TVA Kingston Ash Recovery Project Roane County, TN Project Completion Meeting June 4, 2015

Dredge Cell Area Pre-Spill

Spill Progression – 12/22/08

Dredge Cell Area Post-Spill

Root Cause Analysis

Kingston Dredge Cell Failure Conditions

Increased Loads Due to Higher Fill

Hydraulically Placed Loose Wet Ash

Unusually Weak Silt/Ash Slime Foundation

CERCLA Removal Action Strategy (May 12, 2009 AOC)

- Phase 1 (Time-Critical Action Removal)
 - 3.5 million CYS removed (excavated and dredged)
 - 4.0 million tons disposed at Perry County, AL (completed 12/01/10)
 - May 29, 2010 Emory River reopened
- Phase 2 (Non-Time Critical Action Removal)
 - 2.3 million CYS removed from north and middle embayment
 - Consolidate in reinforced, on-site disposal area
 - Construct robust subsurface perimeter containment system to withstand earthquake loads
- Phase 3 (Residual Ash Study)
 - River ecosystem and human health risk assessments
 - Long-term monitoring (5-year reviews)

Mechanical + Hydraulic Dredging

Ash Processing

Loading and Disposal

Phase 2 Work Description

- Excavate Ash (Armada of Yellow Iron)
 - Pan & Tractor Scrapers
 - Excavators/ar-tic dump trucks
- Short-Term Storage
 - Dry to Optimum Moisture Content
 - Lime (Wet, Winter Months)
- Long-Term Storage in Dredge Cell
 - Placed in 1 foot lifts
 - Compacted to 90% proctor
 - In-situ density/Piezos/Inclinometers
 - Final Cap & Closure
- Perimeter Containment System
- Perimeter Air & IH Monitoring
- Storm Water Mgmt & Monitoring
- Health & Safety Program

Mechanical Excavation

North Embayment

- 1, 010,000 million CYs excavated
- November 2010 November 2011 (13 months)

Middle Embayment

- 1,059,000 million CYs excavated
- December 2011 June 2013 (17 months)

Sediment Basin/Dike 2

• 224,000 Cys excavated

Production Rates

- Average: 2,600-5,600 CYs/Day
- Max: 10,200 CYs/Day
- Excavation Outside of Cell Finished in Late June 2013
 - 2.3 million cubic yards
 - Minor cleaned out pass needed

Ash Stacking

- Volumes Placed (Compacted)
- Dredge Cell = 1,488,000 CYs
- Lateral Expansion = 1,189,000 CYs
- Ash Pond = 918,000 CYs
- Wall Spoils = 475,000 CYs
- Total Volume ≈ 4,000,000 CYs
- Completed July 2014 (≈ 4 yrs)

Perimeter Wall Stabilization

- Design based on 3-D Seismic Model (FLAC)
 - 6.0 earthquake on East TN fault
 - 7.6 earthquake on New Madrid fault
- ≈12,000 linear feet of cell perimeter
- 45-75 feet BGS/Keyed 2-7 ft into bedrock
- Target Average UCS = 200 to 265 psi
- Slurry Recipe = 22% blast furnace slag + 3% bentonite + 0.5% Portland + Water
- 1250 excavator/4' wide bucket with teeth
- Productivity: 540 1,130 CY/day
- NEW wall 100% complete 08/06/13

Perimeter Wall Stabilization

- QA/QC for uniformity & strength
 - 20 vertical miles of cores
- 18% of wall required mitigation
 - 5,490 linear feet of adjacent wall panel
 - 3,275 pressure grout columns
- Rock buttress on outside of wall
 - Layers of sand, gravel, stone rip rap
 - 2,050 linear feet along Middle Embayment
- Earthen-berm around perimeter
 - 12 inch sand layer
 - Compacted clay borrow material
- PWS completed February 2014
 - Including repairs + buttress+earthern berm
 - 69,000 linear feet of slurry trench

Cap and Cover

Cap and Cover

Phase 3 – River System SAP

Sampling & Analysis Plan – June 2010

- 2 year, \$40M ecological study within CERCLA Eco Risk Framework
- >16,000 samples collected; >400,000 analyses
- Multiple State/Federal Agencies (TDEC, TWRA, USGS, USACE, ORNL, USFWS) and 10 Universities (NGOs)

ABIOTIC

- Nature & Extent of Sediment/Ash
 - Residual ash/submerged/seasonally exposed
 - 2 Dimensional Fate/Transport Modeling
- Surface Water
- Groundwater/Aquifer Testing/MODFLOW
- Sediment Porewater & Bioassays

BIOTIC

- Fish (bass/catfish/blue gill/ gizz shad/crappie/redear sun)
- Birds (Heron/Osprey/Tree Swallows/Canada Goose)
- Amphibs (Spring Peeper/Upland Chorus/American Toad)
- Turtles (Musk/Snappers/Softshell)
- Benthic Invertebrates (Growth/Survival & Community Structure)
- Racoons
- Aquatic Vegetation & Periphyton
- Snails and Mayflies

Phase 3 River System Findings

- ≈ 510,000 CYs of residual ash dispersed over 200 acres
- Co-mingled with DOE legacy contaminants (CS-137/Hg/PCBs)
- System is Net Depositional
 - 1 to 5 feet accumulation over 30 years
 - Natural mixing/burial expected to reach sediment cleanup goals in 10 to 15 years
- Human Health Risks Acceptable
 - Confirmed need for pre-existing fish consumption advisories
- Moderate to Low Ecological Risks
 - Limited to Laboratory Sediment Toxicity tests for *H. Azteca* and *C. Dilutus* (survival/growth)
 - SE & AS accumulation Larval/Adult Mayflies
 - Potential food chain risks for birds that prey on those bugs (killdeer/tree swallows)
 - Benthic abundance and diversity similar at all study sites

2014 River System Monitoring Summary

Sample Task	Sample Point	Sample Frequency	Analytical
Bathymetry and Sediment Transport Modeling	Re-run mode	el for storm events >110,000 cfs as needed	Modeling
Ash Deposit Characterization (Sampling to support sediment transport modeling)	As needed for confirmation of depositional areas after >110,000 cfs storm events. Sampling at the direction of Steve Scott (ERDC).		Ash thickness % ash (offsite lab) Grain size distibution Metals (As and Se only)
Sediment Contaminant Monitoring Discrete, co-located sediment samples. 10 points per transect, co-located with each benthic community sample.	ERM 1.0 ERM 0.7	10 samples/transect; two transects (where suitable benthic invertebrate substrate is present)	% ash (offsite lab)
Sediment Contaminant Monitoring Composite sediment samples. Multiple ponar samples per transect area. (left, center, right - where possible of upper 6" of sediment) focused on areas with suitable benthic habitat.	ERM 1.0 ERM 0.7	Up to 3 samples/transect; two transects	% ash (offsite lab) Grain Size Distibution Metals (As and Se only)
Benthic Invertebrate Community Sampling Benthic invertebrate population abundance and diversity. 10 discrete points per transect.	ERM 1.0 ERM 0.7	10 samples/transect; two transects	Population abundance and diversity
Benthic Invertebrate Bioaccumulation Mayfly nymphs (depurated and non-depurated) composited at 3 points per transect (right, center, left).	ERM 1.0	3 samples/transect; one transect	Metals (TVA list of 13 metals)
Benthic Invertebrate Bioaccumulation Mayfly adults composited at 3 points per transect (right, center, left) of each male and female and imagos and subimagos.	ERM 1.0	Up to 12 samples/transect (3 samples/transect of each; male imago, male subimago, female imago, and female subimago); one transect	Metals (TVA list of 13 metals)
Aerial-feeding Insectivores Bioaccumulation Tree swallow monitoring at two locations (35 boxes at each location).	ERM 1.0 TRM 572	25 egg samples/site; two locations Reproductive competence: clutch size, hatching & fledgling success	Metals (TVA list of 13 metals) Field Observations
Fish Bioaccumulation Monitoring Collection of 6 female of each species per site. Test fillets, ovaries, and liver.	ERM 1.0	6 females of each species; 1 site (analysis of fillets, ovaries, and livers)	Metals (TVA list of 13 metals)

Long Term Monitoring

- 5 Years of monitoring indicate river ecosystem has returned to "pre-spill" conditions (vs. the 10 to 15 year time frame predicted by model)
- Fish health, tree swallows, mayflies, sediment concentrations & toxicity similar to reference stations
- Annual river monitoring thru 2017 Five Year Review
- Monitoring of Groundwater and Instrumentation in Ash Landfill
- O&M of Ash Landfill

Arsenic Concentrations and Remedial Goals

Community Involvement

- \$43 Million to Roane County Economic Development Foundation
- \$4 Million Swan Pond Circle Bridge
- Community Outreach Center
- Project specific web sites (184,000 hits)
- 6 River System (Phase 3) Workshops at Roane State CC
- Lakeshore Park (32 acres)
- Roane County Multi-use Sports Complex (60 acres)
- Roane County EMS/Volunteer Fire Department (10 acres)
- 50+ Public Meetings/100+ Site Tours
- 400+ Community Updates
- \$50,000 to Roane County Community Advisory Group
- \$500,000 of surplus material to Roane County
- \$350,000 for repaving Swan Pond Road/Circle

Project Costs Highlights

- Time Critical Removal Action (Phase 1 Dredging)
 - \$597.6 Million
 - \$290.8 Million (≈50%) on Ash Dredging & Disposal
- Non Time Critical Removal Actions (Phase 2/3)
 - \$537.7 Million
 - \$43 Million for Ash Stacking
 - \$13 Million for Ash Processing/Stacking
 - \$130 Million for Perimeter Wall
 - \$34 Million for Ash Landfill
- Total Project Costs
 - \$1.134 Billion
 - ≈\$44 Million under \$1.178 Billion Projection

Swan Pond Embayment Restoration

Ecological Restoration

Reforestation

Aerial Photos

12/28/2008

11/03/2014

North & Middle Embayment

East Embayment

NOW

THEN

East Embayment

Middle Embayment

THEN

Swan Pond Road Intersection

NOW

THEN

Questions & Answers

- www.epakingstontva.com
- Zeller.Craig@epa.gov
- www.tva.com/kingston
- Ceimers@tva.com
- THANK YOU!