APPENDICES for the Technical Support Document For the Proposed Toxics RuleEmissions Inventories

APPENDIX A

Inventory Data Files Used for Each Proposed Toxics Rule Air Quality Modeling Cases - SMOKE Input Inventory Datasets

In any of the following dataset names where the placeholder <mon> has been provided, this is intended to mean 12 separate files with the <mon> placeholder replaced with either jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, or dec, each associated with a particular month of the year.

Several inventories are the same in the 2005 base case and all future year cases. These inventories are listed in the "All Cases" in Table A-1.

Table A-1. List of inventory data associated with TR modeling cases.

Case	Sector	SMOKE Input Files
All Cases	avefire	arinv_avefire_2002_hap_18nov2008_v0_orl.txt
		arinv_avefire_2002ce_21dec2007_v0_ida.txt
	other	arinv_canada_afdust_xportfrac_cap_2006_03feb2009_v0_orl.txt
		arinv_canada_ag_cap_2006_03feb2009_v0_orl.txt
		arinv_canada_aircraft_cap_2006_04feb2009_v0_orl.txt
		arinv_canada_marine_cap_2006_03feb2009_v0_orl.txt
		arinv_canada_oarea_cap_2006_02mar2009_v3_orl.txt
		arinv_canada_offroad_cap_2006_04feb2009_v0_orl.txt
		arinv_canada_rail_cap_2006_03feb2009_v0_orl.txt
		arinv_nonpt_mexico_border1999_21dec2006_v0_ida.txt
		arinv_nonpt_mexico_interior1999_21dec2006_v0_ida.txt
		arinv_nonroad_mexico_border1999_21dec2006_v0_ida.txt
		arinv_nonroad_mexico_interior1999_21dec2006_v0_ida.txt
	othon	mbinv_canada_onroad_cap_2006_04feb2009_v0_orl.txt
		mbinv_onroad_mexico_border1999_21dec2006_v0_ida.txt
		mbinv_onroad_mexico_interior1999_21dec2006_v0_ida.txt
	othpt	ptinv_canada_point_2006_orl_09mar2009_v2_orl.txt
		ptinv_canada_point_cb5_2006_orl_10mar2009_v0_orl.txt
		ptinv_canada_point_uog_2006_orl_02mar2009_v0_orl.txt
		ptinv_mexico_border99_03mar2008_v1_ida.txt
		ptinv_mexico_interior99_05feb2007_v0_ida.txt
		ptinv_ptnonipm_offshore_oil_cap2005v2_20nov2008_20nov2008_v0_orl.txt
2005 cases	afdust	arinv_afdust_2002ad_xportfrac_26sep2007_v0_orl.txt
(2005cr_05b,	ag	arinv_ag_cap2002nei_06nov2006_v0_orl.txt
2005cr_hg_05b)	alm_no_c3	arinv_lm_no_c3_cap2002v3_20feb2009_v0_orl.txt
		arinv_lm_no_c3_hap2002v4_20feb2009_v0_orl.txt
	nonpt	arinv_nonpt_cap_2005_TCEQ_Oklahoma_OilGas_28may2010_v0_orl.txt
		arinv_nonpt_cap_2005_WRAP_OilGas_04feb2009_v0_orl.txt
		arinv_nonpt_pf4_cap_nopfc_28may2010_v3_orl.txt
		arinv_pfc_2002_caphap_27dec2007_v0_orl.txt
	nonroad	arinv_nonroad_calif_caphap_2005v2_ <mon>_02apr2008_v0_orl.txt</mon>
		arinv_nonroad_caps_2005v2_ <mon>_revised_08sep2008_v0_orl.txt</mon>
		arinv_nonroad_haps_2005v2_ <mon>_revised_05sep2008_v0_orl.txt</mon>
	on_moves_runp	mbiny on moves gunny 2005 or cman 06MAV2010 06may2010 v/0 orl tv/
	m	mbinv_on_moves_runpm_2005cr_ <mon>_06MAY2010_06may2010_v0_orl.txt</mon>
1	on_moves_startp	mbinv_on_moves_startpm_2005cr_ <mon>_06MAY2010_06may2010_v0_orl.txt</mon>

A-2

Case	Sector	SMOKE Input Files						
	m							
2005 cases	on_noadj	mbinv_on_noadj_MOVES_2005cr_ <mon>_06MAY2010_06may2010_v0_orl.txt</mon>						
		mbinv_on_noadj_nmim_not2moves_2005cr_ <mon>_04MAY2010_04may2010_v0_orl.txt</mon>						
		mbinv_onroad_calif_caphap_2005v2_revised_ <mon>_29jun2010_v0_orl.txt</mon>						
	seca_c3	ptinv_eca_imo_FINAL_c3_baf_vochaps_2005_canada_24jun2010_28jun2010_v0_orl.txt						
		ptinv_eca_imo_FINAL_c3_baf_vochaps_2005_us_24jun2010_24jun2010_v0_orl.txt						
		ptinv_eca_imo_FINAL_c3_caps_2005_canada_24jun2010_28jun2010_v0_orl.txt						
		ptinv_eca_imo_FINAL_c3_caps_2005_us_24jun2010_24jun2010_v0_orl.txt						
2005cr_05b	ptipm	Annual: ptinv_ptipm_cap2005v2_revised12mar2009_15jul2010_v5_orl.txt						
		Annual: ptinv_ptipm_hap2005v2_allHAPs_revised12mar2009_14jul2010_v1_orl.txt						
		Daily: ptday_ptipm_caphap_cem_2005cr_05b_ <mon>_ida.txt</mon>						
		Daily: ptday_ptipm_caphap_noncem_2005cr_05b_ <mon>_ida.txt</mon>						
	ptnonipm	ptinv_ptnonipm_hap2005v2_revised_08jul2010_v2_orl.txt						
		ptinv_ptnonipm_xportfrac_cap2005v2_20nov2008_revised_22jul2010_v5_orl.txt						
		ptinv_ptnonipm_2005hap_v1_from_2005ai_ND_ADM_plant_30jun2010_v0_orl.txt						
		ptinv_ptnonipm_caphap_ethanol_plant_additions_2005_30jun2010_v3_orl.txt						
		ptinv_ptnonipm_xportfrac_2005cap_v1_from_2005ai_ND_ADM_plant_30jun2010_v0_orl.txt						
2005cr_hg_05b	nonpt	arinv_nonpt_2005pf4_hap_nopfc_nobafmpesticidesplus_noboilermacthg_23aug2010_v0_orl.txt						
	other_hg	arinv_area_canada_hg_2000_noduplicates_23jul2008_v0_ida.txt						
	othpt_hg	ptinv_point_canada_hg_2000_08sep2008_v1_ida.txt						
	ptipm	Annual: ptinv_2005_ptipm_natahg_minus_boilermacticr_17aug2010_v0_orl.txt						
		Daily: ptday_ptipm_hg_cem_2005cr_hg_05b_ <mon>_ida.txt</mon>						
		Daily: ptday_ptipm_hg_noncem_2005cr_hg_05b_ <mon>_ida.txt</mon>						
	ptnonipm	ptinv_2005_ICR_BoilerMACT_Hg_ptnonipm_20aug2010_v0_orl.txt						
		ptinv_2005_ptnonipm_natahg_minus_boilermacticr_17aug2010_v0_orl.txt						
2016 cases	afdust	arinv_afdust_2016cr_24aug2010_v0_orl.tx						
(2016cr_05b,	ag	arinv_ag_2016cr_24aug2010_v0_orl.txt						
2016cr2_hg_05b, 2016cr2_hg_control1_05b	alm_no_c3	arinv_lm_no_c3_cap2016cr_24aug2010_v0_orl.txt						
)		arinv_lm_no_c3_hap2016cr_24aug2010_v0_orl.txt						
	nonpt	arinv_nonpt_2016cr_cap_2008_TCEQ_Oklahoma_OilGas_23sep2010_v0_orl.txt						
		arinv_nonpt_2016cr_cap_2018PhaseII_WRAP_OilGas_23sep2010_v0_orl.txt						
		arinv_nonpt_2016cr_hap_nopfc_nobafmpesticidesplus_noboilermacthg_23sep2010_v0_orl.txt						
		arinv_nonpt_2016cr_pf4_cap_nopfc_23sep2010_v0_orl.txt						
		arinv_pfc_caphap2016_13jul2010_v0_orl.txt						
	nonroad	arinv_nonroad_calif_caphap_2016_revised_ <mon>_24jun2010_v0_orl.txt</mon>						
		arinv_nonroad_caphap_2016_ <mon>_07jun2010_v0_orl.txt</mon>						

Case	Sector	SMOKE Input Files						
	on_moves_runp							
	m	mbinv_on_moves_runpm_2016cr_ <mon>_10JUN2010_10jun2010_v0_orl.txt</mon>						
2016 cases	on_moves_startp	40YDY2010 101 2010 0 1						
	m	mbinv_on_moves_startpm_2016cr_ <mon>_10JUN2010_10jun2010_v0_orl.txt</mon>						
	on_noadj	mbinv_on_noadj_MOVES_2016cr_ <mon>_10JUN2010_10jun2010_v0_orl.txt</mon>						
		mbinv_onroad_calif_caphap_2016_ <mon>_09jun2010_v0_orl.txt</mon>						
	ptnonipm	ptinv_ptnonipm_2016cr_hap2005v2_revised_06oct2010_v0_orl.txt						
		ptinv_ptnonipm_2016cr_xportfrac_cap2005v2_20nov2008_revised_06oct2010_v0_orl.txt						
		ptinv_ptnonipm_capHG_cementISIS_2016cr_16AUG2010_16aug2010_v0_orl.txt						
		ptinv_ptnonipm_cornproducts17031_hap_cap_2008t_27aug2010_v0_orl.txt						
		ptinv_ptnonipm_2005hap_v1_from_2005ai_ND_ADM_plant_30jun2010_v0_orl.txt						
		ptinv_ptnonipm_caphap_ethanol_plant_additions_2005_30jun2010_v3_orl.txt						
		ptinv_ptnonipm_xportfrac_2005cap_v1_from_2005ai_ND_ADM_plant_30jun2010_v0_orl.txt						
	seca_c3	ptinv_eca_imo_FINAL_c3_baf_vochaps_2016_canada_24jun2010_24jun2010_v0_orl.txt						
		ptinv_eca_imo_FINAL_c3_baf_vochaps_2016_us_24jun2010_24jun2010_v0_orl.txt						
		tinv_eca_imo_FINAL_c3_caps_2016_canada_24jun2010_24jun2010_v0_orl.txt						
		ptinv_eca_imo_FINAL_c3_caps_2016_us_24jun2010_24jun2010_v0_orl.txt						
2016cr_05b	ptipm	Annual: ptinv_PTINV_EPA410_BC_15b_summer_2015_w_MH_SCC_edits_emis_reds_22SEP2010_08oct2010_nf_v1_orl.txt						
		Daily: ptday_ptipm_caphap_cem_2016cr_05b_ <mon>_ida.txt</mon>						
		Daily: ptday_ptipm_caphap_noncem_2016cr_05b_ <mon>_ida.txt</mon>						
2016cr2_hg_05b	ptipm	Annual: ptinv_PTINV_EPA410MACTAQ_BC_2b_summer_2015_w_MH_SCC_edits_emis_reds_minus_boilermacthg_20oct2010 _v0_orl.txt						
		Daily: ptday_ptipm_caphap_cem_2016cr2_hg_ <mon>_ida.txt</mon>						
		Daily: ptday_ptipm_caphap_noncem_2016cr2_hg_ <mon>_ida.txt</mon>						
	ptnonipm_hg	ptinv_2016cr2_ICR_BoilerMACT_Hg_ptnonipm_06oct2010_v0_orl.txt						
		ptinv_ptnonipm_2016cr2_natahg_minus_boilermacticr_15oct2010_v0_orl.txt						
		ptinv_ptnonipm_capHG_cementISIS_2016cr_16AUG2010_16aug2010_v0_orl.txt						
2016cr2_hg_control1_0	ptipm	Annual:						
5b		ptinv_PTINV_EPA410MACTAQ_BC_5d_summer_2015_w_MH_SCC_edits_emis_reds_minus_boilermacthg_09nov201						
		Daily: ptday_ptipm_caphap_cem_2016cr2_hg_control1_ <mon>_ida.txt</mon>						
		Daily: ptday_ptipm_caphap_noncem_2016cr2_hg_control1_ <mon>_ida.txt</mon>						
	ptnonipm_hg	ptinv_2016cr2_ICR_BoilerMACT_Hg_ptnonipm_06oct2010_v0_orl.txt						
		ptinv_ptnonipm_2016cr2_natahg_minus_boilermacticr_15oct2010_v0_orl.txt						
		ptinv_ptnonipm_capHG_cementISIS_2016cr_16AUG2010_16aug2010_v0_orl.txt						
L		pun-pulompin_cupito_cementible_2010er_10/10/2010_10/10/2010_10/10/2010_10						

A-4

APPENDIX B – List of OECA Consent Decrees- Whereby Reductions Were Apportioned to Facilities in a Particular Corporation

Table B-1. Description of application of OECA Consent Decrees for future-year projections

Corporation	Pollutant	Compliance Date	Description of reductions	2005 Emissions (tons/year)	
	NO _X	Combined NO _X emissions reduced by 278 tons per year. Combined is over select Bunge facilities.			
	PM	31DEC2005	Combined PM emissions reduced by 258 tons per year. Combined is over select Bunge facilities.	1,266	
Bunge	SO_2	31DEC2005	Combined SO ₂ emissions reduced by 574 tons per year. Combined is over select Bunge facilities.	2,926	
	VOC	31DEC2005	Combined VOC emissions reduced by 1,122 tons per year. Combined is over select Bunge facilities.	2,761	
	СО	01SEP2010	Combined CO emissions reduced by 10,900 tons per year. Combined over select Cargill facilities.	11,167	
	NO _X	01SEP2007	Combined NO _X emissions reduced by 1,350 tons per year. Combined over select Cargill facilities.	4,451	
Cargill	SO_2	01SEP2008	Combined SO ₂ emission reduced by 2,250 tons per year. Combined over select Cargill facilities.	10,527	
	VOC	01SEP2008	Combined VOC emissions reduced by 98% or 10,450 tons per year. Combined over select Cargill facilities.	6,617	
C DI III	NO _X	31DEC2008	Combined NO _X emissions reduced by 10,000 tons per year. Combined over select Conoco Phillips facilities.	17,409	
Conoco Phillips	SO ₂	31DEC2008	Combined SO ₂ emissions reduced by 37,100 tons per year. Combined over select Conoco Phillips facilities	31,003	
		01MAR2010	Annual SO ₂ emissions cap at 123 tons per year at James River	0	
D	0.0	013//4/2012	Annual SO ₂ emissions cap at 248 tons per year at Wurtland	2,268	
Dupont	SO_2	01MAR2012	Annual SO ₂ emissions cap at 281 tons per year at Fort Hill	2,228	
		01SEP2009	Annual SO ₂ emissions cap at 1,007 tons per year at Burnside.	9,517	
	NO_X	31DEC2010	Must meet heat input capacity of 150 mmBTU/hr or greater such that weighted average is no greater than 0.044 lbs/mmBTU, applied at Lumberton, Sandersville, and Tuscaloosa.	350	
Hunt	SO ₂ 31DEC200		No burning of fuel greater than 5 wt% sulfur. SO ₂ emissions will not exceed 20ppm or that weighted average H ₂ S concentrations will not exceed 162 ppm H ₂ S, applied at Lumberton, Sandersville, and Tuscaloosa.	939	
MGP Ingredients	CO	2009	CO reductions by 90%	31	

Corporation	Pollutant	Compliance Date	Description of reductions	2005 Emissions (tons/year)
	VOC	2009	VOC reductions by 95%	112
			Annual emission limit of 2.2 lbs/ton.	240
		01JUL2007	Annual emission limit of 2.5 lbs/ton	396
			Must meet SCAQMDR limit (1.7lbs/ton or less)	392
		01JUL2009	Annual emission limit of 2.2 lbs/ton.	282
Rhodia Inc	SO_2	01MAY2012	Baton Rouge #1 -> limit of 1.9 lbs/ton. Baton Rouge #2 -> limit of 2.2 lbs/ton	7,920
		2008	Houston #8 -> limit of 2.5 lbs/ton within 1 year of Date of Entry. Houston #2 -> limit of 1.8 /lbs/ton within 1 year of Date of Entry	9,686
St. Mary's Cement	NO_X	30APR2009	Reduce combined NO _X emissions by 2,700 tons per year.	1,700
		2006 (Marcus Hook, PA)	Combined NO _X emissions reduced by 4,500 tons per year. Combined over select Sunoco facilities.	746
	NO_X	31DEC2009 (Toledo, OH)	Combined NO _X emissions reduced by 4,500 tons per year. Combined over select Sunoco facilities.	2,339
		31DEC2010 (Philadelphia, PA)	Combined NO _X emissions reduced by 4,500 tons per year. Combined over select Sunoco facilities.	3,390
		2006 (Marcus Hook, PA)	Combined PM emissions reduced by 300 tons per year. Combined over select Sunoco facilities.	34
Sunoco	PM	31DEC2009 (Toledo, OH)	Combined PM emissions reduced by 300 tons per year. Combined over select Sunoco facilities.	391
		31DEC2010 (Philadelphia , PA)	Combined PM emissions reduced by 300 tons per year. Combined over select Sunoco facilities.	591
		2006 (Marcus Hook, PA)	Combined SO ₂ emissions reduced by 19,500 tons per year. Combined over select Sunoco facilities.	3,536
	SO_2	31DEC2009 (Toledo, OH)	Combined SO ₂ emissions reduced by 19,500 tons per year. Combined over select Sunoco facilities.	9,072
		31DEC2010 (Philadelphia , PA)	Combined SO ₂ emissions reduced by 19,500 tons per year. Combined over select Sunoco facilities.	3,353
Total	CO	2007	Annual CO emissions cap at 120 tons per year.	386
Petrochemicals	NO_X	31DEC2009	Annual NO _x emissions cap at 180 tons per year.	798
USA	SO_2	2010	Annual SO ₂ emissions cap at 800 tons per year.	146

Corporation	Pollutant	Compliance Date	Description of reductions	2005 Emissions (tons/year)
		2011	Combined NO _X emissions reduced by 1870 tons per year. Combined is over facilities: Lima, Memphis, and Port Arthur.	4,165
	NO _X	31DEC2011	Combined NO _X emissions reduced by 4,000 tons per year. Combined over Valero facilities in Ardmore OK, Benicia CA, Martinez CA, Wilmington CA, Denver CO, St. Charles LA, Krotz Spring LA, Paulsboro NJ, Corpus Christi TX (east and west), Houston TX, Sunray TX, Texas City TX, and Three Rivers TX.	13,742
Valero	PM	31DEC2011	Combined PM emissions reduced by 526 tons per year. Combined over Valero facilities listed in other two lists for NOx and SO2.	3,027
		2011	Combined SO ₂ emissions reduced by 1,810 tons per year. Combined is over facilities: Lima, Memphis, and Port Arthur.	4,105
	SO_2	31DEC2011	Combined SO ₂ emissions reduced by 16,000 tons per year. Combined over Valero facilities in Ardmore OK, Benicia CA, Martinez CA, Wilmington CA, Denver CO, St. Charles LA, Krotz Spring LA, Paulsboro NJ, Corpus Christi TX (east and west), Houston TX, Sunray TX, Texas City TX, and Three Rivers TX.	19,618

Appendix C

Gold Mine Mercy Reductions Due to NESHAP: DATE FOR PROJECTION FACTOR Assume 2014 (rule done end of 2010 and 3 years

compliance)

					ompilan	ee)		
NEI_SITE_ID	FIPS	pollco de	STATE_FACILIT Y_ ID	Facility Name	FACILIT Y WIDE mercury emission s (in tons per year)*	FACILITY WIDE PROJECTION FACTOR computed from the 2016 emissions. (base year x Projection Factor = Future Year)	2016 emissio ns (in tons per year) **	
NEI1827	0811 9	199	80860CRPPL275 5S	CRIPPLE CREEK & VICTOR GOLD MINING CO	0.01715	1	0.01715	
NEI2NV4111 1 6	3202 1	199	89406KNNCT55 MIL	KENNECOTT RAWHIDE MINING CO	0.02	0.215	0.0043	Facility wide emissions estimate is based on 2007 emissions test data
NEI2NV444. 0 1	3202	199	89045SMKYV1S MOK	SMOKY VALLEY COMMON OPERATION	0.03	0.388333333	0.01165	Facility wide emissions estimate is based on 2007 emissions test data
NEI2NVT1824 2 NEIAK090997	1	199 74399	T\$18242 99737PGMNX38	RUBY HILL MINE	0.018	0.166666667	0.003	Facility wide emissions estimate is based on 2007 emissions test data
37PGMNX38 NEIAKT\$1366	0	76	MIL 99707FRTKN1F	POGO MINE	0.0005	1	0.0005 0.00006	
0	0	199	O RA	FORT KNOX MINE KENNECOTT GREENS CREEK	0.000065	1	5	
NEIAKT\$136 65	0211 0	199	99801KNNCT134 01	MINING COMPANY	0.002715	1	0.00271 5	
NEIMT15320	3004 3	199	59759GLDNS453 MO	GOLDEN SUNLIGHT MINES INC.	0.00085	1	0.00085	

NEINV320158 9821CRTZG	3201 5	199	89821CRTZGST A RA	CORTEZ GOLD MINES	0.42575	0.234879624	0.1
				NEWMONT MINING CORP			
NEINVT\$124 9 8	3201 3	199	89414NWMNT3 5MIL	TWIN CREEKS MINE	0.296	0.506756757	0.15

Appendix C

Gold Mine Mercy Reductions Due to NESHAP: DATE FOR PROJECTION FACTOR Assume 2014 (rule done end of 2010 and 3 years

compliance)

NEI_SITE_ID	FIPS	pollco de	STATE_FACILI TY_ ID	Facility Name	FACILIT Y WIDE mercury emission s (in tons per year)*	FACILITY WIDE PROJECTION FACTOR computed from the 2016 emissions. (base year x Projection Factor = Future Year)	2016 emissio ns (in tons per year) **	
NEINVT\$124 9 9	3202 7	199	89418FLRDCEXI T	STANDAR D MINING INC	0.08	0.4	0.032	Facility wide emissions estimate is based on 2008 emissions test data
NEINVT\$125 0 0	3202 7	199	89419CRRCH180 EX	COEUR ROCHESTER INC	0.069	1	0.069	Facility wide emissions estimate is based on 2007 emissions test data
NEINVT\$125 0 6	3201 3	199	89438GLMSM3 MILE	GLAMIS MARIGOLD MINE NEWMONT	0.1638	0.018315018	0.003	
NEINVT\$125 1 0	3201 3	199	89438NWMNTS T ONE	MINING CORP LONE TREE MINE	0.311	0.225080386	0.07	Facility wide emissions estimate is based on 2006 emissions test data
NEINVT\$125	3200		89801JRRTT50M	JERRITT				Facility wide emissions estimate is for the 2004-05 timeframe and is based on the estimate submitted to Nevada DEP in response to ICR
2 3	7	199	IL	CANYON MINE	0.23	0.217391304	0.05	survey sent to the company.
NEINVT\$125 2 4	3203 3	199	89803BLDMN70 MIL	BALD MOUNTAIN MINE BARRICK	0.14	0.214285714	0.03	Facility wide emissions estimate is based on 2008 emissions test data
NEINVT\$125 2 5 NEINVT\$125	3200 7 3200	199	89803BRRCK27 MIL	GOLDSTRI KE MINES INC NEWMONT MINING CORP	0.35	0.085714286	0.03	Facility wide emissions estimate is based on 2007 emissions test data
29	7	199	T\$12529	RAIN AREA	0.0001 C-3	1	0.0001	

MINE

NEWMONT MINING CORP

NEINVT\$125 3201 89822NWMNT6 CARLIN SOUTH

3 1 1 199 MAIL AREA 0.345 0.405797101 0.14

^{*} except for Pogo Mines, the pollutant code used is 199. For Pogo Mines it is 7439976.

^{**} These are projected emissions estimates post-MACT based on analyses of expected reductions done for the 2010 Proposed MACT rule.

Appendix D

Mercury Emission Reductions, 2005-2016 for Particular NonEGU Categories based on data/approaches developed by SPPD¹

ELECTRIC ARC FURNACES (EAFs): Reduction to an emission level of 5 tpy (a 2.3 tpy Hg reduction) by 2016 is estimated based on the 2007 MACT rule)(72 FR 74108). The NATA inventory for 2005 shows 7.3 tpy Hg emissions. For the rule, EPA estimated 5 tpy reductions (from 10 tpy). This is considered a conservative assumption at this time; Hg emissions could go to 0 tpy, if mercury switches are removed from the process, or Hg emissions could move toward 0 tpy based on vehicle fleet turnover and the increasing use of mercury-free switches.

Because the source of

mercury for EAFs is scrap metal containing mercury switches from an aging vehicle fleet that has been replaced with mercury-free technology, there is the potential that there will be very low levels of mercury by 2016, via mandatory controls and continuous monitoring as a result of the new MACT rule (an upcoming area source rule that is in the planning stage), and through vehicle fleet turnover.

We determined a 35.1% reduction was needed from a starting point of 7.3 tons to get to 5 tons.

However, our starting point inventory was actually lower than the NATA value of 5 tons because the following sources were not in the starting modeling inventory or had different emissions than the 2005 NATA due to other controls applied that would have contributed to getting to 5 tons in the future

nata_plant	scc	nata_emis	Starting Emissions in projection
Northwestern Steel & Wire Co (shut			0
down prior to 2005)	30300908	0.337223	
			Same, but other controls reduce
Gerdau Ameristeel US Inc.			this source
Charlotte Stee	30400701	0.0144	
			Same, but other controls reduce
Gerdau Ameristeel US Inc.			this source
Charlotte Stee	30400799	0.0005	
			0.059951 (other controls applied)
Texas Industries Inc.	30300908	0.325819	

Because our pre-MACT emissions were 6.6 tons, to get to a projected value of 5 tons, the percent reduction is 24.4% instead of 35.1%,. Therefore our projection resulted in a 2016 value of 4.53 tons instead of 5 tons for this sector. However, because the actual emissions for this sector could move towards 0 in the future so the error is much smaller than the undcertainty. Note that the reductions for this sector were 2.12 tons.

HAZARDOUS WASTE COMBUSTORS (**HWCs**): A 0.2 tpy reduction of Hg by 2016 is estimated from the 2005 MACT rule. The 2005 standards are in effect and all HWCs are required to be in compliance with them. The Hg reductions achieved by the 2005 standards were estimated to be 0.2 tpy. This was due in part to "interim standards" that were put in place in 2002, which reduced Hg emissions by 12.9 tpy.

.Note that identifying which HWCs have reductions may not be possible.

We determine that a 6.25% reduction would be needed to achieve a 0.2 ton reduction based on a 2005 category-wide sum of 2.3 tons. However, we inadvertently applied a 31.5% reduction and therefore reduced emissions by 0.94 tons instead of 0.2 tons. Since the 0.74 extra ton reductions are spread across more than 250 counties, this is not expected to impact any one area of the country significantly.

D-1

¹ transmitted by Amy Vasu of SPPD on Sept 7 and Sept 8, 2010 (email to Madeleine Strum)

One other issue is that it appeared that some HWCs are part of the ISIS model and that they should not be addressed both by the ISIS projection and the across-th-board HWC reduction.

<u>Upcoming revised rule</u>. Work to revise the rule (to replace the Hg standards, due to the remand) is at the pre-proposal stage, and there is not an estimate of reductions that those future standards may achieve. It is not known if the compliance date would be prior to 2016 for the revised rule.

MERCURY CHLORALKALI PLANTS: Estimated emissions for 2009 are 0.3 tpy; this is a 0.8 T/yr reduction from 2005 levels. Mercury emissions could remain at 0.3 tpy or go to 0 tpy by 2013-2016 due to facility closure or conversion, but is highly uncertain at this time.

2003 MACT rule. NATA inventory for 2005 shows 1.1 tpy Hg emissions, however, this is inconsistent with the 2005 NATA version we used because which sums to 3.1 tons. Estimates of mercury emissions under this rule are 0.3 tpy in 2009 through 2012. Four facilities remain in operation (Augusta, GA; Charleston, TN; New Martinsville, WV; and, Ashtabula, OH). It is estimated that emissions could go to 0 tpy as early as 2013

ASHTA (Ashtabula, OH facility; Ashtabula County) OLIN -

GA (Augusta, GA facility; Richmond County) OLIN - TN

(Charleston, TN facility; Bradley County) PPG (New

Martinsville, WV facility; Wetzel County)

In order to generate a Mercury Chloralkali estimate consistent with the above, we had to remove Hg from the sources identified as Mercury chloralkali plants based on their MACT code of 1403. These are shown below; and the sum is 1.4 tons.

In addition, we applied facility specific reductions to the following 4 facilities ASHTA (Ashtabula, OH facility; Ashtabula County)

OLIN - GA (Augusta, GA facility; Richmond County)

OLIN - TN (Charleston, TN facility; Bradley County)

PPG (New Martinsville, WV facility; Wetzel County)

Such that the resultant emissions would match data provided by rule developers. Specifically:

NEIOHT\$5933 is for ASHTA (Ashtabula, OH facility; Ashtabula County) 2005 Hg is 0.4065 tons (813 lbs) FIPS=39007, PLANTID= 44004LCPCH3509M, POLL = 7439976 (2 records for this facility)

Final emissions in Amy's table (2008) is 62 pounds. Therefore, percent reduction is 92.4% Actual

final emissions from projection is 61.788 for ashta

NEIGAT\$3892 is for OLIN - GA (Augusta, GA facility; Richmond County) 2005 Hg is 0.412 tons (824 lbs) FIPS= 13245 PLANTID= 30913LNGST2402L, POLL = 7439976 (2 records for this facility)

Final emissions in Amy's table (2008) is 95 pounds Therefore, percent reduction is 88.5% Actual

final emissions from projection is 94.76 pounds

NEI10894 is for OLIN - TN (Charleston, TN facility; Bradley County) 2005 Hg is 0.7675 tons (1535 lbs)

FIPS = 47011 PLANTID = ???? check leading zeroes 14??? POLL = 7439976 (2 records for this facility) Final emissions in Amy's table (2008) is 327 pounds. Therefore % reduction is 78.7%

Actual final emissions from projection is 326.955 pounds

NEI42444 PPG (New Martinsville, WV facility; Wetzel County this is in Marshall county not Wetzel county Boiler MACT database also has it as Marshall county) 2005 Hg is 0.127 tons (254 lbs)

FIPS = 54051 PLANTID = 5405100002 check leading zeroes POLL = 199 (2 records for this facility) Final emissions in Amy's table is **150** pounds per the settlement Decree Amy indicated that limits their emissions to that level. Therefore % reduction is **40.9**%

Actual final emissions from projection is 150 pounds

Overall reduction for the above plants is 1.396249 tons in addition, 1.4 tons were zeroed out so the total reduction is 2.8 tons.

Plants to shut down

Tants to shut u	OWII								
nata_uniq	fips	plantid	scc	poll	nata_emis Hg (tons)	nei_emis Hg (tons)	emis_diff	nata_plant Occidental	nata_mact code
NEIAL0330002	1033	2	30100802	199	0.27	0.27	0	Chemical Corporation OCCIDENTAL	1403
NEI26211	10003	1000300030	30100899	7439976	0.002387	0.002387	0	CHEMICAL CORPORATION OCCIDENTAL	1403
NEI26211	10003	1000300030	30100899	7439976	5.40E-05	5.40E-05	0	CHEMICAL CORPORATION OCCIDENTAL	1403
NEI26211	10003	1000300030	30100802	7439976	0.1263	0.1263	0	CHEMICAL CORPORATION OCCIDENTAL	1403
NEI26211	10003	1000300030	30100899	7439976	0.000254	0.000254	0	CHEMICAL CORPORATION PPG INDUSTRIES INC/LA KE	1403
NEI6076	22019	5200004	30100802	7439976	0.0795	0.0795	0	CHARLE S COMPL EX	1403
NEI6076	22019	5200004	30100802	7439976	0.0005	0.0005	0	, five PPG INDUSTRIES INC/LA KE	1403
NEI6076	22019	5200004	30100802	7439976	0.5225	0.5225	0	CHARL ES COMPLEX PPG INDUSTRIES INC/LA KE	1403
NEI6076	22019	5200004	30100802	7439976	0.0005	0.0005	0	CHARL ES COMPLEX PPG INDUSTRIES INC/LA KE	1403
NEI6076	22019	5200004	30100802	7439976	0.0005	0.0005	0	CHARL ES COMPLEX PIONEER AMERICAS LLC/CHLOR-	1403
NEILAT\$10650	22047	70776STFFRRIVE R	39999999	7439976	0.36525	0.36525	0	ALKALI PLANT PIONEER AMERICAS LLC/CHLOR-	1403
NEILAT\$10650	22047	70776STFFRRIVE R	39999999	7439976	0.024	0.024	0	ALKALI PLANT ERCO	1403
NEI42973	55141	772010470	30100802	7439976	0.00465	0.00465	0	WORLDWIDE (USA)	1403

ERCO WORLDWIDE

1403

NEI42973 55141 772010470 30100802 7439976 0.003 0.003 0 (USA)

Pulp and Paper: A Hg emission reduction of 0.7 tpy is estimated as a result of replacement of a smelter at G-P Big Island (Beford County, VA) with a recovery furnace. This results in 0.4 tpy Hg emissions for Pulp and Paper. **REDUCTION** = 0.728172 Implementation: Zero out Hg emissions from the following unit

nata_uniq	fips	plantid	pointid	stackid	segment	scc	poll	nata_emis	nata_plant	nata_mact
									GP Big	
NEI42211	51019	00003	10	10	3	30700399	199	0.728172	Island LLC	1626-2

<u>Upcoming rules not yet proposed.</u> Possible future Hg controls (should EPA regulations dictate Hg controls - which remains to be seen) are activated carbon injection or more likely a wet scrubber applied to recovery furnaces. If we assume a 99% Hg reduction associated with these controls, then the recovery furnace Hg emissions from the NEI (totaling 0.177 tpy for DCE + NDCE) would be reduced by 0.175 tpy.

Thus, the <u>best-case Hg reduction estimated for the P&P industry is rounded to 0.18 tpy</u> based on current NEI data (corrected for a shut-down smelter) and a 99% reduction of Hg emissions from recovery furnaces. These possible future Hg controls are not currently accounted for in the projections done for nonEGU.

Appendix E

Ptnonipm (Non EGU) Plant Closures Included in the 2016 Base Case and the Resulting Emissions Changes Due to the Closures (impacts on emissions from these closures are provided in the main document).

fips	plantid	pointid	stackid	segment	plant	effective_date
1073	10730360				U.S. Pipe N. Birmingham , Walter Coke, I	7/31/2010
1073	35207NTDST30003				U. S. PIPE & FOUNDRY COMPANY LLC.(NO. B'	12/11/2009
1073	10730350				SLOSSINDUSTRIESCORPORATION- MINERALW	12/11/2009
1073	35207SLSSN35003				SLOSSINDUSTRIESCORPORATION- MINERALW	12/11/2009
1073	10730068				W.J. Bullock	10/31/2009
1073	35224WJBLL1501E				W.J. Bullock	10/31/2009
12105	1050059				MOSAICFERTILIZERLLCNEWWALESPLANT	12/31/2008
12105	33860MCFRTHIGHW				MOSAICFERTILIZERLLCNEWWALESPLANT	12/31/2008
12105	T\$15385				MOSAICFERTILIZERLLCNEWWALESPLANT	12/31/2008
13051	5100008				TronoxPigments(Savannah)Inc	12/31/2006
13051	31404KMRWCEASTP				TronoxPigments(Savannah)Inc	12/31/2006
17031	031012ABI				CornProductsInternationalInc	6/30/2010
18167	22				INTERNATIONALPAPERCO.	12/31/2007
19111	56-02-004				INTERNATIONALPAPERCORP- FORTMADISON	8/31/2005
19111	52632THHBNONPR	2			ROQUETTEAMERICA,INC	3/1/2008
19111	56-01-009	242710			ROQUETTEAMERICA,INC	3/1/2008
19111	56-01-009	242802			ROQUETTEAMERICA,INC	3/1/2008
19111	56-01-009	242828			ROQUETTEAMERICA,INC	3/1/2008
22067	1				INTERNATIONALPAPERCO/LOUISIANAMILL	11/30/2008
22067	19200001				INTERNATIONALPAPERCO/LOUISIANAMILL	11/30/2008
22067	7122ONTRNT705CO				INTERNATIONALPAPERCO/LOUISIANAMILL	11/30/2008
22079	1				INTERNATIONALPAPERCO/PINEVILLEMILL	5/30/2010
22079	23600001				INTERNATIONALPAPERCO/PINEVILLEMILL	5/30/2010
22079	T\$10715				INTERNATIONALPAPERCO/PINEVILLEMILL	5/30/2010
23007	2300700007				WAUSAUPAPEROTISMILL	5/31/2009
23019	1900056				KATAHDINPAPERCO-WESTMILL	8/31/2008
23019	2301900056				KATAHDINPAPERCO-WESTMILL	8/31/2008
25003	01238KMBRLGREYL				SCHWEITZERMAUDUITINTERNATIONALINC.	5/31/2008
25003	1170016				SCHWEITZERMAUDUITINTERNATIONALINC.	5/31/2008
25003	1170014				MWCUSTOMPAPERS,LLC-LAURELMILL	7/31/2007
25003	T\$14390				MWCUSTOMPAPERS,LLC-LAURELMILL	7/31/2007
25017	01760NTCKP90NMA				NATICKPAPERBOARD	11/30/2005
25017	1190241				NATICKPAPERBOARD	11/30/2005
26121	A4203				SDWARRENMUSKEGONMIOPERATIONS	8/31/2009

fips	plantid	pointid	stackid	segment	plant	effective_date
26121	T\$7810				SDWARRENMUSKEGONMIOPERATIONS	8/31/2009
33007	03570JMSRV650MA				FRASERNHLLC	4/30/2008
33007	3300700001				FRASERNHLLC	4/30/2008
36083	4382800006				BENNINGTONPAPERBOARDCO	4/30/2009
37119	583				CaraustarMillGroup,Inc.	3/31/2009
39153	1677010193	B101			GOODYEARTIRE&RUBBERCO.	12/31/2007
39153	1677010193	B102			GOODYEARTIRE&RUBBERCO.	12/31/2007
39153	1677010193	B103			GOODYEARTIRE&RUBBERCO.	12/31/2007
39153	T\$6196	1			GOODYEARTIRE&RUBBERCO.	12/31/2007
47063	197				LIBERTYFIBERSCORPORATION	7/31/2010
47063	37778LNZNGTENNE				LIBERTYFIBERSCORPORATION	7/31/2010
47063	T\$4972				LIBERTYFIBERSCORPORATION	7/31/2010
48141	5				ELPASOPLANT	6/1/2010
48141	1				ELPASOPLANT	6/1/2010
55075	438039360				STORAENSONORTHAMERICANIAGARAMILL	12/31/2008
55075	54151NGRFW1101M				STORAENSONORTHAMERICANIAGARAMILL	12/31/2008
55075	T\$8508				STORAENSONORTHAMERICANIAGARAMILL	12/31/2008
55141	772010580				DOMTARA.W.CORPPORTEDWARDS	6/30/2008
55141	772010580				DOMTARA.W.CORPPORTEDWARDS	6/30/2008
55141	T\$8586				DOMTARA.W.CORPPORTEDWARDS	6/30/2008

APPENDIX F

Approach to Apply RICE reductions to project 2005 Emissions in the 2005v4.1 modeling Platform: 2004 and 2010 rules

TABLE OF CONTENTS

L	IST O	F TABLESv	
1	Inti	roduction6	
2	Sou	rce Coverage8	
3	Spa	rk Ignition (SI) Engines11	
	3.1	Four Stroke Rich Burn Engines (4SRB)	13
	3.2	Two Stroke Lean Burn Engines (2SLB)	14
	3.3	Four Stroke Lean Burn Engines (4SLB)	14
4	Con	npression Ignition (CI) Engines15	
5	App	proach For Addressing Already-Controlled Sources16	
6	Per	cent Reduction Calculations to be applied to NEI16	
	6.1	SI Engines	16
	6.2	CI Engines	18

7	Per 19	cent Reduction Calculations to be applied to NEI accounting for only the 2004 RIC.	E rule
	7.1	SI Engines	19
	7.2	CI Engines	20
8	Res	rults	. 20

LIST OF TABLES

Table 1-1. Summary of Existing Source RICE Reductions Reflected in the Projection Methodology	6
Table 2-1. SCCs representing the point source and non-point source universe of RICE	9
Table 3-1. Distribution of NOX by engine and HP type for major and area sources	12
Table 3-2. Distribution of CO by engine and HP type for major and area sources	12
Table 3-3. Distribution of VOC by engine and HP type for major and area sources	12
Table 4-1. Distribution of CO, PM and VOC emissions from Compression Ignition Engines by Engine and	
HP type for major and area sources	
Table 6-1. Formula for determining the percent reduction to apply to SI SCCs for Projection Years of 2014	
and Beyond	16
Table 6-2. Formula for determining the percent reduction to apply to Compression Ignition (CI) SCCs for	
Projection Years of 2014 and later	
Table 7-1. Formula for determining the percent reduction to apply to SI SCCs for the 2012 projection	
Table 8-1. Summary of Percent Reductions and Emissions reduced from the 2005 Platform resulting from	
all 5 Hield falls (1 state years 201 + and fater)	21
Table 8-2. Summary of Percent Reductions and Emissions reduced from the 2005 Platform resulting from	
the 2004 RICE NESHAP	
Table 9-1. SO2 emissions and reductions resulting from ultra low sulfur fuel requirement (compliance date	
May 2013) for CI engines greater or equal to 300 HP.	24

1 Introduction

There are three rulemakings for National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines. These rules reduce hazardous air pollutant (HAPs) from existing and new stationary reciprocating internal combustion engines (RICE). In order to meet the standards, existing sources with certain types of engines will need to install controls. In addition to reducing HAPs, these controls also reduce criteria air pollutants (CAPs).

This document presents a methodology for incorporating the CAP reductions from the three RICE NESHAP in the future year projection of the 2005 v4.1 modeling platform. The methodology addresses the following future years: 2012, and 2014 and beyond. In 2014 and beyond, all 3 rules' compliance dates have passed; thus all 3 rules are included in the emissions projection. In 2012 only the earliest rule's compliance date has passed so only one rule is included.

The rules are listed below:

- National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; Final Rule (69 FR 33473) published 06/15/04
- National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; Final Rule (FR 9648) published 03/03/10
- National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; Final Rule (75 FR 51570) published 08/20/2010

The difference among these three rules is that they focus on different types of engines, different facility types (major for HAPs, versus area for HAPs) and different engine sizes based on horsepower (HP). In addition, the they have different compliance dates. We project CAPs from the 2005 NEI RICE sources, based on the requirements of the rule for **existing sources**,. We consider only existing sources, since the inventory includes only existing sources and the current projection approach does not estimate emissions from new sources. As indicated earlier, for the 2012 projections, only the requirements associated with the June 15, 2007 compliance date are incorporated. All of the **Error! Not a valid bookmark self-reference.** requirements are incorporated in projections for 2014 and beyond.

Table 1-1summarizes the rule information that was used for the emissions projection. As indicated earlier, for the 2012 projections, only the requirements associated with the June 15, 2007 compliance date are incorporated. All of the **Error! Not a valid bookmark self-reference.** requirements are incorporated in projections for 2014 and beyond. **Table 1-1.** Summary of Existing Source RICE Reductions Reflected in the Projection Methodology

Engine Type	Control and Pollutant Reductions	Horse Power Range Affected (Existing Sources Only)	Publication Date of the RICE NESHAP	Compliance Date	Reductions for Existing Sources, Rule Documentation (tons)**					
Spark Ignition: Four stroke rich burn (SI: 4SRB)	Non-selective catalytic reduction 97% NOX, 49% CO * 76% VOC	Non- emergency, Major, HP > 500	06/15/04	June 15, 2007	CO: 98,040 NOX: 69,862 VOC:1461***					
SI: 4SRB	Same as above	ame as Non-		October 19, 2013	NOX: 96,479 CO: 109,321					
SI: Four stroke lean burn (4SLB)	Oxidation Catalyst 94% CO, 71% VOC	Non- emergency Major, 100- 500 HP, Area > 500 HP	08/20/10	October 19, 2013	VOC: 30,907					
Compression Ignition (CI)	Oxidation Catalyst 70% CO and VOC 30% PM2.5	emergency Major and W CO and Area, HP >300		May 3, 2013	CO: 14,342 VOC: 27,395 PM: 2,844					
*% CO used in 6/2004 rule was 90% **Total Reductions across these rules: NOX (tons)= 166,379; CO (tons) = 221,703; VOC (tons) = 58,402; and PM (tons) = 2,844. *** VOC reductions weren't estimated for the 2004 rule. Used 2010 approach: estimated the VOC emissions as a function of the HAP emissions by dividing HAP by 0.1944 to get the VOC emissions.										

Based on analyses done in support of the rules, the RICE NESHAP published 06/15/04 estimated 69,862 tons of NOX would be reduced, and the RICE NESHAP published 08/20/10 estimates 96,479 tons NOX to be reduced. Total NOX to be reduced from existing sources for the two rules is therefore 166,379 tons. The sum of reductions for all rules for CO is 221,703; for VOC is 58,402 and for PM is 2,844.

Our projection approaches generally try to maintain the percent reductions for a category rather than match the absolute mass of the reductions. This is because the inventories used to estimate reductions from the rules are often inconsistent with the inventories that we use for modeling.

The rule-specific inventories generally come from industry survey data, and the NEI comes from state-reported data. So, rather than attempting to remove the tonnages listed in above, we used a percent reduction approach.

The percent reduction approach is to determine and apply the appropriate percent reductions to RICE sources in the modeling platform. RICE emissions are identified based on the source classification codes (SCCs) in the modeling inventory. As explained earlier, because the modeling inventory was not used as the basis for determining the air impacts of the rule, the tonnage reductions achieved by applying percent reductions associated with the RICE requirements to the platform are not expected to provide exactly the values cited above.

The percentage reduction to be applied is determined as a function of the efficiency of the control device, and the fraction of emissions in the SCC estimated to be impacted by the rule requirements. The remainder of this document presents the data and equations used to estimate the overall percent reductions to apply to each SCC. Section 2 discusses the source coverage as a function of the inventory SCCs. Sections 3 and 4 present the data used to determine the percentage of emissions from these SCCs to apply the control device efficiencies. Section 5 discusses the approach for addressing the already controlled engines, and Section 6 provides the equations for percent reduction, and summarizes the values of the parameters used to compute the percent reduction by pollutant and by engine type for years past 2014; Section 7 provides this information for the 2012 projection year which includes reductions only from the rule published in 2004. Section 8 provides a summary of the results.

2 Source Coverage

The engine types affected by the NESHAP are Spark Ignition (SI) and Compression Ignition (CI). Spark Ignition engines can be classified as Four Stroke Rich Burn Engines (4SRB), Two Stroke Lean Burn Engines (2SLB) and Four Stroke Lean Burn Engines (4SLB). Because the requirements of the rules differ between SI engine types, we must be able to distinguish among these types in the inventory.

The inventory source classification codes (SCCs) that represent SI and CI engines in the NEI are shown in Table 2-1, along with emissions (50-state sums) from the 2005 modeling platform (case=2005cr). The SI SCCS are assigned to one of five "reduction" categories depending upon the specificity of the type of SIC engine. These are: 4SRB, 4SLB, 2SLB and "SI, generic", "boiler + engine" and "RICE + turbine." Note that all of the gasoline engines are considered to be 100% 4SRB. A method and data to apportion the fraction of emissions from the non-specific engine type categories of "SI, generic", "boiler+engine" and "RICE+turbine" to 4SRB and 4SLB engine types is presented in the next section. The CI SCCs only need to be apportioned to non-emergency engines, and not by any specific CI engine type, therefore the "Category for Application of Reduction" is CI.

There are also SCCs in the inventory for oil and gas operations that include emissions from the use of RICE. We denote these as "oil&gas" in Table 2-1. We do not have any data to apportion the amount of emissions from SI nor CI RICE from these SCCs. Focusing on NOX reductions, we can determine the amount of NOX reductions needed from the oil&gas SCCs in order to

bring the total NOX to equal the estimates provided in the rule. The total NOX reductions from the non oil&gas SCCs sum to 80,597 tons and the total NOX reductions estimated by the two rules is 166,379 tons. If the remaining NOX from oil&gas SCCs were to make up this difference, 26% of the total oil&gas NOX would need to be reduced. Since this fraction turns out higher than the fraction of reduction to be applied to "SI, generic" SCCs, and it is expected that oil&gas SCCs would have more NOX emitting operations than the "SI,generic" SCCs, we have chosen to apply the "SI, generic" SCC fraction to the oil&gas SCCS. Because it is likely that the vast majority of oil&gas VOC is from operations other than RICE, we will not compute any VOC reduction from oil&gas SCCs. We will use the same fraction as "SI,generic" for CO.

Table 2-1. SCCs representing the point source and non-point source universe of RICE

	the 2 1. Bees representing the point source						
SCC	Description	Engine Type	Category for Application of Reduction	NOX 2005 (tons)	CO 2005 (tons)	VOC 2005 (tons)	PM2.5 2005 (tons)
	Internal Combustion Engines; Electric Generation; Distillate Oil (Diesel); Reciprocating	CI	CI	17,662	3,792	1,294	645
20100105	Internal Combustion Engines;Electric Generation;Distillate Oil (Diesel);Reciprocating: Crankcase Blowby	CI	CI	87	22	10	9
20100107	Internal Combustion Engines;Electric Generation;Distillate Oil (Diesel);Reciprocating: Exhaust	CI	CI	221	79	9	10
20100202	Internal Combustion Engines;Electric Generation;Natural Gas;Reciprocating	SI	SI, generic	7,490	3,675	909	115
20100207	Internal Combustion Engines;Electric Generation;Natural Gas;Reciprocating: Exhaust	SI	SI, generic	1	0	0	0
20200102	Internal Combustion Engines;Industrial;Distillate Oil (Diesel);Reciprocating	CI	CI	11,785	3,323	908	772
20200104	Internal Combustion Engines;Industrial;Distillate Oil (Diesel);Reciprocating: Cogeneration	CI	CI	494	128	18	31
20200107	Internal Combustion Engines;Industrial;Distillate Oil (Diesel);Reciprocating: Exhaust	CI	CI	254	74	15	7
20200202	Internal Combustion Engines;Industrial;Natural Gas;Reciprocating	SI	SI, generic	215,888	74,610	16,560	2,339
20200204	Internal Combustion Engines;Industrial;Natural Gas;Reciprocating: Cogeneration	SI	SI, generic	704	413	110	14
	Internal Combustion Engines;Industrial;Natural Gas;Reciprocating: Exhaust	SI	SI, generic	15	50	1	0
20200252	Internal Combustion Engines;Industrial;Natural Gas;2-cycle Lean Burn	SI	2SLB	153,857	27,103	9,089	2,216
	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Rich Burn	SI	4SRB	66,871	53,724	5,337	512
	Lean Burn	SI	4SLB	47,932	20,287	5,333	385
20200255	Internal Combustion Engines;Industrial;Natural Gas;2-cycle Clean Burn	SI	2SLB	591	288	70	22
20200256	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Clean Burn	SI	4SLB	1,719	1,924	365	29
20200301	Internal Combustion Engines;Industrial;Gasoline;Reciprocating	SI	4SRB	660	1,966	110	26
	Internal Combustion Engines;Industrial;Gasoline;Reciprocating: Exhaust	SI	4SRB	56	54	9	3
20201001	Internal Combustion Engines;Industrial;Liquified Petroleum Gas (LPG);Propane: Reciprocating	SI	SI, generic	101	130	52	9
20201002	Internal Combustion Engines;Industrial;Liquified Petroleum Gas (LPG);Butane: Reciprocating	SI	SI, generic	13	22	0	0
20201702	Internal Combustion Engines;Industrial;Gasoline;Reciprocating Engine	SI	4SRB	3	31	9	0
20201707	Internal Combustion Engines;Industrial;Gasoline;Reciprocating: Exhaust	SI	4SRB	0	4	0	0
	Internal Combustion Engines;Commercial/Institutional;Distillate Oil	CI	CI				
20300101	(Diesel);Reciprocating Internal Combustion	CI	CI	4,476	1,512	455	330
20300105	Engines;Commercial/Institutional;Distillate Oil			0	0	0	0

		Engine	Category for Application of				
		Type	Reduction of	NOX 2005	CO	VOC 2005	PM2.5
SCC	Description (Discription			(tons)	2005 (tons)	(tons)	2005 (tons)
	(Diesel);Reciprocating: Crankcase Blowby						
	Internal Combustion	CI	CI				
	Engines;Commercial/Institutional;Distillate Oil (Diesel);Reciprocating: Exhaust			9	1	0	6
20300107	Internal Combustion	SI	SI, generic		1	0	0
	Engines;Commercial/Institutional;Natural Gas;Reciprocating			17,532	6,165	1,883	113
	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Cogeneration	SI	generic	170	200	22	4
	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Reciprocating: Exhaust	SI	SI, generic	17	2	1	0
20300207	Internal Combustion	SI	4SRB	17		1	0
	Engines;Commercial/Institutional;Gasoline;Reciprocating			348	4,250	245	80
	Internal Combustion	SI	4SRB				
20300307	Engines;Commercial/Institutional;Gasoline;Reciprocating: Exhaust			4	21	3	_
	Internal Combustion	SI	SI, generic				
	Engines; Commercial/Institutional; Liquified Petroleum Gas			<i>c</i> 1	20	12	2
	(LPG);Propane: Reciprocating Internal Combustion	SI	SI, generic	61	28	12	2
	Engines;Commercial/Institutional;Liquified Petroleum Gas	51	Si, generic				
	(LPG);Butane: Reciprocating			0	0	0	-
	Internal Combustion Engines;Engine Testing;Reciprocating Engine;Gasoline	SI	4SRB	647	11,538	738	44
	Internal Combustion Engines; Engine Testing; Reciprocating Engine; Diesel/Kerosene	CI	CI	3,935	968	235	163
20.400.402	Internal Combustion Engines; Engine Testing; Reciprocating	CI	CI				
20400403	Engine;Distillate Oil Industrial Processes;Oil and Gas Production;Natural Gas	SI	SI, generic	2	1	0	0
31000203	Production; Compressors			29,605	10,849	2,333	272
50100421	Waste Disposal;Solid Waste Disposal - Government;Landfill Dump;Waste Gas Recovery: Internal Combustion Device		SI, generic	914	1,220	103	53
	Stationary Source Fuel Combustion; Electric Utility; Distillate Oil; Total: Boilers and IC Engines		Boiler+engine	258	60	4	1
	Stationary Source Fuel Combustion; Electric Utility; Distillate Oil; All IC Engine Types	CI	CI	2,218	462	112	9
2101006000	Stationary Source Fuel Combustion; Electric Utility; Natural Gas; Total: Boilers and IC Engines	SI	Boiler+engine	2,413	4,500	1,294	8
2101006002	Stationary Source Fuel Combustion; Electric Utility; Natural Gas; All IC Engine Types	SI	RICE+turbine	6,089	1,347	52	148
	Stationary Source Fuel Combustion;Industrial;Distillate Oil;Total: Boilers and IC Engines	CI	Boiler+engine	89,906	20,956	3,223	6,494
	Stationary Source Fuel Combustion;Industrial;Natural Gas;Total: Boilers and IC Engines	SI	Boiler+engine	150,642	99,171	6,733	775
	Stationary Source Fuel Combustion;Industrial;Natural Gas;All IC Engine Types	SI	RICE+turbine	14,845	5,791	1,543	9
2102000002	Stationary Source Fuel	CI	Boiler+engine	14,043	3,/91	1,343	9
2103004000	Combustion;Commercial/Institutional;Distillate Oil;Total: Boilers and IC Engines		Boner rengine	43,266	10,520	1,340	6,461
	Stationary Source Fuel	SI	Boiler+engine	-,	-,	,,,,,,,	-,
2103006000	Combustion;Commercial/Institutional;Natural Gas;Total: Boilers and IC Engines			138,027	95,914	8,684	933
	Stationary Source Fuel Combustion; Total Area Source Fuel Combustion; Distillate Oil; Total: Boilers and IC Engines	CI	Boiler+engine	199	210	12	15
	Stationary Source Fuel Combustion;Total Area Source Fuel Combustion;Distillate Oil;All IC Engine Types	CI	RICE+turbine	11,327	5,227	1,158	797
	Stationary Source Fuel Combustion; Total Area Source Fuel Combustion; Natural Gas; Total: Boilers and IC Engines	SI	Boiler+engine	2,592	600	124	166
	Industrial Processes;Oil and Gas Exploration and	SI	SI, generic				
2310020600	Production;Natural Gas;Compressor Engines			48,393	29,980	5,300	-
	Industrial Processes;Oil and Gas Production: SIC 13;All	oil&gas					
	Processes;Total: All Processes			14,456	2,654	26,308	-
2310000220	Industrial Processes;Oil and Gas Exploration and	oil&gas		85,302	26,575	5,579	2,945

		Engine Type	Category for Application of				
SCC	Description	1) pe		NOX 2005	CO 2005 (tons)		PM2.5 2005 (tons)
	Production;All Processes;Drill Rigs						
	Industrial Processes;Oil and Gas Exploration and Production;All Processes;Saltwater Disposal Engines	oil&gas		121	17	7	-
	Industrial Processes;Oil and Gas Production: SIC 13;All Processes : On-shore;Total: All Processes	oil&gas		193,183	226,478	286,654	-
	Industrial Processes;Oil and Gas Production: SIC 13;All Processes : Off-shore;Total: All Processes	oil&gas		1,859	-	310	-
	Industrial Processes;Oil and Gas Production: SIC 13;Natural Gas;Total: All Processes	oil&gas		7,253	3,114	17,584	101
	Industrial Processes;Oil and Gas Exploration and	oil&gas					
2310023000	Production;Natural Gas;Cbm Gas Well - Dewatering Pump Engines			4,104	-	-	-

3 Spark Ignition (SI) Engines

Table 3-1, Table 3-2, and Table 3-3 provides the distribution of emissions by source type (major versus area), engine type and HP range for NOX, CO and VOC, respectively. The data are from the rule analyses and were provided by Melanie King, EPA, Sector Policies and Programs Division. These tables provide the information needed to apportion the emissions from generic reciprocating engine SI SCCs in Table 2-1 to the particular engine type requiring controls. For example, the proportion of NOX emissions from major 4SRB Non-emergency engines from all major reciprocating engines is 91,657/278,460 = 33%. The emissions in these tables are also broken out by HP; thus they also provide the data needed to apportion the emissions to the HP range requiring the controls. Furthermore, we have used them to create a ratio of major to area emissions for SI engines. We had previously used the NEI's SRCTYPE data field which indicates the facility's status- major vs area- with respect to HAPs (based on the major/area definitions in Section 112 of the Clean Air Act). This approach, which used for the 2016cr1_hg_05 case and related source apportionment case (both of these were used for the Boiler MACT Regulatory Impact Assessment, and no other modeling) resulted in major/area splits heavily weighted to major sources: 77%/23%, 81%/19% and 75%/25% for 4SRB for NOX, CO and VOC, respectively and 91%/9% for both CO and VOC for 4 SLB. However, we have chosen to update this as we have more confidence in the major/area breakout done for the rule analysis than the value reported in the inventory for which we have discovered errors in the SCRTYPE value or found it missing. Using the data Table 3-1, Table 3-2, and Table 3-3, we determine that 27% of the emissions are from major sources and 73% are from area sources. This is approximately the same for all pollutants, and we also use it for all SI engine types.

The below subjections provide the apportionment factors for both engine type and HP ranges for the SI engines.

Table 3-1. Distribution of NOX by engine and HP type for major and area sources

Base	eline NOX e	missions f	rom major	and are	a sou	ırces (wit	h 20% 4	SRB 1	ave NS	SCR),	SI en	gines
HP Range	Total NOx Emissions- <mark>major</mark> sources	2SLB Non- emergency- major sources	4SLB Non- emergency- major sources	4SRB Non- emergency- major sources	Emerg ency- major sourc es	Non-	Total NOx Emissions- area sources	2SLB- area sources	4SLB- area sources	4SRB- area sources	Emerge ncy- area sources	Digester Gas- area
25-50	41,751	12,806	15,054	13,853	38	0	68,566	21,031	24,722	22,750	63	O
50-100	22,363	6,859	8,063	7,420	21	0	58,985	18,092	21,268	19,571	54	0
100-175	64,914	19,911	23,405	21,538	60	0	133,065	40,815	47,978	44,150	123	0
175-300	24,168	7,413	8,714	8,019	22	0	82,359	25,261	29,695	27,326	76	0
300-500	25,106	7,700	9,052	8,330	23	0	99,679	30,574	35,940	33,073	92	0
500-600	19,426	5,825	6,847	6,301	18	436	69,094	19,760	23,228	21,375	5 59	4,671
600-750	4,097	1,228	1,444	1,329	4	92	14,438	4,328	5,087	4,682	13	327
>750	76,635	22,971	27,002	24,848	71	1744	227,890	68,313	80,303	73,896	210	5,169
Total	278,460	84,713	99,581	91,637	256	2,272	754,077	228,175	268,222	246,822	690	10,167

Table 3-2. Distribution of CO by engine and HP type for major and area sources

1a	ble 5-2. Dis	sulbunon	or CO b	y engine	and 111	type 10	i major a	inu arca	Source	3					
Base	Baseline CO emissions from major and area sources (with 20% 4SRB have NSCR), SI engines														
HP Range	Total CO Emissions- major sources	2SLB Non- emergenc y-major sources	4SLB Non- emergen cy- major sources	4SRB Non- emergenc y-major sources	Emer gency - majo r sourc es	Landfill/ Digester Gas Non- emergen cy- major sources	Total CO Emissio ns- area sources	2SLB- area source s	4SLB- area source s	4SRB- area sources	Eme rgen cy- area sour ces	Landfill/ Digester Gas- area sources			
25-50	28,798	3,247	5,131	20,368	51		46,898	5,333	8,031	33,450	83				
50-100	15,425	1,739	2,748	10,910	27		40,344	4,588	6,909	28,776	71				
100-175	44,774	5,049	7,978	31,668	79		91,013	10,350	15,586	64,917	161				
175-300	16,670	1,880	2,970	11,791	29		56,331	6,406	9,646	40,179	100				
300-500	17,316	1,953	3,086	12,248	30		68,178	7,753	11,675	48,629	121				
500-600	13,402	1,477	2,334	9,264	23	303	47,273	5,011	7,546	31,429	78	3,209			
600-750	2,826	312	492	1,954	5	64	9,876	1,097	1,653	6,884	17	225			
>750	52,851	5,825	9,204	36,535	93	1,194	155,890	17,323	26,086	108,654	275	3,551			
Total	192,062	21,482	33,944	134,738	337	1,561	515,803	57,862	87,132	362,918	906	6,985			

Table 3-3. Distribution of VOC by engine and HP type for major and area sources

Baseline VOC emissions from major and area sources (with 20% 4SRB have NSCR), SI engines

						Landfill/						
						Digester						Landfill/
	Total	2SLB		4SRB		Gas						Digester
	VOC	Non-	4SLB	Non-		Non-	Total	2SLB	4SLB	4SRB	_	Gas
	Emissi	emerge	Non-	emergen	Emerge	emergen	VOC .	Non-	Non-	Non-	Emerge	Non-
IID	ons -	ncy -	emergenc	cy -	ncy -	cy -	Emissio	emergenc	emergenc	emergenc	ncy -	emergen
HP	major	major	y -major	major	major	major	ns - area	y- area	y - area	y - area	area	cy - area
Range	sources	sources	sources	sources	sources	sources	sources	sources	sources	sources	sources	sources
25-50	5,696	939	3,513	1,240	3.3		9,354	1,543	5,770	2,036	5.4	
50-100	3,051	503	1,882	664	1.8		8,047	1,327	4,964	1,751	4.6	
100-175	8,855	1,460	5,463	1,927	5.1		18,153	2,994	11,198	3,951	10.4	
175-300	3,297	544	2,034	718	1.9		11,235	1,853	6,931	2,445	6.5	
300-500	3,425	565	2,113	745	2.0		13,598	2,242	8,388	2,960	7.8	
500-600	2,650	427	1,598	564	1.5	59	9,415	1,449	5,421	1,913	5.0	627
600-750	559	90	337	119	0.3	12	1,969	317	1,187	419	1.1	44
>750	10,450	1,685	6,302	2,224	6.0	233	31,076	5,010	18,742	6,613	17.8	693
Total	37,982	6,213	23,241	8,200	22	305	102,846	16,736	62,600	22,088	58.7	1,364
Note that	this table a	ccounts for	changes to V	OC baselin	e values m	ade on Augi	ıst 16, 2010		·	·		1

3.1 Four Stroke Rich Burn Engines (4SRB)

For 4SRB, non-selective catalytic reduction (NSCR) is expected to be required to meet the formaldehyde limit. In addition to reducing NOX, NSCR reduces CO and VOC. The control device efficiency for NOX, CO and VOC, denoted \mathbf{R}_{poll} is based on the average value in Table 4 of the memo "CO Removal Efficiency as a Surrogate for HAP Removal Efficiency". For 4SRB, $\mathbf{R}_{NOX} = 97\%$, $\mathbf{R}_{CO} = 49\%$; and $\mathbf{R}_{VOC} = 76\%$

As discussed earlier, the point source inventory source classification codes (SCCs) that represent or could include these engines in the NEI are shown in Table 2-1. To determine the fraction of 4SRB in the "SI, generic" SCCs, we compute the percent of NOX, CO and VOC emissions from rich burn engines from "baseline estimates" (considering existing controls --- 20% 4SRB have NSCR) of NOX, CO and VOC from 4SRB. We denote this fraction as **F**4srB, poll. Using the total NOX emissions from all SI RICE and 4SRB in Table 3-1, the proportion of NOX from 4SRB from major source SI engines is computed as 91,637/278,460 = 33% and the proportion of NOX from 4SRB from area source SI engines is computed as 246,822/754,077 = 33%. Thus, **F**4srB, Nox = 0.33. Using Table 3-2, **F**4srB, co = 0.7 (same for both major and area sources) and using Table 3-3, **F**4srB, voc = 0.216 (same for both major and area sources). As discussed previously, we use the same **F**4srB for oil&gas SCCs other than for VOC, for which we use **F**4srB, voc = 0

To apportion the "engine+boiler" SCCs to 4SRB, we use the inventory estimates of boiler and engine emissions stationary RICE, to apportion to "SI, generic" and then use the factors discussed above to apportion to 4SRB. Using the 2005 emission estimates for SCCs associated with natural gas boilers, natural gas RICE and turbine RICE, we compute that 63% of the NOX are from natural gas RICE, 54% of the CO are from natural gas RICE and 70% of the VOC are from natural gas RICE. Therefore, for engine and boiler SCCs: $F_{4SRB, NOX} = 0.63 \times 0.33 = 0.21$, $F_{4SRB, CO} = 0.54 \times 0.7 = 0.38$ and $F_{4SRB, VOC} = 0.70 \times 0.216 = 0.15$.

We apportion "RICE+turbine" SCCs using 2005 Platform emissions as well. In this case, $\mathbf{F_{4SRB}}$, $\mathbf{NOX} = 0.78 \times 0.33 = 0.26$, $\mathbf{F_{4SRB}}$, $\mathbf{CO} = 0.79 \times 0.79 \times 0.79 \times 0.55$ and $\mathbf{F_{4SRB}}$, $\mathbf{VOC} = 0.89 \times 0.216 = 0.19$

The August 2010 regulation requires engines at area sources greater than 500 HP to have NSCR. Major sources that are of that size are subject to limits that require NSCR from the 2004 rule. To determine the fraction of 4SRB emissions that are greater than 500 HP, we use the data in Table 3-1, Table 3-2, and Table 3-3. Since the size cutoffs and emissions distributions are different for major and area sources, we denote the fraction as **F**_{sizecut,major,poll} and **F**_{sizecut,area,poll} for major and area sources, respectively. The values from the tables are as follows,

 $\mathbf{F}_{\text{sizecut,major,NOX}} = \mathbf{F}_{\text{sizecut,major,CO}} = \mathbf{F}_{\text{sizecut,major,VOC}} = 0.354$ and $\mathbf{F}_{\text{sizecut,area,NOX}} = \mathbf{F}_{\text{sizecut,area,CO}} = \mathbf{F}_{\text{sizecut,area,VOC}} = 0.405$

3.2 Two Stroke Lean Burn Engines (2SLB)

For 2SLB, the only engines that would be required to meet limits based on catalysts would be new (meaning constructed 2003 and later) non-emergency >500 HP at major sources. As a result, we will not apply any reductions to 2SLB in the 2005 NEI.

3.3 Four Stroke Lean Burn Engines (4SLB)

These engines will require an oxidation catalyst, which in addition to reducing HAP, reduces CO and VOC. Per information emailed by Melanie King (7/7/2010): For 4SLB, $\mathbf{R}_{CO} = 94\%$; and $\mathbf{R}_{VOC} = 71\%$

To apportion emissions of "SI,generic" SCCs to 4SLB, we use the total CO emissions from all SI RICE and 4SLB in Table 3-1. The proportion of CO from 4SLB from major source SI engines is computed as 33,944 / 192,062 = 18% and the proportion of CO from 4SLB from area source SI engines is computed as 87,132/515,803 = 17%. Since these values are close, we chose 17%. (F4SLB, co = 0.17.) Using Table 3-2, F4SLB, voc = 0.61 (roughly the same fraction for both major and area sources). The F4SLB, co value also applies to oil&gas SCCs. F4SLB, voc from oil&gas SCCs =0.

We also need to determine **F**_{4SLB}, co and **F**_{4SLB}, voc for SCCs with categories of "Boiler+engine" and "RICE+turbine". We can use the same approach as for 4SRB. In this case, for "Boiler+engine" SCCs, **F**_{4SLB}, co = 0.54x 0.17 = 0.10 and **F**_{4SLB}, voc = 0.70 x 0.61 = 0.43. For "RICE+turbine" SCCs: **F**_{4SLB}, co = 0.79 x 0.17 = 0.13 and **F**_{4SLB}, voc = 0.89 x 0.61 = 0.54.

The August 20, 2010 rule requires existing non-emergency engines 100-500 HP at major sources and existing non-emergency engines >500 HP at area sources to meet limits based on oxidation catalyst. Engines greater than 500 HP at major sources were regulated under the 2004 rule and we didn't put any emission limits on them, and therefore would not need an oxidation catalyst.

To determine the fraction of 4SLB emissions that in those HP ranges, we use the data in Table 3-1, Table 3-2, and Table 3-3. Since these fractions are different for major and area sources, we

denote the fraction as $\mathbf{F}_{\text{sizecut,major,poll}}$ and $\mathbf{F}_{\text{sizecut,area,poll}}$ for major and area sources, respectively. The values from the tables are as follows,

 $\mathbf{F}_{\text{sizecut,major,CO}} = \mathbf{F}_{\text{sizecut, major,VOC}} = 0.41$ and $\mathbf{F}_{\text{sizecut,area,CO}} = \mathbf{F}_{\text{sizecut,area,VOC}} = 0.40$

4 Compression Ignition (CI) Engines

Compression ignition engines are not distinguished further (by burn type) as are Spark Ignition. However, the amount of emissions from emergency engines, for which existing engines would not be required to apply oxidation catalyst, is significant relative to non-emergency engines. Therefore the fraction of emissions from non-emergency engines will be applied to all SCCs identified as CI in Table 2-1 in addition to the fraction that will be subject to oxidation catalyst based on the size. Since the regulation that promulgated in March would require non-emergency existing CI engines >300 HP that are located at both major and area sources of HAP to install oxidation catalyst. Since major and area sources have the same requirements, we can use data on the proportion of emissions of the total CI population, presented in Table 4-1. The data are from the rule analyses and were provided by Melanie King, EPA, Sector Policies and Programs Division.

Table 4-1. Distribution of CO, PM and VOC emissions from Compression Ignition Engines by Engine and HP type for major and area sources

	Summary of Ma	jor Source and	Area Source Ba	seline Emissions	for the RICE	NESHAP		
		Basel	ine Emissions (t	(py)		Baselin	(tpy)	
Size Range (HP)	Number of Engines - nonemergency	CO - nonemergency	PM - nonemergency	VOC - nonemergency	Number of Emergency Engines	CO emergency	PM emergency	VOC emergency
Major Sources								
50-100	18,547	6,454	487	2,010	74,187	1,291	97	402
100-175	24,301	8,457	1,170	4,828	97,206	1,691	234	966
175-300	18,429	6,413	1,532	6,324	73,715	1,283	306	1,265
300-500	9,696	3,374	1,357	5,604	38,785	675	271	1,121
500-600	860	299	165	683	3,438	60	33	137
600-750	440	153	104	429	1,760	31	21	86
>750	971	338	340	1,402	3,882	68	68	280
Total	73,243	25,489	5,155	21,281	292,974	5,098	1,031	4,256
Area Sources								
50-100	27,820	9,681	730	3,015	111,281	1,936	146	603
100-175	36,452	12,685	1,754	7,242	145,808	2,537	351	1,448
175-300	27,643	9,620	2,298	9,486	110,573	1,924	460	1,897
300-600	21,816	7,592	3,436	14,186	87,266	1,518	687	2,837
600-750	3,657	1,273	864	3,567	14,628	255	173	713
>750	6,479	2,255	2,268	9,361	25,914	451	454	1,872
Total	123,867	43,106	11,350	46,857	495,470	8,621	2,270	9,371

Per the rule, there would be 70% reduction of HAP, CO, and VOC and 30% reduction of PM from the catalyst. We also assume that the control achieves the same reduction from PM2.5 as PM. There are no NOX reductions. Therefore, For CI, **R**co = 70%; **R**voc = 70% and **R**PM2.5 = 30%.

The fraction of emissions for CO and VOC that are both non-emergency and greater than 300HP are computed from the above Table 4-1

```
\mathbf{F}_{\text{nonE,sizecut,major,CO}} = 0.14. \mathbf{F}_{\text{nonE,sizecut,major,VOC}} = \mathbf{F}_{\text{nonE,sizecut,major,PM2.5}} = 0.32 \mathbf{F}_{\text{nonE,sizecut,area,CO}} = 0.40 \mathbf{F}_{\text{nonE,sizecut,area,VOC}} = \mathbf{F}_{\text{nonE,sizecut,area,PM2.5}} = 0.65
```

We also need to apportion the fraction of emissions from SCCs with categories of "Boiler+engine" and "RICE+turbine" that are attributed to CI engines. We can use a similar approach as for 4SRB and 4SLB. In this case, we only need to break out CI RICE (and not a type of CI) so we only need the fraction of "Boiler+engine" emissions that are CI RICE. Using 2005 Platform emissions from diesel SCCs for boilers, RICE and turbine engines, we compute the following fractions to apportion "Boiler+engine" SCCs to CI RICE:, \mathbf{F}_{CI} , $\mathbf{co} = 0.61$ and \mathbf{F}_{CI} , $\mathbf{voc} = 0.84$ and \mathbf{F}_{CI} , $\mathbf{pM2.5} = 0.50$

For "RICE+turbine" SCCs: $\mathbf{F}_{CI, CO} = 0.83$ and $\mathbf{F}_{CI, VOC} = 0.92$ and $\mathbf{F}_{CI, PM2.5} = 0.78$

5 Approach For Addressing Already-Controlled Sources

Although we know that a certain percentage of engines are already controlled (they set the basis of the MACT floor), we will use the existing control information in the inventory (and the capability for the software applying the controls to not apply additional controls to already-controlled sources) rather than account for already-controlled sources by pro-rating the percent reduction we apply to all sources. While this approach will overestimate reductions for already-controlled sources that are missing the control information in the inventory, it will be less of an impact than the pro-rating approach which would underestimate the reductions for the uncontrolled sources.

6 Percent Reduction Calculations to be applied to NEI That Account for all Three RICE rules

The next sections provide the calculations and data to determine the percent reductions to apply to the 2005 v4.1 modeling platform for projecting these emissions to 2014 and beyond. By 2014 all three of the RICE rules' compliance dates have passed

6.1 SI Engines

Table 6-1shows the reduction to be applied to the SI engine SCCs identified in Table 2-1 based on the parameters computed from the baseline emissions in Table 3-1, Table 3-2 and Table 3-3 and discussed in Section 3. The formula for the percent reduction is provided in the first row:

Table 6-1. Formula for determining the percent reduction to apply to SI SCCs for Projection Years of 2014 and Beyond

PERCENT REDUCTION_{SI,poll} = PERCENT REDUCTION_{4SRB,poll} + PERCENT REDUCTION_{4SLB,poll}

Where:

 $\begin{aligned} & PERCENT \; REDUCTION_{4SRB,poll} = R_{poll} \; x \; F_{4SRB} \; x \; F_{sizecut,major,poll} \; x \; F_{major,poll} + R_{poll} \; x \; F_{4SRB} \; \; x \; F_{sizecut,area,poll} \\ & x \; F_{area,poll} \end{aligned}$

 $\begin{aligned} & PERCENT \; REDUCTION_{4SLB,poll} = R_{poll} \, x \; F_{4SLB} \, x \; F_{sizecut,major,poll} \, x \; F_{major,poll} \; + \; R_{poll} \, x \; F_{4SLB} \, x \; F_{sizecut,area,poll} \\ & x \; F_{area,poll} \end{aligned}$

Note that $R_{poll} F_{major} F_{area} F_{sizecut, major, poll} F_{sizecut, area, poll}$ are all dependent upon the engine (4SRB versus 4SLB). Values for these and the other parameters are provided below.

Parameter	Description	Value and How Determined, 4SRB	Value and How Determined, 4SLB
R _{poll}	The estimated reduction of pollutant "poll" (e.g., NOX, VOC, CO) resulting from application of the control device needed to meet the standard	NSCR: Use same values used in rule. NOX reduction, R _{NOX} is 97% CO reduction, R _{CO} is 49% VOC reduction, R _{VOC} is 76%	Oxidation Catalyst: Use same reductions values used in rule. CO reduction, R _{CO} is 94% VOC reduction, R _{VOC} is 71%
$F_{major,poll}$	the fraction of emissions from SI engines that attributable to major sources	As discussed in Section 3, we used Tables 3-1 to 3-3 to compute the fraction and used the same for all pollutants and all SI engine types $\mathbf{F}_{\text{major,NOX}} = \mathbf{F}_{\text{major,CO}} = \mathbf{F}_{\text{major,VOC}} = 0.27$	As discussed in Section 3, we used Tables 3-1 to 3-3 to compute the fraction and used the same for all pollutants and all SI engine types $\mathbf{F}_{\mathbf{major},\mathrm{CO}} = \mathbf{,F}_{\mathbf{major},\mathrm{VOC}} = 0.27$
F area,poll	the fraction of emissions from rich burn engines attributable to area sources	1 - F _{major}	1 - F _{major}
F _{sizecut,major,poll}	the fraction of emissions equal or above the size cutoff for which the control device will be required for major sources	Table 3-1, Table 3-2, and Table 3-3. Cutoff is 500 HP Compute fraction of emissions for 4SRB engines at 500 and above HP to total 4SRB; major sources. F _{sizecut,major,NOX} = F _{sizecut,major,CO} = F _{sizecut,major,VOC} = 0.354	Table 3-1, Table 3-2, and Table 3-3. Assume 100-500 HP. Compute fraction of emissions for 4SLB engines between 100 and 500HP to total 4SLB; major sources. F _{sizecut,major,CO} = F _{sizecut,major VOC} = 0.41
F _{sizecut,area,poll}	the fraction of emissions equal or above the size cutoff for which SNCR will be required for area sources	Table 3-1, Table 3-2, and Table 3-3. Assume 300 HP (final rule Aug 2010). Compute fraction of emissions for 4SRB engines at 300 and above HP to total 4SRB; area sources. F _{sizecut,area,NOX} = F _{sizecut,area,CO} = F _{sizecut,area,VOC} = 0.405	Table 3-1, Table 3-2, and Table 3-3 Assume 500 HP. Compute fraction of emissions for 4SLB engines at 500 and above HP to total 4SLB; area sources. $\mathbf{F}_{\text{sizecut,area,CO}} = \mathbf{F}_{\text{sizecut,area,VOC}} = 0.40$
$F_{4SRB,poll}$ $F_{4SLB,poll}$	Fraction of emissions within the SCC that are rich burn and 4 stroke lean burn, respectively	Use 100% for 4SRB SCCs. For "SI, generic" SCCs, use Table 3-1, Table 3-2, and Table 3-3. Percent of emissions of 4SRB out of all SI. F _{4SRB, NOX} = .33, F _{4SRB, CO} = .70 F _{4SRB, VOC} = .216 Note that same values apply to "oil&gas" SCCs except F _{4SRB} , voc= 0	Use 100% for 4SLB SCCs . For "SI, generic" SCCs, use Table 3-1, Table 3-2, and Table 3-3. Percent of emissions of 4SLB out of all SI. F _{4SLB} , co = .17, F _{4SLB} , voc= .59 Note that same values apply to "oil&gas" SCCs except for VOC.
		For "Boiler+engine" SCCs": F _{4SRB, NOX} = .21, F _{4SRB, CO} = .38 F _{4SRB, VOC} = .151 For ""RICE+turbine" SCCs: F _{4SRB, NOX} = .26, F _{4SRB, CO} = .55 F _{4SRB, VOC} = .192	For "Boiler+engine" SCCs": $\mathbf{F_{4SLB, CO}} = .10$, $\mathbf{F_{4SLB, VOC}} = .41$ For ""RICE+turbine" SCCs: $\mathbf{F_{4SLB, CO}} = .13$, $\mathbf{F_{4SLB, VOC}} = .52$

6.2 CI Engines

Table 6-1 shows the reduction to be applied to the CI engine SCCs identified in **Error! Reference source not found.** based on the parameters computed from the baseline emissions in Table 4-1.

Table 6-2. Formula for determining the percent reduction to apply to Compression Ignition (CI) SCCs for Projection Years of 2014 and later

$$PERCENT \ REDUCTION_{CI,poll} = R_{poll} \ x \ F_{CI, \ POLL} \ x \ F_{nonE, sizecut, major} \ x \ F_{major} + \\ R_{poll} \ x \ F_{CI, \ POLL} \ x \ F_{nonE, sizecut, area} \ x \ F_{area}$$

Parameter	Description	Value and How Determined, CI
rarameter	Description	value and now Determined, CI
R _{poll}	the estimated reduction of pollutant "poll" (e.g., NOX, VOC, CO) resulting from application of the control device needed to meet the standard	Oxidation Catalyst: Use same values used in rule. (specific to CI) CO reduction, R co is 70% VOC reduction, R voc is 70% PM2.5 reduction, R PM2.5 is 30%
F _{CI, POLL}	The fraction of emissions that are CI RICE. This value is 1 except for CI engines that are in "Boiler+Engine" or "turbine+RICE" Use 2005 Platform emissions of RICE, non-RICE engines and boilers to compute fractions	Value is 1 except for CI engines that are characterized in "Boiler+Engine" or "turbine+RICE" $ For "Boiler+Engine" SCCs, F_{CI, CO} = 0.61 \text{ and } F_{CI, VOC} = 0.84 \\ and F_{CI, PM2.5} = 0.50 $ For "RICE+turbine" SCCs: $F_{CI, CO} = 0.83$ and $F_{CI, VOC} = 0.92$ and $F_{CI, PM2.5} = 0.78$
$\mathbf{F}_{ ext{major}}$	the fraction of emissions from CI engines attributable to major sources	Based on an analysis of the 2005 NEI using the "SRCTYPE" field (01 are the major, 02 are area). Since so much unknown, renormalize $\mathbf{F}_{\text{major},\text{CO}} = 0.42$, $\mathbf{F}_{\text{major},\text{VOC}} = 0.38$, $\mathbf{F}_{\text{major},\text{PM2.5}} = 0.44$ That fraction will be used for all pollutants.
F area	the fraction of emissions from CI engines attributable to area sources	1 - F _{major}
F _{nonE,} sizecut,major,poll	The fraction of emissions from major sources from the CI SCCs that will require oxidation catalyst to meet the standard because they are non-Emergency and meet the size cutoff.	Table 4-1. The fraction of emissions of non-emergency engines from major sources equal or above 300 HP $ \mathbf{F_{nonE,sizecut,major,CO}} = 0.14. \\ \mathbf{F_{nonE,sizecut,major,VOC}} = \mathbf{F_{nonE,sizecut,major,PM2.5}} = 0.32 $
F _{nonE,} sizecut,area,poll	The fraction of emissions from area sources from the CI SCCs that will require oxidation catalyst to meet the standard because they are non-Emergency and meet the size cutoff.	Table 4-1. The fraction of emissions of non-emergency engines from major sources equal or above 300 HP $ \mathbf{F_{nonE,sizecut,area,CO}} = 0.40. \\ \mathbf{F_{nonE,sizecut,area,VOC}} = \mathbf{F_{nonE,sizecut,area,PM2.5}} = 0.65 $

7 Percent Reduction Calculations to be applied to NEI accounting for only the 2004 RICE rule

This section presents the formula and values to use when projecting emissions to 2012; in this situation, only the SI 4SRB engines greater than 500 HP at major sources are reduced because the compliance date for the rule that affects these engines in June 2007 which is prior to 2012. The other engines' reductions are not anticipated until the compliance dates (2013) of the most recent rules. Because these dates are after 2012, they are not incorporated into the emission projection for 2012.

7.1 SI Engines

Table 7-1 shows the reduction to be applied to the SI engine SCCs identified in Table 2-1 based on the parameters computed from the baseline emissions in Table 3-1, Table 3-2 and Table 3-3 and discussed in Section 3. The formula for the percent reduction is provided in the first row: **Table 7-1.** Formula for determining the percent reduction to apply to SI SCCs for the 2012 projection

$$\begin{split} & \textbf{PERCENT REDUCTION}_{SI,poll} = \textbf{PERCENT REDUCTION}_{4SRB,poll} \\ & \textbf{PERCENT REDUCTION}_{4SRB,poll} = R_{poll} \, x \, F_{4SRB} \, x \, F_{sizecut,major,poll} \, x \, F_{major,poll} \end{split}$$

Parameter	Description	Value and How Determined, 4SRB
R _{poll}	The estimated reduction of pollutant "poll" (e.g., NOX, VOC, CO) resulting from application of the control device needed to meet the standard	NSCR: Use same values used in rule. NOX reduction, R _{NOX} is 97% CO reduction, R _{CO} is 49% VOC reduction, R _{VOC} is 76%
F _{major,poll}	the fraction of emissions from SI engines that attributable to major sources	Based on an analysis of the 2005 NEI using the "SRCTYPE" field (01 are the major, 02 are area) $\mathbf{F}_{\text{major},\text{NOX}} = 0.77, \mathbf{F}_{\text{major},\text{CO}} = 0.81, \mathbf{F}_{\text{major},\text{VOC}} = 0.75$
F _{sizecut,major,poll}	the fraction of emissions equal or above the size cutoff for which the control device will be required for major sources	Table 3-1, Table 3-2, and Table 3-3. Assume 300 HP (final rule Aug 2010). Compute fraction of emissions for 4SRB engines at 300 and above HP to total 4SRB; major sources. F _{sizecut,major,NOX} = F _{sizecut,major,CO} = F _{sizecut,major,VOC} =0.445
F _{sizecut,area,poll}	the fraction of emissions equal or above the size cutoff for which SNCR will be required for area sources	Table 3-1, Table 3-2, and Table 3-3. Assume 300 HP (final rule Aug 2010). Compute fraction of emissions for 4SRB engines at 300 and above HP to total 4SRB; area sources. F _{sizecut,area,NOX} = F _{sizecut,area,CO} = F _{sizecut,area,VOC} = 0.405\
F _{4SRB, poll} F _{4SLB, poll}	Fraction of emissions within the SCC that are rich burn and 4 stroke lean burn, respectively	Use 100% for 4SRB SCCs. For "SI, generic" SCCs, use Table 3-1, Table 3-2, and Table 3-3. Percent of emissions of 4SRB out of all SI. F _{4SRB, NOX} = .33, F _{4SRB, CO} = .7 F _{4SRB, VOC} = .37 Note that same values apply to "oil&gas" SCCs except F _{4SRB} , voc = 0 For "Boiler+engine" SCCs":

$\mathbf{F_{4SRB, NOX}} = .21, \mathbf{F_{4SRB, CO}} = .38$
$\mathbf{F_{4SRB,VOC}} = .26$
For ""RICE+turbine" SCCs:
$\mathbf{F_{4SRB, NOX}} = .26, \mathbf{F_{4SRB, CO}} = .55$
$\mathbf{F_{4SRB,VOC}} = .34$

7.2 CI Engines

For a 2012 projection there are no reductions to apply to existing CI engines since they are impacted only by the 2010 NESHAP.

8 Results

A summary of the percent reductions by Engine Type and Reduction Category for the SCCs shown in Table 2-1 resulting from the implementation of the RICE rule as amended in August 2010 is presented in Table 8-1. A summary associated with just the 2004 RICE rule (which is applicable to a 2012 projection) is shown in Table 8-2.

Table 8-1. Summary of Percent Reductions and Emissions reduced from the 2005 Platform resulting from all 3 RICE rules (Future years 2014 and later)

engine type	reduction category	NOX reductio n	CO reducti on	VOC reductio n	PM2.5 Reduct	NOX 2005cr emis (tons)	NOX_re duction s (tons)	CO 2005cr emis (tons)	CO_reduction s (tons)	VOC 2005cr emis (tons)	VOC_reduct ions (tons)	PM2.5 2005cr emis (tons)	PM25_reducti ons (tons)
	Boiler+engine	0.0%	12.4%	30.8%	7.6%	133,629	1	31,746	3,942	4,579	1,412	12,971	982
CI	CI	0.0%	20.4%	36.7%	15.1%	38,941	1	9,903	2,016	2,945	1,081	1,974	299
	RICE+turbine	0.0%	16.9%	33.8%	11.8%	13,545	1	5,689	961	1,270	429	806	95
oil&gas		12.5%	19.9%	0.0%	0.0%	306,278	38,367	258,838	51,400	336,442	ı	3,046	0
	2SLB	0.0%	0.0%	0.0%	0.0%	154,448	1	27,391	-	9,159	-	2,238	0
	4SLB	0.0%	37.9%	28.6%	0.0%	49,651	1	22,211	8,408	5,698	1,629	414	0
SI	4SRB	38.0%	19.2%	29.7%	0.0%	68,589	26,036	71,588	13,727	6,451	1,919	665	0
31	Boiler+engine	8.0%	11.1%	16.7%	0.0%	293,674	23,410	200,185	22,165	16,835	2,812	1,882	0
	RICE+turbine	9.9%	15.5%	21.2%	0.0%	20,934	2,066	7,138	1,104	1,595	339	157	0
	SI, generic	12.5%	19.9%	23.9%	0.0%	320,904	40,199	127,344	25,288	27,286	6,512	2,921	0
Grand Total						1,400,593	130,078	762,033	129,011	412,260	16,134	27,074	1,376

Table 8-2. Summary of Percent Reductions and Emissions reduced from the 2005 Platform resulting from the 2004 RICE NESHAP

					NOX	NOX	CO		VOC	VOC
engine	reduction	NOX		VOC	2005cr emis	reductions	2005cr emis	CO reductions	2005cr emis	reductions
type	category	reduction	CO reduction	reduction	(tons)	(tons)	(tons)	(tons)	(tons)	(tons)
	Boiler+engine	0.0%	0.0%	0.0%	133,629	0	31,746	0	4,579	0
CI	CI	0.0%	0.0%	0.0%	38,941	0	9,903	0	2,945	0
	RICE+turbine	0.0%	0.0%	0.0%	13,545	0	5,689	0	1,270	0
oil&gas		3.1%	3.3%	0.0%	306,278	9,381	258,838	8,495	336,442	0
	2SLB	0.0%	0.0%	0.0%	154,448	0	27,391	0	9,159	0
	4SLB	0.0%	0.0%	0.0%	49,651	0	22,211	0	5,698	0
	4SRB	9.3%	4.7%	7.3%	68,589	6,366	71,588	3,357	6,451	469
SI										
	Boiler+engine	1.9%	1.8%	1.1%	293,674	5,724	200,185	3,567	16,835	185
	RICE+turbine	2.4%	2.6%	1.4%	20,934	505	7,138	184	1,595	22
	SI, generic	3.1%	3.3%	1.6%	320,904	9,829	127,344	4,180	27,286	429
Grand Total					1,400,593	31,806	762,033	19,782	412,260	1,105

9 SO2 reductions resulting from the Ultra-low Sulfur Diesel Requirement for CI engines

This section discusses an approach to project the impact of the Ultra-low Sulfur diesel requirement for CI engines greater than 300 HP that was part of the requirements published 3/30/2010. These reductions were not accounted for in the rule due to the expectation that engine owners/operators would make the switch anyway because ULSD is what would primarily be available. On page 9669 of **Federal Register** / Vol. 75, No. 4:

We have not quantified the SOX reductions that would occur as a result of engines switching to ULSD because we are unable to estimate the number of engines that already use ULSD and therefore we are unable to estimate the percentage of engines that may switch to ULSD due to this rule. If none of the affected engines would use ULSD without this rule, then we estimate the SOX reductions are 31,000 tpy in the year 2013. If all of the affected engine would use ULSD regardless of the rule then the additional SOX reduction would be zero.

We are aware² of several state rules on the books or in the proposal stage that will limit the sulfur content of home heating oil. However, some do not go into effect until after the RICE ULSD limits. Because of this timing and because we have received comments on the need to account for SO2 reductions resulting from the RICE ULSD limits (MOG), we have chosen, in addition to applying applicable state rule fuel sulfur limits, to estimate the reduction due to RICE and apply the reduction in the future year projection. The RICE limits apply to CI greater than 300 HP.

Based on a summary of Baseline SO2 Emissions by Engine Size for the RICE NESHAP provided by the project lead, Melanie King³, it was determined that approximately 50% of SO2 emissions are from engines greater than 300 HP.

We assume that CI use high sulfur fuel (3000 ppm) in 2005 and switch to ULSD by the compliance date for this RICE requirement (May 2013). In that we don't have the distribution of SO2 emissions from the various size engines as we do other pollutants (see Table 4-1), we assumed 50% of the SO2 comes from 300 HP and larger engines. Note that for other pollutants the fraction of emissions with size cutoff greater or equal to 300 HP ranges from 14% (FnonE,sizecut, major, co) to 65% (FnonE,sizecut, major, PM2.5)

A switch from a 3000 ppm sulfur content (home heating oil average) to 15 ppm would result in a 99.5% SO2 reduction. We apply this to all diesel RICE and the portion of SO2 emission from RICE-related SCCs that are estimated to be RICE. Using the 2005 point source inventory for industrial, commercial and institutional diesel boilers and internal combustion engines (turbines plus RICE) we computed that 81% of the SO2 emissions from internal combustion engines are from RICE and 12% of the SO2 emissions from engines+boilers are from RICE. For Oil and gas production, there is only one SCC with significant SO2 emissions: SCC=2310000220 (Industrial

_

² Email from Jeff Hertzog, OTAQ, USEPA Nov 22, 2010

³ Email from Melanie King, OAQPS, USEPA, Nov 23, 2010 (filename: Existing CI RICE NESHAP Impacts 2-16-

10 FINAL 3000 ppm sulfur estimate.xlsx)

Processes;Oil and Gas Production: SIC 13; Drill rigs). Since we have no information to determine the amount of SO2 from RICE versus other SO2-emitting processes associated with drill rigs, we assume that all of the SO2 is associated with RICE and that 50% of the emissions are associated with RICE greater than 300 HP. Therefore, the reductions we apply are the following:

- CI SCCs: 50%*99.5%=49.75%
- CI Boiler+Engine SCCs: 50%*99.5%*12%= 5.97%
- CI RICE + turbine SCCs: 50%*99.5%*81%= 40.30%
- Oil and Gas, SCC=2310000220 (drill rigs): 50%*99.5%=49.75%

Table 9-1. SO2 emissions and reductions resulting from ultra low sulfur fuel requirement (compliance date May 2013) for CI engines greater or equal to 300 HP in the <u>RICE NESHAP</u> (75 FR 9648, % reductions Based on: 1) A switch from a 3000 ppm sulfur content (home heating oil average) to 15 ppm would result in a 99.5% SO2 reduction and 2) 50% of SO2 from RICE are from engines greater than 300HP, and 3) Percent of RICE from SCCs that include RICE and/or boilers and other engines as a combined SCC was estimated based on analysis of detailed RICE, engine and boiler SCCs in 2005 platform.

					SO2 reduce
		2005 SO2		percent	d
scc	scc_desc	(tons)	type	reduction	(tons)
	Stationary Source Fuel Combustion; Electric Utility; Distillate Oil; Total: Boilers and IC	,	71		(1111)
2101004000	Engines	358.6	boilers+engines	5.97%	21
2101004002	Stationary Source Fuel Combustion; Electric Utility; Distillate Oil; All IC Engine Types	84.4	engines	40.30%	34
	Stationary Source Fuel Combustion; Industrial; Distillate Oil; Total: Boilers and IC				
2102004000	Engines	125250.5	boilers+engines	5.97%	7,477
2103004000	Stationary Source Fuel Combustion; Commercial/Institutional; Distillate Oil; Total: Boilers and IC Engines	114818.1	boilers+engines	5.97%	6,855
2199004000	Stationary Source Fuel Combustion; Total Area Source Fuel Combustion; Distillate Oil; Total: Boilers and IC Engines	215.8	boilers+engines	5.97%	13
2199004002	Stationary Source Fuel Combustion; Total Area Source Fuel Combustion; Distillate Oil; All IC Engine Types	17691.0	engines	40.30%	7,129
2310000000	Industrial Processes; Oil and Gas Production: SIC 13; All Processes; Total: All Processes	0.0	oil and gas		-
2310000220	Industrial Processes;Oil and Gas Production: SIC 13; Drill rigs	8749.8	oil and gas	49.75%	4,353
2310000440	Industrial Processes; Oil and Gas Production: SIC 13; Saltwater disposal engines	0.0	oil and gas	49.75%	0
2310001000	Industrial Processes; Oil and Gas Production: SIC 13; All Processes : On-shore; Total: All Processes	0.0	oil and gas		-
2310002000	Industrial Processes; Oil and Gas Production: SIC 13; All Processes : Off-shore; Total: All Processes	0.0	oil and gas		-
20100102	Internal Combustion Engines; Electric Generation; Distillate Oil (Diesel); Reciprocating	267.6	rice	49.75%	133
20100105	Internal Combustion Engines; Electric Generation; Distillate Oil (Diesel); Reciprocating: Crankcase Blowby	7.0	rice	49.75%	3
20100107	Internal Combustion Engines; Electric Generation; Distillate Oil (Diesel); Reciprocating: Exhaust	9.8	rice	49.75%	5
20200102	Internal Combustion Engines;Industrial;Distillate Oil (Diesel);Reciprocating	807.7	rice	49.75%	402
20200104	Internal Combustion Engines;Industrial;Distillate Oil (Diesel);Reciprocating: Cogeneration	18.5	rice	49.75%	9
20200107	Internal Combustion Engines;Industrial;Distillate Oil (Diesel);Reciprocating: Exhaust	14.6	rice	49.75%	7
20300101	Internal Combustion Engines; Commercial/Institutional; Distillate Oil (Diesel); Reciprocating	934.7	rice	49.75%	465
20300105	Internal Combustion Engines; Commercial/Institutional; Distillate Oil (Diesel); Reciprocating: Crankcase Blowby	0.0	rice	49.75%	0
20300106	Internal Combustion Engines; Commercial/Institutional; Distillate Oil	1.0	rice	49.75%	

	(Diesel);Reciprocating: Evaporative Losses (Fuel Storage and Delivery System)				0
	Internal Combustion Engines; Commercial/Institutional; Distillate Oil				
20300107	(Diesel);Reciprocating: Exhaust	0.1	rice	49.75%	0
20400402	Internal Combustion Engines; Engine Testing; Reciprocating Engine; Diesel/Kerosene	315.5	rice	49.75%	157
20400403	Internal Combustion Engines; Engine Testing; Reciprocating Engine; Distillate Oil	0.1	rice	49.75%	0
	Stationary Source Fuel Combustion; Commercial/Institutional; Distillate Oil; Total: Boilers				
2103004000	and IC Engines	18.0	boilers+engines	5.97%	1

Total SO2 reduced = 27,066 tons

Appendix G
Mercury Speciation Fractions Used to Speciate the Future Year EGU Mercury Emissions

		Divalent	
Category	Particulate	Gaseous	Elemental
Bituminous Coal and Pet. Coke, PC Boiler with ESP-CS	0.0117	0.4656	0.5227
Bituminous Coal, Coal Gasification	0.0051	0.0847	0.9102
Bituminous Coal, PC Boiler with Dry Sorbent Injection			
and ESP-CS	0.0016	0.6710	0.3274
Bituminous Coal, PC Boiler with ESP-CS	0.0611	0.6820	0.2570
Bituminous Coal, PC Boiler with ESP-CS and Wet FGD	0.0022	0.0778	0.9200
Bituminous Coal, PC Boiler with ESP-HS	0.0490	0.5784	0.3726
Bituminous Coal, PC Boiler with ESP-HS and Wet FGD	0.0063	0.2068	0.7870
Bituminous Coal, PC Boiler with FF Baghouse	0.0398	0.6258	0.3344
Bituminous Coal, PC Boiler with FF Baghouse and Wet			
FGD	0.0648	0.3300	0.6052
Bituminous Coal, PC Boiler with PM Scrubber	0.0180	0.1951	0.7869
Bituminous Coal, PC Boiler with SCR and SDA/FF			
Baghouse	0.0506	0.4604	0.4890
Bituminous Coal, PC Boiler with SDA/FF Baghouse	0.0917	0.2886	0.6197
Bituminous Coal, PC Boiler with SNCR and ESP-CS	0.2032	0.2712	0.5256
Bituminous Coal, Stoker Boiler with SDA/FF Baghouse	0.1996	0.1794	0.6211
Bituminous Coal/Pet. Coke, Cyclone with ESP-CS and			
Wet FGD	0.0007	0.1130	0.8863
Bituminous Coal/Pet. Coke, PC Boiler with FF Baghouse	0.0220	0.7841	0.1939
Bituminous Coal/Pet.Coke, Fludized Bed Combustor with			
SNCR and FF Baghouse	0.4244	0.2787	0.2970
Bituminous Waste, Fludized Bed Combustor with FF	0.0010	0.0001	0.5005
Baghouse	0.0212	0.3881	0.5907
Lignite Coal, Cyclone Boiler with ESP-CS	0.0004	0.1699	0.8297
Lignite Coal, Cyclone Boiler with SDA/FF Baghouse	0.0995	0.1707	0.7298
Lignite Coal, Fludized Bed Combustor with ESP-CS	0.0137	0.1164	0.8700
Lignite Coal, Fludized Bed Combustor with FF Baghouse	0.0042	0.7118	0.2840
Lignite Coal, PC Boiler with ESP-CS	0.0009	0.0362	0.9629
Lignite Coal, PC Boiler with ESP-CS and FF Baghouse	0.0019	0.6449	0.3532
Lignite Coal, PC Boiler with ESP-CS and Wet FGD	0.0082	0.1345	0.8574
Lignite Coal, PC Boiler with PM Scrubber	0.0016	0.0298	0.9686
Lignite Coal, PC Boiler with SDA/FF Baghouse	0.0036	0.1262	0.8702
Subbituminous Coal, Fludized Bed Combustor with SNCR	0.0007	0.02.12	0.0622
and FF Baghouse	0.0027	0.0342	0.9632

		Divalent	
Category	Particulate	Gaseous	Elemental
Subbituminous Coal, PC Boiler with ESP-CS	0.0016	0.3083	0.6901
Subbituminous Coal, PC Boiler with ESP-CS and Wet			
FGD	0.0043	0.0294	0.9663
Subbituminous Coal, PC Boiler with ESP-HS	0.0006	0.1252	0.8741
Subbituminous Coal, PC Boiler with ESP-HS and Wet			
FGD	0.0117	0.0446	0.9437
Subbituminous Coal, PC Boiler with FF Baghouse	0.0149	0.8283	0.1568
Subbituminous Coal, PC Boiler with PM Scrubber	0.0145	0.0511	0.9344
Subbituminous Coal, PC Boiler with SDA/ESP	0.0032	0.0382	0.9586
Subbituminous Coal, PC Boiler with SDA/FF Baghouse	0.0099	0.0435	0.9467
Subbituminous Coal/Pet. Coke, Cyclone Boiler with ESP-			
HS	0.0093	0.0752	0.9155

Appendix H

Details Regarding the PM2.5 Natural Gas Emission Factor error in IPM Post Processing

The error came about by attempting to improve estimates of natural gas emissions based on studies using a new PM test method that directly measures primary PM. Unfortunately, an incorrect value was taken from the study. It should be noted that it was also discovered that the correction factor from those studies, while intended to be used in the 2005 year, was actually not used. Another error was the value for the Gassified Coal turbines, which was intended to be updated to use newer data (unrelated to the natural gas combustion study) but was updated with the wrong value.

The Incorrect Emission factors and the SCCs it affected are listed here. The middle two columns are the emission factors that are consistent with the emission factors that were used for the base year (2005 inventory), as documented in try://newftp.epa.gov/air/nei/nei_criteria_summaries/2002summaryfiles/egu2002doc.pdf.

The last two columns are the emission factors that would incorporate the improved estimates discussed above, and correctly use the newer data on Gasified Coal /Turbines.

SCC	Description	ERRONE OUS PM ₁₀ Primary EF Used in IPM Post Processing lb/MMBtu	ERRONEO US PM2.5 Primary EF Used in IPM Post Processing lb/MMBtu	PM10 primary EF consiste nt with 2005 lb/MMB tu1	PM25 primary EF consiste nt with 2005 lb/MMB tu	Corrected PM10 Primary EF lb/MMBtu (using 1000 btu/scf)	Correcte d PM25 Primary EF lb/MMB tu (using 1000 btu/scf)
	Ext Comb						
	/Electric Gen						
	/Natural Gas /Boilers : 100						
	Million Btu/hr						
	except						
10100601	Tangential	0.068	0.057	7.51E-03	7.51E-03	5.20E-04	4.30E-04
	Ext Comb						
	/Electric Gen						
	/Natural Gas						
	/Boilers < 100						
	Million Btu/hr						
10100604	except	0.060	0.057	7.51E.02	7.51E.00	5 20E 04	4.205.04
10100604	Tangential	0.068	0.057	7.51E-03	7.51E-03	5.20E-04	4.30E-04
	Ext Comb						
	/Electric Gen						
	/Process Gas /Boilers : 100						
10100701	Million Btu/hr	0.06	0.058	5.74E-03	5.74E-03	5.20E-04	4.30E-04
10100701	IVIIIIOII Dtu/III	0.00	0.030	3.7 IL 03	3.7 FL 03	3.20L 04	1.50L 04

SCC	Description	ERRONE OUS PM ₁₀ Primary EF Used in IPM Post Processing lb/MMBtu	ERRONEO US PM2.5 Primary EF Used in IPM Post Processing lb/MMBtu	PM10 primary EF consiste nt with 2005 lb/MMB tu1	PM25 primary EF consiste nt with 2005 lb/MMB tu	Corrected PM10 Primary EF lb/MMBtu (using 1000 btu/scf)	Correcte d PM25 Primary EF lb/MMB tu (using 1000 btu/scf)
	Int Comb /Electric Gen					<i>bearsely</i>	200,202)
20100201	/Natural Gas /Turbine	0.046	0.028	6.55E-03	6.55E-03	3.10E-04	1.90E-04
20100301 ^b	Int Comb /Electric Gen /Gasified Coal /Turbine	0.11	0.11	1.57E-02	1.57E-02	1.10E-02	1.10E-02

- a. . note that it was determined that the 2005 PM emissions used in the 2005v4 andv4.1 platforms were not corrected to use updated information posted at
 - <u>ftp://newftp.epa.gov/air/nei/nei_criteria_summaries/pm_adjustment_2002_nei.pdf</u>. The updates were based on testing using a dilution method that is similar to conditional test method (CTM) 39 (<u>Air Emission Measurement Center</u>) that measures PM10-PRI and PM2.5-PRI directly. The data come from limited testing sponsored by the New York State Energy Research and Development Authority (NYSERDA). See ftp://newftp.epa.gov/air/nei/nei_criteria_summaries/pm_adjustment_2002_nei.pdf for more documentation and

ftp://newftp.epa.gov/air/nei/nei_criteria_summaries/ratios_to_adjust_pmvalues_in_nei_for_naturalgas_c_ombustion082005.xls_for the SCCs impacted by the adjustment. The updated factors have been recommended by Ron Myers but have not been put into AP-42 (for natural gas, it was last updated in 1998)

b. The corrected value comes from: The EPA Tutorial provided by Gary J. Stiegel, Gasification Technologies Product Manager National Energy Technology Laboratory Nov 5, 2001 (power point presentation), reports 0.002 lbs of PM10/MMBtu for a state-of-the-art IGCC unit; for Polk Power (ORISPL=7242, BLRID=1), they report <0.015 lbs of PM10/MMBtu; for Wabash River, they report <0.012 lbs of PM10/MMBtu; and George Lynch has suggested 0.011 lbs of PM102.MMBtu. It was also recommended to set PM2.5=PM10