	1389291	881655	27052	183867	39599	0	29539
1881	328468	31617	631	41873	9018	0	33782
1890	529854	113692	19606	290316	62525	0	33782
1905	386297	63117	5875	15204	3275	0	33782
1910	1135742	1255931	11405	308740	66493	0	41206
1911	686981	106868	27170	666238	143486	0	33782
1928	826194	75304	55 83	7072	1523	0	26827
1937	1251214	628168	61880	121523	26172	0	29539
1943	0	0	0	0	0	0	33782
1973	599338	119580	5777	311449	110613	0	29539
1977	0	0	0	0	0	0	51259
1986	0	0	0	0	0	0	26827
2009	674383	80766	9318	0	0	0	29539
2020	0	0	0	0	0	0	29539
2026	454719	17720	2736	0	0	0	33782
2030	1120249	1350740	69884	0	0	0	41206
2047	328468	34770	3724	96772	20842	0	26827
2049	378242	59210	6012	57691	12425	0	29539
2055	0	0	0	0	0	0	26827
2062	785050	50058	5652	14330	3086	0	29539
2073	1006755	2060393	30819	878392	189178	0	29539
20 9 0	63318	35647	1953	0	0	0	29539
2110	362960	63158	6065	34801	7495	0	29539
2148	657716	216786	28974	816281	202880	0	29539
2181	0	0	0	0	0	0	26827
2193	0	0	0	0	0	89060	33782
2198	355187	50962	3103	392671	84569	0	295 3 9 26827
2206	674950	135546	5916	0	0	0	
2221	861504	222780	7759	320092	68938	0	26827 29539
2222	670350	139270	6606	395910	140610	0	29539
2227	1717297	1113595	57123	1047842	372148	-	29539
2228	783187	42842	5329	5620	1210	0	29539
2236	458966	66378	8085	10515	2265	0	29539
2242	794313	66472	9040	280267	60360	0	29539
2254	564000	115855	12674	622275	154661	0	29539
2268	1430431	2902047	61784	65135	14028	Ŭ	51259
2272	1521382	2272954	53161	814763	202503	0	29539
2281	414832	118514	3459	9119	1964 0	0	29539
2292	623153	161108	35602	0	0	0	26827
2296	0	0	0 O	0	U Q	0	26827
2307	0	0	0	0	0	0	29539
2313	0	0	0	0	88577	0	26827
2315	424577	90041	6312	411281	321	0	29539
2316	864597	117054	7232	1489 566116	121923	0	41206
2322	2093797	2526055	1090 87 0	000110	0	0	33782
2328	0	0			64008	0	29539
2345	341793	46190	7518	297202 0	64008 0	0	29539
2353	0	0	0		188376	0	26827
2360	426189	71906	3452	874670	3567	0	33782
2364	328468	31298	624	16563	1015	0	55702

İ

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	D&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
2365	537219	47124	3521	0	0	0	29539
2368	543298	104153	5081	948787	235813	0	41206
2376	464098	52884	2830	0	Ð	0_	33782
2390	0	0	0	0	0	0	29539
2394	1228402	182965	13864	52444 9	186261	0	41206
2399	0	0	0	0	0	0	29539
2400	0	0	0	0	0	0.	26827
2419	328468	32929	1874	66810	14389	0	26827
2429	577551	117539	62203	0	0	0	29539
2430	6501134	6661361	215084	344970	122518	0	41206
2445	415461	68897	3285	800230	172344	0	33782
2447	0	1000	0	0	0	0	29539
2450	1160796	1420471	31753	691866	171958	0	41206
2461	356565	63076	2973	15446	3327	0	33782
2471	0	0	0	0	0	0	41206
2474	740217	426664	28735	0	0	0	26827
2481	1068738	320795	17744	930580	231288	0	51259
2527	870231	417182	56775	329925	117175	0	51259
2528	1614132	1128181	57991	363445	129080	0	51259
2531	521479	190457	3733	0	0	0	26827
2533	366452	54573	9703	468972	101002	0	26827
2536	0	0	0	0	0	0	29539
2537	328468	32169	723	53411	11503	0	26827
2541	1718347	2295209	31514	465250	100200	0	29539
2551	0	0	0	0	0	0	26827
2556	0	0	0	0	0	0	26827
2573	1207405	376056	23701	407559	87775	0	29539
2590	785050	41593	8900	1861	401	0	29539
2592	422449	70859	3394	848616	182765	0	26827
2626	0	0	0	0	0	0 0	29539 41206
2631	1268164	2667176	37870	289758	62405	0	41206
2633	672524	139875	26412	398549 0	141547 0	0	26827
2668	0	0	0	4 09 4	882	0	29539
2673	818854	84752 45444	12964 2 3 65	282872	60922	0	26827
2678	339927	1000	2365	202072	00922	0	26827
2692	0	0	0	0	0	o	29539
2693	1257905	1803263	39263	990259	246121	õ	41206
2695	613699	669010	14248	0	0	õ	41206
2701 2711	458155	40786	4960	0	ů O	0	26827
2735	1477470	597552	44941	571430	202947	õ	29539
2739	117139	87578	8235	0	0	0	51259
2763	464278	82458	5650	623084	154862	0	29539
2764	506987	94189	18345	796051	197852	0	41206
2767	328468	31298	1646	21774	4689	0	29539
2770	778726	67022	6555	55830	12024	0	29539
2771	458155	40786	8157	0	0	0	33782
2781	917047	157462	33873	9119	1964	0	29539
2786	328468	31404	1321	35731	7695	0	29539
2795	1080229	865104	6742	575544	143047	0	41206
2816	1236899	268670	16958	792876	281595	0	41206
2816	62529	31909	4280	0	0	0	29539
3033	189850	38322	5836	0	0	0	29539
2022				-	-	-	

5

PLANT NUMBER	TOTAL CAPITAL COSTS	TOTAL O&M COSTS	TOTAL LAND COSTS	CAPITAL SLUDGE COSTS	O & M Sludge costs	CONTRACT HAULING COSTS	ANNUAL MONITORING COSTS
4002	0	D	0	0	0	σ	29539
4010	0	0	0	0	0	0	29539
4017	0	0	0	0	0	0	26827
4018	992916	238249	41090	27171	5852	0	29539
4021	542838	109519	17926	158929	34228	0	26827
4037	1137313	745696	38271	72579	15631	0	29539
4040	553899	72254	14185	0	0	0	29539
4051	332273	41828	1578	215876	46493	0	26827
4055	53273	60681	20687	0	0	0	29539
			#=== 4£3 222				
	225638806	123017104	6194378	56447691	1507979 3	1073173	9047340

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OEM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
						•	
2	328468	31298	451	3722	802	0	29539
5	454 35 1	32339	7848	0	0	0	26827
10	636120	74081	11933	3461	745	0	26827
22	1158657	737121	11836	52666	11343	0	26827
30	527873	211506	3608	0	0	0	29539
33	6310032	1110003	74627	139575	30060	0	41206
49	762984	156290	97412	0	0	0	26827
51	1284376	967461	59222	116126	25010	0	29539
52	782792	44438	6371	4224	910	0	29539
58	0	0	0	0	0	0	26827
71	0	0	0	0	0	222650	33782
72	126249	118269	20925	0	0	0	29539
79	609506	49394	64822	0	0	0	33782
88	0	0	0	0	0 0	89060 0	26827 29539
93	0	0		0		0	26827
94	890205	158512	133606	7444 3722	1603 802	0	29539
110	897722	140753	21157 0	_ 3/22	0	44530	26827
111	0	0 43340	18439	0	0	0	26827
119	503698	77070	4347	9305	2004	0	29539
120	853663	22613	4347 34272	0	. 0	0	29539
122	454324	_	3446	3722	802	a	· 29539
143	826189	67843 228716	35100	14330	3086	ő	29539
149 158	964222 0	220718	0	0	0	89060	26827
161	1700118	2292917	83596	298691	64328	0	29539
162	0	0	0	0	0	133590	29539
162	957582	218398	34291	11166	2405	0	29539
165	97912	254896	14951	0	0	ů D	29539
196	1546498	1771089	73757	227414	48978	0	29539
190	333811	1291428	13412	0	0	· 0	26827
203	454324	10462	34272	Õ	0	0	26827
205	570380	49320	13787	õ	ŏ	0	26827
208	0	0	0	ŏ	0	0	29539
212	46352	34901	860	0	0	1157780	33782
214	1229290	306572	13004	182378	39278	0	29539
220	572588	46503	57081	0	. 0	0	33782
221	1244195	150504	9043	133062	28657	0	33782
232	489168	103636	7899	0	0	0	29539
240	8529556	1742469	100470	213085	45892	0	41206
244	0	0	0	0	0	0	29539
249	900479	87538	6653	30148	6493	0	26827
257	702046	1529422	44291	74440	16032	. 0	29539
262	884691	128711	117513	2419	521	0	29539
266	823404	74097	6493	2419	521	0	26827
276	655540	1052470	15244	0	0	0	41206
283	6182704	743893	80500	0	· 0	0	29539
285	0	0	0	0	0	8906	26827
292	836315	98522	14996	64018	13788	0	29539
293	1370183	2293361	28820	0	0	0	29539
297	328468	33502	3260	76301	16433	22265	26827
299	340166	45542	1843	284733	61322	0	29539
302	454712	36424	2788	0	0	0	29539
310	722381	64072	13098	0	0	0	26827

		70711	TOTAL	CARLEAL	0 & M	CONTRACT	ANNUAL
PLANT	TOTAL	TOTAL D&M COSTS	LAND COSTS	CAPITAL SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
NUMBER	CAPITAL COSTS	Den COSTS	LAND CO315	320002 20313	320942 00010		
321	454324	10410	34272	0	0	0	33782
326	986711	265703	31942	19354	4168	0	29539
334	846329	74064	4447	1675	361	0	33782
348	0	0	0	0	0	0	26827
354	1185345	816919	46075	84303	18156	0	26827
357	0	0	0	0	0	89060	29539
417	0	0	0	0	0	0	26827
423	901018	436183	8888	55830	12024	0	29539
428	0	0	0	0	0	222650	26827
430	42169485	2030712	709662	748510	186036	0	41206
433	1086496	465081	15519	46525	10020	0	29539
438	654024	88519	4423	0	0	0	26827 26827
449	0	0	0	0	0 0	0 44530	26827
451	0	0	0	0	-	44550	51259
458	7708191	1894189	559957	0	0 3 527	0	33782
468	888651	105285	4889	16377 0	1215	102419	29539
492	51712	32471	24 3 1 11697	0	0	0	33782
494	542307	286402 0	0	0	ő	89060	29539
508	0	1155 668	62622	120965	26052	0	29539
522	1347880	11526	2736	0	0	ů	26827
529	454324 553646	51355	4666	c	ů O	0	26827
543	0	0	0	0	0	22265	26827
544 567	839052	101627	7089	1861	401	0	26827
592	728736	64784	16158	0	0	0	33782
605	0	0	0	0	0	164761	2 6827
607	1026181	337820	29818	29032	6252	0	29539
618	0	0	0	0	0	222650	29539
624	9126969	1606568	152704	263145	56673	0	41206
658	1064238	102242	20885	50433	10862	0	33782
661	881439	125809	6383	1787	385	0	29539
667	0	0	0	0	0	13359	29539
702	3000	20000	0	0	0	0	29539
706	515331	45324	10114	0	0	0	26827
717	422301	43021	11241	0	0	0	26827
720	460286	45359	3062	0	0	0	29539
722	1195361	4746667	25664	472694	101803	0	41206
724	498503	42933	9895	0	0	0	26827
743	892807	162068	7421	7816	1683	0	29539
749	914467	82156	5281	26426	5691	0	26827 29539
768	874295	120197	26365	1489	321	0 0	29539
771	686809	590259	40983	61599	1 3266 0	44530	29539
777	0	0	0	0	0	44550	26827
791	512322	44084	8394	0	0	133590	26827
796	0	0	0	4839	1042	0	29539
797	906836	150513	11076 (1068	483 7 604877	150337	0	41206
814	5965508	1128834	41 968 5916	004077	0	142496	33782
830	62290	34628	5816 6529	20657	4449	0	29539
845	408855	22 6882 0	0329	20037	0	133590	26827
846	0	1046233	56858	111697	24056	0	26827
862	1264502	335120	21295	478277	103006	0	26827
874	866397 D	021555	0	4,02,1 0	0	26718	29539
880	U	J	Ŭ	+			

.

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
Nonoqu					SEBSAE COS.S		HOATTONING COSTS
887	1188068	288290	9275	198755	42805	D	29539
905	52 3889	83463	10226	0	0	0	26827
912	0	° o	0	0	0	129137	26827
917	328468	31351	2095	33498	7214	0	29539
929	454324	10295	34272	0	0	0	26827
931	D	0	D	Ó	0	218197	26827
932	D	0	0	0	0	4453	29539
944	70364	34628	3552	0	0	200385	33782
958	0	0	0	0	0	0	29539
975	454719	19450	2124	0	0	Û	33782
976	473643	11 88 60	4038	0	0	0	26827
987	31708	32471	1064	0	0	400770	26827
988	0	O	0	0	0	178120	26827
992	571672	56046	4474	0	0	0	29539
99 7	783187	42404	8687	4653	1002	0	29539
1006	356808	78386	4597	3722	802	0	26827
1011	333002	42241	6053	223320	48096	0	29539
1018	1035194	148806	8063	88584	190 78	٥	29539
1026	Q	0	0	0	0	222650	29539
1047	1148662	141110	53794	0	0	0	33782
1052	950444	89666	4147	45408	9780	٥	26827
1053	844090	84506	1209	6588	1419	0	33782
1057	29838	32471	735	0	0	89060	33782
1064	0	0	0	0	0	66795	29539
1069	422716	70934	4781	850477	183166	0	29539
1076	Q	0	0	0	0	62342	26827
1083	838784	74097	8802	3536	762	0	26827
1085	39321	32471	3196	0	0	267180	33782
1086	694350	109625	80194	0	Û	0	26827
1091	1356486	1176154	38810	14515 8	31262	0	29539
1094	762934	10 77848	69366	0	Q	0	29539
1107	457746	39842	2167	0	Q	8906	26827
1117	486388	45522	1625	0	0	0	26827
1126	1388966	2364293	57473	0	0	0	29539
1162	475122	126133	8948	0	C	0	26827
1163	1140424	114112	19813	9863	2124	0	29539
1172	1251348	210464	48045	0	0	0	26827
1173	60899	34628	12704	0	0	223986	33782
1175	0	Ö	0	0	0	178120	26827
1181	609675	470739	36416	46711	10060	0	29539
1188	792566	84182	7428	26054	5611	' O	29539
1191	970141	228860	9377	14516	3126	0	29539
11 94	545470	44928	12135	0	0	51210	33782
1195	0	0	0	0	0	0	26827
1197	841185	74134	8858	3908	842	0	26827
1202	568015	57237	13714	0	0	0	26827
1219	1372926	4807680	86775	0	0	0	26827
1220	553161	46415	3312	0	0	- 0	33782
1223	328468	31298	313	4839	1042	0	29539
1224	434036	1819206	11597	0	0	0	26827
1234	642231	52824	12400	0	0	0	33782
1236	1081319	106108	21961	57133	12305	0	33782
1237	536188	47595	51292	0	0	0	29539

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OCH COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
NOT DE N	0						
1249	1029111	112348	20143	24565	5291	0	33782
1253	454324	15794	8460	0	0	Ó	29539
1255	454719	27484	2124	0	0	0	29539
1264	884891	128711	27404	2419	521	0	29539
1277	782792	51607	3334	24193	5210	0	29539
1310	1557 3 81	13052723	21744	148880	32064	0	41206
1313	28208	32471	826	0	0	115778	33782
1314	0	0	Û	0	0	Û	26827
1320	501815	43128	4202	0	0	48983	26827
1322	887785	94672	14371	23263	5010	0	26827
1326	572056	43908	3477	0	0	0	33782
1351	936204	187088	12078	7816	1683	0	29539
1352	28208	32471	3108	0	0	115778	33782
1356	905097	148521	29332	3908	842	0	29539
1357	508635	43766	8342	0	0	0	33782
1361	1300614	1013283	20632	122454	26373	0	29539
1371	Ó	0	0	0	0	222650	26827
1386	0	0	0	0	Ó	44530	26827
1426	652080	113060	22286	174190	37515	0	29539
1432	925372	92522	17069	65879	141 88	0	26827
1433	0	0	0	0	0	14250	29539
1437	1096862	159394	10 9 22	Ó	0	0	29539
1450	28208	32471	6097	0	0	115778	26827
1478	882449	126646	10160	2233	481	٥	29539
1504	900140	91582	5145	29776	6413	0	26827
1507	1287795	212558	54190	0	0	Û	33782
1528	533208	44935	11618	0	0	0	26827
1534	615016	48592	5264	0	0	0	26827
1535	0	0	Û	0	0	8906	26827
1539	813332	179737	15858	253468	54589	0	29539
1548	0	0	0	0	0	75701	29539
1556	454479	34298	2736	0	Q	0	29539
1560	884891	128711	24193	2419	521	0	29539
1562	795401	95553	3438	136970	29499	0	29539
1564	0	0	Ó	0	0	75701	29539
1566	0	0	0	Û	0	44530	29539
1575	28208	32470	3108	0	0	262727	26827
1595	601768	65959	6967	0	0	Ó	29539
1601	47664	25803	2420	0	0	0	29539
1608	10352 39	355617	14116	31451	6774	0	29539
1621	784293	69261	11491	93050	20040	0	29539
1622	1014583	92314	14925	33312	7174	0	33782
1628	919622	165423	131776	5583	1202	0	29539
1645	947272	102996	13371	6700	1443	Ó	29539
1653	657531	1074092	15332	0	0	0	41206
1657	5591066	732489	26848	546210	135756	0	41206
1659	1151806	619556	50306	67740	14589	0	29539
1666	1007179	3 0 19 77	166784	24193	5210	0	29539
1667	1192611	252633	33636	304274	65531	0	26827
1706	6097260	1137104	33346	0	0	0	41206
1716	1094181	482658	45928	48944	10541	0	29539
1718	0	0	0	0	0	133590	29539
1718	0	0	0	0	0	0	295 39

-- --

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OSM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
	•••••••••		·.		,"		
1740	407361	95668	12352	722068	155510	0	26827
1742	783231	61376	44824	44664	9619	0	29539
1743	826584	68288	9498	6532	1407	0	26827
1744	684891	128711	27404	2419	521	0	2 9539
1748	2257611	7860591	98815	660655	142284	0	29539
1751	365591	63768	3387	1303	281	222650	26827
1764	783187	59247	3703	28473	6132	0	33782
1773	519234	44877	4311	0	0	0	26827
1788	634649	62389	16553	0	0	0	29539
1793	880044	124117	124800	19354	4168	0	29539
1797	0	0	0	0	0	٥	29539
1801	762792	42739	3270	5397	1162	0	29539
1805	466333	86018	7687	0	0	0	26827
1808	0	0	0	0	0	155855	26827
1812	0	0	0	0	0	89060	33782
1826	1077619	446297	16555	37220	8016	0	29539
1832	580427	45654	10085	0	0	0	33782
1833	795824	94115	5392	100494	21643	0	29539
1636	0	0	0	0	0	129137	29539
1843	0	0	0	0	0	44530	26827
1848	43397	26019	289	0	0	396317	29539
1853	7780971	1681480	145118	746004	185910	0	41206
1861	375681	57177	3426	. 40384	8697	0	29539
1876	1005368	298711	13259	23635	5090	0	29539
1887	0	0	0	0	0	178120	29539
1888	0 -	0	0	0	0	71248	29539
1891	892291	291299	8488	0	0	0	26827
1894	971648	240640	37880	16005	3447	0	29539
1899	976873	120020	17659	89328	19238	0	26827
1 90 4	44007030	3688304	734492	273759	97227	0	41206
1924	459292	43282	2798	0	0	0	29539
1931	862406	75312	55070	8188	1764	0	26827
1936	471124	452466	29913	24379	5250	0	29539
1945	454324	17894	8460	0	0	0	26827
1948	455222	39756	4957	0	0	0 0	26827
1970	454324	12406	2124	0	-	0	26827 29539
1971	900065	85649	3751	9491 0	2044 0	0	29539
1974	0	0	0 0	0	0	178120	26827
1988	0	0	4571	0	0	111325	26827
1993	545396	4 9906 15971	3600	0	0	0	26827
2001	454324	51581	81880	ů č	0	0	29539
2004	70 236 9 929589	178248	33722	8188	1764	ů	26827
2007	875984	2428793	14540	297760	64128	0	26827
2018	0/5904	2420173	0	0	0	31171	26827
2022	0	0	0	0	0	84607	33782
2033 2037	873822	74706	55144	4094	882	0	33782
2057	0/3022	14/08	0	0	0	222650	26827
2050 2057	454324	29682	7056	0	0	0	33782
2037	2081896	3999167	104847	446640	96192	õ	29539
2075	793256	85650	10493	36922	7952	0	29539
2075	328468	32940	3087	66996	14429	0	29539
2080	854280	68111	131138	0	0	ů O	33782
6004	034200	ootti	OCITC:	v	•	~	

PLANT	TOTAL	TOTAL	TÖTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
2093	1214161	546905	34381	232625	50100	0	29539
2108	0	0	0	0	0	0	26827
2117	949125	106449	18175	65135	14028	0	29539
2123	340647	45736	1856	288455	62124	0	26827
2129	1005368	298711	38731	23635	5090	0	29539
2147	0	0	0	0	0	178120	26827
2176	884429	83219	4859	21588	4649	0	29539
2177	742090	2351856	19326	0	0	0	41206
2184	613322	80174	5083	0	0	0	29539
2191	0	0	0	0	0	0	29539
2214	0	0	0	0	0	138043	29539
2232	1155073	397803	21716	26054	5611	0 Q	26827
2241	1422177	527241	236385	660655	142284	0	29539
2243	2289594	4709998	38645	524802	113026	0	29539
2250	856975	74098	6803	2419	521	0	33782
2253	0	0	0	0	0	222650 0	26827
2259	902715	176125	34095	9305	2004 25972	U D	26827 29539
2261	1289010	1120787	21785	120593 0	23972	44530	29539
2262	0	0	0	Û	ŭ		29539
2288	500676	43047	9912 50370	U Q	u Q	111325 0	26827
2293	526731	47113	50230 8086	649489	139879	0	26827
2300	905212	472469	58940	13827	2978	0	26827
2311	882117	77343 74893	4838	4280	922	0	33782
2318	875983	337211	46828	277289	59719	0	33782
2341	1381989	113686	7760	286771	101849	0	41206
2346	577963	328371	31732	29032	6252	a	29539
2348	544620	186512	12260	10422	2244	C C	26827
2350	909702 454324	10295	4860	0	0	0	26827
2359	45=324	(0293	4000	C C	ũ	35624	29539
2402	402421	65201	11567	710902	153106	0	29539
2411	402421	0	0	0	0	0	29539
2426	121867	341512	26581	0	õ	ő	29539
2432	703983	148658	26272	437085	155233	0	29539
2436	834882	98240	18076	1563	337	0	29539
2442 2459	783187	47269	39980	14688	3206	0	29539
2439	789713	101712	4355	120965	26052	0	33782
2465	1003573	295353	10253	23263	5010	0	29539
2469	832561	74063	4027	2605	561	0	26827
2485	6102520	1083901	97359	452223	97394	0	41206
2487	1206920	877659	7829	91561	19719	0	33782
2495	808270	184394	12906	78162	16834	0	29539
2498	868827	75896	11587	9863	2124	0	26827
2501	782792	45566	3484	14814	3190	8906	26827
2507	0	0	0	0	0	0	26827
2517	964664	93303	13581	54527	11743	0	26827
2521	,0,000	0	0	0	0	142496	26827
2524	866432	74402	4108	3350	721	0	33782
2539	1190941	833188	52053	60669	13066	0	26827
2548	1137440	584668	36187	62902	13547	0	29539
2565	1700075	2550120	79840	288455	62124	0	26827
2505	0	0	0	0	0	222650	29539
2578	ő	0	0	0	0	0	29539
2010	v	~	•	-	-	-	

			· · · ·				
PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBÉR	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
2581	0	0	٥	0.	٥	4453	26827
2608	0	0	0	0	0	89060	33782
2609	328468	32496	988	59347	12782	٥	29539
2634	84565	209379	8736	0	0	٥	26827
2635	6605815	785653	59184	139575	30060	O	29539
2636	782792	44626	9033	2978	641	0	29539
2641	459282	57682	3112	0	0	0	29539
2642	0	0	0	0	0	28499	26827
2646	1079430	165947	15866	3722	802	0	29539
2647	0	0	· 0	0	0	0	29539
2666	5 8 04 27	44923	3639	0	0	0	33782
2677	1267935	921733	15456	109799	23647	0	29539
2679	328468	36211	4277	120034	25852	0	29539
2685	505281	143156	6960	0	0	0	29539
2699	39243	73800	6260	0	0	0	29539
2714	814895	74064	11441	1303	281	0	29539
2736	781792	171741	8944	0	0	0	29539
2741	937016	101097	17269	55458	11944	0	26827
2748	1194885	140087	13793	0.	0	0	29539
2756	9842187	1 882 475	185390	535084	132991	0	41206
2776	1074510	213155	38422	10254	2208	0	29539
2779	485880	96366	8849	0	0	0	29539
2793	647543	119265	6126	0	0	0	26827
2794	4171026	838656	76755	0	0	0	41206
2796	0	0	0	0	0	0	26827
2805	0	0	0	0	0	0	29539
2810	0	0	0	0	0	218197	26827
2814	0	0	0	0	0	89060	33782
4001	969477	290214	33136	22016	4741	0	33782
4003	798660	100687	13412	119104	25651	0	29539
4006	975771	247360	59205	16935	3647	0	29539
4007	671472	97065	9737	0	0	0	29539
4008	988307	12 797 1	86137	55830	12024	0	29539
4009	0	0	0	0	0	89060	29539
4014	361861	69268	1176	1210	261	0	29539
4022	0	0	0	0	0	0	29539
4023	738562	22 8238 4	6771	0	0	0	41206
4024	363505	63769	1171	1117	240	178120	26827
4026	1122802	549639	48074	58063	12505	0	29539
4027	1210395	144097	35244	76673	16513	0	29539
4032	887229	130753	29243	2233	481	0	29539
4042	0	0	0	0	0	0	26827
4043	328468	34584	2744	93794	20200	0	29539
4044	1537378	1 75898 4	19641	191869	41322	0	29539
4046	0	0	0	0	0	44530	33782
4047	465914	94438	1881	16749	3607	0	29539
4048	0	0	0	0	0	24046	26827
4050	838784	74097	2826	3536	762	0	26827
4052	0	0	0	0	0	133590	26827
4057	855184	74771	12547	6588	1419	0	26827
4064	0	0	0	0	0	22265	29539
4066	0	0	0	0	0	93513	29539
4070	843829	74064	4048	1563	337	0	33782

PLANT NUMBER	TOTAL CAPITAL COSTS	TOTAL O&M COSTS	TOTAL LAND COSTS	CAPITAL SLUDGE COSTS	O & M SLUDGE COSTS	CONTRACT HAULING COSTS	ANNUAL MONITORING COSTS
4072	924008	171007	10718	7258	1563	0	29539
	381860942	129991306	9121323	20247 968	4605802	 10833259	11098169

.

APPENDIX III-C

BAT AND PSES RIA ANALYSIS COST DATA

.

BAT RIA Analysis Cost Data

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	08 M	CONTRACT
NUMBER	CAPITAL COSTS	OSH COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS
76	252052	37518	6889	. 0	0	Û
105	297579	39032	60439	C	0	0
114	253372	37562	11405	0	Û	0
225	790910	44194	1 36 70	0	0	0
260	382240	38190	22560	0	0	0
412	185445	35286	33795	0	0	0
446	134851	33678	1963	0	C	0
447	18292055	755653	10 7682	0	0	0
657	11304160	551 323	168975	0	0	٥
614	4762754	257920	25775	0	0	0
859	6919904	358044	24348	D	0	Q
913	397900	42261	21010	0	0	0
942	383833	41818	19904	D	0	0
1249	201116	35808	8629	D	· 0	0
1439	292673	38870	13780	0	0	0
1569	194525	35588	2938	0	0	0
1618	223839	36571	7205	0	0	0
1688	7063911	364583	103336	0	0	0
1785	510552	45696	19266	· 0	0	0
2030	317109	39673	15106	0	D	0
2047	183568	35223	7653	0	0	0
2073	558577	47104	36112	0	0	0
2268	311072	39476	14708	0	0	0
2400	155182	34752	2663	0	0	0
2419	154508	34280	3964	0	0	D
2527	5240412	280483	80937	0	0	0
2590	73128	34628	3616	0	0	0
2735	14018248	666365	227194	0	0.	0
2767	102017	32824	4574	0	e	0
2786	1409588	51295	81960	0	0	0
						48822222337 4
	75367080	4125698	1152056	0	0	0

PSES RIA Analysis Cost Data

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	CONTRACT
NORBER					SCODUE COSTS	HAULING COSTS
10	54 933	32470	3352	0	0	0
22	178776	35065	1791	0	0	C
33	5756909	304610	51447	0	0	0
49	289619	38769	58262	0	0	0
51	199405	35751	8545	0	0	0
72	50327	32471	3282	D	C	0
79	155182	34752	30550	D	0	0
94	64515	32471	15170	0	0	٥
110	45284	32471	2375	Q	0	٥
11 9	49374	32471	5353	0	0	0
120	70871	32470	1261	0	0	0
149	79736	32492	3911	٥	Û	0
155	513686	45789	14127	0	Ó	0
161	308416	39389	14802	0	0	٥
163	76565	32475	3827	0	0	0
196	271605	38171	12251	0	0	0
206	115661	33145	5327	Û	0	0
212	46352	32471	860	0	0	0
214	408317	42587	7618	0	0	0
220	117869	34628	22809	Q	٥	0
221	442785	43653	5965	D	0	0
240	7637509	390477	84173	0	Q	Ū
249	117687	33197	2253	0	0	0
262	37968	32471	13328	0	0	0
266	40612	32470	1779	0	0	0
283	6173704	323893	80500	0	Û	0
293	311378	39486	5608	0	0	0
310	268057	36309	8238	0	0	0
326	90195	32608	3620	0	0	0
334	63142	32471	1312	0	0	0
354	186004	35304	6981	0	0	0
430	41028499	1448808	664833	0	0	0
433	132115	33597	1927	0	0	D
438	195933	35635	2226	0	0	0
458 468	6919904 61730	358038 32470	441516 1191	0	0	D
400	51712	32470	2431	0 0	0 0	0
494	534507	46402	11697	0		D
522	219258	36417	9543	0	0 0	0
536	162987	34822	3389	0	0	0
543	99322	32768	1678	0	ů O	0
567	36544	32471	826	0	0	0
592	274412	36412	10272	0	0	0
607	107516	32946	3501	0	0	0
611	47389	33157	1111	0	9 0	0 0
624	8125233	412320	129133	0	0	0
658	280710	38474	11504	0	0	0
661	35952	32471	735	0	0	D
706	61007	32471	3058	0	0	0
717	422301	43021	11241	ő	ů ů	C C
724	44179	32471	2839	0	ů O	0
743	65850	32470	844	ů	0	ů O
749	131280	33573	1917	ů 0	0	õ
				~	*	~

.

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS
768	31708	32471	3108	0	0	O
771	190590	35457	8122	0	0	0
791	57998	32471	2508	0	0	0
7 97	50327	32471	1227	0	0	0
814	4762754	257908	25775	Q	Ó	0
819	8463379	427372	56207	Q	0	0
830	62290	34628	5816	0	0	0
862	211407	36153	9141	Q	0	O
877	197851	35699	3167	0	0	O
887	368502	41331	5071	0	0	0
905	44179	32471	1202	0	0	0
944	70364	34628	3552	0	0	0
987	31708	32471	1064	0	0	Ó
992	116953	33178	1738	0	0	Ó
1018	190228	35445	2775	0	0	0
1047	661727	42440	44914	0	0	0
1052	167257	34688	1670	0	0	0
1053	61298	32471	341	0	0	0
1057	29838	32471	735	0	0	0
1083	55597	32470	2477	0	0	0
1085	39321	32471	3196	0	0	0
1086	231251	36820	43640	0	0	0
1091	220797	36468	5852	0	0	0
1094	480384	39757	30587	0	0	0
1117	32064	32471	455	0	0	0
1126	315972	39636	11273	0	0	ŋ
1163	313614	37058	12154	0	0	Û
1172	768788	43902	40884	0	0	Û
1173	60899	34628	12704	0	0	0
1181	142692	33913	6039	0	0	0
1191	85640	32547	1083	0	0	0
1194	91146	34628	4143	0	0	0
1197	57998	32471	2508	0	0	0
1202	113691 460246	33095	5254	0	0	0
1219		44186	26807	0	U	U O
1220 12 3 4	98837 187907	34628 35104	1188 6514	0 0	0	0
1234	297026	39014	12412	0	0	0
1236	81864	32508	17020	0	0 0	0
1249	201116	35808	8629	0	0	0
1264	37968	32471	3108	0	0	0 0
1310	241205	37154	4732	0	0	
1313	28208	32471	826	0	0	0 0
1320	47491	32471	1214	0	0	0
1322	104993	32888		0	0	
1322	117337	33188	4671 1353	0	0	0 0
1328	65850	32471	1333	0	0	0
1352	28208	32471	3108	0	0	0
1356	49374	32471	3269	0	0	0
1357	53916	32471	2456	0	0	
1361	204321	35915	3008	0	0	0
1426	259349	37762	11750	0	· 0	0
1432	142185	33897	6019	ő	0	0
1432	192103	1107/	0017	v	U	v

3

.

PSES RIA Analysis Cost Data

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	О & н	CONTRACT
NUMBER	CAPITAL COSTS	O&M COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS
NUMBER	CONTINE GOATS	021 00010				10021112 00010
1437	569017	41103	8611	0	O	0
1450	28208	32471	6097	0	0	0
147B	36544	32471	1162	0	0	0
1504	116953	33178	1 73B	0	0	0
1507	773454	43964	46156	0	0	0
152B	78489	34628	3626	0	0	0
1534	160297	34797	2528	0	0	0
1560	37968	32471	2744	0	0	0
1575	28208	32470	3108	0	0	0
1595	146674	34035	3043	0	0	0
160B	111339	33037	1672	0	0	0
1622	231396	36825	7501	0	0	0
1628	57212	32470	14543	0	0	0
1645	120688	34628	4811	0	0	0
1657	5017226	269961	19386	0	0	0
1659	156338	34338	6595	0	0	0
1666	99322	32768	19244	0	0	0
1667	336498	40304	16726	0	0	0
1706	5462456	290888	28274	0	0	0
1716	135121	33685	5745	0	٥	0
1718	0	0	O	0	0	133590
1744	37968	32471	3108	0	0	0
1751	37123	32470	3052	0	C	0
1773	64515	32471	1323	0	0	0
1788	180325	35116	8093	0	0	0
1793	34725	32471	13328	0	0	0
1826	129024	33508	2062	0	0	0
1832	126103	34628	4199	0	0	0
1848	0	0	C	0	0	195932
1853	6482593	338079	96054	0	0	C
1876	98535	32753	1528	0	0	0
1891	397575	42251	5679	0	0	0
1894	83245	32521	4242	0	0	0
1899	190952	35469	7186	0	0	O
1904	42858273	1501079	693389	0	0	0
1931	79219	32488	16712	0	C	0
1971	1172 73	33187	1352	0	0	0
1993	91072	32621	1583	0	O	O
2004	248045	37384	47608	0	0	0
2007	62441	32471	3698	0	0	0
2037	90635	32615	18099	0	0	0
2070	403544	42438	21857	0	0	0
2084	399517	38471	96866	Û	0	0
2093	296693	39003	14859	0	0	0
2117	165566	34634	6988	0	0	0
2129	98535	32753	4463	0	0	0
2176	101637	32816	1562	0	0	٥
2184	113691	33095	1699	0	0	0
2232	267422	38032	9004	0	0	0
2241	514560	45815	137613	0	0	0
2243	435821	43439	8423	0	0	0
2250	73788	32471	2089	0	0	0
2259	70871	32471	3900	0	0	0
			2,	-	-	-

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT
NUMBER	CAPITAL COSTS	DEM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS
2261	218949	36406	3562	0	0	0
2288	46352	32471	2856	0 (N	D	0
2293	72407	32471	15958	Ō	0	0
2311	9893 0	32761	19191	0	D	0
2318	92796	32649	1602	0	D	0
2341	548550	46813	31497	0	D	0
2348	115661	33145	4987	0	0	0
2350	74354	32471	1410	0	Û	0
2442	34087	32470	2135	0	D	0
2465	97741	32737	1179	0	0	0
2469	49374	32470	1119	0	D	0
2485	5114088	274530	74470	D	D	0
2487	193105	35540	1207	O	0	0
2498	85640	32547	3598	D	0	0
2517	181477	35154	5669	D	0	0
2524	83245	32521	1309	D	0	0
2539	190409	35451	8114	0	0	0
2548	151242	34177	4702	0	0	0
2565	328153	40033	16140	٥	0	0
2635	6268347	328251	56354	0	0	0
2646	264928	37949	8895	0	0	0
2666	126103	34628	1515	0	0	0
2677	194348	35582	2206	0	0	0
2714	31708	32471	3108	0	0	0
2736	305423	39290	5460	0	0	C
2741	154046	34265	6500	0	0	0
2748	708716	43092	11698	0	0	0
2756	4935083	266090	71652	0	0	0
2776	196283	35646	8394	0	0	0
2793	181669	35161	2881	0	0	0
4001	102508	32834	4052	0	0	0
4006	85168	32541	6650	0	0	D
4007	211375	36152	5084	Ó	0	0
4008	154508	34280	27955	0	0	0
4014	30793	32470	1064	0	0	D
4024	35037	32471	1064	0	0	0
4026	145937	34012	6169	0	0	0
4027	369750	37985	20406	0	0	0
4032	39321	32470	3383	O	0	ů.
4044	271239	38159	3310	0	0	0
4047	91072	32621	1125	D	0	0
4050	55597	32470	795	0	0	0
4057	71997	32471	3711	0	0	0
4070	60642	32471	1183	0	0	0
4072	59527	32471	1176	0	0	0
		335323622	=======	3220 <u>2020</u> 202222		882222222222
	195730775	13735953	4189312	0	O	329522

.

.

APPENDIX III-D

BPT, BAT, AND PSES PREAMBLE ANALYSIS COST DATA

.

.

.

	TOTAL	TOTAL	TOTAL	CAPITAL	0 & N	CONTRACT
PLANT	1 -			SLUDGE COSTS		· · · · ·
1	2148497	184672	141330	1100630	390896	•
12	180874	18790	2797	63274	13627	٠
15	0	0	0	0	0	٠
61	84151	33440	1347	37220	8016	•
63	0	0	• 0	0	0	•
76	281469	34471	4672	744400	160320	•
83	381862 265566	42663	2044	746261	160721 116232	•
87	207700	42407	1936	539690	110232	4453
101 102	0		•	·	-	4475
105	323707	40812	38018	578275	143725	•
112	JEJ/01	40012	50010			111325
114	241351	28357	6566	472694	101803	
154	0	0	0	0	0	
159	358407	69134	2006	139389	30020	•
177	818190	77191	82527	816179	202855	
183	357748	40346	7774	658794	141883	
190	0	0	· 0	0	. 0	•
205	Q	0	0	0	, o	
225	229464	39653	2693	388949	83767	•
227	1935676	185623	88293	1138637	404394	•
250	866127	82093	87754	910350	226260	•
254	0	0	0	0	0	•
259	276458	43077	8326	580632	125050	•
260	0	Ū	0	0	Q	•
267	0	Ū.	. 0	0	0_	•
269	68749	33280	661	22332	4810	•
284	113202	8618	0	. 0	Q .	•
294	106642	33670	2038	67368	14509	•
296	2425129	299145	301084	1057344	375522	•
301	0	0	0	0	0	•
352	249389	28887	1520	289013	62244	•
384	0	0	0	0	0	•
387	0	0	0.	0	v 0	•
392 394	0	0	U 0	Ф. О	С. П	•
399	2289537	262234	7000	1685950	627888	•
412	117697	33793	27282	83745	18036	•
415	1872048	201524	. 34159	1117344	416125	
443	0	0	Q	0	0	•
444	296959	36804	8590	857921	184769	
446	87942	33470	1798	42877	9234	•
447	233064	39920	4320	401976	86573	•
451	834724	62589	48915	333145	118319	•
481	27229	32795	944	1861	401	•
485	0	0	0	0	0	•
486	194555	21206	9336	101611	21884	•
488	0	0	0	0	Q	
500	1373260	124032	284601	933028	331371	•
518	3746	2001	0	0	0	•

1

	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT
PLANT	TOTAL CAPITAL COSTS			SLUDGE COSTS	-	
P LINE I						
523	256452	29711	6170	311718	67134	
525	0	٥	٥	O	0	
569	200730	37442	9882	292177	62926	•
580	604454	57750	3630	711085	176734	
601	72640	33317	1744	26054	5611	
602	106642	33674	1576	66475	14317	-
608	785303	76098	12794	336260	119425	•
614	117697	33782	2843	87095	18757	•
633	188254	20688	5061	106077	22846	•
657	0	0	0	0	0	•
659	631575	59683	3424	758625	188550	•
662	584467	20379	0	0	0	•
663	179503	24522	5161	124687	26854	•
664	0	0	0	0	0	•
669	110338	33721	5931	70718	15230	•
682	1085016	152559	18792	951020	354182	•
683	0 Technologi	0	0 97195	0 2533003	1231398	•
695	3099055	439795	7 (1)77	2355005	1231370	133590
709	1507133	137189	85264	791820	- 281220	()))/0
727 741	899892	82239	101117	298780	106114	•
758	381354	42615	8132	744400	160320	
775	342597	47565	4059	915612	197194	•
802	0	0	0	0	0	
811	0	0	0	0	0	•
814	654241	89646	6845	607062	215602	
825	218681	38745	2875	346146	74549	-
844	26890	70000	0	0	0	•
851	1109521	116141	21610	722008	256426	•
859	1015264	97928	19782	809200	201120	•
866	0	0	0	0	٥	•
871	909184	84912	5348	398813	141641	•
876	313017	46650	9504	761149	163927	•
883	13128	3379	0	0	0	•
888	302005	44924	6651	707180	152304	•
908	233064	40018	70 70	407559	87775	•
909	513324	68914	15085	396174	140704	•
913	893264	124634	24811	996374	353869	•
938	265566	42407	1936	539690	116232	•
942	236664	40150	11486	413142	88978	•
948	0	0	0	0	0	•
962	99208	33598	1499	55830	12024	•
970	466572	62014	5701	330717	11 7456 0	•
973	0	0	0	0 644326	160142	•
984	429711	50874	5650	044328	0	•
990	0	0 73204	0 1452	1604Z	3455	•
992	60872	33204	4965	969017	240841	•
1012	572058 0	63566 4312	دەرب 0	0	0	•
1020	U		v	- -	*	89060
1033	•	•	•	•	•	

2

	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT
PLANT	CAPITAL COSTS	OUN COSTS			SLUDGE COSTS	
1038	0	D	Ċ.	٥	0	•
1059	617533	21643	0	0	0	
1061	0	٥	0	0	0	
1062	498529	55630	7275	738395	183522	•
1067	225869	39313	8224	372200	80160	
1133	0	٥	0	0	0	•
1137	553812	68369	3342	314458	111682	•
1139	2647	1733	0	O	0	•
1148	876578	83708	2078	393271	139673	•
1149	697317	95967	19203	674763	239646	•
1157	10000	14000	ə	0	0	•
1203	11640	19000	. 0	0	0	•
1241	٥	0	0	0	0	•
1249	184239	19037	5002	148880	32064	•
1267	58679	6428	0	0	0	•
1299	0	0	0	0	0	•
1319	64828	33202	1059	21402	4609	•
1323	110338	33703	899	74626	16072	•
1327	796198	82652	73103	617015	153354	•
1340	0	0	0	0	0	•
1343 1348	284565 0	34938 0	5721 0	766732 0	165130 0	•
1340	17680	44500	0	0	0	•
1389	653985	48654	19703	636234	158131	•
1407	0	0	0	0	0	•
1409	0	ů	ũ	0	0	•
1414	170074	15107	4700	20471	44.09	•
1438	15000	30000	3428	625107	155365	•
1439	236664	40244	11767	418725	90180	
1446	409598	53586	11954	976806	242777	
1464	908830	91177	15421	469813	166857	
1494	1174531	101012	105959	592545	210446	
1520	0	0	0	0	0	•
1522	795838	37783	0	0	0	
1524	215088	38487	6486	334980	72144	
1532	1023159	101572	124128	399869	142016	•
1569	225316	25861	2165	374061	80561	•
1572	1392807	140903	3493	915872	325278	
1609	734465	59464	81394	768740	191064	•
1616	261944	42102	7911	521080	112224	•
1617	975301	81895	33603	400001	142063	•
1618	0	0	0	0	0	•
1624	157632	34229	2775	169351	36473	•
1643	453201	60038	12533	312505	110988	•
1647	655618	52168	44999	759637	188801	•
1650	1835050	260709	56409	1348463	655544	•
1656	117697	33787	6406	85606	18437	•
1670	. •	•	•	•	•	4453
1684	10000	13000	Û	0	0	•
1688	1068593	106304	112509	349457	124112	•

	TOTAL	TOTAL	TOTAL	CAPITAL	0 8 M	CONTRACT
PLANT	CAPITAL COSTS	OBM COSTS	LAND COSTS	SEUDGE COSTS	SLUDGE COSTS	HAULING COSTS
1695	0	٥	0	C	C	•
1698	68750	33252	7520	24193	5210	
1714	168984	15610	4523	651 35	14028	•
1717	188703	20581	1774	98633	21242	•
1724	٥	0	٥	0	0	•
1753	1685179	169888	18180	1266912	449952	•
1766	305671	45132	9258	722068	155510	•
1769	322330	1300000	٥	0	0	•
1774	0	C	C	0	0	•
1776	68749	33280	1597	22332	4810	•
1785	364027	46822	608Z	758625	188550	•
1802	810485	65222	97501	282416	100302	•
1839	243874	40790	11905	447198	96312	•
1869	0	Ó	٥	0	0	•
1877	Ċ	0	0	0	0	•
1881	135942	33984	1904	120034	25852	•
1890	1032804	109344	201 82	1369268	340320	•
1905	0	0	Ċ	Q	0	•
1910	Ó	Ô	0	0	Ô	•
1911	956147	117666	23834	800087	246695	•
1928	132307	33947	3085	111660	24048	•
1937	٥	Ó	0	0	0	•
1943	46613	5812	0	0	0	•
1973	Û	0	0	0	0	•
1977	1869736	207459	9856	1216685	453122	•
1986	56877	33124	2547	14888	3206	•
2009	806271	70103	44444	930580	231288	•
2020	171655	16343	4700	37220	8016 124674	•
2026	942791	80047	4565	351040 662533	164667	•
2030	342907	43678	9236 10966	372200	80160	•
2047	225869	39313		232625	50100	•
2049	200321	21837	5756	57691	12425	•
2055	99208	33586	2564 2837	26054	5611	•
2062	72640	33317	-	20034	0	•
2073	0	953Q 7/570	0 3188	193544	41683	•
2090	168427	34578 59533	71352	508785	1264.54	•
2110	676510	0 [[[]	0	0	0	•
2148	0 250595	29778	1137	532246	114629	•
2181	27229	32795	944	1861	401	•
2193	218681	38887	4082	353590	76152	•
2198	110338	33703	2100	74440	16032	
2206	0	0	0	0	0	•
2 221 2222	u 0	0	å	ů ů	0	-
2227	1871009	163118	316833	1090072	387146	
2228	48749	33057	2374	9305	2004	•
2226 22 36	154027	34191	7870	156324	33667	•
2242	0	0	0	0	0	•
2254	639163	82156	28434	671636	166930	•
2268	117697	33781	6334	87467	18838	•
	146971	20.01				-

I

	TOTAL	TOTAL	TOTAL	CAPITAL	0 2 M	CONTRACT
PLANT	CAPITAL COSTS	DEN COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS
r ganti				••••		
2272	1073402	109277	20036	640582	227507	
2281	0	0	0	0	0	•
2292	0	O	0	0	0	•
2296	316205	39690	3060	546210	135756	•
2307	106642	33853	3178	42059	9058	•
2313	324073	46472	7337	826284	177955	•
2315	20180	54000	O	0	0	•
2316	0	0	0	0	0	•
2322	0	0		0	0	•
2328	179597	35630	3270	26054	5611	•
2345	204318	37634	10761	299249	64449	•
2353	128667	33900	6785	107938	23246	•
2360	0	0	0	0	0 228271	•
2364	397,686	51820	4836	918442	124208	•
2365	329541	37851	1863	576724 308810	109676	•
2368	826090	66044	27970 0	303610	0	•
2376	154750	9942	3267	206199	444.09	•
2390	172020	34986 104361	69897	641110	227694	•
2394	1187913 1356450	118223	11726	659850	234350	
2399	233064	40049	4355	409420	88176	-
2400	189968	36510	5802	256818	55310	
2419 2429	0	0	0	0	0	
2427	0	ů	ő	0	0	•
2430	1690705	152499	6636	979217	347775	
2447	0	0	0	0	0	•
2450	0	0	Ō	0	0	
2461	1029598	66321	8598	390631	138735	•
2471	0	0	0	0	0	•
2474	251092	41370	13248	479394	103246	•
Z481	0	0	0	0	0	•
2527	309342	45427	16361	744400	160320	•
2528	1758608	134850	382142	1227321	435891	•
2531	236664	40244	4400	418725	90180	•
2533	276458	43180	14583	588076	126653	•
2536	0	Û	0	0	0	•
2537	150420	34148	2064	150741	32465	•
2541	656361	53354	26126	556325	138270	•
2551	0	0	0	0	Û	•
2556	218670	24812	5833	334980	72144	•
2573	276458	43256	8415	593659	127855	•
2590	0	. 0	0	0	0	•
2592	908572	87132	3922	421512	149703	•
2626	0	0	0	0	0	•
2631	0	0	0	0	0	•
2633	1086614	101045	146635	450282	159920	•
2647	952532	78105	137946	447906	159077	•
2660	0	0	0	0	0 74549	•
2668	218681	38745	4776	346146	55711	•
2673	189968	36556	10129	258679	22711	•

5

PLANT	TOTAL CAPITAL COSTS	TOTAL DEM COSTS	TOTAL LAND COSTS	CAPITAL SLUDGE COSTS	0 & M SLUDGE COSTS	CONTRACT HAULING COSTS
P LAR	CAPITAL LUSIS			320042 20313	300002 00313	NADEING COSTS
2678	916456	75978	35720	304824	108260	
2692	0	D	0	0	0	
2693	7124 82	59792	45282	642303	159639	
2695	0	0	0	0	0	
2701	374284	45170	8897	508785	126454	
2711	143192	34072	4498	131573	28337	
2735	0	0	0	0	0	•
2739	797094	63463	56810	981155	243858	
2763	0	0	0	Q	0	
2764	416596	54622	12164	1011500	251400	•
2767	0	0	0	0	0	
2770	258323	41792	7776	502470	108216	
2771	327767	46704	16473	844894	181963	•
2781	0	0	0	Û	0	
2786	995226	88807	78256	409450	145419	
2795	298203	36991	1927	867226	186773	•
2816	0	0	0	0	0	•
2818	294684	44545	14525	681126	146693	•
3033	236664	40150	7113	413142	88976	•
4002	247451	41173	12166	468972	1010 02	•
4010	324070	46534	6110	831867	179158	•
4017	0	0	O	0	0	•
4018	0	0	0	0	0	•
4021	11582	3205	0	0	0	•
4037	0	0	0	0	0	-
4040	52638	33114	4237	11166	2405	•
4051	227522	26136	1422	215876	464.93	•
4055	0	0	0	0	0	•
		********			**********	*************
	96911856	12806125	4567824	86107401	24534145	342881

	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANKUAL
PLANT NUMBER	CAPITAL COSTS	OLN COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	
1	0	0	٥	٥	٥	0	29539
12	583212	77154	8994	٥	0	0	29539
15	881544	128618	4324	3536	762	0	29539
61	912274	115757	4653	37220	8016	0	29539
63	0	4750	0	0		0	33782
76	1529448	1562142	46817	193544 11724	416 83 2525	0	29539 33782
83	328468 54 105 2	31298 196316	310 1937		0	0	26827
87 101	340192	0	0	0 0	0	222650	26827
102	0	0	0	•	0	0	29539
105	1200770	2123576	340814	276731	59599	0	41206
112	0	0	0	0	0	111325	26827
114	1118466	368477	31427	472694	101803	0	26827
154	328468	33389	2412	74440	16032	0	26827
159	0	0	O	0	0	0	29539
177	1011495	103592	21556	48386	10421	0	29539
183	862959	451849	27631	0	0	0	29539
190	731177	1072783	66000	0	0	0	41206
205	821587	757824	86733	193544	41683	0	29539
225	1192741	120811	16227	373178	80801	0	29539
227	454726	28989	2124	0	0	0	41206
250	354104	50601	8063	385227	82966	0	33782 26827
254	366729	54659	3248	470833	101402	0	33782
259	0	0	0 38554	81884	17635	0	29539
260	1231815	147463 651263	13206	776832	193075	0	51259
267	1411929 60026	31856	626	0	0	ů	29539
269 284	384432	67491	5018	111660	24048	ů	26827
294	0	0	0.0	0	0	ů.	29539
296	594489	119654	21801	661521	164416	0	41206
301	8973044	3754917	96349	329397	116988	0	41206
352	405958	63704	1466	3908	842	0	29539
384	6856767	3047519	248419	358431	127299	0	51259
387	2969660	841368	37964	1827258	888306	0	65286
392	450142	33874	2736	0	0	Ú	26827
394	461491	47794	8211	0	0	0	26827
399	2000000	335000	9100	0	0	0	36574
412	642285	82906	69000	0	0	0	26827
415	355 1871	3621418	129088	660906	234725	0	51259
443	868975	154617	28737	7816	16 83 0	0	29539 29539
444	110689	34022	6542	0	6052	0	26827
446	919901	82783 1653586	5349 123326	28101 545 805	135655	ů	41206
447 451	194 78598 0	000000	0	0	0	44530	26827
481	498116	37693	2374	ů ů	ů.	0	29539
485	1866959	2954508	114488	0	0	0	41206
486	872185	102024	27795	10608	2285	0	29539
488	1154248	468093	109650	82256	17715	0	29539
500	328709	38823	5380	163396	35190	٥	29539
518	1950998	2281636	14440	329397	70942	0	26827
523	72315	42686	7095	0	0	Û	29539
525	D	0	0	0	0	0	29539
569	0	D	0	0	0	0	29539

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OMA COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
			2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
580	116439	34318	2395	0	0	0	29539
602	٥	0	0	0	0	57889	29539
608	655540	1052470	14970	٥	0	0	41206
614	328468	34168	1578	87095	18757	٥	29539
633	809133	73458	12751	2680	577	0	29539
657	11957032	685730	192648	374795	133111	0	29539
659	454557	52002	2826	0	٥	0	33782
662	1247646	428399	22673	764871	164729	0	29539
663	858500	692391	18605	115382	24850	0	26827
664	919793	530584	10537	716485	154308	0	26827
669	٥	0	0	0	0	124684	29539
682	697987	146981	15825	429694	152609	0	51259
683	1403937	781729	40680	866856	215450	0	51259
695	2383893	244490	94473	0	0	0	51259
709	0	0	0	0	0	151402	29539
727	471403	84419 0	5792 0	651406 0	161 902 0	0	51259 41 206
741	ů o	ů Č	0	0	0	ů	29539
758 77 5	540068	648766	3151	ů O	0	ů O	29539
802	551554	106422	6680	984190	244612	0 D	29539
811	0	0	0	0	0	ů D	33782
814	6225611	1332591	48218	604877	150337	0	41206
825	837227	151315	4430	346146	74549	0	29539
844	0	0	٥	0	0	٥	33782
851	3377409	3155331	138805	0	0	0	41206
859	6919904	358044	24348	0	0	0	41206
866	0	0	٥	0	0	0	33782
871	451103	42992	6002	0	0	0	33782
876	552177	305539	6730	0	0	0	29539
883	0	0	0	0	٥	0	29539
888	0	0	C	٥	0	0	26 82 7
908	448303	78050	8660	560371	139276	0	51259
909	2743896	1079582	101930	372200	80160	0	41206
913	1141795	797059	47694	464270	164889	Ó	41206
938	115653	84916	1951	0	Ó	0	29539
942	383833	41818	19904	0	0	0	29539
948	1291236	448579	13690	850672	211427	0	51259
962	782986	67022	2865	55830	12024	0	26827
970	469119	83791	6785	642303	159639	0	29539
973	828624	275200	45089	604825	130260	0	41206
984	328468	32299	1695	55830	12024	0	26827
990	328468	35924	1112	115382	24850	0	33782
992	454719	22868	2736	0 585659	0 145561	0 0	29539 29539
1012	454779	79839	6443		76553	0	29539
1020	349821	49140	8310	355451 0	0	89060	29539
1033	0 973717	0 207113	0 14621	524713	186355	0	51259
1038	972717 0	14500	0	0	0	ů 0	41206
1059	458705	113196	8284	488885	105290	0	26827
1061 1062	436/US 0	0	0	400005	0	0	29539
1062	438206	65409	6155	37220	8016	0	29539
1133	139529	35574	1079	0	0	0	29539
1133	2219293	246146	24383	278325	98849	ů	51259
11.21	6417473	270140	L		·	•	- •

	TOTAL	TOTAL	TOTAL	CAPITAL	0 & 1	CONTRACT	ANNUAL
PLANT NUMBER	TOTAL CAPITAL COSTS	OEM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
NUMBER							
1139	479801	60911	12220	Ċ	0	0	33782
1148	835903	185891	4611	604423	214665	0	41206
1149	833465	4798387	23760	Q	Q	٥	41206
1157	0	0	0	Q	0	44530	33782
1203	332097	41724	2210	214015	46092	Q	26827
1241	635556	99018	24064	521080	112224	Ó	26827
1249	1051487	124479	23939	24565	5291	0	33782
1267	Q	0	0	0	D	0	26827
1299	0	0	Ċ.	0	٥	D	29539
1319	0	0	0	0	0	0	29539
1323	544754	69758	1879	0	0	0	26827
1327	2953691	1186459	117597	617015	153354	0	41206
1340	1199794	466637	24908	409104	88108	0	33782 33782
1343	1740987	2625061	58497	541551	11 6633 0	0 0	26827
1348	0	1000	0	0 0	0	0	26827
1349	0	0	0 3220	772315	166332	0	26827
1389	411405	67752 580864	9225	772315	166332	ů O	29539
1407	1002773	2354667	147923	287695	102177	0	41206
1409 1414	4106377 454719	14197	8460	0	0	ů	26827
1438	373116	56619	3606	513636	110621	0	33782
1439	1763615	1915505	81860	195405	42084	0	29539
1446	350850	718244	42480	0	0	0	26827
1464	482849	89871	8602	0	0	0	29539
1494	8463828	2288557	84297	340219	120831	0	41206
1520	1004495	252421	45473	30334	6533	0	29539
1522	611772	4140048	22573	0	0	0	57597
1524	328468	36119	2583	118546	25531	0	26827
1532	425575	75044	11239	217737	46894	0	29539
1569	1036063	174401	8011	186100	40080	0	29539
1572	0	25000	0	0	0	0	51259
1609	905355	288820	19941	502470	108216	0	29539
1616	331423	41307	3524	206571	44489	0	26827
1617	576429	1291980	4296	٥	0	0	29539
1618	685778	104759	13436	0	0	0	26827
1624	778349	41593	2855	1359	293	0	33782
1643	0	0	0	0	0	0	26827
1647	912609	479951	10155	232625	50100	0	29539
1650	20575507	4527482	1058825	1732309	645153	0 0	57597 29539
1656	0	0	0	0	0	4453	29539
1670	0	0	0	0	0	133590	33782
1684	73357	32245	694	0	66132	0	29539
1688	7407018	411282	110439	307065 2 76873	98333	0	51259
1695	4893992	1257500	26851 13086	270673	0	ő	26827
1698	449881	13302	9912	33684	7254	0	26827
1714	778349	56004 31437	826	36848	7936	0	26827
1717	328468 841150	105982	21038	3350	721	0	29539
1724	671437	139572	15144	397230	141079	a a	41206
1753 1766	378121	58125	6076	547134	117835	0	26827
1760	7875173	9718672	157155	0	0	0	41206
1774	1035891	243484	13226	871002	309342	0	29539
1785	1012253	192393	29524	758625	188550	0	51259
	1415644		412.24	*			

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 8 M	CONTRACT	63 MILE .
NUKSER	CAPITAL COSTS	OM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	CONTRACT HAULING COSTS	ANNUAL MONITORING COSTS
			(12.0 00010				HONE TORING COSTS
1802	444655	77041	13785	546210	135756	0	29539
1839	782792	44868	8886	9863	2124	Û	26827
1869	618340	705348	3628	0	0	٥	51259
1877	1389291	881655	27052	183 8 67	39599	٥	29539
1881	328468	31617	631	41673	9018	0	33782
1890	529854	113692	19606	290316	62525	0	33782
1905	386297	63117	5875	15204	3275	0	33782
1910	1135742	1255931	11405	308740	66493	0	41206
1911	686981	106868	27170	666238	143486	0	33782
1928	826194	75304	55 83	7072	1523	0	26827
1937	1251214	628168	61880	121523	26172	0	29539
1943	0	0	Ó	Ó	o	0	33782
1973	599338	119580	5777	311449	110613	0	29539
1977	0	٥	٥	0	0	0	51259
1986	Ô	0	0	C	Ó	0	26827
2009	674383	80766	9318	C	0	0	29539
2020	Ó	0	Ó	Q	Q	0	29539
2026	454719	17720	2736	0	0	0	33782
2030	1437358	1390413	84990	0	Q	0	41206
2047	512036	69993	11377	96772	20842	0	26827
2049	378242	59210	6012	57691	12425	0	29539
2055	0	0	0	0	0	0	26827
2062	785050	50058	5652	14330	3086	0	29539
2073	1565332	2107497	66931	878392	189178	0	29539
2090	63318	35647	1953	0	0	0	29539
2110	362960	63158	6065	34801	7495	0	29539
2148	657716	216786	28974	816281	202880	0	29539
2181	0	0	0	0	0	0	26827
2193	0	0	0	0	0	89060	33782
2198	355187	50962	3103	392671	84569	. O	29539
2206	674950	135546	5916	0	0	-	26827
2221	861504	222760	7759	320092	68938	0	26827
2222	670350	139270	6606	395910	140610	0 0	29539
2227	1717297	1113595	57123	1047842	372148	0 Q	29539
2228	783187	42842	5329	5620	1210	0	29539
2236	458966	66378	5085 9040	10515	2265 60 360	0	29539 29539
2242	794313	66472		280267		0	29539
2254	564000	115855	12674	622275 65135	154661 14028	0	29539
2268	1741503 1521382	29415 23 22 7295 4	76492 53161	814763	202503	0	51259
2272		118514	3459	9119	1964	ů	29539
2281	414832	161108	35602	9119	0	ů ů	29539
2292	623153 0	101106	20002	ů ů	0	ů l	26827
2296	0	0	0	0	0	ů	26827
2307	0	0	0	0	0	0	29539
2313		90041	6312	411281	88577	ů O	26827
2315	424577	117054	7232	1489	321	0	29539
2316	864597 2093797	2526055	109087	566116	121923	Ö	41206
2322 2328		<i>232</i> 0033 0	0	0	0	ů č	33782
2325	0 341793	46190	7518	297202	64008	0	29539
		e0190	0	29/202	0	0	29539
2353	0	71906	3452	874670	188376	0	26827
2360	426189		624	16563	3567	ŏ	33782
2364	328468	31298	924	10202	10(6	U	231 GE.

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M .	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OLM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	HONITORING COSTS
			.				
2365	537219	47124	3521	0	0	0	29539
2368	543298	104153	5081	948787	235813	0	41206
2376	464098	52884	2830	0	0	Ð	33782
2390	0	0	Q	0	. 0	0	29539
2394	1228402	182965	13864	524449	186261	0	41206
2399	0	0	Q	0	0	Q	29539
2400	155182	34752	2663	0	0	0	26827
2419	482976	67209	5838	66810	14389	0	26827
2429	577551	117539	62203	0	0	D	29539
2430	6501134	6661361	215084	344970	122518	0	41206
2445	415461	68897	3285	800230	172344	0	33782
2447	<i>)</i> 0	1000	C	<u>,</u> 0	0	Q	29539
2450	1160796	1420471	31753	691866	171958	0	41206
2461	356565	63076	2973	15446	3327	0	33782
2471	0	0	0	0	0	0	41206
2474	740217	426664	28735	0	0	Û	26827
2481	1068738	320795	17744	930580	231288	0	51259
2527	6110643	697665	137712	329925	117175	0	51259
2528	1614132	1128181	57991	363445	129080	0	51259
2531	521479	190457	3733	0	. 0	0	26827
2533	366452	54573	9703	468972	101002	0	26827
2536	0	0	0	0	0	0	29539
2537	328468	32169	723	53411	11503	0	26827
2541	1718347	2295209	31514	465250	100200	0	29539
2551	0	0	0	0	0	0	26827
2556	0	0	0	0	0	0	26827
2573	1207405	376056	23701	407559	87775	-	29539 29539
2590	858178	76221	12516	1861	401 182765	0	26827
2592	422449	70859	3394 0	848616 0	0	0	29539
2626	0	0 2667176	37870	289758	62405	0	41206
2631	1268164	139875	26412	398549	141547	0	41206
2633	6 72524 0	0	20412	0	0 -	0	26827
2668	616854	84752	12964	4094	882	0	29539
2673 2678	339927	45444	2365	262072	60922	ő	26827
2692	0	1000	0	0	0	ů	26827
2693	0	0	ů	0	0	0	29539
2695	1257905	1803263	39263	990259	246121	ů.	41206
2701	613699	669010	14248	0	0	ů.	41206
2711	458155	40786	4960	0	0	0.	26827
2735	15495718	1263917	272135	571430	202947	0	29539
2739	117139	87578	8235	ំច	0	٥	51259
2763	464278	82458	5650	623084	154862	0	29539
2764	506987	94 189	18345	796051	197852	0	41206
2767	430485	64122	6220	21774	4689	0	29539
2770	778726	67022	6555	55830	12024	0	29539
2771	458155	40786	8157	0	0	0	33782
2781	917047	157462	33873	9119	1964	0	29539
2786	1738056	82699	83281	35731	7695	0	29539
2795	1080229	865104	6742	575544	143047	0	41206
2816	1236899	268670	16958	792876	281595	0	41206
2818	62529	31909	4280	0	0	0	29539
3033	189850	38322	5836	0	0	0	29539

.

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 8 M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OSH COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
4002	o	0	٥	0	٥	0	29539
4010	0	0	0	0	0	0	29539
4017	0	0	0	0	0	0	26827
4018	992916	238249	41090	27171	5852	0	29539
4021	542838	109519	17926	158929	34228	0	26827
4037	1137313	745696	38271	72579	15631	0	29539
4040	553899	72254	14185	0	0	0	29539
4051	332273	41828	1578	215876	46493	0	26827
4055	53273	60681	20687	0	0	0	29539
	***********	*********	*********	222222222222	7333328333333 2 3		*****
	301005886	127142802	7346434	56447691	15079793	10731 73	9050052

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OSM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
2	328468	31298	451	3722	802	0	29539
5	454351	32339	7848	0	0	0	26827
10	838120	74081	11933	3461	745	0	26827
22	1158657	737121	11836	52666	11343	0	26827
30	527873	211506	3608	D	0	0	29539
33	6310032	1110003	74627	139575	30060	0	51259
49	762984	156290	97412	0	0	0	26827
51	1284376	967461	59222	116126	25010	0	29539
52	782792	44438	6371	4224	910	0	29539
58	0	0	0	0	0	0	26827
71	0	0	0	0	0	222650	33782
72	126249	118269	20925	0	0 0	0	29539 33782
79	609506	49394	64822 0	0	0	89060	26827
88	0	0	0	ŏ	ŏ	0	29539
93 01	0	-	133606	- 7444	1603	0	26827
94	890205	158512	21157	3722	802	0	29539
110	697722 0	140753 0	2,,,,,,	0	0	44530	26827
111	503698	43340	18439	ů ů	ŏ	0	26827
119	853663	77070	4347	9305	2004	ů	29539
120	454324	22613	34272	0	0	0	29539
122 143	826189	67843	3446	3722	802	ů 0	29539
149	964222	228716	35100	14330	3086	a	29539
155	1612273	670083	30023	738817	159118	0	29539
158	0	0	0	D	0	89060	26827
161	1700118	2292917	83596	298691	64328	0	29539
162	0	0	0	0	0	133590	29539
163	957582	218398	34291	11166	2405	0	29539
166	97912	254896	14951	0	0	0	29539
160	0	0	0	Ó	0	222650	26827
196	1546498	1771089	73757	227414	48978	0	29539
199	333811	1291428	13412	0	0	0	26827
203	454324	10462	34272	0	Ó	Ó	26827
206	570380	49320	13787	ů	0	0	26827
209	0	0	0	0	0	0	29539
212	46352	33471	860	0	0	356240	33782
214	1229290	306572	13004	182378	39278	0	29539
220	572588	46503	57081	0	0	0	33782
221	1244195	150504	9043	133062	26657	0	33782
232	489168	103636	7899	0	0	0	29539
240	8529556	1742469	100470	213085	45892	0	41206
244	0	0	0	0	0	0	29539
249	900479	87538	6653	30148	6493	0	26827
257	702046	1529422	44291	74440	16032	0	29539
262	884891	128711	117513	2419	521	0	29539
266	623404	74097	6493	2419	521	0	26827
276	655540	1052470	15244	~ 0	0	0	41206
283	6182704	743893	80500	0	0	0	29539
285	0	0	0	0	0	8906	26827
292	836315	98522	14996	64018	13788	0	29539
293	1370183	2293361	28820	0	0	0	29539
297	328468	33502	3260	76301	16433	22265	26827
299	340166	45542	1843	284733	61322	0	29539

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	ORM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
302	454712	36424	2788	0	0	0	29539
310	722381	64072	13098	0	0	G	26827
321	454324	10410	34272	0	Q	Q	33782
326	986711	265703	31942	19354	4168	Q	29539
334	846329	74064	4447	1675	361	0	33782
348	0	0	0	0	Q	0	26827
354	1185345	816919	46075	84303	18156	Q	26827
357	0	Q	0	0	0	89060	29539
417	0	0	0	0	0	0	26827
423	901018	436183	8888	55830	12024	0	29539
428	0	0	0	0	0	222650	26827
430	42169485	2030712	709662	748510	186036	Q	41206
433	1086496	465081	15519	46525	10020	0	29539
438	654024	88519	4423	0	Đ	Û	26827
449	0	0	0	0	0	0	26827
451	0	0	0	Đ	0	44530	26827
458	7708191	1894189	559957	0	0	0	51259
468	668651	105285	4889	16377	3527	0	33782
492	51712	32471	2431	0	0	102419	29539
494	542307	286402	11697	0	0	0	33782
502	0	0	0	0	0	12468	29539
508	0	0	0	0	0	89060	29539
522	1347880	1155668	62622	120965	26052	0	29539
529	454324	11526	2736	0	0	0	26827
536	1051020	242260	17583	13529	2914	0	33782
543	553646	51355	4666	0	0	0	26827
544	0	0	0	0	0	22265	26827
567	839052	101627	7089	1861	401	0	26827
592	728736	64784	16158	0	0	0	33782
605	0	0	0	0	0	164761	26827
607	1026181	337820	29818	29032	6252	0	29539
611	901500	144991	9978	2419	521	0 222650	26827 29539
618	0	0	0	0	0	222030	41206
624	9126969	1606568	152704	263145	56673	0	33782
658	1064238	102242	20885	50433	10862	0	
661	681439	125809	6383	1787	385	0 1 3359	29539 29539
667	0	0	0	0	0	0	29539
702	3000	20000	0	0	0	0	26827
706	515331	45324	10114	0	0	0	26827
717	422301	43021	11241	0	ő	0	29539
720	460286	45359	3062	-	101803	0	41206
722	1195361	4746667	25664	472 694 0	01303	a	26827
724	498503	42933	9895	7816	1663	0	29539
743	892807	162068	7421			ő	26827
749	914467	82156	5281 24345	26426 1489	5691 321	0	29539
768	874295	120197	26365				29539
771	686809	590259	40983	61599	13266	U //ETA	29539
777	0	0	0	0	0	44 530 0	26827
791	512322	44084	8394	0	0 0	133590	26827
796	0	0	0	0	•	135390	29539
797	906836	150513	11076	4839	1042		41206
614	5965508	1125534	41968	604877	150337	0 0	41206
819	15913299	3748429	122821	268163	95240	v	⇒12VQ

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	08.8		ANNUAL
NUMBER	CAPITAL COSTS	DEM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
830	62290	34628	5816	0	. 0	142496	33782
845	408855	226882	6529	20657	4449	0	29539
846	0	0	0	0	0	133590	26827
862	1264502	1046233	56858	111697	24056	0	26827
874	866397	335120	21295	478277	103006	0	26827
877	1276593	930268	21985	65879	14188	0	33782
880	0	0	0	0	0	26718	29539
887	1188068	288290	9275	198755	42805	0	29539
905	523889	83463	10226	0	0	0	26827
912	0	0	0	0	0	129137	26827
917	328468	31351	2095	33498	7214	0	29539
929	454324	10295	34272	0	0	0	26827
931	٥	٥	0	0	0	218197	26827
932	0	0	0	0	0	4453	29539
944	70364	34628	3552	0	0	200385	33782
956	0	0	0	0	0	71248	26827
958	0	0	0	0	0	0	29539
975	454719	19450	2124	Û	0	0	33782
976	473643	118860	4038	0	0	0	26827
987	31708	32471	1064	0.	• 0	400770	26827
988	0	0	0	0	0	178120	26827
991	0	Û	0	0	0	4453	26827
992	571672	56046	4474	0	0	0	29539
997	783187	42404	8687	4653	1002	0	29539
1006	356808	78386	4597	3722	802	0	26827
1011	333002	42241	6053	223320	48096	· 0	29539
1018	1035194	148806	8063	88584	19078	0	29539
1026	0	0	0	0 -	÷ 0	222630	29539
1047	1148662	141110	53794	0	0	0	33782
1052	950444	89666	4147	45408	9780	0	26827
1053	844090	84506	1209	6588	1419	0	33782
1057	29838	32471	735	0	0	89060	33782
1064	0	0	0	0	0	66795	29539
1069	422716	70934	4781	850477	183166	0	29539
1076	0	0	0	U 7674	0 7()	62342	26827 26827
1083	638784	74097	8802	3536	762	· · · ·	33782
1085	39321	32471	3196	-0 0	0	2671 80 0	26827
1086	694350	109625 1176154	80194	145158	31262	. 0	29539
1091	1356486 762 73 4	1077848	38810 69366	147138	0	0	29539
1094 1107	457746	39842	2167	0	0	8906	26827
	486388	45522	1625	0	0	0	26827
1117	486388 1 388966	2364293	57473	0	0	0	29539
1126	475122	126133	8948	j D	ŭ	ů,	26827
1162	1140424	114112	19813	9863	2124	0	29539
1163		210444	48045	0.	0	0	26827
1172	1251348 60899	34628	12704	0	0	223986	33782
1175	0	030 0 0 0	0	· 0	0	178120	26827
1175		470739	36416	46711	10060	176120	29539
1181	609675 792566	84182	7428	26054	5611	0	29539
1188		225860	9377	14516	3126	0	29539
1191	970141				0	51210	33782
1194	545470	44928 0	12135	0 -	0	0	26827
1195	0	v	٥	_ 0	v		LOOL

	TOTAL	TOTAL	TOTAL	CAPITAL	0 8 M	CONTRACT	ANNUAL
PLANT Number	CAPITAL COSTS	DEM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
1 197	841185	74134	8858	3908	842	٥	26827
1202	\$68015	57237	13714	0	0	0	26827
1219	1372926	4807680	86775	٥	0	٥	26827
1220	553161	46415	3312	C	0	Q	33782
1223	328468	31298	313	4839	1042	0	29539
1224	434036	1819206	11597	0	0	0	26827
1234	642231	52824	12400	0	Q	C	33782
1236	1081319	106108	21961	57133	12305	0	33782
1237	536188	47595	51292	Ģ	0	٥	29539
1249	1029111	112348	20143	24565	5291	Q	33782
1253	454324	15794	8460	0	Q	Ģ	29539
1255	454719	27484	2124	0	٥	٥	29539
1264	884891	128711	27404	2419	521	0	29539
1 277	78279 2	51607	3334	24193	5210	0	29539
1310	1557381	13052723	21744	148880	32064	0	41206
1313	28208	32471	B26	0	0	115778	33782
1314	0	Q	Ó	0	0	0	26827
1320	501815	43128	4202	0	0	48983	26827
1322	887785	94672	14371	23263	5010	0	26827
1326	572056	43908	3477	0	0	a	33782 29539
1351	936204	187088	12078	7816	1683	0 115778	29339 33782
1352	28208	32471	3108	0 3908	0 842	0	29539
1356	905097	148521	29332	0	0 0	ů C	33782
1357	508635	43766	8342	122454	26373	0	29539
1361	1300614	1013283	20632	0	0	222650	26827
1371	0	0	a	ů Q	0	44530	26827
1386	0	0	0	174190	37515	0	29539
1426	652080	113060	22286	65879	14188	a a	26827
1432	925372	92522	17069	0	0	14250	29539
1433	0	0	0 109 22	0	0	0	29539
1437	1096862	159394	6097	0	0	115778	26827
1450	28208	32471	10160	2233	481	0	29539
1478	882449	126646	5145	29776	6413	0	26827
1504	900140	91582	54190	27778	0	ů O	33782
1507	1287795	212558	11618	0	• 1	0	26827
1528	533208	44935	5264	ů ů	0	0	26827
1534	615016	48592	92 54 0	0	ů	8906	26827
1535	0	0	1 5858	253468	54589	0	29539
1539	813332	179737		0	0	75701	29539
1548	0	0	0 2 736	0	ů O	0	29539
1556	454479	34298	24193	2419	521	0	29539
1560	884891	128711	3438	136970	29499	0	29539
1562	795401	95553		0	0	75701	29539
1564	0	0	0	0	0	44530	29539
1566	0	0	0	0	0	262727	26827
1575	28208	32470	3108 0	0	0	0	29539
1593	0	0 45.060	6967	А	0	ů	29539
1595	601768	65959	2420	л	0	0	29539
1601	47664	25803		31451	6774	0	29539
1608	1035239	355617	14116	93050	20040	0	29539
1621	784293	69261	11491	33312	7174	ů	33782
1622	1014583	92314	14925	5583	1202	• •	29539
1628	919622	165423	131776	2005	1444	•	

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OLM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
							Hoartoarad 600,0
1645	947272	102996	13371	6700	1443	0	29539
1653	657531	1074092	15332	0	0	0	41206
1657	5591066	732489	26848	546210	135756	0	41206
1659	1151806	619556	50306	67740	14589	0	29539
1666	1007179	301977	166784	24193	5210	0	29539
1 667	1192611	252633	33636	304274	65531	0	26827
1706	6097260	1137104	33346	0	0	0	41206
1716	1094181	482658	45928	48944	10541	0	29539
1718	0	Û	0	0	0	133590	29539
1740	407361	95668	12352	722068	155510	0	26827
1742	783231	61376	44824	44664	9619	0	29539
1743	826584	68288	9498	6532	1407	0	26827
1744	884891	128711	27404	2419	521	0	29539
1748	2257611	7860591	98815	660655	142284	0 222650	29539
1751	365591	63768	3387	1303	281	222050	26827 33782
1764	783187 519234	59247 44877	3703 4311	28473 0	6132 0	0	26827
1773	634649	62389	16553	0	0	0	20027
1788 1793	880044	124117	124800	19354	4168	. 0	29539
1797	0	0	0	0	0	0	29539
1801	782792	42739	3270	5397	1162	0	29539
1805	466333	86018	7687	0	0	0	26827
1808	0	0	0	0	0	155855	26827
1812	. 0	ũ	0	0	0	89060	33782
1826	1077619	446297	16555	37220	8016	0	29539
1832	580427	45654	10085	٥	0	0	33782
1833	795824	94115	5392	100494	21643	0	29539
1838	0	0	0	0	0	129137	29539
1843	0	0	٥	0	0	44530	26827
1848	43397	26019	289	0	0	396317	29539
1853	7780971	1681480	145118	748004	185910	0	41206
1861	375681	57177	3426	40384	8697	0	29539
1876	1005368	298711	13259	23635	5090	0	29539
1887	0	0	0	0	0	178120	29539
1888	0	0 .	0	0	0	71248	29539
1891	892291	291299	8488	0	0	0	26827
1894	971648	240640	37880	16005	3447	0	29539
1899	976873	120020	17659	89328	19238	0	26827
1904	44007030	3688304	734492	273759	97227	0	41206
1924	459292	43282	2798	0	0	· 0	29539
1931	862406	75312	55070	8186	1764	0	26827
1936	471124	452466	29913	24379	5250	0	29539 26827
1945	454324	17894	8460	0	0 · 0	0	26827
1948	455222	39756	4957	0	ů	0	26827
. 1970	454324	12406	2124	9491	2044	0	29539
1971	900065	85649	3751 0	0	0	0	29539
1974	0	¢ 0	0	0	0	178120	26827
1988	0 54 5396	49906	4571	0	0	111325	26827
1993	454324	15971	3600	پ م	ŏ	0	26827
2001	534324 702 369	51581	81880	0	ů	ŏ	29539
2004 2007	929589	178248	33722	8188	1764	ő	26827
2018	875984	2428793	14540	297760	64128	õ	26827
2410	613704	545D(74		2711.00		•	

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	DAM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
2022	0	0	0	C	C	31171	26827
2033	0	٥	0	0	0	84607	33782
2037	873822	74706	55144	4094	882	0	33782
2050	0	0	0	0	0	222650	26827
2057	454324	29682	7056	0	0	0	33782
2070	2081896	3999167	104847	446640	96192	0	29539
2075	793256	85650	10493	36922	7952	0	29539
2080	328468	32940	3087	66996 0	14429 0	0	29539 33782
2084	854280	68111 5//005	131138	232625	50100	U O	29539
2093	1214161	546905 0	34381 0	232823	0	0	26827
2108	949125	106449	18175	65135	14028	ů	29539
2117	340647	45736	1856	288455	62124	ŏ	26827
2123 2129	1005368	298711	38731	23635	5090	ő	29539
2129	0	290/11	0	0	0	178120	26827
2176	884429	83219	4859	21588	4649	0	29539
2177	742090	2351856	19326	0	0	ů	41206
2184	613322	80174	5083	0	0	0	29539
2191	0	0	0	0	0	0	29539
2214	0	0	0	0	0	138043	29539
2232	1155073	397803	21716	26054	5611	0	26827
2241	1422177	527241	236385	660655	142284	0	29539
2243	2289594	4709998	38645	524802	113026	0	29539
2250	856975	74098	6803	2419	521	0	33782
2253	٥	0	0	0	0	222650	26827
2259	902715	176125	34095	9305	2004	0	26827
Z261	1289010	1120787	21785	120593	25972	0	29539
226 2	0	0	٥	٥	0	44530	29539
2288	500676	43047	9912	0	Q	111325	29539
2293	526731	47113	50230	0	Q	0	26827
2300	905212	472469	8066	649489	139879	Ó	26827
2311	882117	77343	58940	13827	2978	0	26827
2318	875983	74893	4838	4280	922	0	33782
2341	1381989	337211	46828	277289	59719	0	33782
2346	57 7963	113686	7760	286771	101849	0	41206
2348	544620	328371	31732	29032	6252	0	29539
2350	909702	186512	12260	10422	2244	0	26827
2359	454324	10295	4860	0	0	0	26827
2402	0	0	0	0	0	35624 0	29539 29539
2411	402421	65201	11567	710902	153106 0	0	29539
2426	0	0	0	0 O	-	0	29539
2432	121867	341512	26581	0	0 1552 33	0	29539
2436	703983	148658	26272	437085 1563	337	0	29539
2442	834882	98240	18076 39980	14888	3206	ů 0	29539
2459	783187	47269	4355	120965	26052	ů	33782
2462	789713	101712	10253	23263	5010	ő	29539
2465	1003573	295353	4027	2605	561	ő	26827
2469	832561	74063	97359	452223	97394	0	41206
2485	6102520	1083901 877659	7629	91561	19719	ů,	33782
2487	1206920		12906	78162	16834	0	29539
2495	808270	184394	11587	9663	2124	0	26827
2498	868827	75896	11387 3484	14814	3190	8906	26827
2501	782792	45566	3404	14014	3174	0100	F

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 & M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OSH COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	NAULING COSTS	MONITORING COSTS
2507	0	0	٥	٥	٥	0	26827
2517	964664	93303	13581	54527	11743	0	26827
2521	0	0	0	O	0	142496	26827
2524	866432	74402	4108	3350	721	0	33782
2539	1190941	833168	52053	60669	13066	0	26827
2548	1137440	584668	36187	62902	13547	0	29539
2565	1700075	2550120	79840	288455	62124	0	26827
2571	0	C	0	0	0	222650	29539
2578	0	0	0	0	0	0	29539
2581	٥	٥	0	. 0	0	4453	26827
2606	a	٥	0	0	0	4453	29539
2608	a	a	٥	0	0	89060	33782
2609	328468	32496	988	59347	12782	¢	29539
2634	84565	209379	8736	0	0	0	26827
2635	6605815	785653	59184	139575	30060	٥	29539
2636	782 792	44626	9053	2978	641	0	29539
2641	459282	57682	3112	0	0	0	29539
2642	0	0	0	0	0	28499	26827
2646	1079430	165947	15866	3722	802	0	29539
2647	0	0	0	0	0	0	29539
2666	580427	44923	3639	0 109 799	0 23647	0	33782 29539
2677	1267935	921733	15456	120034	25852	0	29539
2679	328468	36211 890252	4277 28271	11166	2405	a	29539
2680	1071067	143156	6960	0	0	ů ů	29539
2685	505281 39243	73800	6260	۵ ۵	0	ő	29539
2699 2714	814895	74064	11441	1303	281	0	29539
2736	781792	171741	8944	0	0	0	29539
2741	937016	101097	17269	55458	11944	0	26827
2748	1194885	140087	13793	0	0	0	29539
2756	9842187	1882475	185390	535084	132991	0	41206
2776	1074510	213155	38422	10254	2208	0	29539
2779	485880	96366	8849	0	0	0	29539
2775	647543	119265	6126	0	0	0	26827
2794	4171026	538656	76755	٥	0	0	41206
2796	0	0	0	0	0	0	26827
2805	0	0	0	0	0	0	29539
2810	0	0	0	0	0	216197	26827
2814	0	0	0	0	0	89060	33782
4001	969477	290214	33136	22016	4741	0	33782
4003	798660	100687	13412	119104	25651	0	29539
4006	975771	247360	59205	16935	3647	¢	29539
4007	671472	97065	9737	٥	0	0	29539
4008	986307	127971	86137	55830	12024	0	29539
4009	0	0	٥	0	0	69060	29539
4014	361861	69268	1176	1210	261	0	29539
4022	0	0	0	0	0	0	29539
4023	738562	2282384	6771	0	0	0	41206
4024 -	363505	63769	1171	1117	240	178120	26827
4026	1122602	549639	48074	58063	12505	0	29539
4027	1210395	144097	35244	76673	16513	0	29539
4032	687229	130753	29243	2233	481	0	29539
4042	0	0	0	0	0	C	26827

PLANT	TOTAL	TOTAL	TOTAL	CAPITAL	0 8 M	CONTRACT	ANNUAL
NUMBER	CAPITAL COSTS	OLM COSTS	LAND COSTS	SLUDGE COSTS	SLUDGE COSTS	HAULING COSTS	MONITORING COSTS
4043	328468	34584	2744	93794	20200	o	29539
4044	1537378	1758984	19641	191869	41322	D	29539
4046	0	0	٥	C	٥	44530	33782
4047	465914	94438	1881	16749	3607	0	29539
4048	0	0	Û	0	0	24046	26827
4050	838784	74097	2826	3536	762	0	26827
4052	0	0	Q	O	0	133590	26827
4057	855184	74771	12547	6588	1419	0	26827
4064	0	D	0	0	0	22265	29539
4066	0	0	0	0	0	93513	29539
4070	843829	74064	4048	1563	337	Q	33782
4072	924008	171007	10718	7258	1563	0	29539
-	***********	********	82282333339	**********		************	*************
	403686694	136616159	9351984	21347942	4880188	10346991	11442458

APPENDIX III-E

BPT, BAT, AND PSES TECHNOLOGIES COSTED FOR THE PREAMBLE ANALYSIS COST DATA

.

TECHNOLOGI	ES A	ASSOCIATED	WITH	BPT	COST
FOR	THE	PREAMBLE	ANALYS	SIS	

PLANT NUMBER		BPT TE	CHNOL	OGY COSTED	
1		2 SB			
12	1		BU	CAC	1
15					1
61		2SB			1
63	ł				
76				CAC	
83			BU	CAC	
87	AS				
101					СН
102				C • O	ļ
				CAC	
112 114				CAC	СН
114				UNC	
154	AS				ł
177	1 13	25B			
183		250	BU	CAC	1
105			50	0110	1
205					
225	AS				ł
227		25 B			-
250		2SB			1
254		2			i
259	AS				i
260					i
267					i i
269		2SB	•		i
284	ĺ		BU		i
294	AS				i
296		2SB			i
301					Í
352	ĺ		BU	CAC	Í
384					ŀ
387					I
392	•				1
394					1
399			BU	CAC	ŀ
412	AS				I
415			BU	CAC	
443				.	1
444	. –			CAC	ļ
446	AS				
447	AS				
451	AS				
481		2SB			l

 PLANT (BPT TE	CHNOLO	GY COS	TED	
NUMBER						ļ
		• • • • • • • •				1
[485]			877	C 1 C		
[486]			BU	CAC		
488		0en				1
500		2SB				l
518			BU BU	CAC		1
523			ЪU	CAC		1
525	AS					1
1 580	A.J		BU	CAC		1 1
601	AS		DO	UNU		ł
602	A3	2 5B				1
608		230	BU	CAC		l t
	AS		50	ONQ		1
633	nə		BU	CAC		 1
1 657 657			50	UNU		l 1
659			BU	CAC		1
662			BU	UNU		
663			50	CAC	CTPP	
664				UNU		1
669	AS					1
682	пJ			CAC		-
683				uno		1
695				CAC		
1 709				UAU		СН
727	AS					041
741	AS	2SB				1
•	L .	230	BU	CAC		
758	AS		50	C.A.C		1
775 802	- 13					:
•						
811				CAC		
814		25B		unc		
825		230			CTDD	
			BU	CAC	CTPP	
851			БU	UAU		
859	AS					
866			BIT	CAC		
871			BU	CAC		
876	AS					
883	ļ		BU			
888	l	2SB				
908	1	25 B		<i></i>		
909	l			CAC		
913]			CAC		
938	AS					
942	i AS					

TECHNOLOGIES	ASSOCIATEI) WITH	BPT	COST
FOR TH	E PREAMBLE	ANALYS	5 15	

PLANT NUMBER		BPT TE	CHNOLO	OGY COS	STED	
948						
962	AS					
970				CAC		
973 984			BU	CAC		
990			БО	CAC		
992	AS					
1012	ΛU		BU	CAC		
1020					CTPP	
1033						СН
1038						
1059			BU			
1061						
1062 j			BU	CAC		
1067		2SB				
1133						
1137			BU	CAC		
1139			BU			
1148			BU	CAC		
1149				CAG		
1157					CTPP	
1203					CTPP	
1241						
1249				CAC		
1267			BU			
1299		000				
1319		2SB 2SB				
1323	AS	230				
1327 1340	AD					
1343				CAC		
1348				uno		
1349					CTPP	
1389	AS					
1407						
1409						
1414			BU	CAC		
1438 j					CTPP	
1439	AS					
1446 j				CAC		
1464 j			BU	CAC		
1494		25B				
1520						
1522 j			BU			
1524	i	2SB				

PLANT NUMBER		BPT TE	CHNOLO	OGY COS	TED	
1532	AS		•••••			
1569				CAC		1
1572			BU	CAC		1
j 16 0 9 j		25 B				1
1616		25B				I
1617		25 B				
1618						1
1624		2SB				1
1643				CAC		
1647		25B				
1650				CAC		1
1656		2\$B				
1670						СН
j 1684 j					CTPP	
] 1688]	AS					
j 1695 j						
1698		2SB				
1714				CAC		
17 1 7			BU	CAC		
1724						
1753			BU	CAC		
1766		2\$B				
1769					CTPP	
1774						
1785				CAC		
1802		2SB				
1839	AS					
1869						
1877						
1881		2SB				
1890			BU	CAC		
i 1905	ĺ					
j 1910	ĺ					
•	1		BU	CAC		
• • • • •	AS					
• • • • • •	Į					
•	Ì		BU			
į 1973						
1977	ļ		BU	CAC		
j 1986	AS					
2009	1	2SB				
•	Ì		BU	CAC		
•			BU	CAC		
	1			CAC		
•	j AS					

• • • • • • • • • • • •					
PLANT NUMBER	 	BPT TE	CHNOLO	XGY COS	STED
2049]			CAC	
2055	AS				
2062	AS				
2073	1				CTPP
2090	AS				
2110	1	2SB			
2148	1				
2181	1			CAC	
2193	ļ	2SB			
2198		2SB			
2206	AS				
2221	•				
2222	1	2SB			
2228	1	25B 25B			
2236	1	23B 2SB			
2230	1	235			
2254	1	25 B			
2268		200			
2272	- -		BU	CAC	
2281	i				
2292	i				
2296	1			CAC	
2307	Í	2SB			
2313	i	2SB			
2315	i				CTPP
2316	i				
2322	ŀ				
2328	1				CTPP
2345	AS				
[2353	1	2SB			•
2360	1				
	ł			CAC	
	1	_	BU	CAC	
	1	2SB			
	1		BU		
2390	1	2SB			
2394		2SB		·	
2390 2394 2399 2400			BU	CAC	
	AS				
	AS				
•	1				
) 2430) 2445	l F		D 77	CAC	
•	ļ		BU	unil	
2447	l				

PLANT NUMBER		BPT TE	CHNOLO	XGY COSTED	
2450 [
2461			BU	CAC	
2471					
2474		25B			
2481					
2527	AS				
2528 [AS				
2531	AS AS				
2533 2536	AD				
2530		25 B			
2541		25B 25B			
2551 [235			
2556				CAC	
2573	AS				
2590					
2592			BU	CAC	
2626			20		
2631					
2633		2SB			
2647	AS				
2668	AS				
2673		2SB			
2678		25B			
2692					
2693 j		2SB			
2695 j					
2701			BU	CAC	
2711 j	AS				
2735 j					
2739		2 SB			
2763					
2764				CAC	
27 67 [
2770	AS				
2771	AS				
2781					
2786	AS				
2795				CAC	
2816					
2818		2SB			
3033		2SB			
4002 j		2SB			
4010	AS				
4017					

í I.

	-

 PLANT NUMBER	
4018 4021 4037	BU
4040 4051 4055	2SB BU CAC

NOTES:

AS	-	ACTIVATED SLUDGE
2SB -	•	SECONDARY STAGE BIOLOGICAL
BU	-	BIOLOGICAL UPGRADES
CAC	-	CHEMICALLY ASSISTED CLARIFICATION
CTPP	-	CHEMICAL TREATMENT OF POLISHING PON
CH	-	CONTRACT HAULING

PLANT						
NUMBER		BAT TE	CHNOLO	GY COS	TED	
1	MO	NITORI	NG COS	TS ONL	 Ү	
12 j		SS		CN	BP	
15 j	CP	SS	AC	CN	BP	
61 j	CP	SS		CN	BP	
63 j	CPU					
76	CP	SS	AC	CN	BP	
83 j	CP					
87		\$S			BP	
101	MO	NITORI	NG COS	TS ONL	Y	
102	MO	NITORI	NG COS	TS ONL	Y	
105 j	CP	SSU	AC	CN	BP	
112						CH
114	CP	SS			BP	
154	CP					
159	MO	NITORI	NG COS	TS ONL	Y	
177	CP	SS			BP	
183		SS			BP	
190	CPU		AC	CN	BP	
205	CP		AC		BP	
225	CP			CN	BP	
227		SS				
250	CP					
254	CP					
259		_	NG COS			
260	CP	SS		CN	BP	
267	CP	SS		CN	BP	
269					BP	
284	CP				BP	
294	MO	NITORI	NG COS	TS ONL	Y.	
296	CP				BP	
301 [CP	SS	AC	CN	BP	
352					BP	
384	CP	SS			BP	
387	CP					
392		SS				
394		SS				
399	CPU					
412		SS			BP	
415 Į	CP	SS			BP	
443	CP	SS	AC	CN	. –	
444					BP	
446	CP	SS			BP	
447	CP	S S		CN	BP	
451	MC		ING COS		Y	
481		SS		CN		

	 1		• • • • •		••••	
PLANT NUMBER		BAT TECI	ENOLO	GY COSI	ED	
485	CPU	SS	AC	CN	BP	•••••
486	CP	SS		CN	BP	
488	CP	SS	AC	CN	BP	
500	CP					
518	į CP	SS	AC	CN	BP	
523	I			CN		
525	•	ONITORING				
569	e Mo	DNITORING	G COS	TS ONLY	•	
580	ļ				BP	
602	ł					СН
608	i	SS				
614	CP					
633	CP	SS			BP	
657	CP				BP	
659	-	SS				
662	CP	SS			BP	
663	CP	SS				
664	CP	SS				
669						СН
682	CP					
	CP	SS			BP	
695	CPU				BP	
709						СН
727	CP					
741	•	ONITORING	-			
758		DNITORING	COS:	rs only	,	
775	CPU	SS				
802	CP					
811	•	DNITORING	COS:			
814	CP	SS		CN	BP	
825	CP	SS			1	
844	MC	NITORING	COST			
851		SS		CN	BP	
859					BP	
866		NITORING	COST	IS ONLY	•	
871	CPU	SS				
876		SS				
883	•	NITORING				
888	•	NITORING	COST	rs only	,	
908	CP					
909	CP	SS			BP	
913	CP	ssu			BP	
938	l			CN		
942					BP	
948	CP	SS			BP	

ŝ

TECHNOLOGI	ES /	ASSOCIATED	WITH	BAT	COST
FOR	THE	PREAMBLE	ANALYS	SIS	

· · · · · · · · · · · · · · · · · · ·		• • • • • •				
PLANT NUMBER]	BAT TE	CHNOLOG	TY COST	TED	
962	CP	SS				
970	CP					
973	CP			CN	BP	
j 984 j	CP					
j 990 j	CP					
j 992 j	L	SS				
1012	CP					
1020	CP					
j 1033 j						CH
1038	CP				BP	
1059	CPU					
1061	CP			CN		
j 1062 j	MO	NITORI	NG COS	TS ONL	Y	
1067	CP				BP	
1133					BP	
1137	CP				BP	
1139		SS			BP	
1148	CP					
1149	ł	SS				
1157						CH
1203	CP					
1241	CP				BP	
1249	CP	SS		CN	BP	
1267			NG COS			
1299	MO	NITORI	NG COS	TS ONL	Y	
1319	MO	NITORI	NG COS	TS ONL	Y	
1323	1	SS		CN	BP	
1327	CP	S S		CN	BP	
1340	CP	SS			BP	
j 1343	CP	\$S	AC			
1348	CPU					
į 134 9	i Mo	NITORI	NG COS	TS ONL	Y	
1389	CP					
1407	CP	SS				
j 1409	j CP	SS			BP	
j 1414	Ī	SS				
1438	j CP					
1439	CP	SS	AC		BP	
1446	i		AC			
1464	i	SS				
1494	CP	SS	AC			
1520	CP	SS	AC	CN	BP	
1522	CPU	SS		-		
1524	CP					
1532	CP				BP	
1 2000					-	

1569 1572 1609 1616 1617 1618 1624	CP CPU CP CP CP	SS SS SS			BP	
1609 1616 1617 1618 1624	CP CP CP	SS				
1616 1617 1618 1624	CP CP	SS				
1617 1618 1624	CP					
1618 1624						
1624						
· •		SS			BP	
		SS				
1643			NG COS	TS ONL	Y	
1647	CP	SS				
1650	CP	SS		CN	BP	
1656	MC	NITORI	NG COS	TS ONE	¥	~
1670				,		CH
	CD			,	BP	СН
	CP				BP	
1695 [1698	CP	S S SS			BP	
1714	CD	55 55				
1714	CP C P	23				
1724	CP	SS	AC		BP	
1753	CP	23	AU.		, DE	
1766	CP					
1769	CPU	SS	AC			
1774	CP	30				
1785	CPU	SSU			BP	
1802	CP					
1839	CP	SS				
1869		SS				
1877	CP	SS	AC	CN	BP	
1881	CP					
1890	CP			CN	BP	
1905	CP				BP	
1910	CP		AC	CN	BP	
1911					BP	
1928 j		SS			BP	
1937 j	CP	SS	AC	CN	BP	
1943 j	MC	DNITORI	ING COS	TS ONL	Y	
1973	CP					
1977			ING COS			
1986	MC		ING COS	TS ONL		
2009		SS			BP	
2020	M		ING COS	TS ONL	Y	
2026		SS				
2030	CPU	SS	AC	CN	BP	
2047 2049	CP CP			CN	BP	

.

2055 MONITORING COSTS ONLY 2062 CP SS 2073 CP SS 2000 CN BP 2110 CP SS 2111 MONITORING COSTS ONLY P 2193 TOP CN 2193 TOP SS 2193 CP SS 2206 SS BP 2221 CP SS 2222 CP SS 2236 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2268 CP SS 2292 CPU SS 2313 MONITORING COSTS ONLY </th <th>PLANT NUMBER</th> <th>, 1 1</th> <th>BAT TE</th> <th>CHNOLO</th> <th>GY COS</th> <th>TED</th> <th></th>	PLANT NUMBER	, 1 1	BAT TE	CHNOLO	GY COS	TED	
2073 CP SS BP 2090 CN BP 2110 CP BP 2148 CP CN 2181 MONITORING COSTS ONLY 2193 2193 Fraction of the state	2055	 MC	NITORI	NG COS	TS ONL	 Y	
2090 CN BP 2110 CP BP 2148 CP CN 2181 MONITORING COSTS ONLY 2193 2193 CP SS 2198 CP SS 2206 SS BP 2221 CP SS 2222 CP SS 22236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2268 CP SS 2272 CP SS 2361 CP SS 2313 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2315 CP CN 2315 CP CN 2315 CP CN 2315 CP SS 2322 CP SS AC 2345 CP SS 2360 CP	2062	CP	SS				
2110 CP BP 2148 CP CN 2181 MONITORING COSTS ONLY 2193 CP 2198 CP 2206 SS BP 2221 CP SS SS 2222 CP SS 2223 CP SS P 2242 CP SS P 2254 CP SS P 2272 CP SS BP 2242 CP SS BP 2254 CP SS BP 2272 CP SS BP 2268 CP SS AC BP 2272 CP SS BP 2281 CP AC BP 2292 CPU SS AC CN BP BP 2307 MONITORING COSTS ONLY P 2313 MONITORING COSTS ONLY P 2314 CP SS AC CN BP P 2322 CP SS AC CN BP P 2323 MONITORING COSTS ONLY P 2364 CP S 2364 CP S	2073	CP	SS			BP	
2148 CP CN 2181 MONITORING COSTS ONLY 2193 CP 2206 SS BP 2221 CP SS 2222 CP SS 2223 CP SS 2236 CP SS 2236 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2272 CP SS AC 281 CP AC 292 CPU SS AC 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2315 CP CN 2316 CP SS AC 2315 CP SN 2328 MONITORING COSTS ONLY 2363 CP 2364 CP 2365 SS 2390 MONITORING COSTS ONLY	2090	İ			CN		
2181 MONITORING COSTS ONLY 2193 CP 2206 SS BP 2221 CP SS 2222 CP SS 2223 CP SS 2224 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2268 CP SS 2272 CP SS 2281 CP SS 2292 CPU SS 2296 MONITORING COSTS ONLY 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2314 CP SS 2322 CP SS 2323 MONITORING COSTS ONLY 2345 CP 2353 MONITORING COSTS ONLY 2364 CP 2365 SS 2390 MONITORING COSTS ONLY <td>2110</td> <td>CP</td> <td></td> <td></td> <td></td> <td>BP</td> <td></td>	2110	CP				BP	
2193 CP 2206 SS BP 2206 SS BP 2221 CP SS 2222 CP SS 2223 CP SS 2224 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2268 CP SS 2268 CP SS 2268 CP SS 2272 CP SS 2281 CP SS 2292 CPU SS 2292 CPU SS 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2314 CP CN 2315 CP CN 2316 CP SS 2328 MONITORING COSTS ONLY 2364 CP 2365 SS 2366 CP 2368 CP 2369 MONITORING COSTS ONLY <td< td=""><td>2148</td><td>CP</td><td></td><td></td><td>CN</td><td></td><td></td></td<>	2148	CP			CN		
2198 CP 2206 SS BP 2221 CP SS 2222 CP SS 2223 CP SS 2224 CP SS 2236 CP SS 2236 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2268 CP SS AC P P AC P 2292 CFU SS 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2315 CP CN 2316 CP SS 2322 CP SS AC NBP 2323 MONITORING COSTS ONLY P 2364 CP SS SP 2365 S	21 81	j MC	NITORI	NG COS	TS ONL	Y	
2206 SS BP 2221 CP SS 2222 CP SS 2223 CP SS 2224 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2268 CP SS AC BP BP 2268 CP SS AC SP 2292 CFU SS AC 2310 CP SS AC SP 2315 CP CN SP 2322 CP SS AC NBP 2315 CP SN SN 2316 CP SS AC ND 2328 MONITORING COSTS ONLY 2366 CP 2353 MONITORING COSTS ONLY 2368 CP 2364 CP	2193						CH
2221 CP SS 2222 CP SS 2228 CP SS 2236 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2254 CP SS 2268 CP SS AC BP BP 2292 CFU SS AC 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2315 CP CN 2316 CP SS 2328 MONITORING COSTS ONLY 2364 CP 2365 SS 2366 CP 2368 CP 2390 MONITORING COSTS ONLY 2394 CP SS	2198	CP					
2222 CP SS 2228 CP SS 2236 CP SS 2242 CP SS 2242 CP SS 2242 CP SS 2242 CP SS 2242 CP SS 2242 CP SS 2242 CP SS 2242 CP SS 2254 CP SP 2268 CP SS AC 2272 CP SS AC 2292 CPU SS AC 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2315 CP CN 2316 CP SS AC NBP 2322 CP SS AC CN BP 2323 MONITORING COSTS ONLY 2360 CP 2363 2364 CP SS BP 2364 CP 2364 CP SS 35 2390 MONITORING COSTS ONLY 2365 SS		1				BP	
2227 CP SS 2228 CP SS 2236 CP SS 2242 CP SS 2242 CP SS 2254 CP SS 2268 CP SS 2272 CP SS 2281 CP AC BP 2292 CPU SS AC CN 2307 MONITORING COSTS ONLY 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2315 CP CN SP 2322 CP SS AC NBP 2315 CP CN SP 2316 CP SS AC NBP 2323 MONITORING COSTS ONLY 2360 CP SS 2364 CP SS SS SP 2368 CP SS SS SS 2390 MONITORING COSTS ONLY 2394 CP SS 2399 MONITORING COSTS ONLY		CP	SS				
2228 CP SS 2236 CP SS 2242 CP SS 2254 CP SS 2254 CP SS 2268 CP SS 2272 CP SS 2281 CP AC BP 2292 CPU SS AC NP 2296 MONITORING COSTS ONLY BP 2307 MONITORING COSTS ONLY 2307 MONITORING COSTS ONLY 2313 MONITORING COSTS ONLY 2313 CP CN BP 2314 CP SS AC NP 2315 CP CN BP 2316 CP SS AC NP 2322 CP SS AC CN BP 2323 MONITORING COSTS ONLY 2345 CP 2364 CP 2364 CP SS BP 2368 CP 2399 MONITORING COSTS ONLY 2390 MONITORING COSTS ONLY 2394 CP SS SS							
2236CPBP2242CPSS2254CPSS2254CPSS2268CPSS2272CPSS2281CPACBP2292CFUSS2296MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CPCN2316CPSS2322CPSSACCN2345CP2364CP2364CP2368CP2368CP2390MONITORING COSTS ONLY2394CP2399MONITORING COSTS ONLY2400BP2419CP2430CP2430CP2445CP		CP	SS				
2242CPSS2254CPSSACBP2268CPSSACBP2272CPSSACBP2281CPACBP2292CFUSSACCN2307MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CP2316CPSSACCN2316CPSSACCN2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2364CP2364CPSSBP2368CPSSBP2368CPSS23902390MONITORING COSTS ONLY2394CPSS23992400BP2419CPSP2429CPUSSAG2430CPSS2445CP			SS				
2254CPSSACBP2268CPSSACBP2272CPSSACBP2281CPACBP2292CFUSSACCN2307MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CP2314CPSSACCN2315CPCNBP2322CPSSACCN2316CPSSACCN2315CPSSACCN2328MONITORING COSTS ONLY2345CP2364CPSSBP2365SSBP2368CPSS2390MONITORING COSTS ONLY23942400BP2419CP2419CPSP2429CPUSSAG2430CPSS2445CPSP		CP				BP	
2268CPSSACBP2272CPSSBP2281CPACBP2292CPUSSACCN2307MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CP2316CPSSACCN2316CPSSACCN2322CPSSACCN2345CPSSACCN2364CPSSBP2368CP2368CP2376SSBP2390MONITORING COSTS ONLY23942419CPSS2399MONITORING COSTS ONLY2400BP2419CPSP2430CPSS2430CPSS2445CPSP		-	SS				
2272CPSSBP2281CPACBP2292CPUSSACCN2307MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CP2316CPSSACCN2316CPSSACCN2322CPSSACCN2345CPSSACCN2360CP2364CP2364CP2368CP2376SSBP2390MONITORING COSTS ONLY2394CPSS2399MONITORING COSTS ONLY2400BP2419CPBP2430CPSS2430CPSS2445CPSP		CP				BP	
2281CPACBP2292CFUSSACCNBP2296MONITORING COSTS ONLY2307MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2313CPCN2316CPSSACCN2316CPSSACCN2322CPSSACCN2345CPSSACCN2360CP2364CP2364CP2368CP2376SSBP2390MONITORING COSTS ONLY2394CPSS2399MONITORING COSTS ONLY2400BP2419CPBP2430CPSS2430CPSS2445CPSP		CP	SS	AC		BP	
2292CPUSSACCNBP2296MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2313CPCN2315CPCN2316CPSS2322CPSS2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SS2390MONITORING COSTS ONLY2394CP2399MONITORING COSTS ONLY2400BP2419CP2430CP2430CP2445CP		CP	SS			8P	
2296MONITORING COSTS ONLY2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CPCN2316CP SS AC CN BP2322CP SS AC CN BP2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SS2390MONITORING COSTS ONLY2394CP2394CP2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP		CP		AC		BP	
2307MONITORING COSTS ONLY2313MONITORING COSTS ONLY2315CPCN2316CP SS ACCN2316CP SS ACCN2322CP SS ACCN2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SS2376SS2390MONITORING COSTS ONLY2394CP2395SS2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP		CFU	SS	AC	CN	BP	
2313MONITORING COSTS ONLY2315CPCN2316CP SS ACCN2316CP SS ACCN2322CP SS ACCN2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SS2376SS2390MONITORING COSTS ONLY2394CP2395SS2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP							
2315CPCN2316CPSSACCNBP2322CPSSACCNBP2323MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SSBP2365SSBP2368CP2376SS2390MONITORING COSTS ONLY2394CP2394CPSS2399MONITORING COSTS ONLY2400BP2419CPBP2429CPUSSAGCN2430CPSSBP2445CPCPS							
2316CPSSACCNBP2322CPSSACCNBP2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SSBP2368CP2376SS2390MONITORING COSTS ONLY2394CP2400BP2419CP2429CPU2430CP2430CP2445CP			NITORI	NG COS		Y	
2322CPSSACCNBP2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SSBP2368CP2376SS2390MONITORING COSTS ONLY2394CP2395MONITORING COSTS ONLY2394CP2400BP2419CP2429CPU2430CP2430CP2445CP							
2328MONITORING COSTS ONLY2345CP2353MONITORING COSTS ONLY2360CP2364CP2365SS2368CP2376SS2390MONITORING COSTS ONLY2394CP2395SS2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP				•••	-	BP	
2345 CP 2353 MONITORING COSTS ONLY 2360 CP 2364 CP 2365 SS 2368 CP 2376 SS 2390 MONITORING COSTS ONLY 2394 CP 2395 MONITORING COSTS ONLY 2394 CP 2400 BP 2419 CP 2429 CPU SS 2430 CP SS 2430 CP SS 2445 CP CP		,					
2353MONITORING COSTS ONLY2360CP2364CP2365SS2368CP2376SS2390MONITORING COSTS ONLY2394CP2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP			NITORI	NG COS	TS ONL	Y	
2360 CP 2364 CP 2365 SS 2368 CP 2376 SS 2390 MONITORING COSTS ONLY 2394 CP 2399 MONITORING COSTS ONLY 2400 BP 2419 CP 2429 CPU 2430 CP 2430 CP 2430 CP 2445 CP		r i i i i i i i i i i i i i i i i i i i					
2364 CP 2365 SS BP 2368 CP 2376 SS 2390 MONITORING COSTS ONLY 2394 CP SS 2399 MONITORING COSTS ONLY 2400 BP 2419 CP BP 2429 CPU SS AG 2430 CP SS BP 2430 CP SS BP 2445 CP SS BP		,	NITORI	NG COS	TS ONL	Y	
2365 SS BP 2368 CP 2376 SS 2390 MONITORING COSTS ONLY 2394 CP 2399 MONITORING COSTS ONLY 2400 BP 2419 CP 2429 CPU 2430 CP 2430 CP 2430 CP 2445 CP							
2368CP2376SS2390MONITORING COSTS ONLY2394CP2394CP2399MONITORING COSTS ONLY2400BP2419CP2419CP2429CPU2430CP2430CP2445CP		CP					
2376SS2390MONITORING COSTS ONLY2394CP2394CP2399MONITORING COSTS ONLY2400BP2419CP2429CPU2429CPU2430CP2445CP			SS			BP	
2390MONITORING COSTS ONLY2394CPSS2399MONITORING COSTS ONLY2400BP2419CPBP2429CPUSS2430CPSS2445CP		CP					
2394CPSS2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP							
2399MONITORING COSTS ONLY2400BP2419CP2429CPU2430CP2430CP2445CP			-	NG COS	TS ONL	Y	
2400 BP 2419 CP BP 2429 CPU SS AG CN BP 2430 CP SS BP 2445 CP		6					
2419 CP BP 2429 CPU SS AG CN BP 2430 CP SS BP 2445 CP		MO	NITORI	NG COS	TS ONL		
2429 CPU SS AG CN BP 2430 CP SS BP 2445 CP							
2430 CP SS BP 2445 CP		•					
2445 j CP		•		AG	CN		
•		•	SS			BP	
		•					
2447 CPU 2450 CP SS		•					

		BAT TE	CHNOLO	GY COSI	ED	
2461	CP			**	BP	
2471	MO	NITORI	NG COS	TS ONLY		i
2474	CPU	SS		CN	BP	i
2481	CP	SS				Í
2527	CP			CN	BP	1
2528	CP	SS			BP	1
2531		SS				1
1 2533	CP					1
2536		NITORI	NG COS	TS ONLY	ſ	
2537	CP					- I
2541	CP	SS	AC	CN	_	
2551				TS ONLY		I
2556			NG COS	TS ONLY	ſ	I
2573	CP	\$S		CN	BP	
2590	CP	SS			BP	ļ
2592	CP	.			_	ļ
2626		-	NG COS	TS ONLY	[ļ
2631	CP	SS			BP	ļ
2633	CP					-
2668]			NG COS	TS ONLY	-	I
2673	CP	SS			BP	I
2678	CP					1
2692	CPU				_	
2693			NG COS	TS ONLY	ſ	
2695	CP	SS				ļ
2701		SS				1
2711		SS				ļ
2735	CP	SS			BP	ļ
2739	CPU			CN		ļ
2763	CP					ļ
2764	CP				. -	ļ
2767	CP				BP	ļ
2770	CP	SS				1
2771		SS				
2781	CP	SS	AC	CN	BP	
2786	CP				BP	ļ
2795	CP	SS			~ ~	ļ
2816	CP				BP	ļ
2818					BP	
3033					BP.	
4002				TS ONLY		1
4010		NITORI				1
4017				TS ONLY		ļ
4018	CP	SS	AC	CN	BP	
4021	CP			CN	BP	1

.

 PLANT NUMBER		BAT TE	CHNOLO	GY COS	TED	
4037 4040 4051	CP CP	SS SS	AC	CN CN	BP BP	
j 4055 j			AC		BP	İ

NOTES:

- - - - - -

CP - CHEMICAL PRECIPITATION CPU - CHEMICAL PRECIPITATION UPGRADES SS - STEAM STRIPPING SSU - STEAM STRIPPING UPGRADES AC - ACTIVATED CARBON CN - CYANIDE DESTRUCTION BP - IN-PLANT BIOLOGICAL CH - CONTRACT HAULING

PLANT NUMBER	PSI	S TECHN	DLOGY (COSTED	•••••	
2	CP					
5		SS				i
10	CP	SS			BP	İ
22	CP	SS	AC		BP	i
30	ĺ	SS				i
33	CP		AC		BP	i
49		SS				j
51	CP	SS	AC	CN	BP	1
52	CP	SS				ĺ
58	MON	IITORING	COSTS	ONLY		ļ
71	[-			CH
j 72	CPU	SSU	AC	CN	BP	
79		SS			BP	1
] 88						CH [
] 93	MON	ITORING	COSTS	ONLY		1
94	CP	SS	AC		BP	ļ
110	CP	SS	AC	CN	BP	I
111						CH [
[119]		SS			BP]
120	CP	\$S			BP	1
122		SS]
143	CP	SS		CN		
149	CP	SS	AC	CN	BP	ļ
155	CP	S S		CN	BP	
158			_			CH
161	CP	S S	AC	CN	BP	
162						СН
163	CP	\$S	AC	CN	BP	
166			AC			
180		~~		-		୍ ମଧ୍ୟ 🛛
196	CP	SS	AC	CN	BP	
199	E		AC			
203	A. 1941	S S			117	
206		SS SITORING	coeme	ONT V	BP	
209 212		LIVEING	00313	URLI	BP	CH
214 220	CP	SS SS			BP BP	1
220 221	CP	55 55			br BP	1
• •	ur	55 55			DE	
•	CP	55 55			BP	
		IITORING	COSTE	ONT V	DE	
		SS	00313	AUPI	BP	1
• •		33	**		92	1
257	CP	66	AC	CN	88	
262	CP	SS	AC	СП	BP BP	1
266	CP	SS			BP	

PLANT NUMBER	PSE 	S TECHN	DLOGY (COSTED		
276		SS				
283	l	SSU			BP	
285	l					CH
292	CP	SS		CN		
293	נצט	SS	AC	CN	BP	
297	CP					CH
299	CP					
302	1	SS				
310	l	SS			BP	
321	1	SS				
326	CP	\$S	AC	CN	BP	
334	CP	SS			BP	
348	HON	ITORING	COSTS	ONLY		
354	CP	SS	AC		BP	
357	l					СН
417	4	ITORING	COSTS	ONLY		
423	CP	SS				
428						CH
430	CP	SS		CN	BP	
433	CP	SS	AC	CN	BP	
438		SS			BP	
449	i mon	ITORING	COSTS	ONLY		
451						CH
458	ł	SS		CN	BP	
468	CP	SS		CN	BP	
492					BP	CH
494		SSU			BP	
502						CH
508						CH
522	C₽	SS	AC	CN	BP	
5 29		SS				
536	C₽	SS	AC	CN	BP	
543	l	SS			BP	
544						CH
567	CP	SS	AC		BP	
592		SS			BP	
605	ł					СН
607	C₽	SS	AC	CN	BP	
611	CP	SS	AC	CN	BP	
618						СН
624	CP	SS			BP	
658	CP	SS			BP	
661	CP	SS	AC	CN	BP	
667						СН
'	Í	SSU				
706	i	SS			BP	

TECHNOLOGIES	5 /	ASSOCIATED	WITH	PSES	COST
FOR T	łE	PREAMBLE	ANALYS	SIS	

PLANT NUMBER	PSES	TECHNO	OLOGY	COSTED	••••	
717					BP	
1 720	1	SS				1
722	CP	SS		CN		1
J 724		SS			BP	1
743	CP	SS	AC		BP	1
749	CP	SS			BP	1
768	CP	SS	AC	CN	BP	
771	CP		AC	•	BP	
777		~~				СНІ
1 791		SS			BP	
796				~	~~	СНІ
1 797	CP	SS	AC	CN	BP	
814	CP CP	SS		CN	BP	1
819 830	6r	SS	AC	CN	BP BP	CHI
1 845	CP		AC		DI	un l
846			ΛU			СН
862	CP	SS	AC		BP	
874	CP	SS	no		21	1
880						СН
877	CP	SS	AC	CN	BP	1
887	CP	SS			BP	ł
905	CPU	SS	AC		BP	i
912			••-			CH
917	CP					i
929		SS				i
j 931 j						Снј
j 932 j						CH j
944	Ì				BP	CHI
956						CH]
958	MONI	FORING	COST	ONLY		1
975	I	SS				1
976	l	SS				1
987					BP	[H그
						СН
991		_				CH
992		SS			BP	. 1
997	CP	SS				
1006	CP		AC			Į
1 1011	CP				•-	· •
1018	CP	SS		CN	BP	
1026		~~			87	ંભા
1047		SS			BP	
1 1052	CP	SS			BP	ļ
	ׂכ₽	SS			BP	
1057	l				BP'	СН

TECHNOLOG1ES	ASSOCIATED	WITH	PSES	COST
FOR TH	E PREAMBLE	ANALYS	51S	

PLANT NUMBER	PSES	TECH	NOLOGY	COSTEI)	
1064						CH j
1069	CP					ļ
1076						СН
1083	CP	SS			BP	
1085					BP	СН
1086		SS		011	BP	ł
1091	СР	SS	AC	CN	BP	Į
1094			AC		BP	
1107		\$S SS			BP	СНІ
1117 1126	CPU	55 SS	AC	CN	BP	
		SS	AU	<u>GN</u>	DI	
1162	CP	SS		CN	BP	
1172		SS		-17	BP	
1173					BP	CH
1175						СН
1181	CP		AC		BP	i
1188	CP	SS				i
1191	CP	SS	AC	CN	BP	i
1194	_	SS			BP	сн ј
j 1195 j	MONI	TORIN	G COST	ONLY		Í
j 1197	CP	SS			BP	Í
1202		SS			BP	1
j 1219			AC		BP	
j 1220 j		SS			BP	- I
1223	CP					1
1224			AC			1
1234		SS			BP	
1236	CP	\$ S			BP	
1237	ļ	SS			BP	
1249	CP	SS		CN	BP	1
1253	l	SS				ļ
1255		SS				ļ
1264	CP	SS	AC	CN	BP	
1 1277	CP	SS			-	ļ
1310	CP	SS			BP	
1313				-	BP	CH
1314	I MON		ING COS	T ONLY		<u></u>
1 1320		SS			BP	CHI
1322	I CP	SS			BP BP	
1326		SS		CN	BP BP	ł
1351	CP	SS	AC	C.U	BP	СН
1352		C.0		CN	br BP	<u>va</u>
1356	CP	55 55	AC		BP	l l
1357 1361	CPU CP	55 55	AC	CN	BP	
1 1301	CP	33	AU	014		1

NUMBER		.5 IECH	NOLOGY			
1371						СН І
1386						CH
1426	CP			CN	BP	
1432	CP	SS			BP	I
1433						СН
1437		SS		CN	BP	
1450		_	_		BP	୍ ଅନ୍
1478	CP	SS	AC	CN	BP	ļ
1504	CP	SS			BP	ļ
1507		SS			BP	
1528	A1111	SS			BP	
	CPU	SS			BP	СНІ
1535 1539	CP	SS				on j
1548	OF	33				СН
1556		SS				I
1560	CP	SS	AC	CN	BP	r 1
1562	CP	SS		••••		
1564	•					СН
1566						CH
1575					BP	СН
i 1593 j	MO	NITORI	NG COS	T ONLY		İ
1595		SS			BP	
1601				CN		Ì
1608	CP	SS	AC	CN	BP	·
1621	CP	SS				
1622	CP	SS			BP	1
1628	CP	SS	AC	CN	BP	l
1645	CP	SS		CN	BP	1
1653		SS				
1657	CP	SSU		CN	BP	
1659	CP	SS	AC ·	CN	BP	
1666	CP	SS	AC	CN	BP -	·
	CP	SS SE			BP	
	CB	S S		CN	BP BP	
	CP	SS	AC	CN.	Dr	СН
171 8 1740	CP	SSU				- nu
	CP	SSU				
1742	CP	55 SS		CN		
1744	CP	SS	AC	CN	BP	-
1748	CP	SS	AC			
1751	CP				BP	СН
1764	CP	SS				
1773	~*	SS			BP	
1788		5 5			BP	

PLANT NUMBER	PSES	TECHNO	LOGY (COSTED		
1793	CP	SS	AC	CN	BP	1
1797	MONIC	TORING	COSTS	ONLY		
1801	CP	SS				1
1805		SS				
1808						CH
1812						CH
1826	CP	SS	AC	CN	BP	1
1832		SS			BP	1
1833	CP	SS				1
1838						СН
1843						СН І
1848	CPU			CN		CH [
1853	CP	SS		CN	BP	
1861	CP	_	_	CN		
1876	CP	SS	AC	CN	BP	
1887						CH
1888						਼ ਸ
1891		SS			BP	ļ
1894	CP	SS	AC	CN	BP	ļ
1 1899	CP	SS			BP	ļ
1904	CP	SS			BP	ļ
1924		SS				ļ
1931	CP	SS	_		BP	ļ
1936	CP		AC			4
1945		SS				ļ
1948		SS				ļ
1970		SS				ļ
1971	CP	SS			BP	ļ
1974	MONI	TORING	COSTS	ONLY		
1988						CH
1993		SS			BP	CH
2001		SS			-	
2004		SS			BP	
2007	CP	SS	AC	CN	BP	
2018	CP		AC			
2022						CH
2033						СН
2037	CP	SS			BP	
2050						СН
2057	l	SS	_			
2070	CP	S \$	AC	CN	BP	
2075	CP	SS				l
2080	CP				-	1
2084	1	5 5			BP	
2093	L CP	SS			BP	l
2108	I MONI	TORING	COSTS	ONLY		1

TECHNOLOGIES	ASSOCIATED	WITH	PSES	COST
FOR THE	PREAMBLE	ANALYS	SIS	

PLANT NUMBER	PSES	TECHN	OLOGY	ČOSTED	• •	
2117	CP	SS			BP	i
2123	CP					ĺ
2129	CP	SS	AC	CN	BP	
2147	1					СН
1 2176	CP	SS			BP	
2177	1	SS				
2184		SS		CN	BP	1
2191	MONI	TORING	COSTS	ONLY		
		66		~		сн і
2232 2241	CP CP	SS SS		CN	BP	1
2241	CP CP	55 SS	AC	CN	BP BP	
2250	CP	SS	AU.	0M	BP	. !
2253		55			DI	СН
2259	CP	S\$	AC		BP	
2261	CP	SS	AG		BP	l t
2262						CH
2288		S S			BP	CH
2293		S\$			BP	i
2300	CP	SS				i
j 2311 j	CP	SS			BP	i
2318	CP	SS			BP	i
2341	CP	SS			BP	i
2346	CP					Ì
2348	CP		AC		BP	- I
2350	CP	SS	AC		BP	1
2359		SS				E E
2402						сн (
2411	CP					1
2426	MONI	TORING		ONLY		
2432			AC			1
2436	CP	~~				l l
2442 2459	CP	SS SC	AC		BP	
		SS SS				1
• •		35 SS	AC	CN	BP	1
2465 2469	CP	SS	ΛĻ.	0M	BP	1
2485	CP	SS			BP	1
2485	CP	SS	AC		BP	1
2495	CP	SS			~~	1
2498	CP	SS			BP	
2501	CP	SS				Сн
2507		TORING	COSTS	ONLY		r [
2517	CP	SS			BP	1
2521						СН
2524		SS			BP	
, (1

	PLANT NUMBER	PSE	S TECHNO	DLOGY (OSTED		
i	2539	CP	SS	AC		BP	1
i	2548	CP	SS	AC	CN	BP	i
i	2565 j	CP	SS	AC		BP	ì
i	2571 j						СН
i	2578	MON	ITORING	COSTS	ONLY		1
i	2581						CH
i	2606						(대)
i	2608						CH
i	2609 j	CP					
i	2634			AC			
Ì	2635	CP	SSU			BP	
i	2636	CP	SS				
Ì	2641		SS				
Ì	2642						СН
Ì	2646	CP	SS			BP	1
Ì	2647	MON	ITORING	COSTS	ONLY		
Í	2666		SS			BP	1
Ì	2677	CP	SS	AC	CN	BP	
Ì	2679	CP					
Ī	2680	CP	SS	AC	CN		1
Ì	2685		SS				1
Ì	2699			AC			
Í	2714	CP	SS			BP	
Í	2736		SS			BP	
Í	2741	CP	SS			BP	I
i	2748		SS			BP	
i	2756	CP	SS	AC	CN	BP	
i	2776	CP	SS	AC	CN	BP	1
i	2779		SS				
i	2793		SS			BP	
i	2794			AC			
i	2796	MON	ITORING	COSTS	ONLY		
Í	2805	MON	ITORING	COSTS	ONLY		1
i	2810	ĺ					CH
i	2814						СН
i	4001	CP	SS	AC		BP	
ì	4003	CP	SS				[
i	4006	CP	SS	AC	CN	BP	
ì	4007		SS			BP	
i	4008	CP	SS		CN	BP	
í	4009						CH
i	4014	CP	SSU			BP	
i	4022		ITORING	COSTS	ONLY		
ļ	4023	i -	SS				
	4024	CP				BP	СН
i	4026	CP	SS	AC	CN	BP	
					-		

,

PLANT NUMBER	PSES TECHNOLOGY COSTED							
4027	CP	SS		CN	BP			
4032	CP	SS	AC	CN	BP			
4042	MOI	NITORING	COSTS	ONLY				
4043	CP							
4044	CP	SŞ	AC	CN	BP			
4046						CH		
4047	CP	SSU		CN	BP			
4048 j						CH		
4050	CP	SS			BP			
4052 j						CH		
4057	CP	SS			BP			
4064						CH		
4066 j						CH		
4070	CP	SS			BP			
4072 j	CP	SS	AC	CN	BP			

NOTES:

CP	-	CHEMICAL PRECIPITATION
CPU	-	CHEMICAL PRECIPITATION UPGRADES
SS	-	STEAM STRIPPING
SSU	-	STEAM STRIPPING UPGRADES
AC	-	ACTIVATED CARBON
CN	-	CYANIDE DESTRUCTION
BP	-	IN-PLANT BIOLOGICAL
CH	-	CONTRACT HAULING