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NOTICE 

The United States Environmental Protection Agency (U.S. EPA) through its Office of Research and 

Development (ORD) funded and managed the research described in this ProUCL Technical Guide. It has 

been peer reviewed by the U.S. EPA and approved for publication. Mention of trade names or 

commercial products does not constitute endorsement or recommendation by the U.S. EPA for 

use. 
 

 All versions of the ProUCL software including the current version ProUCL 5.1 have been 

developed by Lockheed Martin, IS&GS - CIVIL under the Scientific, Engineering, Response and 

Analytical Services contract with the U.S. EPA and is made available through the U.S. EPA 

Technical Support Center (TSC) in Atlanta, Georgia (GA). 

 

 Use of any portion of ProUCL that does not comply with the ProUCL Technical Guide is not 

recommended. 

 

 ProUCL contains embedded licensed software. Any modification of the ProUCL source code 

may violate the embedded licensed software agreements and is expressly forbidden.  

 

 ProUCL software provided by the EPA was scanned with McAfee VirusScan version 4.5.1 SP1 

and is certified free of viruses. 

 

With respect to ProUCL distributed software and documentation, neither the U.S. EPA nor any of their 

employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 

any information, apparatus, product, or process disclosed. Furthermore, software and documentation are 

supplied “as-is” without guarantee or warranty, expressed or implied, including without limitation, any 

warranty of merchantability or fitness for a specific purpose. 

ProUCL software is a statistical software package providing statistical methods described in various U.S. 

EPA guidance documents. ProUCL does not describe U.S. EPA policies and should not be considered to 

represent U.S. EPA policies. 
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Minimum Hardware Requirements 

ProUCL 5.1 will function but will run slowly and page a lot. 

 Intel Pentium 1.0 gigahertz (GHz) 

 45 MB of hard drive space 

 512 MB of memory (RAM) 

 CD-ROM drive or internet connection 

 Windows XP (with SP3), Vista (with SP1 or later), or Windows 7. 

ProUCL 5.1 will function but some titles and some Graphical User Interfaces (GUIs) will need to be 

scrolled. Definition without color will be marginal. 

 800 by 600 Pixels 

 Basic Color is preferred 

Preferred Hardware Requirements  

 1 GHz or faster Processor.  

 1 gigabyte (GB) of memory (RAM) 

 1024 by 768 Pixels or greater color display  

Software Requirements 

ProUCL 5.1 has been developed in the Microsoft .NET Framework 4.0 using the C# programming 

language. To properly run ProUCL 5.1 software, the computer using the program must have the .NET 

Framework 4.0 pre-installed. The downloadable .NET Framework 4.0 files can be obtained from one of 

the following websites: 

  

 http://msdn.microsoft.com/netframework/downloads/updates/default.aspx 

http://www.microsoft.com/en-us/download/details.aspx?id=17851   
Quicker site for 32 Bit Operating systems 

 

 http://www.microsoft.com/en-us/download/details.aspx?id=24872  

Use this site if you have a 64 Bit operating system 

  

   

 

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=24872
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Installation Instructions when Downloading ProUCL 5.1 from the EPA Web Site 

 Download the file SETUP.EXE from the EPA Web site and save to a temporary location.  

 

 Run the SETUP.EXE program. This will create a ProUCL directory and two folders:  

1) The TECHNICAL  GUIDE (this document), and 2) DATA (example data sets). 

 

 To run the program, use Windows Explorer to locate the ProUCL application file, and  

Double click on it, or use the RUN command from the start menu to locate the 

ProUCL.exe file, and run ProUCL.exe. 

 

 To uninstall the program, use Windows Explorer to locate and delete the ProUCL folder. 

 
Caution: If you have previous versions of the ProUCL, which were installed on your computer, you 

should remove or rename the directory in which earlier ProUCL versions are currently located. 

 
Installation Instructions when Copying ProUCL 5.1 from a CD  
 

 Create a folder named ProUCL 5.1 on a local hard drive of the machine you wish to 

install ProUCL 5.1.   

 

 Extract the zipped file ProUCL.zip to the folder you have just created.   

 

 Run ProUCL.exe.   

 
Note:  If you have extension turned off, the program will show with the name ProUCL in your directory 

and have an Icon with the label ProUCL. 

Creating a Shortcut for ProUCL 5.1 on Desktop 

 To create a shortcut of the ProUCL program on your desktop, go to your ProUCL 

directory and right click on the executable program and send it to desktop. A ProUCL 

icon will be displayed on your desktop. This shortcut will point to the ProUCL directory 

consisting of all files required to execute ProUCL 5.1.   

Caution: Because all files in your ProUCL directory are needed to execute the ProUCL software, one 

needs to generate a shortcut using the process described above. Simply dragging the ProUCL executable 

file from Window Explorer onto your desktop will not work successfully (an error message will appear) 

as all files needed to run the software are not available on your desktop. Your shortcut should point to the 

directory path with all required ProUCL files. All ProUCL files should reside in one directory on your 

computer (and not on your Network System) and your shortcut should point to that directory. 
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ProUCL 5.1 
 
Software ProUCL version 5.1 (ProUCL 5.1), its earlier versions: ProUCL version 3.00.01, 4.00.02, 

4.00.04, 4.00.05, 4.1.00, 4.1.01, and ProUCL 5.0.00, associated Facts Sheet, User Guides and Technical 

Guides (e.g., EPA 2010a, 2010b, 2013a, 2013b) can be downloaded from the following EPA website:  

 

http://www.epa.gov/osp/hstl/tsc/software.htm 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm 

 

Material for ProUCL webinars offered in March 2011, and relevant literature used in the development of 

various ProUCL versions can also be downloaded from the above EPA website. 

 

Contact Information for all Versions of ProUCL  

Since 1999, the ProUCL software has been developed under the direction of the Technical Support Center 

(TSC).  As of November 2007, the direction of the TSC is transferred from Brian Schumacher to Felicia 

Barnett.  Therefore, any comments or questions concerning all versions of ProUCL software should be 

addressed to: 

Felicia Barnett, Director 

ORD Site Characterization and Monitoring Technical Support Center (SCMTSC) 

Superfund and Technology Liaison, Region 4 

U.S. Environmental Protection Agency 

 61 Forsyth Street SW, Atlanta, GA 30303-8960 

barnett.felicia@epa.gov 

(404)562-8659 

Fax: (404) 562-8439 

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
mailto:barnett.felicia@epa.gov
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EXECUTIVE SUMMARY 
 

The main objective of the ProUCL software funded by the United States Environmental Protection 

Agency (EPA) is to compute rigorous statistics to help decision makers and project teams in making good 

decisions at a polluted site which are cost-effective, and protective of human health and the environment. 

The ProUCL software is based upon the philosophy that rigorous statistical methods can be used to 

compute reliable estimates of population parameters and decision making statistics including: the upper 

confidence limit (UCL) of the mean, the upper tolerance limit (UTL), and the upper prediction limit 

(UPL) to help decision makers and project teams in making correct decisions. A few commonly used text 

book type methods (e.g., Central Limit Theorem [CLT], Student's t-UCL) alone cannot address all 

scenarios and situations occurring in environmental studies. Since many environmental decisions are 

based upon a 95 percent (%) UCL (UCL95) of the population mean, it is important to compute UCLs of 

practical merit. The use and applicability of a statistical method (e.g., student's t-UCL, CLT-UCL, 

adjusted gamma-UCL, Chebyshev UCL, bootstrap-t UCL) depend upon data size, data skewness, and 

data distribution. ProUCL computes decision statistics using several parametric and nonparametric 

methods covering a wide-range of data variability, distribution, skewness, and sample size. It is 

anticipated that the availability of the statistical methods in the ProUCL software covering a wide range 

of environmental data sets will help the decision makers in making more informative and correct 

decisions at Superfund and Resource Conservation and Recovery Act (RCRA) sites. 

 

It is noted that for moderately skewed to highly skewed environmental data sets, UCLs based on the CLT 

and the Student's t-statistic fail to provide the desired coverage (e.g., 0.95) to the population mean even 

when the sample sizes are as large as 100 or more. The sample size requirements associated with the CLT 

increases with skewness. It would be incorrect to state that a CLT or Student's statistic based UCLs are 

adequate to estimate Exposure Point Concentrations (EPC) terms based upon skewed data sets.  These 

facts have been described in the published documents (Singh, Singh, and Engelhardt [1997, 1999]; Singh, 

Singh, and Iaci 2002; and Singh et al. 2006) summarizing simulation experiments conducted on 

positively skewed data sets to evaluate the performances of the various UCL computation methods. The 

use of a parametric lognormal distribution on a lognormally distributed data set yields unstable 

impractically large UCLs values, especially when the standard deviation (sd) of the log-transformed data 

becomes greater than 1.0 and the data set is of small size less than (<) 30-50. Many environmental data 

sets can be modeled by a gamma as well as a lognormal distribution. The use of a gamma distribution on 

gamma distributed data sets tends to yield UCL values of practical merit. Therefore, the use of gamma 

distribution based decision statistics such as UCLs, UPLs, and UTLs should not be dismissed by stating 

that it is easier to use a lognormal model to compute these upper limits.  

 

The suggestions made in ProUCL are based upon the extensive experience of the developers in 

environmental statistical methods, published environmental literature, and procedures described in many 

EPA guidance documents. These suggestions are made to help the users in selecting the most appropriate 

UCL to estimate the EPC term which is routinely used in exposure assessment and risk management 

studies of the USEPA. The suggestions are based upon the findings of many simulation studies described 

in Singh, Singh, and Engelhardt (1997, 1999); Singh, Singh, and Iaci (2002); and Singh et al. (2006).  It 

should be pointed out that a typical simulation study does not (cannot) cover all real world data sets of 

various sizes and skewness from all distributions. When deemed necessary, the user may want to consult 

a statistician to select an appropriate upper limit to estimate the EPC term and other environmental 

parameters of interest.  For an analyte (data set) with skewness (sd of logged data) near the end points of 

the skewness intervals presented in decision tables of Chapter 2 (e.g., Tables 2-9 through 2-11), the user 
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may select the most appropriate UCL based upon the site conceptual site model (CSM), expert site 

knowledge, toxicity of the analyte, and exposure risks associated with that analyte.   

 

The inclusion of outliers in the computation of the various decision statistics tends to yield inflated values 

of those decision statistics, which can lead to poor decisions. Often statistics that are computed for a data 

set which includes a few outliers tend to be inflated and represent those outliers rather than representing 

the main dominant population of interest (e.g., reference area).  Identification of outliers, observations 

coming from population(s) other than the main dominant population is suggested, before computing the 

decision statistics needed to address project objectives. The project team may want to perform the 

statistical evaluations twice, once with outliers and once without outliers. This exercise will help the 

project team in computing reliable and defensible decision statistics which are needed to make cleanup 

and remediation decisions at polluted sites.  

 

The initial development during 1999-2000 and all subsequent upgrades and enhancements of the ProUCL 

software have been funded by U.S. EPA through its Office of Research and Development (ORD).  
Initially ProUCL was developed as a research tool for U.S. EPA scientists and researchers of the 

Technical Support Center (TSC) and ORD- National Exposure Research Laboratory (NERL), Las Vegas. 

Background evaluations, groundwater (GW) monitoring, exposure and risk management and cleanup 

decisions in support of the Comprehensive Environmental Recovery, Compensation, and Liability Act 

(CERCLA) and RCRA site projects of the U.S. EPA are often derived based upon test statistics such as 

the Shapiro-Wilk (S-W) test, t-test, Wilcoxon-Mann-Whitney (WMW) test, analysis of variance 

(ANOVA), and Mann-Kendall (MK) test and decision statistics including UCLs of the mean, UPLs, and 

UTLs. To address the statistical needs of the environmental projects of the USEPA, over the years 

ProUCL software has been upgraded and enhanced to include many graphical tools and statistical 

methods described in many EPA guidance documents including: EPA 1989a, 1989b, 1991, 1992a, 1992b, 

2000 Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), 2002a, 2002b, 2002c, 

2006a, 2006b, and 2009. Several statistically rigorous methods (e.g., for data sets with nondetects [NDs]) 

not easily available in the existing guidance documents and in the environmental literature are also 

available in ProUCL 5.0/ProUCL 5.1. 

ProUCL 5.1/ProUCL 5.0 has graphical, estimation, and hypotheses testing methods for uncensored-full 

data sets and for left-censored data sets including ND observations with multiple detection limits (DLs) or 

reporting limits (RLs). In addition to computing general statistics, ProUCL 5.1 has goodness-of-fit (GOF) 

tests for normal, lognormal and gamma distributions, and parametric and nonparametric methods 

including bootstrap methods for skewed data sets for computation of decision making statistics such as 

UCLs of the mean (EPA 2002a), percentiles, UPLs for a pre-specified number of future observations 

(e.g., k with k=1, 2, 3,...), UPLs for mean of future k (≥1) observations, and UTLs (e.g., EPA 1992b, 

2002b, and 2009). Many positively skewed environmental data sets can be modeled by a lognormal as 

well as a gamma model. It is well-known that for moderately skewed to highly skewed data sets, the use 

of a lognormal distribution tends to yield inflated and unrealistically large values of the decision statistics 

especially when the sample size is small (e.g., <20-30).  For gamma distributed skewed uncensored and 

left-censored data sets, ProUCL software computes decision statistics including UCLs, percentiles, UPLs 

for future k (≥1) observations, UTLs, and upper simultaneous limits (USLs).    

For data sets with NDs, ProUCL has several estimation methods including the Kaplan-Meier (KM) 

method, regression on order statistics (ROS) methods and substitution methods (e.g., replacing NDs by 

DL, DL/2).  ProUCL 5.1 can be used to compute upper limits which adjust for data skewness; 

specifically, for skewed data sets, ProUCL computes upper limits using KM estimates in gamma 

(lognormal) UCL and UTL equations provided the detected observations in the left-censored data set 

follow a gamma (lognormal) distribution. Some poor performing commonly used and cited methods such 
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as the DL/2 substitution method and H-statistic based UCL computation method have been retained in 

ProUCL 5.1 for historical reasons, and research and comparison purposes. 

The Sample Sizes module of ProUCL can be used to develop data quality objectives (DQOs) based 

sampling designs and to perform power evaluations needed to address statistical issues associated with a 

variety of site projects. ProUCL provides user-friendly options to enter the desired values for the decision 

parameters such as Type I and Type II error rates, and other DQOs used to determine the minimum 

sample sizes needed to address project objectives. The Sample Sizes module can compute DQO-based 

minimum sample sizes needed: to estimate the population mean; to perform single and two-sample 

hypotheses testing approaches; and in acceptance sampling to accept or reject a batch of discrete items 

such as a lot of drums containing hazardous waste. Both parametric (e.g., t-test) and nonparametric (e.g., 

Sign test, WMW test, test for proportions) sample size determination methods are available in ProUCL.  

ProUCL has exploratory graphical methods for both uncensored data sets and for left-censored data sets 

consisting of ND observations. Graphical methods in ProUCL include histograms, multiple quantile-

quantile (Q-Q) plots, and side-by-side box plots. The use of graphical displays provides additional insight 

about the information contained in a data set that may not otherwise be revealed by the use of estimates 

(e.g., 95% upper limits) and test statistics (e.g., two-sample t-test, WMW test).  In addition to providing 

information about the data distributions (e.g., normal or gamma), Q-Q plots are also useful in identifying 

outliers and the presence of mixture populations (e.g., data from several populations) potentially present 

in a data set. Side-by-side box plots and multiple Q-Q plots are useful to visually compare two or more 

data sets, such as: site-versus-background concentrations, surface-versus-subsurface concentrations, and 

constituent concentrations of several GW monitoring wells (MWs). ProUCL also has a couple of classical 

outlier test procedures, such as the Dixon test and the Rosner test which can be used on uncensored data 

sets as well as on left-censored data sets containing ND observations. 

ProUCL has parametric and nonparametric single-sample and two-sample hypotheses testing approaches 

for uncensored as well as left-censored data sets.  Single-sample hypotheses tests: Student’s t-test, Sign 

test, Wilcoxon Signed Rank test, and the Proportion test are used to compare site mean/median 

concentrations (or some other threshold such as an upper percentile) with some average cleanup standard, 

Cs (or a not-to-exceed compliance limit, A0) to verify the attainment of cleanup levels (EPA 1989a; 

MARSSIM/EPA 2000; EPA 2006a) at remediated site areas of concern.  Single-sample tests such as the 

Sign test and Proportion test, and upper limits including UTLs and UPLs are also used to perform intra-

well comparisons. Several two-sample hypotheses tests as described in EPA guidance documents (e.g., 

2002b, 2006b, 2009) are also available in the ProUCL software. The two-sample hypotheses testing 

approaches in ProUCL include: Student’s t-test, WMW test, Gehan test and Tarone-Ware (T-W) test. The 

two-sample tests are used to compare concentrations of two populations such as site versus background, 

surface versus subsurface soils, and upgradient versus downgradient wells.  

The Oneway ANOVA module in ProUCL has both classical and nonparametric Kruskal-Wallis (K-W) 

tests. Oneway ANOVA is used to compare means (or medians) of multiple groups such as comparing 

mean concentrations of areas of concern and to perform inter-well comparisons.  In GW monitoring 

applications, the ordinary least squares (OLS) regression model, trend tests, and time series plots are used 

to identify upwards or downwards trends potentially present in constituent concentrations identified in 

wells over a certain period of time. The Trend Analysis module performs the M-K trend test and Theil-

Sen (T-S) trend test on data sets with missing values; and generates trend graphs displaying a parametric 

OLS regression line and nonparametric T-S trend line. The Time Series Plots option can be used to 

compare multiple time-series data sets.  

 

The use of the incremental sampling methodology (ISM) has been recommended by the Interstate 

Technology and Regulatory Council (ITRC 2012) for collecting ISM soil samples to compute mean 
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concentrations of the decision units (DUs) and sampling units (SUs) requiring characterization and 

remediation activities.  At many polluted sites, a large amount of discrete onsite and/or offsite background 

data are already available which cannot be directly compared with newly collected ISM data. In order to 

provide a tool to compare the existing discrete background data with actual field onsite or background 

ISM data, a Monte Carlo Background Incremental Sample Simulator (BISS) module was incorporated in 

ProUCL 5.0 and retained in ProUCL 5.1 (currently blocked from general use) which may be used on a 

large existing discrete background data set. The BISS module simulates incremental sampling 

methodology based equivalent background incremental samples. The availability of a large discrete 

background data set collected from areas with geological conditions comparable to the DU(s) of interest 

is a pre-requisite for successful application of this module. For now, the BISS module has been blocked 

for use as this module is awaiting adequate guidance and instructions for its intended use on discrete 

background data sets.   

 

ProUCL software is a user-friendly freeware package providing statistical and graphical tools needed to 

address statistical issues described in many U.S. EPA guidance documents. ProUCL 5.0/ProUCL 5.1 can 

process many constituents (variables) simultaneously to: perform statistical tests (e.g., ANOVA and trend 

test statistics) and compute decision statistics including UCLs of mean, UPLs, and UTLs – a capability 

not available in several commercial software packages such as Minitab 16 and NADA for R (Helsel 

2013). ProUCL also has the capability of processing data by group variables. Significant efforts have 

been made to make the software as user friendly as possible. For example, on the various GOF graphical 

displays, output sheets for GOF tests, OLS and ANOVA, in addition to critical values and/or p-values, the 

conclusion derived based upon those values is also displayed.  ProUCL is easy to use and does not require 

any programming skills as needed when using commercial software packages and programs written in R.  

 

Methods incorporated in ProUCL have been tested and verified extensively by the developers, 

researchers, scientists, and users.  The results obtained by ProUCL are in agreement with the results 

obtained by using other software packages including Minitab, SAS®, and programs written in R Script. 

ProUCL 5.0/ProUCL 5.1 computes decision statistics (e.g., UPL, UTL) based upon the KM method in a 

straight forward manner without flipping the data and re-flipping the computed statistics for left-censored 

data sets; these operations are not easy for a typical user to understand and perform. This can become 

unnecessarily tedious when computing decision statistics for multiple variables/analytes. Moreover, 

unlike survival analysis, it is important to compute an accurate estimate of the sd which is needed to 

compute decision making statistics including UPLs and UTLs. For left-censored data sets, ProUCL 

computes a KM estimate of sd directly. These issues are elaborated by examples discussed in this User 

Guide and in the accompanying ProUCL 5.1 Technical Guide. 

ProUCL does not represent a policy software of the government. ProUCL has been developed on limited 

resources, and it does provide many statistical methods often used in environmental applications. The 

objective of  the freely available user-friendly software, ProUCL is to provide statistical and graphical 

tools to address environmental issues of environmental site projects for all users including those users  

who cannot or may not want to program and/or do not have access to commercial software packages. 

Some users have criticized ProUCL and pointed out some deficiencies such as: it does not have 

geostatistical methods; it does not perform simulations; and does not offer programming interface for 

automation. Due to the limited scope of ProUCL, advanced methods have not been incorporated in 

ProUCL. For methods not available in ProUCL, users can use other statistical software packages such as 

SAS® (available to EPA personnel) and R script to address their computational needs. Contributions from 

scientists and researchers to enhance methods incorporated in ProUCL will be very much appreciated. 

Just like other government documents (e.g., U.S. EPA 2009), various versions of ProUCL (2007, 2009, 

2011, 2013, 2016) also make some rule-of thumb type suggestions (e.g., minimum sample size 

requirement of 8-10) based upon professional judgment and experience of the developers. It is 
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recommended that the users/project team/agencies make their own determinations about the rule-of-

thumb type suggestions made in ProUCL before applying a statistical method. 
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ACRONYMS and ABBREVIATIONS  

 
ACL Alternative compliance or concentration limit 

A-D, AD Anderson-Darling test 

AL Action limit 

AOC Area(s) of concern 

ANOVA Analysis of variance 

A0 Not to exceed compliance limit or specified action level 

BC Box-Cox transformation 

BCA Bias-corrected accelerated bootstrap method  

BD Binomial distribution 

BISS Background Incremental Sample Simulator 

BTV Background threshold value 

CC, cc Confidence coefficient  

CERCLA Comprehensive Environmental Recovery, Compensation, and Liability Act 

CL Compliance limit 

CLT Central Limit Theorem  

COPC Contaminant/constituent of potential concern  

Cs Cleanup standards 

CSM Conceptual site model 

Df Degrees of freedom 

DL Detection limit  

DL/2 (t) UCL based upon DL/2 method using Student’s t-distribution cutoff value 

DL/2 Estimates Estimates based upon data set with NDs replaced by 1/2 of the respective detection 

limits 

DOE Department of Energy 

DQOs Data quality objectives  

DU Decision unit 

EA Exposure area 

EDF Empirical distribution function  

EM Expectation maximization  

EPA United States Environmental Protection Agency  

EPC Exposure point concentration  
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GA Georgia 

GB Gigabyte 

GHz Gigahertz 

GROS Gamma ROS 

GOF, G.O.F. Goodness-of-fit 

GUI Graphical user interface 

GW Groundwater 

HA Alternative hypothesis 

H0 Null hypothesis 

H-UCL UCL based upon Land’s H-statistic 

i.i.d. Independently and identically distributed 

ISM Incremental sampling methodology 

ITRC Interstate Technology & Regulatory Council 

k, K Positive integer representing future or next k observations  

K Shape parameter of a gamma distribution  

K, k Number of nondetects in a data set 

k hat MLE of the shape parameter of a gamma distribution 

k star Biased corrected MLE of the shape parameter of a gamma distribution 

KM (%) UCL based upon Kaplan-Meier estimates using the percentile bootstrap method 

KM (Chebyshev) UCL based upon Kaplan-Meier estimates using the Chebyshev inequality 

KM (t) UCL based upon Kaplan-Meier estimates using the Student’s t-distribution critical  

value 

KM (z) UCL based upon Kaplan-Meier estimates using critical value of a standard normal 

distribution  

K-M, KM Kaplan-Meier 

K-S, KS  Kolmogorov-Smirnov  

K-W Kruskal Wallis 

LCL Lower confidence limit  

LN, ln Lognormal distribution 

LCL Lower confidence limit of mean 

LPL Lower prediction limit 

LROS LogROS; robust ROS 

LTL Lower tolerance limit 



xiv 

LSL Lower simultaneous limit 

M,m Applied to incremental sampling:  number in increments in an ISM sample 

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual 

MCL Maximum concentration limit, maximum compliance limit 

MDD Minimum detectable difference  

MDL Method detection limit 

MK, M-K Mann-Kendall 

ML Maximum likelihood  

MLE Maximum likelihood estimate 

N Number of observations/measurements in a sample 

N Number of observations/measurements in a population 

MVUE Minimum variance unbiased estimate  

MW Monitoring well 

NARPM National Association of Remedial Project Managers 

ND, nd, Nd Nondetect  

NERL National Exposure Research Laboratory 

NRC Nuclear Regulatory Commission 

OKG Orthogonalized Kettenring Gnanadesikan  

OLS Ordinary least squares  

ORD Office of Research and Development 

OSRTI Office of Superfund Remediation and Technology Innovation 

OU Operating unit 

PCA Principal component analysis 

PDF, pdf Probability density function  

.pdf Files in Portable Document Format 

PRG Preliminary remediation goals 

PROP Proposed influence function 

p-values Probability-values 

QA Quality assurance 

QC Quality  

Q-Q Quantile-quantile  

R,r Applied to incremental sampling: number of replicates of ISM samples 



xv 

RAGS Risk Assessment Guidance for Superfund 

RCRA Resource Conservation and Recovery Act 

RL Reporting limit 

RMLE Restricted maximum likelihood estimate 

ROS Regression on order statistics  

RPM Remedial Project Manager 

RSD Relative standard deviation 

RV Random variable 

S Substantial difference  

SCMTSC Site Characterization and Monitoring Technical Support Center 

SD, Sd, sd Standard deviation 

SND Standard Normal Distribution 

SNV Standard Normal Variate 

SE Standard error  

SSL Soil screening levels 

SQL Sample quantitation limit 

SU Sampling unit 

S-W, SW Shapiro-Wilk  

T-S Theil-Sen 

TSC Technical Support Center 

TW, T-W Tarone-Ware 

UCL Upper confidence limit 

UCL95 95% upper confidence limit 

UPL Upper prediction limit 

UPL95 95% upper prediction limit 

U.S. EPA, EPA  United States Environmental Protection Agency  

UTL Upper tolerance limit 

UTL95-95 95% upper tolerance limit with 95% coverage 

USGS U.S. Geological Survey 

USL Upper simultaneous limit 

vs. Versus 

WMW Wilcoxon-Mann-Whitney 
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WRS Wilcoxon Rank Sum  

WSR Wilcoxon Signed Rank 

Xp pth  percentile of a distribution 

< Less than 

> Greater than 

≥ Greater than or equal to 

≤ Less than or equal to 

Δ Greek letter denoting the width of the gray region associated with hypothesis testing 

Σ Greek letter representing the summation of several mathematical quantities, numbers 

% Percent 

α Type I error rate 

β Type II error rate 

Ө Scale parameter of the gamma distribution 

Σ Standard deviation of the log-transformed data 

^ carat sign over a parameter, indicates that it represents a statistic/estimate computed 

using the sampled data 
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GLOSSARY 
 

Anderson-Darling (A-D) test: The Anderson-Darling test assesses whether known data come from a 

specified distribution. In ProUCL the A-D test is used to test the null hypothesis that a sample data set, x1, 

..., xn came from a gamma distributed population. 

 

Background Measurements:  Measurements that are not site-related or impacted by site activities. 

Background sources can be naturally occurring or anthropogenic (man-made).  

 

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur 

during sampling design, the sampling process, or laboratory analysis). 

 

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of 

accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any 

statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small 

data sets or where sample distributions are non-normal. 

 

Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean, μ, 

and variance, σ2, the sampling distribution of the mean approaches a normal distribution with a mean (μ) 

and a variance σ2/N as N, the sample size, increases. 

 

Censored Data Sets: Data sets that contain one or more observations which are nondetects.  

 

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to 

the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. It is also 

known as the relative standard deviation (RSD). 

 

Confidence Coefficient (CC): The confidence coefficient (a number in the closed interval [0, 1]) 

associated with a confidence interval for a population parameter is the probability that the random interval 

constructed from a random sample (data set) contains the true value of the parameter. The confidence 

coefficient is related to the significance level of an associated hypothesis test by the equality: level of 

significance = 1 – confidence coefficient. 

 

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random 

interval within which the unknown population parameter, such as the mean, or a future observation, x0, 

falls. 

 

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper 

confidence limit (UCL) is given by the upper bound of the associated confidence interval. 

 

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit 

(UCL) of the population mean represents the confidence coefficient associated with the UCL. 

 

Critical Value: The critical value for a hypothesis test is a threshold to which the value of the test 

statistic is compared to determine whether or not the null hypothesis is rejected. The critical value for any 

hypothesis test depends on the sample size, the significance level, α at which the test is carried out, and 

whether the test is one-sided or two-sided. 
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Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO 

process that clarify study technical and quality objectives, define the appropriate type of data, and specify 

tolerable levels of potential decision errors that will be used as the basis for establishing the quality and 

quantity of data needed to support decisions. 

 

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not 

contain a specific analyte from samples that contain low concentrations of the analyte. It is the lowest 

concentration or amount of the target analyte that can be determined to be different from zero by a single 

measurement at a stated level of probability. Detection limits are analyte and matrix-specific and may be 

laboratory-dependent. 

 

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative 

probability distribution function that concentrates probability 1/n at each of the n numbers in a sample. 

 

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate) 

the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of 

the unknown population mean. 

 

Expectation Maximization (EM): The EM algorithm is used to approximate a probability density 

function (PDF). EM is typically used to compute maximum likelihood estimates given incomplete 

samples. 

 

Exposure Point Concentration (EPC): The constituent concentration within an exposure unit to which 

the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure 

assessment. 

 

Extreme Values: Values that are well-separated from the majority of the data set coming from the 

far/extreme tails of the data distribution. 

 

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set 

wholly or partly derived from a model of the data. 

 

Gray Region: A range of values of the population parameter of interest (such as mean constituent 

concentration) within which the consequences of making a decision error are relatively minor. The gray 

region is bounded on one side by the action level. The width of the gray region is denoted by the Greek 

letter delta, Δ, in this guidance. 

 

H-Statistic: Land's statistic used to compute UCL of mean of a lognormal population 

 

H-UCL: UCL based on Land’s H-Statistic. 

 

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or 

rejected by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis, 

(H0), representing a testable presumption (often set up to be rejected based upon the sampled data), and an 

alternative hypothesis (HA), representing the logical opposite of the null hypothesis. 

 

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a 

parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to 

the usual estimate based on N observations, N estimates each based on N-1 observations. 
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Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a data set comes 

from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical 

distribution function (EDF). ProUCL uses the KS test to test the null hypothesis if a data set follows a 

gamma distribution. 

 

Left-censored Data Set: An observation is left-censored when it is below a certain value (detection limit) 

but it is unknown by how much; left-censored observations are also called nondetect (ND) observations. 

A data set consisting of left-censored observations is called a left-censored data set. In environmental 

applications trace concentrations of chemicals may indeed be present in an environmental sample (e.g., 

groundwater, soil, sediment) but cannot be detected and are reported as less than the detection limit of the 

analytical instrument or laboratory method used.  

 

Level of Significance (α): The error probability (also known as false positive error rate) tolerated of 

falsely rejecting the null hypothesis and accepting the alternative hypothesis. 

 

Lilliefors test: A goodness-of-fit test that tests for normality of large data sets when population mean and 

variance are unknown. 

 

Maximum Likelihood Estimates (MLE): MLE is a popular statistical method used to make inferences 

about parameters of the underlying probability distribution of a given data set. 

 

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a 

measure of central tendency. 

 

Median: The middle value for an ordered set of n values. It is represented by the central value when n is 

odd or by the average of the two most central values when n is even. The median is the 50th percentile. 

 

Minimum Detectable Difference (MDD): The MDD is the smallest difference in means that the 

statistical test can resolve. The MDD depends on sample-to-sample variability, the number of samples, 

and the power of the statistical test. 

 

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or 

MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the 

parameters. If an estimator is unbiased, then its mean squared error is equal to its variance. 

 

Nondetect (ND) values: Censored data values. Typically, in environmental applications, concentrations 

or measurements that are less than the analytical/instrument method detection limit or reporting limit. 

 

Nonparametric: A term describing statistical methods that do not assume a particular population 

probability distribution, and are therefore valid for data from any population with any probability 

distribution, which can remain unknown. 

 

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature. 

This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the 

population mean. For example, for normally distributed data sets, the UCL of the population mean based 

upon Student’s t distribution is optimum. 
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Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that 

are not representative of the population from which they were drawn. The presence of outliers distorts 

most statistics if used in any calculations. 

 

Probability - Values (p-value): In statistical hypothesis testing, the p-value associated with  an observed 

value,  tobserved of some random variable T used as a test statistic is the probability that, given that the null 

hypothesis is true, T will assume a value as or more unfavorable to the null hypothesis as the observed 

value tobserved. The null hypothesis is rejected for all levels of significance, α greater than or equal to the p-

value. 

 

Parameter: A parameter is an unknown or known constant associated with the distribution used to model 

the population. 

 

Parametric: A term describing statistical methods that assume a probability distribution such as a 

normal, lognormal, or a gamma distribution. 

 

Population: The total collection of N objects, media, or people to be studied and from which a sample is 

to be drawn. It is the totality of items or units under consideration. 

 

Prediction Interval: The interval (based upon historical data, background data) within which a newly 

and independently obtained (often labeled as a future observation) site observation (e.g., onsite, 

compliance well) of the predicted variable (e.g., lead) falls with a given probability (or confidence 

coefficient). 

 

Probability of Type II (2) Error (β): The probability, referred to as β (beta), that the null hypothesis will 

not be rejected when in fact it is false (false negative). 

 

Probability of Type I (1) Error = Level of Significance (α): The probability, referred to as α (alpha), 

that the null hypothesis will be rejected when in fact it is true (false positive).  

 

pth Percentile or pth Quantile: The specific value, Xp of a distribution that partitions a data set of 

measurements in such a way that the p percent (a number between 0 and 100) of the measurements fall at 

or below this value, and (100-p) percent of the measurements exceed this value, Xp. 

 

Quality Assurance (QA): An integrated system of management activities involving planning, 

implementation, assessment, reporting, and quality improvement to ensure that a process, item, or service 

is of the type and quality needed and expected by the client. 

 

Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary 

QA, quality control (QC), and other technical activities that must be implemented to ensure that the 

results of the work performed will satisfy the stated performance criteria. 

 

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the 

highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to 

plot the percentiles/quantiles of the distribution.  

 

Range: The numerical difference between the minimum and maximum of a set of values. 
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Regression on Order Statistics (ROS): A regression line is fit to the normal scores of the order statistics 

for the uncensored observations and is used to fill in values imputed from the straight line for the 

observations below the detection limit. 

 

Resampling: The repeated process of obtaining representative samples and/or measurements of a 

population of interest. 

 

Reliable UCL: see Stable UCL. 

 

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good 

performance (that is not unduly affected by outliers and underlying assumptions) for a wide variety of 

data distributions. 

 

Resistant Estimate:  A test/estimate which is not affected by outliers is called a resistant test/estimate 

 

Sample: Represents a random sample (data set) obtained from the population of interest (e.g., a site area, 

a reference area, or a monitoring well). The sample is supposed to be a representative sample of the 

population under study. The sample is used to draw inferences about the population parameter(s). 

 

Shapiro-Wilk (SW) test: Shapiro-Wilk test is a goodness-of-fit test that tests the null hypothesis that a 

sample data set, x1, ..., xn came from a normally distributed population. 

 

Skewness: A measure of asymmetry of the distribution of the parameter under study (e.g., lead 

concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The 

greater the standard deviation, the greater is the skewness. 

 

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merit 

(e.g., a realistic value which can occur at a site), which also has some physical meaning. That is, a stable 

UCL represents a realistic number (e.g., constituent concentration) that can occur in practice. Also, a 

stable UCL provides the specified (at least approximately, as much as possible, as close as possible to the 

specified value) coverage (e.g., ~0.95) to the population mean. 

 

Standard Deviation (sd, sd, SD): A measure of variation (or spread) from an average value of the 

sample data values. 

 

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard 

error in relation to the size of the estimate, the less reliable is the estimate. Standard errors are needed to 

construct confidence intervals for the parameters of interests such as the population mean and population 

percentiles.  

 

Substitution Method: The substitution method is a method for handling NDs in a data set, where the ND 

is replaced by a defined value such as 0, DL/2 or DL prior to statistical calculations or graphical analyses. 

This method has been included in ProUCL 5.1 for historical comparative purposes but is not 

recommended for use. The bias introduced by applying the substitution method cannot be quantified 

with any certainty. ProUCL 5.1 will provide a warning when this option is chosen. 

 

Uncensored Data Set: A data set without any censored (nondetects) observations.  
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Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable, 

unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of a population mean. It 

represents an impractically large value that cannot be achieved in practice. For example, the use of Land’s 

H-statistic often results in an impractically large inflated UCL value. Some other UCLs, such as the 

bootstrap-t UCL and Hall’s UCL, can be inflated by outliers resulting in an impractically large and 

unstable value. All such impractically large UCL values are called unstable, unrealistic, unreliable, or 

inflated UCLs. 

 

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter 

of interest such as the population mean. 

 

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently 

obtained observation (or an independent future observation). 

 

Upper Tolerance Limit (UTL): A confidence limit on a percentile of the population rather than a 

confidence limit on the mean. For example, a 95% one-sided UTL for 95% coverage represents the value 

below which 95% of the population values are expected to fall with 95 % confidence. In other words, a 

95% UTL with coverage coefficient 95% represents a 95% UCL for the 95th percentile. 

 

Upper Simultaneous Limit (USL): The upper boundary of the largest value. 

 

xBar: arithmetic average of computed using the sampled data values 
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INTRODUCTION 
 

OVERVIEW OF ProUCL VERSION 5.1 SOFTWARE 
 

The main objective of the ProUCL software funded by the U.S.EPA is to compute rigorous decision 

statistics to help the decision makers in making reliable decisions which are cost-effective, and protective 

of human health and the environment. The development of ProUCL software is based upon the 

philosophy that rigorous statistical methods can be used to compute representative estimates of population 

parameters (e.g., site mean, background percentiles) and accurate decision making statistics (including the 

upper confidence limit [UCL] of the mean, upper tolerance limit [UTL], and upper prediction limit 

[UPL]) which will assist decision makers and project teams in making sound decisions. The use and 

applicability of a statistical method (e.g., student's t-UCL, Central Limit Theorem (CLT)-UCL, adjusted 

gamma-UCL, Chebyshev UCL, bootstrap-t UCL) depend upon data size, data variability, data skewness, 

and data distribution. ProUCL computes decision statistics using several parametric and nonparametric 

methods covering a wide-range of data variability, skewness, and sample size. A couple of text book 

methods described in most of the statistical text books (e.g., Hogg and Craig, 1995) based upon the 

Student's t-statistic and the CLT alone cannot address all scenarios and situations commonly occurring in 

environmental studies. It is incorrect to assume that Student's t-statistic and/or CLT based UCLs of mean 

will provide the desired coverage (e.g., 0.95) to the population mean irrespective of the skewness of the 

data set/population under consideration. These issues have been discussed in detail in Chapters 2 and 4 of 

this Technical Guide. Several examples have been discussed throughout this guidance document and also 

in the accompanying ProUCL 5.1 User Guide to elaborate on these issues. 

 

The use of a parametric lognormal distribution on a lognormally distributed data set tends to yield 

unstable impractically large UCL values, especially when the standard deviation of the log-transformed 

data is greater than 1.0 and the data set is of small size such as less than 30-50 (Hardin and Gilbert 1993; 

Singh, Singh, and Engelhardt 1997). Many environmental data sets can be modeled by a gamma as well 

as a lognormal distribution. Generally, the use of a gamma distribution on gamma distributed data sets 

yields UCL values of practical merit (Singh, Singh, and Iaci 2002). Therefore, the use of gamma 

distribution based decision statistics such as UCLs, UPL, and UTLs cannot be dismissed just because it is 

easier to use a lognormal model to compute these upper limits. The two distributions do not behave in a 

similar manner. The advantages of computing the gamma distribution-based decision statistics are 

discussed in Chapters 2 through 5 of this guidance document. 

 

Since many environmental decisions are made based upon a 95% UCL of the population mean, it is 

important to compute reliable UCLs and other decision making statistics of practical merit.  In an effort to 

compute stable UCLs of the population mean and other decision making statistics, in addition to 

computing the Student's t statistic and the CLT based statistics (e.g., UCLs, UPLs), significant effort has 

been made to incorporate rigorous statistical methods for computing UCLs (and other limits) in the 

ProUCL software, covering a wide-range of data skewness and sample sizes (e.g., Singh, Singh, and 

Engelhardt, 1997; Singh, Singh, and Iaci, 2002; and Singh, Singh, 2003). It is anticipated that the 

availability of the statistical methods in the ProUCL software, which can be applied to a wide range of 

environmental data sets, will help decision makers in making more informative, practical and sound 

decisions. 
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It is noted that even for skewed data sets, practitioners tend to use the CLT or Student's t-statistic based 

UCLs of mean for “large” sample sizes of 25-30 (rule-of-thumb to use CLT). However, this rule-of-

thumb does not apply for moderately to highly skewed data sets, specifically when σ (standard deviation 

of the log-transformed data) starts exceeding 1. The large sample size requirement associated with the use 

of the CLT depends upon the skewness of the data distribution under consideration. The large sample 

requirement associated with CLT for the sample mean to follow an approximate normal distribution 

increases with the data skewness; and for highly skewed data sets, even samples of size greater than 

(>)100 may not be large enough for the sample mean to follow an approximate normal distribution.  For 

moderately skewed to highly skewed environmental data sets, as expected, UCLs based on the CLT and 

the Student's t-statistic fail to provide the desired coverage of the population mean even when the sample 

sizes are as large as 100 or more. These facts have been verified in the published simulation experiments 

conducted on positively skewed data sets (e.g., Singh, Singh, and Engelhardt, 1997; Singh, Singh, and 

Iaci, 2002); some graphs showing the simulation results are provided in Appendix B. 

 

The initial development and all subsequent upgrades and enhancements of the ProUCL software have 

been funded by the U.S. EPA through its Office of Research and Development (ORD).  Initially ProUCL 

was developed as a research tool for scientists and researchers of the Technical Support Center and ORD-

NERL, Las Vegas. During 1999-2001, the initial intent and objectives of developing the ProUCL 

software (Version 1.0 and Version 2.0) were to provide a statistical research tool for EPA scientists which 

can be used to compute theoretically sound 95% upper confidence limits (UCL95s) of the mean routinely 

used in exposure assessment, risk management and cleanup decisions made at various CERCLA and 

RCRA sites (EPA 1992a, 2002a). During 2002, the peer-reviewed ProUCL version 2.1 (with Chebyshev 

inequality based UCLs) was released for public use. Several researchers have developed rigorous 

parametric and nonparametric statistical methods (e.g., Johnson 1978; Grice and Bain 1980; Efron [1981, 

1982]; Efron and Tibshirani 1993; Hall [1988, 1992]; Sutton 1993; Chen 1995; Singh, Singh, and 

Engelhardt 1997; Singh, Singh, and Iaci 2002] to compute upper limits (e.g., UCLs) which adjust for data 

skewness. Since Student's t-UCL, CLT-UCL, and percentile bootstrap UCL fail to provide the desired 

coverage to the population mean of skewed distributions, several parametric (e.g., gamma distribution 

based) and nonparametric (e.g., bias-corrected accelerated [BCA] bootstrap and bootstrap-t, Chebyshev 

UCL) UCL computation methods which adjust for data skewness were incorporated in ProUCL versions 

3.0 and 3.00.02 during 2003-2004. ProUCL version 3.00.02 also had graphical Q-Q plots and GOF tests 

for normal, lognormal, and gamma distributions; capabilities to statistically analyze multiple variables 

simultaneously were also incorporated in ProUCL 3.00.02 (EPA 2004).   

 

It is important to compute decision statistics (e.g., UCLs, UTLs) which are cost-effective and protective 

of human health and the environment (balancing between Type I and Type II errors), therefore, one 

cannot dismiss the use of the better [better than t-UCL, CLT-UCL, ROS and KM percentile bootstrap 

UCL, KM-UCL (t)] performing UCL computation methods including gamma UCLs and the various 

bootstrap UCLs which adjust for data skewness. During 2004-2007, ProUCL was upgraded to versions 

4.00.02, and 4.00.04. These upgrades included exploratory graphical (e.g., Q-Q plots, box plots) and 

statistical (e.g., maximum likelihood estimation [MLE], KM, and ROS) methods for left-censored data 

sets consisting of nondetect (NDs) observations with multiple DLs or RLs. For uncensored and left-

censored data sets, these upgrades provide statistical methods to compute upper limits: percentiles, UPLs 

and UTLs needed to estimate site-specific background level constituent concentrations or background 

threshold values (BTVs). To address statistical needs of background evaluation projects (e.g., 

MARSSIM/EPA 2000, EPA 2002b), several single-sample and two-sample hypotheses testing 

approaches were also included in these ProUCL upgrades.  
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During 2008-2010, ProUCL was upgraded to ProUCL 4.00.05. The upgraded ProUCL was enhanced by 

including methods to compute gamma distribution based UPLs and UTLs (Krishnamoorthy, Mathew, and 

Mukherjee 2008). The Sample Size module to compute DQOs-based minimum sample sizes, needed to 

address statistical issues associated with environmental projects (e.g., EPA 2000, 2002c, 2006a, 2006b), 

was also incorporated in ProUCL 4.00.05.  

 

During 2009-2011, ProUCL 4.00.05 was upgraded to ProUCL 4.1 and 4.1.01. ProUCL 4.1 (2010) and 

4.1.01 (2011) retain all capabilities of the previous versions of ProUCL software. Two new modules: 

Oneway ANOVA and Trend Analysis were included in ProUCL 4.1. The Oneway ANOVA module has 

both parametric and nonparametric ANOVA tests to perform inter-well comparisons. The Trend 

Analysis module can be used to determine potential upward or downward trends present in constituent 

concentrations identified in GW monitoring wells (MWs).  The Trend Analysis module can compute 

Mann-Kendall (MK) and Theil-Sen (T-S) trend statistics to determine upward or downward trends 

potentially present in analyte concentrations.  ProUCL 4.1 also has the OLS Regression module. In 

ProUCL 4.1, some modifications were made in decision tables which are used to make suggestions 

regarding the use of UCL95 for estimating EPCs. Specifically, based upon experience, developers of 

ProUCL re-iterated that the use of a lognormal distribution for estimating EPCs and BTVs should be 

avoided, as the use of the lognormal distribution tends to yield unrealistic and unstable values of decision 

making statistics including UCLs, UPLs, and UTLs. This is especially true when the sample size is <20-

30 and the data set is moderately to highly skewed. During March 2011, webinars were presented 

describing the capabilities and use of the methods available in ProUCL 4.1, which can be downloaded 

from the EPA ProUCL website. 

 

ProUCL version 5.0.00 (EPA 2013, 2014) represents an upgrade of ProUCL 4.1.01 (EPA June 2011) 

which represents an upgrade of ProUCL 4.1.00 (EPA 2010). For uncensored and left-censored data sets, 

ProUCL 5.0.00 (ProUCL 5.0) contains all statistical and graphical methods that were available in the 

previous versions of the ProUCL software package except for some poor performing and restricted (e.g., 

can be used only when a single detection limit is present) estimation methods such as the MLE and 

winsorization methods for left-censored data sets. ProUCL has GOF tests for normal, lognormal, and 

gamma distributions for uncensored and left-censored data sets with NDs. ProUCL 5.0 has the extended 

version of the Shapiro-Wilk (S-W) test to perform normal and lognormal GOF tests for data sets of sizes 

up to 2000 (Royston [1982, 1982a]).  In addition to normal and lognormal distribution- based decision 

statistics, ProUCL software computes UCLs, UPLs, and UTLs based upon the gamma distribution.  

 

Several enhancements were made in the UCLs/EPCs and Upper Limits/BTVs modules of the ProUCL 

5.0 software. A new statistic, an upper simultaneous limit (USL) (Singh and Nocerino 2002; Wilks 1963) 

has been incorporated in the Upper Limits/BTVs module of ProUCL 5.0 for data sets consisting of NDs 

with multiple DLs. A two-sample hypothesis test, the Tarone-Ware (T-W; Tarone and Ware, 1978) test 

has also been incorporated in ProUCL 5.0. Nonparametric tolerance limits have been enhanced, and for 

specific values of confidence coefficients, coverage probability, and sample size, ProUCL 5.0 outputs the 

confidence coefficient (CC) actually achieved by a UTL. The Trend Analysis and OLS Regression 

modules can handle missing events when computing trend test statistics and generating trend graphs. 

Some new methods using KM estimates in gamma (and lognormal) distribution-based UCL, UPL, and 

UTL equations have been incorporated to compute the decision statistics for data sets consisting of 

nondetect observations. To facilitate the computation of UCLs from ISM based samples (ITRC 2012); the 

minimum sample size requirement has been lowered to 3, so that one can compute the UCL95 based upon 

ISM data sets of sizes ≥3.  
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All known bugs, typographical errors, and discrepancies found by the developers and users of the 

ProUCL software package were addressed in ProUCL version 5.0.00.  Specifically, a discrepancy found 

in the estimate of mean based upon the KM method was fixed in ProUCL 5.0. Some changes were made 

in the decision logic used in the Goodness of Fit and UCLs/EPCs modules. In practice, based upon a 

given data set, it is well known that the two statistical tests (e.g., T-S and OLS trend tests) can lead to 

different conclusions. To streamline the decision logic associated with the computation of the various 

UCLs, the decision tables in ProUCL 5.0 were updated.  Specifically, for each distribution if at least one 

of the two GOF tests (e.g., Shapiro-Wilk or Lilliefors test for normality) determines that the hypothesized 

distribution holds, then ProUCL concludes that the data set follows the hypothesized distribution, and 

decision statistics are computed accordingly. Additionally, for gamma distributed data sets, ProUCL 5.0 

suggests the use of the: adjusted gamma UCL for samples of sizes ≤ 50 (instead of 40 suggested in 

previous versions); and approximate gamma UCL for samples of sizes >50.  

 

Also, for samples of larger sizes (e.g., with n > 100) and small values of the gamma shape parameter, k 

(e.g., k ≤ 0.1), significant discrepancies were found in the critical values of the two gamma GOF test 

statistics (Anderson-Darling [A-D] and Kolmogorov Smirnov [K-S] tests) obtained using the two gamma 

deviate generation algorithms: Whitaker (1974) and Marsaglia and Tsang (2000). For values of k ≤ 0.2, 

the critical values of the two gamma GOF tests: A-D and K-S tests have been updated using the currently 

available more accurate gamma deviate generation algorithm due to Marsaglia and Tsang's (2000); more 

details about the implementation of their algorithm can be found in Kroese, Taimre, and Botev (2011). 

For values of the shape parameter, k=0.025, 0.05, 0.1, and 0.2, the critical value tables for these two tests 

were updated by incorporating the newly generated critical values for the three significance levels: 0.05, 

0.1, and 0.01. The updated tables are provided in Appendix A of the ProUCL 5.0/ProUCL 5.1 Technical 

Guide. It should be noted that for k=0.2, the older and the newly generated critical values are in general 

agreement; therefore, critical values for k=0.2 were not replaced in tables summarized in Appendix A. 

 

ProUCL 5.0 also has a new Background Incremental Sample Simulator (BISS) module (blocked for 

general public use) which can be used on a large existing discrete background data set to simulate 

background incremental samples. The availability of a large discrete data set collected from areas with 

geological formations and conditions comparable to the DUs (background or onsite) of interest is a 

requirement for successful application of this module. The simulated BISS data can be compared with the 

actual field ISM (ITRC 2012) data collected from the various DUs using other modules of ProUCL 5.0. 

The values of the BISS data are not directly available to users; however, the simulated BISS data can be 

accessed by the various modules of ProUCL 5.0 to perform desired statistical evaluations. For example, 

the simulated background BISS data can be merged with the actual field ISM data after comparing the 

two data sets using a two-sample t-test; the simulated BISS or the merged data can be used to compute a 

UCL of the mean or a UTL.  

 

Note: The ISM methodology used to develop the BISS module is a relatively new approach; methods 

incorporated in this BISS module requires further investigation. For now, the BISS module has been 

blocked for use in ProUCL 5.0/ProUCL 5.1 as this module is awaiting adequate guidance and instructions 

for its intended use on discrete background data sets.   

 

ProUCL 5.0 is a user-friendly freeware package providing statistical and graphical tools needed to 

address statistical issues described in several EPA guidance documents. Considerable effort was made to 

provide a detailed technical guide to help practitioners understand the statistical methods needed to 

address the statistical needs of their environmental projects. ProUCL generates detailed output sheets and 

graphical displays for each method which can be used to educate students learning environmental 

statistical methods. Like previous versions, ProUCL 5.0 can process many variables simultaneously to 
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compute various tests (e.g., ANOVA and trend test statistics) and decision statistics including UCL of the 

mean, UPLs, and UTLs, a capability not available in other software packages such as Minitab 16 and 

NADA for R (Helsel 2013).  Without the availability of this option, the user has to compute decision and 

test statistics for one variable at a time which becomes cumbersome when dealing with a large number of 

variables. ProUCL 5.0 also has the capability of processing data by groups. ProUCL 5.0 is easy to use; it 

does not require any programming skills as needed when using programs written in R Script.  

 

Deficiencies Identified in ProUCL 5.0: For ProUCL to be compatible with Microsoft Office 8 and 

provide Excel-compatible Spreadsheet functionality (e.g., ability to input/output *.xlsx files), ProUCL 5.0 

used FarPoint Spread 5 for .NET; and for graphics, ProUCL 5.0 used the development software package, 

ChartFx 7.  The look and feel of ProUCL 5.0 is quite different from its previous versions; all main menu 

options were re-arranged. However, the use of upgraded development softwares resulted in some 

problems. Specifically, it takes an unacceptably long time to save large ProUCL 5.0 generated output files 

using FarPoint Spread 5. Also the use of ChartFx 7 caused some problems in properly labeling axes for 

histograms. Additionally, some unhandled exceptions and crashes were noted by users. The unhandled 

exceptions were mainly noted for "bad" data sets including data sets not following ProUCL input format; 

data sets with not enough observations; and data sets with not enough detects.    

 

ProUCL 5.1: ProUCL 5.1 represents an upgrade of ProUCL 5.0 to address deficiencies identified in 

ProUCL 5.0.  ProUCL 5.1 retains all capabilities of ProUCL 5.0 as described above. All modules in 

ProUCL 5.1, and their look and feel is the same as in ProUCL 5.0. In this document, any statement made 

about the capabilities of ProUCL 5.0 also apply to ProUCL version 5.1; and to save time, not all screen 

shots used in ProUCL 5.0 manuals have been replaced in the ProUCL 5.1 User Guide and Technical 

Guide. Upgrades in ProUCL 5.1 (not available in earlier versions) have been labeled as New in ProUCL 

5.1 in this document.  

 

All known bugs, crashes, and unhandled exceptions (e.g., on bad data sets) found in ProUCL 5.0 have 

been addressed in ProUCL 5.1. In ProUCL 5.1, some enhancements have been made in the Trend 

Analysis option of the Statistical Test module of ProUCL 5.1. ProUCL 5.1 computes and outputs 

residuals for the non-parametric T-S trend line which may be helpful to compute a prediction band around 

the T-S trend line. In addition to generating Q-Q plots based upon detected observations, the Goodness of 

Fit Tests option of the Statistical Tests module of ProUCL 5.1 generates censored probability plots for 

data sets with NDs. Some changes have been made in the decision table used to make suggestions for 

UCL selection based upon a gamma distribution. New licensing agreements were obtained for the 

development softwares: FarPoint and ChartFx. Due to deficiencies present in the development software, 

ProUCL 5.1 generated large output files still take a long time to be saved. However, there is a quick work 

around to this problem, instead of saving the output sheet using ProUCL, one can copy the output 

spreadsheet and save the copied output sheet using Excel. This operation can be carried out instantly.  

 

Note about Histograms:  ChartFx 7.0 has some inherent deficiencies, as a result labeling of bins along the 

x-axis on a histogram is still not as desirable as one would like it to be. The x-axis display will start from 

zero instead of the proper lowest histogram value. Occurrences are rare but they can occur. Some tools 

have been added in ProUCL 5.1, and relevant statistics (e.g., start point, midpoint, and end point) of a 

histogram bar can be displayed by hovering the cursor on that bar.  

 

Software ProUCL version 5.1, its earlier versions: ProUCL version 3.00.02, 4.00.02, 4.00.04, 4.1.00, 

4.1.01 and ProUCL 5.0, associated Facts Sheet, User Guides and Technical Guides (e.g., EPA [2004, 

2007, 2009a, 2009b, 2010a, 2010b, 2013a, 2013b]) can be downloaded from the EPA website:  
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http://www.epa.gov/osp/hstl/tsc/software.htm 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm 

The Need for ProUCL Software 

EPA guidance documents (e.g., EPA [1989a, 1989b, 1992a, 1992b, 1994, 1996, 2000, 2002a, 2002b, 

2002c, 2006a, 2006b, 2009a, and 2009b]) describe statistical methods including: DQOs-based sample 

size determination procedures, methods to compute decision statistics: UCL95, UPL, and UTLs, 

parametric and nonparametric hypotheses testing approaches, Oneway ANOVA, OLS regression, and 

trend determination approaches. Specifically, EPA guidance documents (2000, 2002c, 2006a, 2006b) 

describe DQOs-based parametric and nonparametric minimum sample size determination procedures 

needed: to compute decision statistics (e.g., UCL95); to perform site versus background comparisons 

(e.g., t-test, proportion test, WMW test); and to determine the number of discrete items (e.g., drums filled 

with hazardous material) that need to be sampled to meet the DQOs (e.g., specified proportion, p0 of 

defective items, allowable error margin in an estimate of mean).  Statistical methods are used to compute 

test statistics (e.g., S-W test, t-test, WMW test, T-S trend statistic) and decision statistics (e.g., 95% UCL, 

95% UPL, UTL95-95) needed to address statistical issues associated with CERCLA and RCRA site 

projects. For example, exposure and risk management and cleanup decisions in support of EPA projects 

are often made based upon the mean concentrations of the contaminants/constituents of potential concern 

(COPCs). Site-specific BTVs are used in site versus background evaluation studies.  A UCL95 is used to 

estimate the EPC terms (EPA 1992a, 2002a); and upper limits such as upper percentiles, UPLs, or UTLs 

are used to estimate BTVs or not-to-exceed values (EPA 1992b, 2002b, and 2009). The estimated BTVs 

are used to address several objectives: to identify the COPCs; to identify the site areas of concern 

(AOCs); to perform intra-well comparisons to identify MWs not meeting specified standards; and to 

compare onsite constituent concentrations with site-specific background level constituent concentrations. 

Oneway ANOVA is used to perform inter-well comparisons and OLS regression and trend tests are often 

used to determine potential trends present in constituent concentrations identified in GW monitoring wells 

(MWs). Most of the methods described in this paragraph are available in the ProUCL 5.1 (ProUCL 5.0) 

software package. 

 

It is noted that not much guidance is available in the guidance documents cited above to compute rigorous 

UCLs, UPLs, and UTLs for moderately to highly skewed uncensored and left-censored data sets 

containing NDs with multiple DLs, a common occurrence in environmental data sets.  Several parametric 

and nonparametric methods are available in the statistical literature (Singh, Singh, and Engelhardt 1997; 

Singh, Singh, and Iaci 2002; Krishnamoorthy et al. 2008; Singh, Maichle, and Lee, 2006) to compute 

UCLs and other upper limits which adjust for data skewness. During the years, as new methods became 

available to address statistical issues related to environmental projects, those methods were incorporated 

in ProUCL software so that environmental scientists and decision makers can make more accurate and 

informed decisions. Until 2006, not much guidance was provided on how to compute UCL95s of the 

mean and other upper limits (e.g., UPLs and UTLs) based upon data sets containing NDs with multiple 

DLs.  For data sets with NDs, Singh, Maichle, and Lee (2006) conducted an extensive simulation study to 

compare the performances of the various estimation methods (in terms of bias in the mean estimate) and 

UCL computation methods (in terms of coverage provided by a UCL).  They demonstrated that the 

nonparametric KM method performs well in terms of bias in estimates of mean.  They also concluded that 

UCLs computed using the Student's t-statistic and percentile bootstrap method using the KM estimates do 

not provide the desired coverage to the population mean of skewed data sets. They demonstrated that 

depending upon sample size and data skewness, UCLs computed using KM estimates, the BCA bootstrap 

method (mildly skewed data sets), the bootstrap-t method, and the Chebyshev inequality (moderately to 

highly skewed data sets) provide better coverage (closer to the specified 95% coverage) to the population 

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
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mean than other UCL computation methods. Based upon their findings, during 2006-2007, several UCL 

and other upper limits computation methods based upon KM and ROS estimates were incorporated in the 

ProUCL 4.0 software. It is noted that since the inclusion of the KM method in ProUCL 4.0 (2007), the 

use of the KM method based upper limits has become popular in many environmental applications to 

estimate EPC terms and BTVs.  The KM method is also described in the latest version of the unified 

RCRA guidance document (U.S. EPA 2009). 

It is not easy to justify distributional assumptions of data sets consisting of both detects and NDs with 

multiple DLs. Therefore, based upon the published literature and experience, parametric UCL (and other 

upper limits) computation methods such as the MLE method (Cohen 1991) and the expectation 

maximization (EM) method (Gleit 1985) for normal and lognormal distributions were not included 

ProUCL 5.0 (and ProUCL 5.1) even though these methods were available in earlier versions of ProUCL.  

Additionally, the winsorization method (Gilbert 1987) available in an earlier version of ProUCL has also 

been excluded from ProUCL 5.0 (ProUCL 5.1) due to its poor performance. During 2015, some 

researchers (e.g., from New Mexico State University, Las Cruces, NM) suggested that the EM method 

performs better than some of the methods available in ProUCL 5.0, especially the gamma ROS (GROS) 

method; a method which can be used on left-censored data sets with multiple DLs.  The literature has 

articles dealing with MLE and EM methods for data sets with a single censoring point (DL). Further 

research needs to be conducted on methods for computing reliable estimates of the mean, sd, and upper 

limits based upon parametric MLE and EM methods for data sets with NDs and multiple DLs. As always, 

it is the desire of the developers of ProUCL to incorporate the best available methods in ProUCL. The 

developers of ProUCL welcome/encourage other researchers to share their findings about the EM method 

showing that EM method performs better than methods already available in ProUCL 5.0/ProUCL 5.1 for 

data sets with single/multiple censoring points. The developers of ProUCL have been enhancing the 

ProUCL software with better performing methods as those methods become available. Efforts will be 

made to incorporate contributed code (with acknowledgement) for superior methods in future versions of 

ProUCL. ProUCL software is also used for teaching environmental statistics courses therefore, in addition 

to statistical and graphical methods routinely used to address statistical needs of environmental projects, 

some poor performing methods such as the substitution DL/2 method and Land's (1975) H-statistic based 

UCL computation method have been retained in ProUCL version 5.1 for research and comparison 

purposes.  

 

Methods incorporated in ProUCL 5.1 and in its earlier versions have been tested and verified extensively 

by the developers, researchers, scientists, and users. Specifically, the results obtained by ProUCL 5.1 are 

in agreement with the results obtained by using other software packages including Minitab, SAS®, and 

programs available in R-Script (not all methods are available in these software packages).  Additionally, 

like ProUCL 5.0, ProUCL 5.1 outputs several intermediate results (e.g., khat and biased corrected kstar 

estimates of the gamma shape parameter, k, and critical values (e.g., tolerance factor, K, used to compute 

UTLs; critical value, d2max, used to compute USL) needed to compute decision statistics of interest, 

which may help interested users to verify statistical results computed by the ProUCL software. Whenever 

applicable, ProUCL provides warning messages and based upon professional experience and findings of 

simulation studies, makes suggestions to help a typical user in selecting the most appropriate decision 

statistic (e.g., UCL).  

Note: The availability of intermediate results and critical values can be used to compute lower limits and 

two-sided intervals which are not as yet available in the ProUCL software. 

For left-censored data sets, ProUCL 5.1 computes decision statistics (e.g., UCL, UPL, and UTL) based 

upon KM estimates computed in a straight forward manner without flipping the data and re-flipping the 

decision statistics; these operations are not easy for a typical user to understand and perform and can 
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become quite tedious when multiple analytes need to be processed. Moreover, in environmental 

applications it is important to compute accurate estimates of sd which are needed to compute decision 

making statistics including UPLs and UTLs.  Decision statistics (UPL, UTL) based upon a KM estimate 

of the of sd and computed using indirect methods can be different from the statistics computed using an 

estimate of sd obtained using the KM method directly, especially when one is dealing with a skewed data 

set or when using a log-transformation. These issues are elaborated by examples discussed in the 

accompanying ProUCL 5.1 Technical Guide. 

For uncensored data sets, researchers (e.g., Johnson 1978; Chen 1995; Efron and Tibshirani 1993; Hall 

[1988, 1992], and additional references found in Chapters 2 and 3) developed parametric (e.g., gamma 

distribution based) and nonparametric (bootstrap-t and Hall's bootstrap method, modified-t) methods for 

computation of decision statistics which adjust for data skewness. For uncensored positively skewed data 

sets, Singh, Singh, and Iaci (2002) performed simulation experiments to compare the performances (in 

terms of coverage probabilities) of the various UCL computation methods described in the literature. 

They demonstrated that for skewed data sets, UCLs based upon Student's t statistic, central limit theorem 

(CLT), and percentile bootstrap method tend to underestimate the population mean (EPC). It is reasonable 

to state that the findings of the simulation studies performed on uncensored skewed data sets comparing 

the performances of the various UCL computation methods can be extended to skewed left-censored data 

sets. Based upon the findings of those studies performed on uncensored data sets and also using the 

findings summarized in Singh, Maichle, and Lee (2006), it was concluded that t-statistic, CLT, and the 

percentile bootstrap method based UCLs computed using KM estimates (and also ROS estimates) 

underestimate the population mean of moderately skewed to highly skewed data sets. Interested users 

may want to verify these statements by performing simulation experiments or other forms of rigorous 

testing. Like uncensored skewed data sets, for left-censored data sets, ProUCL 5.1 offers several 

parametric and nonparametric methods for computing UCLs and other limits which adjust for data 

skewness. 

 

Due to the lack of research and methods, in earlier versions of the ProUCL software (e.g., ProUCL 

4.00.02, ProUCL 4.0), KM estimates were used in the normal distribution based equations for computing 

the various upper limits for left-censored data sets. However, normal distribution based upper limits (e.g., 

t-UCL) using KM estimates (or any other estimates such as ROS estimates) fail to provide the specified 

coverage (e.g., 0.95) of the parameters (e.g., mean, percentiles) of populations with skewed distributions 

(Singh, Singh, Iaci 2002; Johnson 1978; Chen 1995).  For skewed data sets, ProUCL 5.0/ProUCL 5.1 

computes UCLs applying KM estimates in UCL equations for skewed data sets (e.g., gamma and 

lognormal); therefore, some changes have been made in the decision tables of ProUCL 5.0/ProUCL 5.1 

for computing UCL95s.  Also, the nonparametric UCL computation methods (e.g., percentile bootstrap) 

do not provide the desired coverage to the population means of skewed distributions (e.g., Hall [1988, 

1992], Efron and Tibshirani, 1993). For example, the use of t-UCL or the percentile bootstrap UCL 

method on robust ROS estimates or on KM estimates underestimates the population mean for moderately 

skewed to highly skewed data sets. Chapters 3 and 5 of the ProUCL Technical Guide describe parametric 

and nonparametric KM methods for computing upper limits (and available in ProUCL 5.0/ ProUCL 5.1) 

which adjust for data skewness. 

The KM method yields good estimates of the population mean and std (Singh, Maichle, and Lee2006); 

however upper limits computed using the KM or ROS estimates in normal equations or in the percentile 

bootstrap method do not account for skewness present in the data set. Appropriate UCL computation 

methods which account for data skewness should be used on KM or ROS estimates. For left-censored 

data sets, ProUCL 5.0/ProUCL 5.1 compute upper limits using KM estimates in gamma (lognormal) 

UCL, UPL, and UTL equations (e.g., also suggested in U.S. EPA 2009) provided the detected 

observations in the left-censored data set follow a gamma (lognormal) distribution. 
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Recently, the use of the ISM methodology has been recommended (ITRC 2012) for collecting soil 

samples with the purpose of estimating mean concentrations of DUs requiring analysis of human and 

ecological risk and exposure. ProUCL can be used to compute UCLs based upon ISM data as described 

and recommended in the ITRC ISM Technical and Regulatory Guide (2012). At many sites, large 

amounts of discrete background data are already available which are not directly comparable to the actual 

field ISM data (onsite or background). To compare the existing discrete background data with field ISM 

data, the BISS module (blocked for general use in ProUCL version 5.1 awaiting guidance and instructions 

for its intended use) of ProUCL 5.1 can be used on a large (e.g., consisting of at least 30 observations) 

existing discrete background data set. The BISS module simulates the incremental sampling methodology 

based equivalent incremental background samples; and each simulated BISS sample represents an 

estimate of the mean of the population represented by the discrete background data set. The availability of 

a large discrete background data set collected from areas with geological conditions comparable to the 

DU(s) of interest (onsite DUs) is a requirement for successful application of this module. The user cannot 

see the simulated BISS data; however, the simulated BISS data can be accessed by other modules of 

ProUCL 5.0 (ProUCL 5.1) for performing desired statistical evaluations. For example, the simulated 

BISS data can be merged with the actual field ISM background data after comparing the two data sets 

using a two-sample t-test. The actual field ISM or the merged ISM and BISS data can be accessed by 

modules of ProUCL to compute a UCL of the mean or a UTL.  

ProUCL 5.1 Capabilities 

Assumptions: Like most statistical methods, statistical methods for computing upper limits (e.g., UCLs, 

UPLs, UTLs) are also based upon certain assumptions including the availability of a randomly collected 

data set consisting of independently and identically distributed (i.i.d) observations representing the 

population (e.g., site area, reference area) under investigation. A UCL of the mean (of a population) and 

BTV estimates (UPL, UTL) should be computed using a randomly collected (simple random or 

systematic random) data set representing a single statistical population (e.g., site population or 

background population). When multiple populations (e.g., background and site data mixed together) are 

present in a data set, the recommendation is to separate them first by using the population partitioning 

techniques (e.g., Singh, Singh, and Flatman 1994) prior to computing the appropriate decision statistics 

(e.g., 95% UCLs). Regardless of how the populations are separated, decision statistics should be 

computed separately for each identified population. The topic of population partitioning and the 

extraction of a valid site-specific background data set from a broader mixture data set potentially 

consisting of both onsite and offsite data are beyond the scope of ProUCL 5.0/ProUCL 5.1. Parametric 

estimation and hypotheses testing methods (e.g., t-test, UCLs, UTLs) are based upon distributional (e.g., 

normal distribution, gamma) assumptions.  ProUCL includes GOF tests for determining if a data set 

follows a normal, a gamma, or a lognormal distribution. 

 

Multiple Constituents/Variables: Environmental scientists need to evaluate many constituents in their 

decision making processes including exposure and risk assessment, background evaluations, and site 

versus background comparisons.  ProUCL can process multiple constituents/variables simultaneously in a 

user-friendly manner; an option not available in other freeware or commercial software packages such as 

NADA for R (Helsel 2013). This option is very useful when one has to process many variables/analytes 

and compute decision statistics (e.g., UCLs, UPLs, and UTLs) and/or test statistics (e.g., ANOVA test, 

trend test) for those variables/analytes. 

 

Analysis by a Group Variable: ProUCL also has the capability of processing data by groups. A valid 

group column should be included in the data file. The analyses of data categorized by a group ID variable 

such as: 1) Surface versus (vs.) Subsurface; 2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) 
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Upgradient vs. Downgradient MWs are common in many environmental applications. ProUCL offers this 

option for data sets with and without nondetects. The Group option provides a way to perform statistical 

tests and methods including graphical displays separately for each of the group (samples from different 

populations) that may be present in a data set. For example, the same data set may consist of analytical 

data from multiple groups or populations representing site, background, two or more AOCs, surface soil, 

subsurface soil, and GW. By using this option, the graphical displays (e.g., box plots, Q-Q plots, 

histograms) and statistics (including computation of background statistics, UCLs, ANOVA test, trend test 

and OLS regression statistics) can be easily computed separately for each group in the data set.  

 

Exploratory Graphical Displays for Uncensored and Left-Censored Data Sets: Graphical methods 

included in the Graphs module of ProUCL include: Q-Q plots (data in same column), multiple Q-Q plots 

(data in different columns), box plots, multiple box plots (data in different columns), and histograms. 

These graphs can also be generated for data sets containing ND observations.  Additionally, the OLS 

Regression and Trend Analysis module can be used to generate graphs displaying parametric OLS 

regression lines with confidence and prediction intervals around the regression and nonparametric Theil-

Sen trend lines. The Trend Analysis module can generate trend graphs for data sets without a sampling 

event variable, and also generates time series graphs for data sets with a sampling event (time) variable.  

Like ProUCL 5.0, ProUCL 5.1 accepts only numerical values for the event variable. Graphical displays of 

a data set are useful for gaining added insight regarding a data set that may not otherwise be clear by 

looking at test statistics such as T-S test or MK statistics.  Unlike test statistics (e.g., t-test, MK test, AD 

test) and decision statistics (e.g., UCL, UTL), graphical displays do not get influenced by outliers and ND 

observations. It is suggested that the final decisions be made based upon statistical results as well as 

graphical displays. 

 

Side-by-side box plots or multiple Q-Q plots are useful to graphically compare concentrations of two or 

more groups (e.g., several monitoring wells). The GOF module of ProUCL generates Q-Q plots for 

normal, gamma, and lognormal distributions based upon uncensored as well as left-censored data sets 

with NDs. All relevant information such as the test statistics, critical values and probability-values (p-

values), when available are also displayed on the GOF Q-Q plots. In addition to providing information 

about the data distribution, a normal Q-Q plot in the original raw scale also helps to identify outliers and 

multiple populations that may be present in a data set. On a Q-Q plot, observations well-separated from 

the majority of the data may represent potential outliers coming from a population different from the main 

dominant population (e.g., background population). In a Q-Q plot, jumps and breaks of significant 

magnitude suggest the presence of observations coming from multiple populations (onsite and offsite 

areas).  ProUCL can also be used to display box plots with horizontal lines displayed/superimposed at 

pre-specified compliance limits (CLs) or computed upper limits (e.g., UPL, UTL). This kind of graph 

provides a visual comparison of site data with compliance limits and/or BTV estimates.  

 

Outlier Tests:  ProUCL also provides a couple of classical outlier test procedures (EPA 2006b, 2009), the 

Dixon test and the Rosner test. The details of these outlier tests are described in Chapter 7. These outlier 

tests often suffer from “masking effects” in the presence of multiple outliers.  It is suggested that the 

classical outlier procedures should always be accompanied by graphical displays including box plots and 

Q-Q plots. Description and use of the robust and resistant outlier procedures (Rousseeuw and Leroy 1987; 

Singh and Nocerino 1995) are beyond the scope of ProUCL 5.1.  Interested users are encouraged to try 

the Scout 2008 software package (EPA 2009d) for robust outlier identification methods especially when 

dealing with multivariate data sets consisting of observations for several variables/analytes/constituents. 

  

Outliers represent observations coming from populations different from the main dominant population 

represented by the majority of the data set.  Outliers distort most statistics (e.g., mean, UCLs, UPLs, test 
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statistics) of interest.  Therefore, it is desirable to compute decisions statistics based upon data sets 

representing the main population and not to compute distorted statistics by accommodating a few low 

probability outliers (e.g., by using a lognormal distribution). Moreover, it should be noted that even 

though outliers might have minimal influence on hypotheses testing statistics based upon ranks (e.g., 

WMW test), outliers do distort several nonparametric statistics including bootstrap methods such as 

bootstrap-t and Hall's bootstrap UCLs and other nonparametric UPLs and UTLs computed using higher 

order statistics.  

 

Goodness-of-Fit Tests: In addition to computing simple summary statistics for data sets with and without 

NDs, ProUCL 5.1 includes GOF tests for normal, lognormal and gamma distributions. To test for 

normality (lognormality) of a data set, ProUCL includes the Lilliefors test and the extended S-W test for 

samples of sizes up to 2000 (Royston 1982, 1982a). For the gamma distribution, two GOF tests: the A-D 

test (Anderson and Darling 1954) and K-S test (Schneider 1976, 1978) are available in ProUCL. For 

samples of larger sizes (e.g., with n > 100) and small values of the gamma shape parameter, k (e.g., k ≤ 

0.1), significant discrepancies were found in the critical values of the two gamma GOF test statistics (A-D 

and K-S tests) obtained using the two gamma deviate generation algorithms: Whitaker (1974) and 

Marsaglia and Tsang (2000). In ProUCL 5.0 (and ProUCL 5.1), for values of k ≤ 0.2, the critical values of 

the two gamma GOF tests: A-D and K-S tests have been updated using the currently available more 

efficient gamma deviate generation algorithm due to Marsaglia and Tsang's (2000); more details about the 

implementation of their algorithm can be found in Kroese, Taimre, and Botev (2011). For these two GOF 

and values of the shape parameter, k=0.025, 0.05, 0.1, and 0.2, critical value tables have been updated by 

incorporating the newly generated critical values for three levels of significance: 0.05, 0.1, and 0.01. The 

updated tables are provided in Appendix A of the ProUCL Technical Guide.  It was noted that for k=0.2, 

the older (generated in 2002) and the newly generated critical values are in general agreement; therefore, 

critical values for k=0.2 were not replaced in tables summarized in Appendix A. 

 

ProUCL also generates GOF Q-Q plots for normal, lognormal, and gamma distributions displaying all 

relevant statistics including GOF test statistics. GOF tests for data sets with and without NDs are 

described in Chapters 2 and 3 of the ProUCL Technical Guide. For data sets containing NDs, it is not 

easy to verify the distributional assumptions correctly, especially when the data set consists of a large 

percentage of NDs with multiple DLs and NDs exceeding some detected values. Historically, decisions 

about distributions of data sets with NDs are based upon GOF test statistics computed using the data 

obtained: without NDs; replacing NDs by 0, DL, or DL/2; using imputed NDs based upon a ROS (e.g., 

lognormal ROS) method.  For data sets with NDs, ProUCL 5.1 can perform GOF tests using the methods 

listed above. ProUCL 5.1 can also generate censored probability plots (Q-Q plots) which are very similar 

to Q-Q plots generated using detected data. Using the Imputed NDs using ROS Methods option of the 

Stats/Sample Sizes module of ProUCL 5.0, additional columns can be generated for storing imputed 

(estimated) values for NDs based upon normal ROS, gamma ROS, and lognormal ROS (also known as 

robust ROS) methods. 

 

Sample Size Determination and Power Evaluation: The Sample Sizes module in ProUCL can be used to 

develop DQO-based sampling designs needed to address statistical issues associated with environmental 

projects. ProUCL 5.1 provides user-friendly options for entering the desired/pre-specified values for 

decision parameters (e.g., Type I and Type II error rates) and other DQOs used to determine minimum 

sample sizes for statistical applications including: estimation of the mean, single and two-sample 

hypothesis testing approaches, and acceptance sampling for discrete items (e.g., drums containing 

hazardous waste).  Both parametric (e.g., t-test) and nonparametric (e.g., Sign test, WRS test) sample size 

determination methods as described in EPA (2000, 2002c, 2006a, 2006b) guidance documents are 

available in ProUCL 5.1. ProUCL also has the sample size determination option for acceptance sampling 
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of lots of discrete objects such as a lot (batch, set) of drums containing hazardous waste (e.g., RCRA 

applications, EPA 2002c). When the sample size for an application (e.g., verification of cleanup level) is 

not computed using the DQOs-based sampling design process, the Sample Size module can be used to 

assess the power of the test statistic used in retrospect. The mathematical details of the Sample Sizes 

module are given in Chapter 8 of the ProUCL Technical Guide. 

 

Bootstrap Methods: Bootstrap methods are computer intensive nonparametric methods which can be used 

to compute decision statistics of interest when a data set does not follow a known distribution, or when it 

is difficult to analytically derive the distributions of statistics of interest. It is well-known that for 

moderately skewed to highly skewed data sets, UCLs based upon standard bootstrap and the percentile 

bootstrap methods do not perform well (e.g., Efron [1981, 1982]; Efron and Tibshirani 1993; Hall 

[1988,1992]; Singh, Singh, and Iaci 2002; Singh, Maichle and Lee 2006) as the interval estimates based 

upon these bootstrap methods fail to provide the specified coverage to the population mean (e.g., UCL95 

does not provide adequate 95% coverage of population mean). For skewed data sets, Efron and Tibshirani 

(1993) and Hall (1988, 1992) considered other bootstrap methods such as the BCA, bootstrap-t and Hall’s 

bootstrap methods. For skewed data sets, bootstrap-t and Hall’s bootstrap (meant to adjust for skewness) 

methods perform better (e.g., in terms of coverage for the population mean) than the other bootstrap 

methods. However, it has been noted (e.g., Efron and Tibshirani 1993, Singh, Singh, and Iaci 2002) that 

these two bootstrap methods tend to yield erratic and inflated UCL values (orders of magnitude higher 

than other UCLs) in the presence of outliers. Similar behavior of the bootstrap-t UCL and Hall’s bootstrap 

UCL methods is observed for data sets consisting of NDs and outliers. For nonparametric uncensored and 

left-censored data sets with NDs, depending upon data variability and skewness, ProUCL recommends 

the use of BCA bootstrap, bootstrap-t, or Chebyshev inequality based methods for computing decision 

statistics. Due to the reasons described above, whenever applicable, ProUCL 5.0/ProUCL 5.1 provides 

cautionary notes and warning messages regarding the use of bootstrap-t and Halls bootstrap UCL 

methods.  

 

Hypotheses Testing Approaches: ProUCL software has both single-sample (e.g., Student’s t-test, sign 

test, proportion test, WSR test) and two-sample (Student’s t-test, WMW test, Gehan test, and T-W test) 

parametric and nonparametric hypotheses testing approaches.  Hypotheses testing approaches in ProUCL 

can handle both full-uncensored data sets and left-censored data sets with NDs. Most of the hypotheses 

tests also report associated p-values. For some hypotheses tests (e.g., WMW test, WSR test, proportion 

test), large sample p-values based upon the normal approximation are computed using continuity 

correction factors.  The mathematical details of the various single-sample and two-sample hypotheses 

testing approaches are described in Chapter 6 the ProUCL Technical Guide.  

 

 Single-Sample Tests: Parametric (Student’s t-test) and nonparametric (Sign test, WSR test, tests for 

proportions and percentiles) hypotheses testing approaches are available in ProUCL. Single-sample 

hypotheses tests are used when environmental parameters such as the cleanup standard, action level, 

or compliance limits are known, and the objective is to compare site concentrations with those known 

threshold values. A t-test (or a sign test) may be used to verify the attainment of cleanup levels in an 

AOC after a remediation activity has taken place or a test for proportion may be used to verify if the 

proportion of exceedances of an action level (A0 or a CL) by sample observations collected from an 

AOC (or a MW) exceeds a certain specified proportion (e.g., 1%, 5%, 10%).  

 

The differences between these tests should be noted and understood. A t-test or a Wilcoxon Signed 

Rank (WSR) test are used to compare the measures of location and central tendencies (e.g., mean, 

median) of a site area (e.g., AOC) to a cleanup standard, Cs, or action level also representing a 

measure of central tendency (e.g., mean, median); whereas, a proportion test determines if the 
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proportion of site observations from an AOC exceeding a compliance limit (CL) exceeds a specified 

proportion, P0 (e.g., 5%, 10%). The percentile test compares a specified percentile (e.g., 95th) of the 

site data to a pre-specified upper threshold (e.g., action level).  

 

 Two-Sample Tests: Hypotheses tests (Student’s t-test, WMW test, Gehan test, T-W test) are used to 

perform site versus background comparisons, compare concentrations of two or more AOCs, or to 

compare concentrations of GW collected from MWs. As cited in the literature, some of the 

hypotheses testing approaches (e.g., nonparametric two-sample WMW) deal with a single detection 

limit scenario. When using the WMW test on a data set with multiple detection limits, all 

observations (detects and NDs) below the largest detection limit need to be considered as NDs 

(Gilbert 1987). This in turn tends to reduce the power and increase uncertainty associated with test. 

As mentioned before, it is always desirable to supplement the test statistics and conclusions with 

graphical displays such as multiple Q-Q plots and side-by-side box plots. The Gehan test or T-W test 

(new in ProUCL 5.1) should be used in cases where multiple detection limits are present.  

 

Note about Quantile Test: For smaller data sets, the Quantile test as described in U.S. EPA documents 

(U.S. EPA [1994, 2006b]; Hollander and Wolfe, 1999) is available in ProUCL 4.1(see ProUCL 4.1 

Technical Guide).  In the past, some users incorrectly used this test for larger data sets.  Due to lack of 

resources, this test has not been expanded for data sets of all sizes.  Therefore, to avoid confusion and its 

misuse for larger data sets, the Quantile test was not included in ProUCL 5.0 and ProUCL 5.1.  

 

Computation of Upper Limits including UCLs, UPLs, UTLs, and USLs: ProUCL software has parametric 

and nonparametric methods including bootstrap and Chebyshev inequality based methods to compute 

decision making statistics such as UCLs of the mean (EPA 2002a), percentiles, UPLs for future k (≥1) 

observations, UTLs (U.S. EPA [1992b and 2009]) and upper simultaneous limits (USLs) (Singh and 

Nocerino [1995, 2002]) based upon uncensored full data sets and left-censored data sets containing NDs 

with multiple DLs. Methods incorporated in ProUCL cover a wide range of skewed data distributions 

with and without NDs. In addition to normal and lognormal distributions based upper limits, ProUCL 5.0 

can compute parametric UCLs, percentiles, UPLs for future k (≥1) observations, UTLs, and USLs based 

upon gamma distributed data sets. For data sets with NDs, ProUCL has several estimation methods 

including the Kaplan-Meier (KM) method (1958), ROS methods (Helsel 2005) and substitution methods 

such as replacing NDs with the DL or DL/2 (Gilbert 1987; U.S. EPA 2006b).  Substitution method and 

other poor performing methods (e.g., H-UCL for lognormal distribution) have been retained, as requested 

by U.S. EPA scientists, in ProUCL 5.0/ProUCL 5.1 for research and comparison purposes. One may not 

interpret the availability of these poor performing methods in ProUCL as recommended methods by 

ProUCL or by the U.S EPA for computing decision statistics.  

Computation of UCLs Based upon Uncensored Data Sets without NDs:  Parametric UCL computation 

methods in ProUCL for uncensored data sets include: Student’s t-UCL, Approximate gamma UCL (using 

chi-square approximation), Adjusted gamma UCL (adjusted for level significance), Land’s H-UCL, and 

Chebyshev inequality-based UCL (using minimum variance unbiased estimates (MVUEs) of parameters 

of a lognormal distribution).  Nonparametric UCL computation methods for data sets without NDs 

include: CLT-based UCL, Modified-t-statistic-based UCL (adjusted for skewness), Adjusted-CLT-based 

UCL (adjusted for skewness), Chebyshev inequality-based UCL (using sample mean and standard 

deviation), Jackknife method-based UCL, UCL based upon standard bootstrap, UCL based upon 

percentile bootstrap, UCL based upon BCA bootstrap, UCL based upon bootstrap-t, and UCL based upon 

Hall’s bootstrap method.  The details of UCL computation methods for uncensored data sets are 

summarized in Chapter 2 of the ProUCL Technical Guide. 
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Computations of UPLs, UTLs, and USLs Based upon Uncensored Data Sets without NDs: For 

uncensored data sets without NDs, ProUCL can compute parametric percentiles, UPLs for k (k≥1) future 

observations, UPLs for mean of k (≥1) future observations, UTLs, and USLs based upon the normal, 

gamma, and lognormal distributions. Nonparametric upper limits are typically based upon order statistics 

of a data set. Depending upon the size of the data set, the higher order statistics (maximum, second 

largest, third largest, and so on) are used to compute these upper limits (e.g., UTLs). Depending upon the 

sample size, specified CC and coverage probability, ProUCL 5.1 outputs the actual CC achieved by a 

nonparametric UTL.  The details of the parametric and nonparametric computation methods for UPLs, 

UTLs, and USLs are described in Chapter 3 of the ProUCL Technical Guide.   

 

Computation of UCLs, UPLs, UTLs, and USLs Based upon Left-Censored Data Sets with NDs: For data 

sets with NDs, ProUCL computes UCLs, UPLs, UTLs, and USLs based upon the mean and sd computed 

using lognormal ROS (LROS, robust ROS), Gamma ROS (GROS), KM, and DL/2 substitution methods.  

To adjust for skewness in non-normally distributed data sets, ProUCL uses bootstrap methods and 

Chebyshev inequality when computing UCLs and other limits using estimates of the mean and sd 

obtained using the methods (details in Chapters 4 and 5) listed above. ProUCL 5.1 (new in ProUCL 5.0) 

uses parametric methods on KM (and ROS) estimates, provided detected observations in the left-censored 

data set follow a parametric distribution. For example, if the detected data follow a gamma distribution, 

ProUCL uses KM estimates in gamma distribution-based equations when computing UCLs, UTLs, and 

other upper limits. When detected data do not follow a discernible distribution, depending upon size and 

skewness of detected data, ProUCL recommends the use of Kaplan-Meier (1958) estimates in bootstrap 

methods and the Chebyshev inequality for computing nonparametric decision statistics (e.g., UCL95, 

UPL, UTL) of interest. ProUCL computes KM estimates directly using left-censored data sets without 

flipping data and requiring re-flipping of decision statistics. The KM method incorporated in ProUCL 

computes both sd and standard error (SE) of the mean.  As mentioned earlier, for historical reasons and 

for comparison and research purposes, the DL/2 substitution method and H-UCL based upon LROS 

method have been retained in ProUCL 5.0/ProUCL 5.1. The inclusion of the substitution and LROS 

methods in ProUCL should not be inferred as an endorsement of those methods by ProUCL software and 

its developers. The details of the UCL computation methods for data sets with NDs are given in Chapter 4 

and the detail description of the various other upper limits: UPLs, UTLs, and USLs for data sets with NDs 

are given in Chapter 5 of the ProUCL Technical Guide.  

 

Oneway ANOVA, OLS Regression and Trend Analysis: The Oneway ANOVA module has both 

classical and nonparametric K-W ANOVA tests as described in EPA guidance documents (e.g., EPA 

[2006b, 2009]). Oneway ANOVA is used to compare means (or medians) of multiple groups such as 

comparing mean concentrations of several areas of concern or performing inter-well comparisons of 

COPC concentrations at several MWs.  The OLS Regression option computes the classical OLS 

regression line and generates graphs displaying the OLS line, confidence bands and prediction bands 

around the regression line. All statistics of interest including slope, intercept, and correlation coefficient 

are displayed on the OLS line graph. The Trend Analysis module has two nonparametric trend tests: the 

M-K trend test and T-S trend test. Using this option, one can generate trend graphs and time-series graphs 

displaying a T-S trend line and all other statistics of interest with associated p-values.  In addition to slope 

and intercept, the T-S test in ProUCL 5.1 computes and outputs residuals based upon the computed 

nonparametric T-S line. 

 

In GW monitoring applications, OLS regression, trend tests, and time series plots are often used to 

identify trends (e.g., upwards, downwards) in constituent concentrations of GW monitoring wells over a 
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certain period of time (U.S. EPA 2009). The details of Oneway ANOVA are given in Chapter 9 and OLS 

regression line and Trend tests methods are described in Chapter 10 of the ProUCL Technical Guide. 

 

BISS Module: At many sites, a large amount of discrete onsite and background data are already available 

which are not directly comparable to actual field ISM data. In order to provide a tool to compare the 

existing discrete data with ISM data, the BISS module of ProUCL 5.0 may be used on a large existing 

discrete data set. The ISM methodology used to develop the BISS module is a relatively new approach; 

methods incorporated in this BISS module require further investigation. For now, the BISS module has 

been blocked for use in ProUCL 5.0/ProUCL 5.1 as this module is awaiting adequate guidance for its 

intended use on discrete background data sets.   

 

Note: It is pointed out that in this document, all statements made about the capabilities of ProUCL 5.0 

also apply to ProUCL version 5.1; and to save time, many screen shots used in ProUCL 5.0 manuals have 

been used in ProUCL 5.1 manuals (User Guide and Technical Guide). All upgrades in ProUCL 5.1 (not 

available in earlier versions) have been identified as new in ProUCL 5.1 in this document. 

 

Recommendations and Suggestions in ProUCL: Until 2006, not much guidance was available on how to 

compute a UCL95 of the mean and other upper limits (e.g., UPLs and UTLs) for skewed left-censored 

data sets containing NDs with multiple DLs, a common occurrence in environmental data sets.  For 

uncensored positively skewed data sets, Singh, Singh, and Iaci (2002) summarize some simulation results 

comparing the performances (in terms of coverage probabilities) of several UCL computation methods 

described in the statistical and environmental literature. They noted that the optimal choice of a decision 

statistic (e.g., UCL95) depends upon the sample size, data distribution and data skewness. They 

incorporated the results of their findings in ProUCL 3.1 and higher versions to select the most appropriate 

UCL to estimate the EPC term.   

 

For data sets with NDs, Singh, Maichle, and Lee (2006) conducted a similar simulation study to compare 

the performances of the various estimation methods (in terms of bias in the mean estimate); and some 

UCL computation methods (in terms of coverage provided by a UCL). They demonstrated that the KM 

estimation method performs well in terms of bias in estimates of the mean; and for skewed data sets, the t-

statistic, CLT, and the percentile bootstrap method based UCLs computed using KM estimates (and ROS 

estimates) underestimate the population mean. From these findings summarized in Singh, Singh, and Iaci 

(2002) and Singh, Maichle, and Lee (2006), it is natural to state and assume the findings of the simulation 

studies performed on uncensored skewed data sets comparing performances of the various UCL 

computation methods can be extended to skewed left-censored data sets.  

 

Like uncensored data sets without NDs, for data sets with NDs, there is no one single best UCL (and 

other upper limits such as UTL, UPL) which can be used to estimate an EPC (and background threshold 

values) for all data sets of varying sizes, distribution, and skewness.  The optimal choice of a decision 

statistic depends upon the size, distribution, and skewness of detected observations.   

 

For data sets with and without NDs, ProUCL computes decision statistics including UCLs, UPLs, and 

UTLs using several parametric and nonparametric methods covering a wide-range of sample size, data 

variability and skewness. Using the results and findings summarized in the literature cited above, and 

based upon the sample size, data distribution, and data skewness, modules of ProUCL make suggestions 

about using the most appropriate decision statistic(s) to estimate population parameter(s) of interest (e.g., 

EPC). The suggestions made in ProUCL are based upon the extensive professional applied and theoretical 

experience of the developers in environmental statistical methods, published literature, results of 

simulation studies conducted by the developers of ProUCL and procedures described in many U.S. EPA 
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guidance documents. These suggestions are made to help the users in selecting the most appropriate UCL 

to estimate an EPC which is routinely used in exposure assessment and risk management studies of the 

U.S. EPA. It should be pointed out that a typical simulation study cannot cover all data sets of various 

sizes and skewness from all types of distributions. For an analyte (data set) with skewness (sd of logged 

data) near the end points of the skewness intervals described in decision tables of Chapter 2 (e.g., Tables 

2-9 through 2-11) of the ProUCL Technical Guide, the user/project team may select the most appropriate 

UCL based upon the site CSM, expert site knowledge, toxicity of the analyte, and exposure risks 

associated with that analyte.  The project team should make the final decision regarding using or not using 

the suggestions/recommendations made by ProUCL. If deemed necessary, the project team may want to 

consult a statistician.  

 

Even though, ProUCL software has been developed using limited government funding, ProUCL 5.1 

provides many statistical and graphical methods described in U.S. EPA documents for data sets with and 

without NDs. However, one may not compare the availability of methods in ProUCL 5.1 with methods 

available in the commercial software packages such as SAS® and Minitab 16. For example, trend tests 

correcting for seasonal/spatial variations and geostatistical methods are not available in the ProUCL 

software. For those methods, the user is referred to commercial software packages such as SAS®. As 

mentioned earlier, is the developers of ProUCL recommended supplementing test results (e.g., two-

sample test) with graphical displays (e.g., Q-Q plots, side-by-side box plots) especially when data sets 

contain NDs and outliers. With the inclusion of the BISS, Oneway ANOVA, OLS Regression Trend 

and the user-friendly DQOs based Sample Size modules, ProUCL represents a comprehensive software 

package equipped with statistical methods and graphical tools needed to address many environmental 

sampling and statistical needs as described in the various CERCLA (U.S. EPA 1989a, 1992a, 2002a, 

2002b, 2006a, 2006b), MARSSIM (U.S. EPA 2000), and RCRA (U.S. EPA 1989b, 1992b, 2002c, 2009) 

guidance documents.  

 

Finally, the users of ProUCL are cautioned about the use of methods and suggestions described in some 

recent environmental literature. For example, many decision statistics (e.g., UCLs, UPLs, UTLs,) 

computed using the methods (e.g., percentile bootstrap, statistics using KM estimates and t-critical 

values) described in Helsel (2005, 2012) will fail to provide the desired coverage for environmental 

parameters of interest (mean, upper percentile) of moderately skewed to highly skewed populations and 

conclusions derived based upon those decisions statistics may lead to incorrect conclusions which may 

not be cost-effective or protective of human health and the environment.  

 

Note: The look and feel of ProUCL 5.1 is similar to that of ProUCL 5.0; and they share the same names 

for the various modules and drop-down menus. For modules where no changes have been made in 

ProUCL since 2010 (e.g., Sample Sizes), screen shots as used in ProUCL 5.0 documents have been used 

in ProUCL 5.1 documents. Some of the screen shots generated using ProUCL 5.1 might have ProUCL 5.0 

in their titles as those screen shots have not been re-generated and replaced.  

ProUCL 5.1 User Guide 

In addition to this Technical Guide, a User Guide also accompanies the ProUCL 5.1 software, providing 

details of using the statistical and graphical methods incorporated in ProUCL 5.1. The User Guide 

provides details about the input and output operations that can be performed using ProUCL 5.1. The User 

guide also provides details about saving edited input files, output Excel-type spreadsheets and graphical 

displays generated by ProUCL 5.1.  
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CHAPTER 1 

 

Guidance on the Use of Statistical Methods in ProUCL 
Software 

 
Decisions based upon statistics computed using discrete data sets of small sizes (e.g., < 6) cannot be 

considered reliable enough to make decisions that affect human health and the environment. For example, 

a background data set of size < 6 is not large enough to characterize a background population, compute 

BTV estimates, or to perform background versus site comparisons. Several U.S. EPA guidance 

documents (e.g., EPA 2000, 2006a, 2006b) detail DQOs and minimum sample size requirements needed 

to address statistical issues associated with different environmental applications. In order to obtain 

reliable statistical results, an adequate amount of data should be collected using project-specified DQOs 

(i.e., CC, decision error rates). The Sample Sizes module of ProUCL computes minimum sample sizes 

based on DQOs specified by the user and described in many guidance documents.  In some cases, it may 

not be possible (e.g., due to resource constraints) to collect the calculated number of samples needed to 

meet the project-specific DQOs. Under these circumstances one can use the Sample Sizes module to 

assess the power of the test statistic resulting from the reduced number of samples which were collected.  

Based upon professional experience, the developers of ProUCL 4 software and its later versions have 

been making some rule-of-thumb suggestions regarding minimum sample size requirements needed to 

perform statistical evaluations such as: estimation of environmental parameters of interest (i.e., EPCs and 

BTVs), comparing site data with background data or with some pre-established screening levels (e.g., 

action levels [ALs], compliance limits [CLs]). Those rule-of thumb suggestions are described later in 

Section 1.7 of this chapter.  It is noted that those minimum sample requirements have been adopted by 

some other guidance documents including the RCRA Guidance Document (EPA 2009).  

 

This chapter also describes the differences between the various statistical upper limits including upper 

confidence limits (UCLs) of the mean, upper prediction limits (UPLs) for future observations, and upper 

tolerance intervals (UTLs) often used to estimate the environmental parameters of interest including EPC 

terms and BTVs.  The use of a statistical method depends upon the environmental parameter(s) being 

estimated or compared. The measures of central tendency (e.g., means, medians, or their UCLs) are used 

to compare site mean concentrations with a cleanup standard, Cs, also representing some central tendency 

measure of a reference area or some other known threshold representing a measure of central tendency. 

The upper threshold values, such as the CLs, alternative concentration limits (ACL), or not-to-exceed 

values, are used when individual point-by-point observations are compared with those threshold values. 

Depending upon whether the environmental parameters (e.g., BTVs, not-to-exceed value, or EPC term) 

are known or unknown, different statistical methods with different data requirements are needed to 

compare site concentrations with pre-established (known) or estimated (unknown) standards and BTVs. 

Several upper limits, and single and two sample hypotheses testing approaches, for both full-uncensored 

and left-censored data sets are available in the ProUCL software package for performing the comparisons 

described above. 

1.1 Background Data Sets 

Based upon the CSM and regional and expert knowledge about the site, the project team selects 

background or reference areas. Depending upon the site activities and the pollutants, the background area 

can be site-specific or a general reference area with conditions comparable to the site before 

contamination due to site related activities.  An appropriate random sample of independent observations 
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(i.i.d) should be collected from the background area. A defensible background data set represents a 

“single” environmental population possibly without any outliers.  In a background data set, in addition to 

reporting and/or laboratory errors, statistical outliers may also be present. A few elevated statistical 

outliers present in a background data set may actually represent potentially contaminated locations 

belonging to an impacted site area and/or possibly from other sources; those elevated outliers may not be 

coming from the background population under evaluation. Since the presence of outliers in a data set 

tends to yield distorted (poor and misleading) values of the decision making statistics (e.g., UCLs, UPLs 

and UTLs), elevated outliers should not be included in background data sets and estimation of BTVs.  

The objective here is to compute background statistics based upon a data set which represents the main 

background population, and does not accommodate the few low probability high outliers (e.g., coming 

from extreme tails of the data distribution) that may also be present in the sampled data. The occurrence 

of elevated outliers is common when background samples are collected from various onsite areas (e.g., 

large Federal Facilities). The proper disposition of outliers, to include or not include them in statistical 

computations, should be decided by the project team. The project team may want to compute decision 

statistics with and without the outliers to evaluate the influence of outliers on the decision making 

statistics.  

 

A couple of classical outlier tests (Dixon and Rosner tests) are available in ProUCL. Since both of these 

classical tests suffer from masking effects (e.g., some extreme outliers may mask the occurrence of other 

intermediate outliers), it is suggested that these classical outlier tests be supplemented with graphical 

displays such as a box plot and a Q-Q plot on a raw scale. The use of exploratory graphical displays helps 

in determining the number of outliers potentially present in a data set. The use of graphical displays also 

helps in identifying extreme high outliers as well as intermediate and mild outliers. The use of robust and 

masking-resistant outlier identification procedures (Singh and Nocerino, 1995, Rousseeuw and Leroy, 

1987) is recommended when multiple outliers are present in a data set. Those methods are beyond the 

scope of ProUCL 5.1.  However, several robust outlier identification methods are available in the Scout 

2008 version 1.0 software package (EPA 2009d) available at http://archive.epa.gov/esd/archive-

scout/web/html/. 

An appropriate background data set of a reasonable size (preferably computed using the DQOs processes) 

is needed for the data set to be representative of background conditions and to compute upper limits (e.g., 

estimates of BTVs) and compare site and background data sets using hypotheses testing approaches. A 

background data set should have a minimum of 10 observations, however more observations is preferable.  

1.2 Site Data Sets 

A data set collected from a site population (e.g., AOC, exposure area [EA], DU, group of MWs) should 

be representative of the population under investigation. Depending upon the areas under investigation, 

different soil depths and soil types may be considered as representing different statistical populations. In 

such cases, background versus site comparisons may have to be conducted separately for each of those 

sub-populations (e.g., surface and sub-surface layers of an AOC, clay and sandy site areas). These issues, 

such as comparing depths and soil types, should also be considered in the planning stages when 

developing sampling designs. Specifically, the availability of an adequate amount of representative data is 

required from each of those site sub-populations/strata defined by sample depths, soil types, and other 

characteristics.  

 

Site data collection requirements depend upon the objective(s) of the study. Specifically, in background 

versus site comparisons, site data are needed to perform: 
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 point-by-point onsite comparisons with pre-established ALs or estimated BTVs. Typically, this 

approach is used when only a small number (e.g., < 6) of onsite observations are compared with a 

BTV or some other not-to-exceed value.  If many onsite values need to be compared with a BTV, 

the recommended upper limit to use is the UTL or upper simultaneous limit (USL) to control the 

false positive error rate (Type I Error Rate). More details can be found in Chapter 3 of this 

guidance document. Alternatively, one can use hypothesis testing approaches (Chapter 6) 

provided enough observations (at least 10, more are preferred) are available. 

 

 single-sample hypotheses tests to compare site data with a pre-established cleanup standards, Cs 

(e.g., representing a measure of central tendency); proportion test to compare site proportion of 

exceedances of an AL with a pre-specified allowable proportion, P0. These hypotheses testing 

approaches are used on site data when enough site observations are available. Specifically, when 

at least 10 (more are desirable) site observations are available; it is preferable to use hypotheses 

testing approaches to compare site observations with specified threshold values. The use of 

hypotheses testing approaches can control both types of error rates (Type 1 and Type 2) more 

efficiently than the point-by-point individual observation comparisons. This is especially true as 

the number of point-by-point comparisons increases. This issue is illustrated by the following 

table summarizing the probabilities of exceedances (false positive error rate) of a BTV (e.g., 95th 

percentile) by onsite observations, even when the site and background populations have 

comparable distributions. The probabilities of these chance exceedances increase as the site 

sample size increases. 

 

Sample Size 

Probability of 

Exceedance 

1 0.05 

2 0.10 

5 0.23 

8 0.34 

10 0.40 

12 0.46 

64 0.96 

 

 two-sample hypotheses tests to compare site data distribution with background data distribution 

to determine if the site concentrations are comparable to background concentrations. An adequate 

amount of data needs to be made available from the site as well as the background populations. It 

is preferable to collect at least 10 observations from each population under comparison. 

 

Notes: From a mathematical point of view, one can perform hypothesis tests on data sets consisting of 

only 3-4 data values; however, the reliability of the test statistics (and the conclusions derived) thus 

obtained is questionable. In these situations it is suggested to supplement the test statistics decisions with 

graphical displays. 

1.3 Discrete Samples or Composite Samples? 

ProUCL can be used for discrete sample data sets, as well as on composite sample data sets. However, in 

a data set (background or site), samples should be either all discrete or all composite. In general, both 

discrete and composite site samples may be used for individual point-by-point site comparisons with a 

threshold value, and for single and two-sample hypotheses testing applications.  
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 When using a single-sample hypothesis testing approach, site data can be obtained by collecting 

all discrete or all composite samples. The hypothesis testing approach is used when many (≥ 10) 

site observations are available. Details of the single-sample hypothesis approaches are widely 

available in EPA guidance documents (MARSSIM  2000, EPA 1989a, 2006b). Several single-

sample hypotheses testing procedures available in ProUCL are described in Chapter 6 of this 

document. 

 

 If a two-sample hypothesis testing approach is used to perform site versus background 

comparisons, then samples from both of the populations should be either all discrete samples, or 

all composite samples. The two-sample hypothesis testing approaches are used when many (e.g., 

at least 10) site, as well as background, observations are available. For better results with higher 

statistical power, the availability of more observations perhaps based upon an appropriate DQOs 

process (EPA 2006a) is desirable.  Several two-sample hypotheses tests available in ProUCL 5.1 

are described in Chapter 6 of this document.  

1.4 Upper Limits and Their Use 

The computation and use of statistical limits depend upon their applications and the parameters (e.g., EPC 

term, BTVs) they are supposed to be estimating. Depending upon the objective of the study, a pre-

specified cleanup standard, Cs, can be viewed as representing: 1) an average (or median) constituent 

concentration, 0; or 2) a not-to-exceed upper threshold concentration value, A0. These two threshold 

values, 0, and A0, represent two significantly different parameters, and different statistical methods and 

limits are used to compare the site data with these two very different threshold values. Statistical limits, 

such as a UCL of the population mean, a UPL for an independently obtained “single” observation, or 

independently obtained “k” observations (also called future k observations, next k observations, or k 

different observations), upper percentiles, and UTLs are often used to estimate the environmental 

parameters: EPC (0) and a BTV (A0). A new upper limit, USL was included in ProUCL 5.0 which may 

be used to estimate a BTV based upon a well-established background data set representing a single 

statistical population without any outliers. 

  

It is important to understand and note the differences between the uses and numerical values of these 

statistical limits so that they can be properly used. The differences between UCLs and UPLs (or upper 

percentiles), and UCLs and UTLs should be clearly understood. A UCL with a 95% confidence limit 

(UCL95) of the mean represents an estimate of the population mean (measure of the central tendency), 

whereas a UPL95, a UTL95%-95% (UTL95-95), and an upper 95th percentile represent estimates of a 

threshold from the upper tail of the population distribution such as the 95th percentile.  Here, UPL95 

represents a 95% upper prediction limit, and UTL95-95 represents a 95% confidence limit of the 95th 

percentile. For mildly skewed to moderately skewed data sets, the numerical values of these limits tend to 

follow the order given as follows.  

 

Sample Mean  UCL95 of Mean  Upper 95th Percentile  UPL95 of a Single Observation  UTL95-95  

 

Example 1-1. Consider a real data set collected from a Superfund site. The data set has several inorganic 

COPCs, including aluminum (Al), arsenic (As), chromium (Cr), iron (Fe), lead (Pb), manganese (Mn), 

thallium (Tl) and vanadium (V). Iron concentrations follow a normal distribution. This data set has been 

used in several examples throughout the two ProUCL guidance documents (Technical Guide and User 

Guide), therefore it is provided as follows. 
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Aluminum Arsenic Chromium Iron Lead Manganese Thallium Vanadium 

6280 1.3 8.7 4600 16 39 0.0835 12 

3830 1.2 8.1 4330 6.4 30 0.068 8.4 

3900 2 11 13000 4.9 10 0.155 11 

5130 1.2 5.1 4300 8.3 92 0.0665 9 

9310 3.2 12 11300 18 530 0.071 22 

15300 5.9 20 18700 14 140 0.427 32 

9730 2.3 12 10000 12 440 0.352 19 

7840 1.9 11 8900 8.7 130 0.228 17 

10400 2.9 13 12400 11 120 0.068 21 

16200 3.7 20 18200 12 70 0.456 32 

6350 1.8 9.8 7340 14 60 0.067 15 

10700 2.3 14 10900 14 110 0.0695 21 

15400 2.4 17 14400 19 340 0.07 28 

12500 2.2 15 11800 21 85 0.214 25 

2850 1.1 8.4 4090 16 41 0.0665 8 

9040 3.7 14 15300 25 66 0.4355 24 

2700 1.1 4.5 6030 20 21 0.0675 11 

1710 1 3 3060 11 8.6 0.066 7.2 

3430 1.5 4 4470 6.3 19 0.067 8.1 

6790 2.6 11 9230 13 140 0.068 16 

11600 2.4 16.4  98.5 72.5 0.13  

4110 1.1 7.6  53.3 27.2 0.068  

7230 2.1 35.5  109 118 0.095  

4610 0.66 6.1  8.3 22.5 0.07  

 
Several upper limits for iron are summarized as follows, and it be seen that they follow the order (in 

magnitude) as described above. 

 

Table 1-1. Computation of Upper Limits for Iron (Normally Distributed) 

 

Mean Median Min Max UCL95 

UPL95 for a 

Single 

Observation 

UPL95 for 4 

Observations UTL95-95 

95% 

Upper 

Percentile 

9618 9615 3060 18700 11478 18145 21618 21149 17534 

 

For highly skewed data sets, these limits may not follow the order described above. This is especially true 

when the upper limits are computed based upon a lognormal distribution (Singh, Singh, and Engelhardt 

1997). It is well known that a lognormal distribution based H-UCL95 (Land’s UCL95) often yields 

unstable and impractically large UCL values. An H-UCL95 often becomes larger than UPL95 and even 

larger than a UTL 95%-95% and the largest sample value. This is especially true when dealing with 

skewed data sets of smaller sizes. Moreover, it should also be noted that in some cases, a H-UCL95 
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becomes smaller than the sample mean, especially when the data are mildly skewed and the sample size is 

large (e.g., > 50, 100).  

 

There is a great deal of confusion about the appropriate use of these upper limits. A brief discussion about 

the differences between the applications and uses of the statistical limits described above is provided as 

follows.  

 

 A UCL represents an average value that is compared with a threshold value also representing an 

average value (pre-established or estimated), such as a mean Cs. For example, a site 95% UCL 

exceeding a Cs, may lead to the conclusion that the cleanup standard, Cs has not been attained by the 

average site area concentration. It should also be noted that UCLs of means are typically computed 

from the site data set. 

 

 A UCL represents a “collective” measure of central tendency, and it is not appropriate to compare 

individual site observations with a UCL. Depending upon data availability, single or two-sample 

hypotheses testing approaches are used to compare a site average or a site median with a specified or 

pre-established cleanup standard (single-sample hypothesis), or with the background population 

average or median (two-sample hypothesis). 

 

 A UPL, an upper percentile, or a UTL represents an upper limit to be used for point-by-point 

individual site observation comparisons. UPLs and UTLs are computed based upon background data 

sets, and point-by-point onsite observations are compared with those limits. A site observation 

exceeding a background UTL may lead to the conclusion that the constituent is present at the site at 

levels greater than the background concentrations level.  

 

 When enough (e.g., at least 10) site observations are available, it is preferable to use hypotheses 

testing approaches. Specifically, single-sample hypotheses testing (comparing site to a specified 

threshold) approaches should be used to perform site versus a known threshold comparison; and two-

sample hypotheses testing (provided enough background data are also available) approaches should 

be used to perform site versus background comparison. Several parametric and nonparametric single 

and two-sample hypotheses testing approaches are available in ProUCL 5.0/ProUCL 5.1. 

 

It is re-emphasized that only averages should be compared with averages or UCLs, and individual site 

observations should be compared with UPLs, upper percentiles, UTLs, or USLs. For example, the 

comparison of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of another 

population (e.g., background) cannot be considered fair and reasonable as these limits (e.g., UCL and 

UPL) estimate and represent different parameters.  

1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance 
Limits and Other Threshold Values 

The point-by-point observation comparison method is used when a small number (e.g., < 6) of site 

observations are compared with pre-established or estimated BTVs, screening levels, or preliminary 

remediation goals (PRGs). Typically, a single exceedance of the BTV by an onsite (or a monitoring well) 

observation may be considered an indication of the presence of contamination at the site area under 

investigation. The conclusion of an exceedance by a site value is sometimes confirmed by re-sampling 

(taking a few more collocated samples) at the site location (or a monitoring well) exhibiting constituent 

concentrations in excess of the BTV. If all collocated sample observations (or all sample observations 

collected during the same time period) from the same site location (or well) exceed the BTV or PRG, then 
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it may be concluded that the location (well) requires further investigation (e.g., continuing treatment and 

monitoring) and possibly cleanup.  

 

When BTV constituent concentrations are not known or pre-established, one has to collect or extract a 

background data set of an appropriate size that can be considered representative of the site background. 

Statistical upper limits are computed using the background data set thus obtained, which are used as 

estimates of BTVs. To compute reasonably reliable estimates of BTVs, a minimum of 10 background 

observations should be collected, perhaps using an appropriate DQOs process as described in EPA (2000, 

2006a). Several statistical limits listed above are used to estimate BTVs based upon a defensible (free of 

outliers, representing the background population) background data set of an adequate size.  

 

The point-by-point comparison method is also useful when quick turnaround comparisons are required in 

real time. Specifically, when decisions have to be made in real time by a sampling/screening crew, or 

when only a few site samples are available, then individual point-by-point site concentrations are 

compared either with pre-established cleanup goals or with estimated BTVs. The sampling crew can use 

these comparisons to: 1) screen and identify the COPCs, 2) identify the potentially polluted site AOCs, or 

3) continue or stop remediation or excavation at an onsite area of concern. 

 

If a larger number of samples (e.g., >10) are available from the AOC, then the use of hypotheses testing 

approaches (both single-sample and a two-sample) is preferred. The use of hypothesis testing approaches 

tends to control the error rates more tightly and efficiently than the individual point-by-point site 

comparisons. 

1.6 Hypothesis Testing Approaches and Their Use 

Both single-sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 

polluted sites, and also to compare constituent concentrations of two (e.g., site versus background) or 

more populations (e.g., MWs).  

1.6.1 Single Sample Hypotheses (Pre-established BTVs and Not-to-Exceed Values are Known) 

When pre-established BTVs are used such as the U.S. Geological Survey (USGS) background values 

(Shacklette and Boerngen 1984), or thresholds obtained from similar sites, there is no need to extract, 

establish, or collect a background data set. When the BTVs and cleanup standards are known, one-sample 

hypotheses are used to compare site data (provided enough site data are available) with known and pre-

established threshold values. It is suggested that the project team determine (e.g., using DQOs) or decide 

(depending upon resources) the number of site observations that should be collected and compared with 

the “pre-established” standards before coming to a conclusion about the status (clean or polluted) of the 

site AOCs. As mentioned earlier, when the number of available site samples is < 6, one might perform 

point-by-point site observation comparisons with a BTV; and when enough site observations (at least 10) 

are available, it is desirable to use single-sample hypothesis testing approaches. Depending upon the 

parameter (0, A0), represented by the known threshold value, one can use single-sample hypotheses tests 

for population mean or median (t-test, sign test), or use single-sample tests for proportions and 

percentiles. The details of the single-sample hypotheses testing approaches can be found in EPA (2006b) 

guidance document and in Chapter 6 of this document.  

 

One-Sample t-Test: This test is used to compare the site mean, , with some specified cleanup standard, 

Cs, where the Cs represents an average threshold value, 0. The Student’s t-test (or a UCL of the mean) is 
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used (assuming normality of site data set or when sample size is large, such as larger than 30, 50) to 

verify the attainment of cleanup levels at a polluted site after some remediation activities. 

 

One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests and can 

also handle ND observations, provided the detection limits of all NDs fall below the specified threshold 

value, Cs. These tests are used to compare the site location (e.g., median, mean) with some specified Cs 

representing a similar location measure. 

 

One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a PRG or 

a BTV represents an upper threshold value of a constituent concentration distribution rather than the mean 

threshold value, 0, then a test for proportion or a test for percentile (equivalently UTL 95-95 UTL 95-90) 

may be used to compare site proportion (or site percentile) with the specified threshold or action level, A0.  

1.6.2 Two-Sample Hypotheses (BTVs and Not-to-Exceed Values are Unknown)  

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 

compared directly with the background data. In such cases, two-sample hypothesis testing approaches are 

used to perform site versus background comparisons. Note that this approach can be used to compare 

concentrations of any two populations including two different site areas or two different monitoring wells 

(MWs). In order to use and perform a two-sample hypothesis testing approach, enough data should be 

available from each of the two populations. Site and background data requirements (e.g., based upon 

DQOs) for performing two-sample hypothesis test approaches are described in EPA (2000, 2002b, 2006a, 

2006b) and also in Chapter 6 of this Technical Guide. While collecting site and background data, for 

better representation of populations under investigation, one may also want to account for the size of the 

background area (and site area for site samples) in sample size determination. That is, a larger number 

(>15-20) of representative background (and site) samples should be collected from larger background 

(and site) areas; every effort should be made to collect as many samples as determined by the DQOs-

based sample sizes. 

The two-sample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape, 

distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The 

two-sample hypotheses testing approach is also used when the cleanup standards or screening levels are 

not known a priori. Specifically, in environmental applications, two-sample hypotheses testing 

approaches are used to compare average or median constituent concentrations of two or more populations. 

To derive reliable conclusions with higher statistical power based upon hypothesis testing approaches, an 

adequate amount of data (e.g., minimum of 10 samples) should be collected from all of the populations 

under investigation. 

 

The two-sample hypotheses testing approaches incorporated in ProUCL 5.1 are listed as follows: 

 

 Student t-test (with equal and unequal variances) – Parametric test assumes normality 

 Wilcoxon-Mann-Whitney (WMW) test – Nonparametric test handles data with NDs with one DL 

- assumes two populations have comparable shapes and variability  

 Gehan test – Nonparametric test handles data sets with NDs and multiple DLs - assumes 

comparable shapes and variability   

 Tarone-Ware (T-W) test – Nonparametric test handles data sets with NDs and multiple DLs - 

assumes comparable shapes and variability 
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The Gehan and T-W tests are meant to be used on left-censored data sets with multiple DLs.  For best 

results, the samples collected from the two (or more) populations should all be of the same type obtained 

using similar analytical methods and apparatus; the collected site and background samples should all be 

discrete or all composite (obtained using the same design and pattern), and be collected from the same 

medium (soil) at similar depths (e.g., all surface samples or all subsurface samples) and time (e.g., during 

the same quarter in groundwater applications) using comparable (preferably same) analytical methods. 

Good sample collection methods and sampling strategies are given in EPA (1996, 2003) guidance 

documents. 

 

Note: ProUCL 5.1 (and previous versions) has been developed using limited government funding. 

ProUCL 5.1 is equipped with statistical and graphical methods needed to address many environmental 

sampling and statistical issues as described in the various CERCLA, MARSSIM, and RCRA documents 

cited earlier. However, one may not compare the availability of methods in ProUCL 5.1 with methods 

incorporated in commercial software packages such as SAS® and Minitab 16. Not all methods available in 

the statistical literature are available in ProUCL.  

1.7 Minimum Sample Size Requirements and Power Evaluations 

Due to resource limitations, it is not be possible (nor needed) to sample the entire population (e.g., 

background area, site area, AOCs, EAs) under study. Statistics is used to draw inference(s) about the 

populations (clean, dirty) and their known or unknown statistical parameters (e.g., mean, variance, upper 

threshold values) based upon much smaller data sets (samples) collected from those populations. To 

determine and establish BTVs and site specific screening levels, defensible data set(s) of appropriate 

size(s) representing the background population (e.g., site-specific, general reference area, or historical 

data) need to be collected. The project team and site experts should decide what represents a site 

population and what represents a background population. The project team should determine the 

population area and boundaries based upon all current and intended future uses, and the objectives of data 

collection.  Using the collected site and background data sets, statistical methods supplemented with 

graphical displays are used to perform site versus background comparisons. The test results and statistics 

obtained by performing such site versus background comparisons are used to determine if the site and 

background level constituent concentrations are comparable; or if the site concentrations exceed the 

background threshold concentration level; or if an adequate amount of remediation approaching the BTV 

or some cleanup level has been performed at polluted site AOCs.  

 

To perform statistical tests and compute upper limits, determine the number of samples that need to be 

collected from the populations (e.g., site and background) under investigation using appropriate DQOs 

processes (EPA 2000, 2006a, 2006b). ProUCL has the Sample Sizes module which can be used to 

develop DQOs based sampling designs needed to address statistical issues associated with polluted sites 

projects. ProUCL provides user-friendly options to enter the desired/pre-specified values of decision 

parameters (e.g., Type I and Type II error rates) to determine minimum sample sizes for the selected 

statistical applications including: estimation of mean, single and two-sample hypothesis testing 

approaches, and acceptance sampling. Sample size determination methods are available for the sampling 

of continuous characteristics (e.g., lead or Radium 226), as well as for attributes (e.g., proportion of 

occurrences exceeding a specified threshold). Both parametric (e.g., t-tests) and nonparametric (e.g., Sign 

test, test for proportions, WRS test) sample size determination methods are available in ProUCL 5.1 and 

in its earlier versions (e.g., ProUCL 4.1). ProUCL also has sample size determination methods for 

acceptance sampling of lots of discrete objects such as a batch of drums containing hazardous waste (e.g., 

RCRA applications, U.S. EPA 2002c).  
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However, due to budgetary or logistical constraints, it may not be possible to collect the same number of 

samples as determined by applying a DQO process. For example, the data might have already been 

collected (as often is the case) without using a DQO process, or due to resource constraints, it may not 

have been possible to collect as many samples as determined by using a DQO-based sample size formula. 

In practice, the project team and the decision makers tend not to collect enough background samples. It is 

suggested to collect at least 10 background observations before using statistical methods to perform 

background evaluations based upon data collected using discrete samples. The minimum sample size 

recommendations described here are useful when resources are limited, and it may not be possible to 

collect as many background and site samples as computed using DQOs based sample size determination 

formulae. In case data are collected without using a DQO process, the Sample Sizes module can be used 

to assess the power of the test statistic in retrospect. Specifically, one can use the standard deviation of the 

computed test statistic (EPA 2006b) and compute the sample size needed to meet the desired DQOs. If the 

computed sample size is greater than the size of the data set used, the project team may want to collect 

additional samples to meet the desired DQOs.  

 

Note: From a mathematical point of view, the statistical methods incorporated in ProUCL and described 

in this guidance document for estimating EPC terms and BTVs, and comparing site versus background 

concentrations can be performed on small site and background data sets (e.g., of sizes as small as 3). 

However, those statistics may not be considered representative and reliable enough to make important 

cleanup and remediation decisions which will potentially impact human health and the environment. 

ProUCL provides messages when the number of detects is <4-5, and suggests collecting at least 8-10 

observations. Based upon professional judgment, as a rule-of-thumb, ProUCL guidance documents 

recommend collecting a minimum of 10 observations when data sets of a size determined by a DQOs 

process (EPA 2006) cannot be collected. This however, should not be interpreted as the general 

recommendation and every effort should be made to collect DQOs based number of samples. Some recent 

guidance documents (e.g., EPA 2009) have also adopted this rule-of-thumb and suggest collecting a 

minimum of about 8-10 samples in the circumstance that data cannot be collected using a DQO-based 

process. However, the project team needs to make these determinations based upon their comfort level 

and knowledge of site conditions. 

  
 To allow users to compute decision statistics using data from ISM (ITRC, 2012) samples, 

ProUCL 5.1 will compute decision statistics (e.g., UCLs, UPLs, UTLs) based upon samples of 

sizes as small as 3. The user is referred to the ITRC ISM Technical Regulatory Guide (2012) to 

determine which UCL (e.g., Student's t-UCL or Chebyshev UCL) should be used to estimate the 

EPC term. 

1.7.1 Why a data set of minimum size, n = 8 through10? 

Typically, the computation of parametric upper limits (UPL, UTL, UCL) depends upon three values: the 

sample mean, sample variability (standard deviation) and a critical value. A critical value depends upon 

sample size, data distribution, and confidence level. For samples of small size (< 8-10), the critical values 

are large and unstable, and upper limits (e.g., UTLs, UCLs) based upon a data set with fewer than 8-10 

observations are mainly driven by those critical values. The differences in the corresponding critical 

values tend to stabilize when the sample size becomes larger than 8-10 (see tables below, where degrees 

of freedom [df] = sample size - 1). This is one of the reasons ProUCL guidance documents suggest a 

minimum data set size of 10 when the number of observations determined from sample-size calculations 

based upon EPA DQO process exceed the logistical/financial/temporal/constraints of a project.  For 

samples of sizes 2-11, 95% critical values used to compute upper limits (UCLs, UPLs, UTLs, and USLs) 
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based upon a normal distribution are summarized in the subsequent tables. In general, a similar pattern is 

followed for critical values used in the computation of upper limits based upon other distributions.  

For the normal distribution, Student's t-critical values are used to compute UCLs and UPLs which are 

summarized as follows.  

 

Table of Critical Values of t-Statistic 

df= sample size-1= (n-1) 

 
 

One can see that once the sample size starts exceeding 9-10 (df = 8, 9), the difference between the critical 

values starts stabilizing. For example, for upper tail probability (= level of significance) of 0.05, the 

difference between critical values for df = 9 and df =10 is only 0.021, where as the difference between 

critical values for df= 4 and 5 is 0.117; similar patterns are noted for other levels of significance. For the 

normal distribution, critical values used to compute UTL90-95, UTL95-95, USL90, and USL95 are 

described as follows. One can see that once the sample size starts exceeding 9-10, the difference between 

the critical values starts decreasing significantly. 

 

n UTL90-95 UTL95-95 USL90 USL95 
3 6.155 7.656 1.148 1.153 
4 4.162 5.144 1.425 1.462 
5 3.407 4.203 1.602 1.671 
6 3.006 3.708 1.729 1.822 
7 2.755 3.399 1.828 1.938 
8 2.582 3.187 1.909 2.032 
9 2.454 3.031 1.977 2.11 

10 2.355 2.911 2.036 2.176 
11 2.275 2.815 2.088 2.234 

 

Note:  Nonparametric upper limits (UPLs, UTLs, and USLs) are computed using higher order statistics of 

a data set.  To achieve the desired confidence coefficient, samples of sizes much greater than 10 are 

required. For details, refer to Chapter 3.  It should be noted that critical values of USLs are significantly 

lower than critical values for UTLs. Critical values associated with UTLs decrease as the sample size 

increases. Since, as the sample size increases the maximum of the data set also increases, and critical 

values associated with USLs increase with the sample size. 

1.7.2 Sample Sizes for Bootstrap Methods  

Several nonparametric methods including bootstrap methods for computing UCL, UTL, and other limits 

for both full-uncensored data sets and left-censored data sets with NDs are available in ProUCL 5.1. 

Bootstrap resampling methods are useful when not too few (e.g., < 15-20) and not too many (e.g., > 500-
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1000) observations are available. For bootstrap methods (e.g., percentile method, BCA bootstrap method, 

bootstrap-t method), a large number (e.g., 1000, 2000) of bootstrap resamples are drawn with replacement 

from the same data set. Therefore, to obtain bootstrap resamples with at least some distinct values (so that 

statistics can be computed from each resample), it is suggested that a bootstrap method should not be used 

when dealing with small data sets of sizes less than 15-20. Also, it is not necessary to bootstrap a large 

data set of size greater than 500 or 1000; that is when a data set of a large size (e.g., > 500) is available, 

there is no need to obtain bootstrap resamples to compute statistics of interest (e.g., UCLs). One can 

simply use a statistical method on the original large data set.  

 

Note: Rules-of-thumb about minimum sample size requirements described in this section are based upon 

professional experience of the developers. ProUCL software is not a policy software. It is recommended 

that the users/project teams/agencies make determinations about the minimum number of observations 

and minimum number of detects that should be present in a data set before using a statistical method. 

1.8 Statistical Analyses by a Group ID  

The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 2) AOC1 vs. 

AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are common in 

environmental applications. ProUCL 5.1 offers this option for data sets with and without NDs. The 

Group Option provides a tool for performing separate statistical tests and for generating separate 

graphical displays for each member/category of the group (samples from different populations) that may 

be present in a data set. The graphical displays (e.g., box plots, quantile-quantile plots) and statistics (e.g., 

background statistics, UCLs, hypotheses tests) of interest can be computed separately for each group by 

using this option.  Moreover, using the Group Option, graphical methods can display multiple graphs 

(e.g., Q-Q plots) on the same graph providing graphical comparison of multiple groups. 

 

It should be pointed out that it is the user’s responsibility to provide an adequate amount of data to 

perform the group operations. For example, if the user desires to produce a graphical Q-Q plot (e.g., using 

only detected data) with regression lines displayed, then there should be at least two detected data values 

(to compute slope, intercept, sd) in the data set. Similarly if the graphs are desired for each group 

specified by the group ID variable, there should be at least two observations in each group specified by 

the group variable. When ProUCL data requirements are not met, ProUCL does not perform any 

computations, and generates a warning message (colored orange) in the lower Log Panel of the output 

screen of ProUCL 5.1.  

1.9 Statistical Analyses for Many Constituents/Variables   

ProUCL software can process multiple analytes/variables simultaneously in a user-friendly manner This 

option is useful when one has to process multiple variables and compute decision statistics (e.g., UCLs, 

UPLs, and UTLs) and test statistics (e.g., ANOVA test, trend test) for multiple variables. It is the user’s 

responsibility to make sure that each selected variable has an adequate amount of data so that ProUCL 

can perform the selected statistical method correctly. ProUCL displays warning messages when a selected 

variable does not have enough data needed to perform the selected statistical method. 

1.10 Use of Maximum Detected Value as Estimates of Upper Limits 

Some practitioners use the maximum detected value as an estimate of the EPC term. This is especially 

true when the sample size is small such as < 5, or when a UCL95 exceeds the maximum detected values 
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(EPA 1992a). Also, many times in practice, the BTVs and not-to-exceed values are estimated by the 

maximum detected value (e.g., nonparametric UTLs, USLs).  

1.10.1 Use of Maximum Detected Value to Estimate BTVs and Not-to-Exceed Values  

BTVs and not-to-exceed values represent upper threshold values from the upper tail of a data distribution; 

therefore, depending upon the data distribution and sample size, the BTVs and other not-to-exceed values 

may be estimated by the largest or the second largest detected value. A nonparametric UPL, UTL, and 

USL are often estimated by higher order statistics such as the maximum value or the second largest value 

(EPA 1992b, 2009, Hahn and Meeker 1991). The use of higher order statistics to estimate the UTLs 

depends upon the sample size. For data sets of size: 1) 59 to 92 observations, a nonparametric UTL95-95 

is given by the maximum detected value; 2) 93 to 123 observations, a nonparametric UTL95-95 is given 

by the second largest maximum detected value; and 3) 124 to 152 observations, a UTL95-95 is given by 

the third largest detected value in the sample, and so on.  

1.10.2 Use of Maximum Detected Value to Estimate EPC Terms  

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is 

especially true when the sample size is small such as < 5, or when a UCL95 exceeds the maximum 

detected value. Specifically, the EPA (1992a) document suggests the use of the maximum detected value 

as a default value to estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeds the maximum 

value in a data set. ProUCL computes 95% UCLs of the mean using several methods based upon normal, 

gamma, lognormal, and non-discernible distributions. In the past, a lognormal distribution was used as the 

default distribution to model positively skewed environmental data sets. Additionally, only two methods 

were used to estimate the EPC term based upon: 1) normal distribution and Student’s t-statistic, and 2) 

lognormal distribution and Land’s H-statistic (Land 1971, 1975). The use of the H-statistic often yields 

unstable and impractically large UCL95 of the mean (Singh, Singh, and Engelhardt 1997; Singh, Singh, 

and Iaci 2002). For highly skewed data sets of smaller sizes (< 30, < 50), H-UCL often exceeds the 

maximum detected value. Since the use of a lognormal distribution has been quite common (suggested as 

a default model in the risk assessment guidance for Superfund [RAGS] document [EPA 1992a]), the 

exceedance of the maximum value by an H-UCL95 is frequent for many skewed data sets of smaller sizes 

(e.g., < 30, < 50).  These occurrences result in the possibility of using the maximum detected value as an 

estimate of the EPC term.  

 

It should be pointed out that in some cases, the maximum observed value actually might represent an 

impacted location. Obviously, it is not desirable to use an observation potentially representing an 

impacted location to estimate the EPC for an AOC.  The EPC term represents the average exposure 

contracted by an individual over an EA during a long period of time; the EPC term should be estimated 

by using an average value (such as an appropriate 95% UCL of the mean) and not by the maximum 

observed concentration. One needs to compute an average exposure and not the maximum exposure. As 

can be seen in figures described in Appendix B, for data sets of small sizes (e.g., < 10-20),  the Max Test  

(U.S. EPA 1996)does not provide the specified 95% coverage to the population mean, and for larger data 

sets it overestimates the EPC term, which may lead to unnecessary further remediation.  

 

Several methods, some of which are described in EPA (2002a) and other EPA documents, are available in 

versions of ProUCL (i.e., ProUCL 3.00.02 [EPA 2004], ProUCL 4.0 [U.S. EPA 2007], ProUCL 4.00.05 

[EPA 2009, 2010], ProUCL 4.1 [EPA 2011]) for estimating the EPC terms. For data sets with NDs, 

ProUCL 5.0 (and ProUCL 5.1) has some new UCL (and other limits) computation methods which were 
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not available in earlier versions of ProUCL. It is unlikely that the UCLs based upon those methods will 

exceed the maximum detected value, unless some outliers are present in the data set.  

1.10.2.1 Chebyshev Inequality Based UCL95 

ProUCL 5.1 (and its earlier versions) displays a warning message when the suggested 95% UCL (e.g., 

Hall’s or bootstrap-t UCL with outliers) of the mean exceeds the detected maximum concentration. When 

a 95% UCL does exceed the maximum observed value, ProUCL suggests the use of an alternative UCL 

computation method based upon the Chebyshev inequality. One may use a 97.5% or 99% Chebyshev 

UCL to estimate the mean of a highly skewed population. The use of the Chebyshev inequality to 

compute UCLs tends to yield more conservative (but stable) UCLs than other methods available in 

ProUCL software. In such cases, when the sample size is large (and other UCL methods such as the 

bootstrap-t method yield unrealistically high values due to presence of outliers), one may want to use a 

95% Chebyshev UCL or a Chebyshev UCL with a lower confidence coefficient such as 90% as an 

estimate of the population mean, especially when the sample size is large (e.g., >100, 150). The details (as 

functions of sample size and skewness) for the use of those UCLs are summarized in various versions of 

ProUCL Technical Guides (EPA 2004, 2007, 2009, 2010d, 2011, 2013a).  

Notes: Using the maximum observed value to estimate the EPC term representing the average exposure 

contracted by an individual over an EA is not recommended. For the sake of interested users, ProUCL 

displays a warning message when the recommended 95% UCL (e.g., Hall’s bootstrap UCL) of the mean 

exceeds the observed maximum concentration. For such scenarios (when a 95% UCL does exceed the 

maximum observed value), an alternative UCL computation method based upon Chebyshev inequality is 

suggested by the ProUCL software. 

1.11 Samples with Nondetect Observations 

ND observations are inevitable in most environmental data sets. Singh, Maichle, and Lee (2006) studied 

the performances (in terms of coverages) of the various UCL95 computation methods including the 

simple substitution methods (such as the DL/2 and DL methods) for data sets with ND observations. They 

concluded that the UCLs obtained using the substitution methods, including the replacement of NDs by 

DL/2; do not perform well even when the percentage of ND observations is low, such as less than 5% to 

10%. They recommended avoiding the use of substitution methods for computing UCL95 based upon 

data sets with ND observations. 

1.11.1 Avoid the Use of the DL/2 Substitution Method to Compute UCL95 

Based upon the results of the report by Singh, Maichle, and Lee (2006), it is recommended to avoid the 

use of the DL/2 substitution method when performing a GOF test, and when computing the summary 

statistics and various other limits (e.g., UCL, UPL, UTLs) often used to estimate the EPC terms and 

BTVs. Until recently, the substitution method has been the most commonly used method for computing 

various statistics of interest for data sets which include NDs. The main reason for this has been the lack of 

the availability of the other rigorous methods and associated software programs that can be used to 

estimate the various environmental parameters of interest. Today, several methods (e.g., using KM 

estimates) with better performance, including the Chebyshev inequality and bootstrap methods, are 

available for computing the upper limits of interest. Several of those parametric and nonparametric 

methods are available in ProUCL 4.0 and higher versions. The DL/2 method is included in ProUCL for 

historical reasons as it had been the most commonly used and recommended method until recently (EPA 
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2006b). EPA scientists and several reviewers of the ProUCL software had suggested and requested the 

inclusion of the DL/2 substitution method in ProUCL for comparison and research purposes.  

 

Notes: Even though the DL/2 substitution method has been incorporated in ProUCL, its use is not 

recommended due to its poor performance. The DL/2 substitution method has been retained in ProUCL 

5.1 for historical and comparison purposes. NERL-EPA, Las Vegas strongly recommends avoiding the 

use of this method even when the percentage of NDs is as low as 5% to 10%.  

1.11.2 ProUCL Does Not Distinguish between Detection Limits, Reporting limits, or Method 

Detection Limits 

ProUCL 5.1 (and all previous versions) does not make distinctions between method detection limits 

(MDLs), adjusted MDLs, sample quantitation limits (SQLs), reporting limits (RLs), or DLs.  Multiple 

DLs (or RLs) in ProUCL mean different values of the detection limits. It is user’s responsibility to 

understand the differences between these limits and use appropriate values (e.g., DLs) for nondetect 

values below which the laboratory cannot reliably detect/measure the presence of the analyte in collected 

samples (e.g., soil samples). A data set consisting of values less than the DLs (or MDLs, RLs) is 

considered a left-censored data set. ProUCL uses statistical methods available in the statistical literature 

for left-censored data sets for computing statistics of interest including mean, sd, UCL, and estimates of 

BTVs. 

 

The user determines which qualifiers (e.g., J, U, UJ) will be considered as nondetects. Typically, all 

values with U or UJ qualifiers are considered as nondetect values. It is the user's responsibility to enter a 

value which can be used to represent a ND value.  For NDs, the user enters the associated DLs or RLs 

(and not zeros or half of the detection limits).  An indicator column/variable, D_x taking a value, 0, for all 

nondetects and a value, 1, for all detects is assigned to each variable, x, with NDs. It is the user’s 

responsibility to supply the numerical values for NDs (should be entered as reported DLs) not qualifiers 

(e.g., J, U, B, UJ). For example, for thallium with nondetect values, the user creates an associated column 

labeled as D_thallium to tell the software that the data set will have nondetect values. This column, 

D_thallium consists of only zeros (0) and ones (1); zeros are used for all values reported as NDs and ones 

are used for all values reported as detects.  

1.12 Samples with Low Frequency of Detection 

When all of the sampled values are reported as NDs, the EPC term and other statistical limits should also 

be reported as a ND value, perhaps by the maximum RL or the maximum RL/2. The project team will 

need to make this determination. Statistics (e.g., UCL95) based upon only a few detected values (e.g., < 

4) cannot be considered reliable enough to estimate EPCs which can have a potential impact on human 

health and the environment. When the number of detected values is small, it is preferable to use ad hoc 

methods rather than using statistical methods to compute EPCs and other upper limits. Specifically, for 

data sets consisting of < 4 detects and for small data sets (e.g., size < 10) with low detection frequency 

(e.g., < 10%), the project team and the decision makers should decide, on a site-specific basis, how to 

estimate the average exposure (EPC) for the constituent and area under consideration. For data sets with 

low detection frequencies, other measures such as the median or mode represent better estimates (with 

lesser uncertainty) of the population measure of central tendency.  

 

Additionally, when most (e.g., > 95%) of the observations for a constituent lie below the DLs, the sample 

median or the sample mode (rather than the sample average) may be used as an estimate of the EPC. Note 

that when the majority of the data are NDs, the median and the mode may also be represented by a ND 
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value. The uncertainty associated with such estimates will be high. The statistical properties, such as the 

bias, accuracy, and precision of such estimates, would remain unknown. In order to be able to compute 

defensible estimates, it is always desirable to collect more samples.  

1.13 Some Other Applications of Methods in ProUCL 5.1 

In addition to performing background versus site comparisons for CERCLA and RCRA sites, performing 

trend evaluations based upon time-series data sets, and estimating EPCs in exposure and risk evaluation 

studies, the statistical methods in ProUCL can be used to address other issues dealing with environmental 

investigations that are conducted at Superfund or RCRA sites.  

1.13.1 Identification of COPCs 

Risk assessors and remedial project managers (RPMs) often use screening levels or BTVs to identify 

COPCs during the screening phase of a cleanup project at a contaminated site. The screening for COPCs 

is performed prior to any characterization and remediation activities that are conducted at the site. This 

comparison is performed to screen out those constituents that may be present in the site medium of 

interest at low levels (e.g., at or below the background levels or some pre-established screening levels) 

and may not pose any threat and concern to human health and the environment. Those constituents may 

be eliminated from all future site investigations, and risk assessment and risk management studies.  

 

To identify the COPCs, point-by-point site observations are compared with some pre-established soil 

screening levels (SSL) or estimated BTVs. This is especially true when the comparisons of site 

concentrations with screening levels or BTVs are conducted in real time by the sampling or cleanup crew 

onsite. The project team should decide the type of site samples (discrete or composite) and the number of 

site observations that should be collected and compared with the screening levels or the BTVs. In case 

BTVs or screening levels are not known, the availability of a defensible site-specific background or 

reference data set of reasonable size (e.g., at least 10) is required for computing reliable and 

representative estimates of BTVs and screening levels. The constituents with concentrations exceeding 

the respective screening values or BTVs may be considered COPCs, whereas constituents with 

concentrations (e.g., in all collected samples) lower than the screening values or BTVs may be omitted 

from all future evaluations. 

1.13.2 Identification of Non-Compliance Monitoring Wells  

In MW compliance assessment applications, individual (often discrete) constituent concentrations from a 

MW are compared with some pre-established limits such as an ACL or a maximum concentration limit 

(MCL). An exceedance of the MCL or the BTV (e.g., estimated by a UTL95-95 or a UPL95) by a MW 

concentration may be considered an indication of contamination in that MW. For individual concentration 

comparisons, the presence of contamination (determined by an exceedance) may have to be confirmed by 

re-sampling from that MW. If concentrations of constituents in the original sample and re-sample(s) 

exceed the MCL or BTV, then that MW may require further scrutiny, perhaps triggering remediation 

activates.  If the concentration data from a MW for 4 to 5 continuous quarters (or some other designated 

time period determined by the project team) are below the MCL or BTV level, then that MW may be 

considered as complying with (achieving) the pre-established or estimated standards.  
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1.13.3 Verification of the Attainment of Cleanup Standards, Cs 

Hypothesis testing approaches are used to verify the attainment of the cleanup standard, Cs, at site AOCs 

after conducting remediation and cleanup at those site AOCs (EPA 1989a, 1994). In order to assess the 

attainment of cleanup levels, a representative data set of adequate size perhaps obtained using the DQO 

process (or a minimum of 10 observations should be collected) needs to be made available from the 

remediated/excavated areas of the site under investigation. The sample size should also account for the 

size of the remediated site areas: meaning that larger site areas should be sampled more (with more 

observations) to obtain a representative sample of the remediated areas under investigation. Typically, the 

null hypothesis of interest is H0: Site Mean, s  ≥ Cs versus the alternative hypothesis, H1: Site Mean, s < 

Cs, where the cleanup standard, Cs, is known a priori.  

1.13.4 Using BTVs (Upper Limits) to Identify Hot Spots 

The use of upper limits (e.g., UTLs) to identify hot spot(s) has also been mentioned in the Guidance for 

Comparing Background and Chemical Concentrations in Soil for CERCLA Sites (EPA 2002b). Point-by-

point site observations are compared with a pre-established or estimated BTV. Exceedances of the BTV 

by site observations may represent impacted locations with elevated concentrations (hot spots).  

1.14 Some General Issues, Suggestions and Recommendations made by 
ProUCL 

Some general issues regarding the handling of multiple DLs by ProUCL and recommendations made 

about various substitution and ROS methods for data sets with NDs are described in the following 

sections. 

1.14.1 Handling of Field Duplicates 

ProUCL does not pre-process field duplicates. The project team determines how field duplicates will be 

handled and pre-processes the data accordingly. For an example, if the project team decides to use 

average values for field duplicates, then averages need to be computed and field duplicates need to be 

replaced by their respective average values. It is the user's responsibility to feed in appropriate values 

(e.g., averages, maximum) for field duplicates.  The user is advised to refer to the appropriate EPA 

guidance documents related to collection and use of field duplicates for more information.  

1.14.2 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method  

For data sets with NDs, ProUCL can compute point estimates of population mean and standard deviation 

using the KM and ROS methods (and also using the DL/2 substitution method). The substitution method 

has been retained in ProUCL for historical and research purposes. ProUCL uses Chebyshev inequality, 

bootstrap methods, and normal, gamma, and lognormal distribution based equations on KM (or ROS) 

estimates to compute upper limits (e.g., UCLs, UTLs).  The simulation study conducted by Singh, 

Maichle and Lee (2006) demonstrated that the KM method yields accurate estimates of the population 

mean. They also demonstrated that for moderately skewed to highly skewed data sets, UCLs based upon 

KM estimates and BCA bootstrap (mild skewness), KM estimates and Chebyshev inequality (moderate to 

high skewness), and KM estimates and bootstrap-t method (moderate to high skewness) yield better (in 

terms of coverage probability) estimates of EPCs than other UCL methods based upon the Student's t-

statistic on KM estimates, percentile bootstrap method on KM or ROS estimates.  
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1.14.3 Unhandled Exceptions and Crashes in ProUCL  

A typical statistical software, especially developed under limited resources may not be able to 

accommodate data sets with all kinds of deficiencies such as all missing values for a variable, or all 

nondetect values for a variable. An inappropriate/insufficient data set can occur in various forms and not 

all of them can be addressed in a scientific program like ProUCL. Specifically, from a programming point 

of view, it can be quite burdensome on the programmer to address all potential deficiencies that can occur 

in a data set. ProUCL 5.1 addresses many data deficiencies and produces warming messages.  All data 

deficiencies causing unhandled exceptions which were identified by users have been addressed in 

ProUCL 5.1. However, when ProUCL yields an unhandled exception or crashes, it is highly likely that 

there is something wrong with the data set; the user is advised to review the input data set to make sure 

that the data set follows ProUCL data and formatting requirements.   

 

1.15 The Unofficial User Guide to ProUCL4 (Helsel and Gilroy 2012) 
 
Several ProUCL 4.1 users sent inquiries about the validity of the comments made about the ProUCL 

software in the Unofficial User Guide to ProUCL4 (Helsel and Gilroy, 2012) and in the Practical Stats 

webinar, "ProUCL v4: The Unofficial User Guide," presented by Dr. Helsel on October 15, 2012 (Helsel 

2012a). Their inquiries led us to review comments made about the ProUCL4 software and its associated 

guidance documents (EPA 2007, 2009a, 2009b, 2010c, 2010d, and 2011) in the “The Unofficial Users 

Guide to ProUCL4” and in the webinar, "ProUCL v4: The Unofficial User Guide". These two documents 

collectively are referred to as the Unofficial ProUCLv4 User Guide in this ProUCL document. The pdf 

document describing the material presented in the Practical Stats Webinar (Helsel 2012a) was 

downloaded from the http://www.practicalstats.com website. 

 

In the "ProUCL v4: The Unofficial User Guide", comments have been made about the software and its 

guidance documents, therefore, it is appropriate to address those comments in the present ProUCL 

guidance document. It is necessary to provide the detailed response to assure that: 1) rigorous statistical 

methods are used to compute decision making statistics; and 2) the methods incorporated in ProUCL 

software are not misrepresented and misinterpreted.  Some general responses and comments about the 

material presented in the webinar and in the Unofficial User Guide to ProUCLv4 are described as follows. 

Specific comments and responses are also considered in the respective chapters of ProUCL 5.1 (and 

ProUCL 5.0) guidance documents.  

 

Note: It is noted that the Kindle version of "ProUCL v4: Unofficial User Guide" is no longer available on 

Amazon. Several incorrect theoretical statements and statements misrepresenting ProUCL 4 were made in 

that Unofficial User Guide; therefore, a brief response to some of those statements has been retained in 

ProUCL 5.1 guidance documents.  

 

ProUCL is a freeware software package which has been developed under limited government funding to 

address statistical issues associated with various environmental site projects.  Not all statistical methods 

(e.g., Levene test) described in the statistical literature have been incorporated in ProUCL. One should not 

compare ProUCL with commercial software packages which are expensive and not as user-friendly as the 

ProUCL software when addressing environmental statistical issues. The existing and some new statistical 

methods based upon the research conducted by ORD-NERL, EPA Las Vegas during the last couple of 

decades have been incorporated in ProUCL to address the statistical needs of various environmental site 

projects and research studies.  Some of those new methods may not be available in text books, in the 
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library of programs written in R-script, and in commercial software packages. However, those methods 

are described in detail in the cited published literature and also in the ProUCL Technical Guides (e.g., 

EPA 2007, 2009a, 2009b, 2010c, 2010d, and 2011). Even though for uncensored data sets, programs 

which compute gamma distribution based UCLs and UPLs are available in R Script, programs which 

compute a 95% UCL of mean based upon a gamma distribution on KM estimates are not as easily 

available. 

 

 In the Unofficial ProUCL v4 User Guide, several statements have been made about percentiles. There 

are several ways to compute percentiles. Percentiles computed by ProUCL may or may not be 

identical (don't have to be) to percentiles computed by NADA for R (Helsel 2013) or described in 

Helsel and Gilroy (2012). To address users' requests, ProUCL 4.1 (2011) and its higher versions 

compute percentiles that are comparable to the percentiles computed by Excel 2003 and higher 

versions.  

 

 The literature search suggests that there are a total of nine (9) known types of percentiles, i.e., 9 

different methods of calculating percentiles in statistics literature (Hyndman and Fan, 1996). The R 

programming language (R Core Team 2012) computes percentiles using those 9 methods using the 

following statement in R 

 

 Quantile (x, p, type=k) where p = percentile, k = integer between 1 - 9 

 

ProUCL computes percentiles using Type 7; Minitab 16 and SPSS compute percentiles using Type 6. 

It is simply a matter of choice, as there is no 'best' type to use. Many software packages use one type 

for calculating a percentile, and another for generating a box plot (Hyndman and Fan 1996). 

  

 An incorrect statement "By definition, the sample mean has a 50% chance of being below the true 

population mean" has been made in Helsel and Gilroy (2012) and also in Helsel (2012a). The above 

statement is not correct for means of skewed distributions (e.g., lognormal or gamma) commonly 

occurring in environmental applications.  Since Helsel (2012) prefers to use a lognormal distribution, 

the incorrectness of the above statement has been illustrated using a lognormal distribution.  The 

mean and median of a lognormal distribution (details in Section 2.3.2 of Chapter 2 of this Technical 

Guide) are given by: 

 

mean = )5.0exp( 2

1 σμμ  ; and median = )exp(μM   

 

From the above equations, it is clear that the mean of a lognormal distribution is always greater than 

the median for all positive values of σ (sd of log-transformed variable). Actually the mean is greater 

than the pth percentile when σ >2zp. For example, when p = 0.80, zp = 0.845, and mean of a 

lognormal distribution, μ1 exceeds x0.80, the 80th percentile when σ > 1.69. In other words, when σ > 

1.69 the lognormal mean will exceed the 80th percentile of a lognormal distribution. Here zp 

represents the pth percentile of the standard normal distribution (SND) with mean 0 and variance 1. 

 

To demonstrate the incorrectness of the above statement, a small simulation study was conducted. 

The distribution of sample means based upon samples of size 100 were generated from lognormal 

distributions with µ =4, and varying skewness. The experiment was performed 10,000 times to 

generate the distributions of sample means. The probabilities of sample means less than the 

population means were computed. The following results are noted. 
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Table 1-2. Probabilities
1( )p x  Computed for Lognormal Distributions with µ=4 and Varying Values of σ 

Results are based upon 10000 Simulation Runs for Each Lognormal Distribution Considered 

 

Parameter 

µ=4, σ=0.5 

µ1=61.86 

σ1=32.97 

µ=4, σ=1 

µ1=90.017 

σ1=117.997 

µ=4,σ=1.5 

µ1=168.17 

σ1=489.95 

µ=4,σ=2 

µ1=403.43 

σ1=2953.53 

µ=4,σ=2.5 

µ1=1242.65, 

σ1=28255.23 

1( )p x   0.519 0.537 0.571 0.651 0.729 

Mean 61.835 89.847 168.70 405.657 1193.67 

Median 61.723 89.003 160.81 344.44 832.189 

The probabilities summarized in the above table demonstrate that the statement about the mean 

made in Helsel and Gilroy (2012) is incorrect. 

 

 Graphical Methods: Graphical methods are available in ProUCL as exploratory tools which can be 

generated for both uncensored and left-censored data sets. Exploratory graphical methods are used to 

understand possible patterns present in data sets and not to compute statistics used in the decision 

making process. The Unofficial ProUCL Guide makes several comments about box plots and Q-Q 

plots incorporated in ProUCL. The Unofficial ProUCL Guide states that all graphs with NDs are 

incorrect. These statements are misleading and incorrect. The intent of the graphical methods in 

ProUCL is exploratory for the purpose of gaining information (e.g., outliers, multiple populations, 

data distribution, patterns, and skewness) about a data set. Based upon the data displayed (ProUCL 

displays a message [e.g., as a sub-title] in this regard) on those graphs, all statistics shown on those 

graphs generated by ProUCL are correct.  

 

 Box Plots: In statistical literature, one can find several ways to generate box plots. The practitioners 

may have their own preferences to use one method over the other.  All box plot methods including the 

one in ProUCL convey the same information about the data set (outliers, mean, median, symmetry, 

skewness).  ProUCL uses a couple of development tools such as FarPoint spread (for Excel type input 

and output operations) and ChartFx (for graphical displays); and ProUCL generates box plots using 

the built-in box plot feature in ChartFx. For all practical and exploratory purposes, box plots in 

ProUCL are equally good (if not better) as those available in the various commercial software 

packages, for examining data distribution (skewed or symmetric), identifying outliers, and comparing 

multiple groups (main objectives of box plots in ProUCL). 

 

o As mentioned earlier, it is a matter of choice of using percentiles/quartiles to construct a box 

plot. There is no 'best' method for constructing a box plot. Many software packages use one 

method (out of 9 as specified above) for calculating a percentile, and another for constructing 

a box plot (Hyndman and Fan 1996). 

 

 Q-Q plots:  All Q-Q plots incorporated in ProUCL are correct and of high quality. In addition to 

identifying outliers, Q-Q plots are also used to assess data distributions. Multiple Q-Q plots are useful 

for performing point-by-point comparisons of grouped data sets, unlike box plots based upon the five-

point summary statistics.  ProUCL has Q-Q plots for normal, lognormal, and gamma distributions - 

not all of these graphical capabilities are directly available in other software packages such as NADA 

for R (Helsel 2013).  ProUCL offers several exploratory options for generating Q-Q plots for data sets 

with NDs.  Only detected outlying observations may require additional investigation; therefore, from 

an exploratory point of view, ProUCL can generate Q-Q plots excluding all NDs (and other options).  

Under this scenario there is no need to retain place holders (computing plotting positions used to 
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impute NDs) as the objective is not to impute NDs. To impute NDs, ProUCL uses ROS methods 

(Gamma ROS and log ROS) requiring place holders; and ProUCL computes plotting positions for all 

detects and NDs to generate a proper regression model which is used to impute NDs. Also for 

comparison purposes, ProUCL can be used to generate Q-Q plots on data sets obtained by replacing 

NDs by their respective DLs or DL/2s. In these cases, no NDs are imputed, and there is no need to 

retain placeholders for NDs.  On these Q-Q plots, ProUCL displays some relevant statistics which are 

computed based upon the data displayed on those graphs.  

  

 Helsel (2012a) states that the Summary Statistics module does not display KM estimates and that 

statistics based upon logged data are useless. Typically, estimates computed after processing the data 

do not represent summary statistics. Therefore, KM and ROS estimates are not displayed in the 

Summary Statistics module. These statistics are available in several other modules including the 

UCL and BTV modules. At the request of several users, summary statistics are computed based upon 

logged data. It is believed that the mean, median, or standard deviation of logged data do provide 

useful information about data skewness and data variability. 

 
 To test for the equality of variances, the F-test, as incorporated in ProUCL, performs fairly well and 

the inclusion of the Levene's (1960) test will not add any new capability to the ProUCL software. 

Therefore, taking budget constraints into consideration, Levene's test has not been incorporated in the 

ProUCL software.  

 

o Although it makes sense to first determine if the two variances are equal or unequal, this is 

not a requirement to perform a t-test. The t-distribution based confidence interval or test for 

1 - 2 based on the pooled sample variance does not perform better than the approximate 

confidence intervals based upon Satterthwaite's test. Hence testing for the equality of 

variances is not required to perform a two-sample t-test. The use of Welch-Satterthwaite's or 

Cochran's method is recommended in all situations (see Hayes 2005).  

 

 Helsel (2012a) suggests that imputed NDs should not be made available to the users. The developers 

of ProUCL and other researchers like to have access to imputed NDs. As a researcher, for exploratory 

purposes only, one may want to have access to imputed NDs to be used in exploratory advanced 

methods such as multivariate methods including data mining, cluster and principal component 

analyses. It is noted that one cannot easily perform exploratory methods on multivariate data sets with 

NDs. The availability of imputed NDs makes it possible for researchers and scientists to identify 

potential patterns present in complex multivariate data by using data mining exploratory methods on 

those multivariate data sets with NDs. Additional discussion on this topic is considered in Chapter 4 

of this Technical Guide.  

 

o The statements summarized above should not be misinterpreted. One may not use parametric 

hypothesis tests such as a t-test or a classical ANOVA on data sets consisting of imputed 

NDs. These methods require further investigation as the decision errors associated with such 

methods remain unquantified. There are other methods such as the Gehan and T-W tests in 

ProUCL 5.0/ProUCL 5.1 which are better suited to perform two-sample hypothesis tests 

using data sets with multiple detection limits. 

 

 Outliers:  Helsel (2012a) and Helsel and Gilroy (2012) make several comments about outliers. The 

philosophy (with input from EPA scientists) of the developers of ProUCL about the outliers in 

environmental applications is that those outliers (unless they represent typographical errors) may 

potentially represent impacted (site related or otherwise) locations or monitoring wells; and therefore 
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may require further investigation. Moreover, decision statistics such as a UCL95 based upon a data 

set with outliers gets inflated and tends to represent those outliers instead of representing the 

population average. Therefore, a few low probability outliers coming from the tails of the data 

distribution may not be included in the computation of the decision making upper limits (UCLs, 

UTLs), as those upper limits get distorted by outliers and tend not to represent the parameters they are 

supposed to estimate.   

 

o The presence of outliers in a data set tends to destroy the normality of the data set. In other 

words, a data set with outliers can seldom (may be when outliers are mild, lying around the 

border of the central and tail parts of a normal distribution) follow a normal distribution. 

There are modern robust and resistant outlier identification methods (e.g., Rousseeuw and 

Leroy 1987;  Singh and Nocerino 1995) which are better suited to identify outliers present in 

a data set; several of those robust outlier identification methods are available in the Scout 

2008 version 1.0 (EPA 2009) software package.  

 

o For both Rosner and Dixon tests, it is the data set (also called the main body of the data set) 

obtained after removing the outliers (and not the data set with outliers) that needs to follow a 

normal distribution (Barnett and Lewis 1994). Outliers are not known in advance. ProUCL 

has normal Q-Q plots which can be used to get an idea about potential outliers (or mixture 

populations) present in a data set. However, since a lognormal model tends to accommodate 

outliers, a data set with outliers can follow a lognormal distribution; this does not imply that 

the outlier which may actually represent an impacted/unusual location does not exist! In 

environmental applications, outlier tests should be performed on raw data sets, as the cleanup 

decisions need to be made based upon values in the raw scale and not in log-scale or some 

other transformed space. More discussion about outliers can be found in Chapter 7 of this 

Technical Guide. 

 

 In Helsel (2012a), it is stated, "Mathematically, the lognormal is simpler and easier to interpret than 

the gamma (opinion)." We do agree with the opinion that the lognormal is simpler and easier to use 

but the log-transformation is often misunderstood and hence incorrectly used and interpreted. 

Numerous examples (e.g., Example 2-1 and 2-2, Chapter 2) are provided in the ProUCL guidance 

documents illustrating the advantages of the using a gamma distribution.  

 

 It is further stated in Helsel (2012a) that ProUCL prefers the gamma distribution because it 

downplays outliers as compared to the lognormal. This argument can be turned around - in other 

words, one can say that the lognormal is preferred by practitioners who want to inflate the effect of 

the outlier.  Setting this argument aside, we prefer the gamma distribution as it does not transform the 

variable so the results are in the same scale as the collected data set. As mentioned earlier, log-

transformation does appear to be simpler but problems arise when practitioners are not aware of the 

pitfalls (e.g., Singh and Ananda 2002; Singh, Singh, and Iaci 2002) associated with the use of 

lognormal distribution. 

 

 Helsel (2012a) and Helsel and Gilroy (2012) state that "lognormal and gamma are similar, so usually 

if one is considered possible, so is the other."  This is another incorrect and misleading statement; 

there are significant differences in the two distributions and in their mathematical properties. Based 

upon the extensive experience in environmental statistics and published literature, for skewed data 

sets that follow both lognormal and gamma distributions, the developers favor the use of the gamma 

distribution over the lognormal distribution. The use of the gamma distribution based decision 

statistics is preferred to estimate the environmental parameters (mean, upper percentile). A lognormal 
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model tends to hide contamination by accommodating outliers and multiple populations whereas a 

gamma distribution adjusts for skewness but tends not to accommodate contamination (elevated 

values) as can be seen in Examples 2-1 and 2-2 of Chapter 2 of this Technical Guide. The use of the 

lognormal distribution on a data set with outliers tends to yield inflated and distorted estimates which 

may not be protective of human health and the environment; this is especially true for skewed data 

sets of small of sizes <20-30; the sample size requirement increases with skewness.  

 

o In the context of computing a UCL95 of mean, Helsel and Gilroy (2012) and Helsel (2012a) state 

that GROS and LROS methods are probably never better than the KM method.  It should be 

noted that these three estimation methods compute estimates of mean and standard deviation and 

not the upper limits used to estimate EPCs and BTVs. The use of the KM method does yield good 

estimates of the mean and standard deviation as noted by Singh, Maichle, and Lee (2006).  The 

problem of estimating mean and standard deviation for data sets with nondetects has been studied 

by many researchers as described in Chapter 4 of this document. Computing good estimates of 

mean and sd based upon left-censored data sets addresses only half of the problem. The main 

issue is to compute decision statistics (UCL, UPL, UTL) which account for uncertainty and data 

skewness inherently present in environmental data sets.  
 

o Realizing that for skewed data sets, Student's t-UCL, CLT-UCL, and standard and percentile 

bootstrap UCLs do not provide the specified coverage to the population mean for uncensored data 

sets, many researchers (e.g., Johnson 1978; Chen 1995; Efron and Tibshirani 1993; Hall [1988, 

1992]; Grice and Bain 1980; Singh, Singh, and Engelhardt 1997; Singh, Singh, and Iaci 2002)  

developed parametric (e.g., gamma) and nonparametric (e.g., bootstrap-t and Hall's bootstrap 

method, modified-t, and Chebyshev inequality) methods for computing confidence intervals and 

upper limits which adjust for data skewness.  One cannot ignore the work and findings of the 

researchers cited above, and assume that Student's t-statistic based upper limits or percentile 

bootstrap method based upper limits can be used for all data sets with varying skewness and 

sample sizes.  
 

o Analytically, it is not feasible to compare the various estimation and UCL computation methods 

for skewed data sets containing ND observations.  Instead, researchers use simulation 

experiments to learn about the distributions and performances of the various statistics (e.g., KM-t-

UCL, KM-percentile bootstrap UCL, KM-bootstrap-t UCL, KM-Gamma UCL). Based upon the 

suggestions made in published literature and findings summarized in Singh, Maichle, and Lee 

(2006), it is reasonable to state and assume that the findings of the simulation studies performed 

on uncensored skewed data sets comparing the performances of the various UCL computation 

methods can be extended to skewed left-censored data sets.  

 

o Like uncensored skewed data sets, for left-censored data sets, ProUCL 5.0/ProUCL 5.1 has 

several parametric and nonparametric methods to compute UCLs and other limits which adjust 

for data skewness. Specifically, ProUCL uses KM estimates in gamma equations; in the 

bootstrap-t method, and in the Chebyshev inequality to compute upper limits for left-censored 

skewed data sets. 

 

 Helsel (2012a) states that ProUCL 4 is based upon presuppositions. It is emphasized that ProUCL 

does not make any suppositions in advance.  Due to the poor performance of a lognormal model, as 

demonstrated in the literature and illustrated via examples throughout ProUCL guidance documents, 

the use of a gamma distribution is preferred when a data set can be modeled by a lognormal model 

and a gamma model. To provide the desired coverage (as close as possible) for the population mean, 
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in earlier versions of ProUCL (version 3.0), in lieu of H-UCL, the use of Chebyshev UCL was 

suggested for moderately and highly skewed data sets.  In later (3.00.02 and higher) versions of 

ProUCL, depending upon skewness and sample size, for gamma distributed data sets, the use of the 

gamma distribution was suggested for computing the UCL of the mean.   

 

Upper limits (e.g., UCLs, UPLs, UTLs) computed using the Student's t statistic and percentile bootstrap 

method (Helsel 2012, NADA for R, 2013) often fail to provide the desired coverage (e.g., 95% confidence 

coefficient) to the parameters (mean, percentile) of most of the skewed environmental populations. It is 

suggested that the practitioners compute the decision making statistics (e.g., UCLs, UTLs) by taking: data 

distribution; data set size; and data skewness into consideration. For uncensored and left-censored data 

sets, several such upper limits computation methods are available in ProUCL 5.1 and its earlier versions.  

 

Contrary to the statements made in Helsel and Gilroy (2012), ProUCL software does not favor statistics 

which yield higher (e.g., nonparametric Chebyshev UCL) or lower (e.g., preferring the use of a gamma 

distribution to using a lognormal distribution) estimates of the environmental parameters (e.g., EPC and 

BTVs). The main objectives of the ProUCL software funded by the U.S. EPA is to compute rigorous 

decision statistics to help the decision makers and project teams in making sound decisions which are 

cost-effective and protective of human health and the environment.  

 

Cautionary Note:  Practitioners and scientists are cautioned about: 1) the suggestions made about the 

computations of upper limits described in some recent environmental literature such as the NADA books 

(Helsel [2005, 2012]); and 2) the misleading comments made about the ProUCL software in the training 

courses offered by Practical Stats during 2012 and 2013. Unfortunately, comments about ProUCL made 

by Practical Stats during their training courses lack professionalism and theoretical accuracy. It is noted 

that NADA packages in R and Minitab (2013) developed by Practical Stats do not offer methods which 

can be used to compute reliable or accurate decision statistics for skewed data sets. Decision statistics 

(e.g., UCLs, UTLs, UPLs) computed using the methods (e.g., UCLs computed using percentile bootstrap, 

and KM and LROS estimates and t-critical values) described in the NADA books and incorporated in 

NADA packages do not take data distribution and data skewness into consideration. The use of statistics 

suggested in NADA books and in Practical Stats training sessions often fail to provide the desired 

specified coverage to environmental parameters of interest for moderately skewed to highly skewed 

populations. Conclusions derived based upon those statistics may lead to incorrect conclusions which 

may not be cost-effective or protective of human health and the environment.  

 

Page 75 (Helsel [2012]): One of the reviewers of the ProUCL 5.0 software drew our attention to the 

following incorrect statement made on page 75 of Helsel (2012): 

 

"If there is only 1 reporting limit, the result is that the mean is identical to a substitution of the reporting 

limit for censored observations."  

 

An example of a left-censored data set containing ND observations with one reporting limit of 20 which 

illustrates this issue is described as follows.  

Y D_y 

20 0 

20 0 

20 0 

7 1 

58 1 
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92 1 

100 1 

72 1 

11 1 

27 1 

 

The mean and standard deviation based upon the KM and two substitution methods: DL/2 and DL are 

summarized as follows: 

 

 

Kaplan-Meier (KM) Statistics      

Mean   39.4 

SD   35.56 

 

DL Substitution method (replacing censored values by the reporting limit) 

Mean   42.7 

SD   34.77 

 

DL/2 Substitution method (replacing NDs by the reporting limit)      

Mean               39.7 

SD                37.19 

 

The above example illustrates that the KM mean (when only 1 detection limit is present) is not actually 

identical to the mean estimate obtained using the substitution, DL (RL) method. The statement made in 

Helsel's text (and also incorrectly made in his presentations such as the one made at the U.S. EPA 2007 

National Association of Regional Project Managers (NARPM) Annual Conference:  

http://www.ttemidev.com/narpm2007Admin/conference/)   
holds only when all observations reported as detects are greater than the single reporting limit, which is 

not always true for environmental data sets consisting of analytical concentrations. 

 

1.16 Box and Whisker Plots 
 

At the request of ProUCL users, a brief description of box plots (also known as box and whisker plots) as 

developed by Tukey (Hoaglin, Mosteller and Tukey 1991) is provided in this section.  A box and 

whiskers plot represents a useful and convenient exploratory tool and provides a quick five point 

summary of a data set. In statistical literature, one can find several ways to generate box plots. The 

practitioners may have their own preferences to use one method over the other. Box plots are well 

documented in the statistical literature and description of box plots can be easily obtained by surfing the 

net. Therefore, the detailed description about the generation of box plots is not provided in ProUCL 

guidance documents.  ProUCL also generates box plots for data set with NDs. Since box plots are used 

for exploratory purposes to identify outliers and also to compare concentrations of two or more groups, it 

does not really matter how NDs are displayed on those box plots. ProUCL generates box plots using 

detection limits and draws a horizontal line at the highest detection limit. Users can draw up to four 

horizontal lines at other levels (e.g., a screening level, a BTV, or an average) of their choice.  

 

All box plot methods, including the one in ProUCL, represent five-point summary graphs including: the 

lowest and the highest data values, median (50th percentile=second quartile, Q2), 25th percentile (lower 

quartile, Q1), and 75th percentile (upper quartile, Q3).  A box and whisker plot also provides information 

http://www.ttemidev.com/narpm2007Admin/conference/materials/
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about the degree of dispersion (interquartile range (IQR) = Q3-Q1=length/height of the box in a box plot), 

the degree of skewness (suggested by the length of the whiskers) and unusual data values known as 

outliers. Specifically, ProUCL (and other software packages) use the following to generate a box and 

whisker plot. 

 

 Q1= 25th percentile, Q2= 50th (median), and Q3 = 75th percentile 

 Interquartile range= IQR = Q3-Q1 (the length/height of the box in a box plot) 

 Lower whisker starts at Q1 and the upper whisker starts at Q3. 

 Lower whisker extends up to the lowest observation or (Q1 - 1.5 * IQR) whichever is higher 

 Upper whisker extends up to the highest observation or (Q3 + 1.5 * IQR) whichever is lower 

 Horizontal bars (also known as fences) are drawn at the end of whiskers 

 Guidance in statistical literature suggests that observations lying outside the fences (above the 

upper bar and below the lower bar) are considered potential outliers 

 

An example box plot generated by ProUCL is shown in the following graph. 

 

 
Box Plot with Fences and Outlier 

 

It should be pointed out that the use of box plots in different scales (e.g., raw-scale and log-scale) may 

lead to different conclusions about outliers. Below is an example illustrating this issue.  

 

Example 1-2. Consider an actual data set consisting of copper concentrations collected a Superfund Site. 

The data set is: 0.83, 0.87, 0.9, 1, 1, 2, 2, 2.18, 2.73, 5, 7, 15, 22, 46, 87.6, 92.2, 740, and 2960. Box plots 

using data in the raw-scale and log-scale are shown in Figures 1-1 and 1-2. 

 

Outliers 

Fences Q3 

Q1 

Q2 
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Figure 1-1. Box Plot of Raw Data in Original Scale 

 

Based upon the last bullet point of the description of box plots described above, from Figure 1-1, it is 

concluded that two observations 740 and 2960 in the raw scale represent outliers. 

 

 
Figure 1-2. Box Plot of Data in Log-Scale 

 

However, based upon the last bullet point about box plots, from Figure 1-2, it is concluded that two 

observations 740 and 2960 in the log-scale do not represent outliers. The log-transformation has 

accommodated the two outliers. This is one of the reasons ProUCL guidance suggests avoiding the use of 

log-transformed data. The use of a log-transformation tends to hide/accommodate outliers/contamination.  
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Note: ProUCL uses a couple of development tools such as FarPoint spread (for Excel type input and 

output operations) and ChartFx (for graphical displays). ProUCL generates box plots using the built-in 

box plot feature in ChartFx. The programmer has no control over computing various statistics (e.g., Q1, 

Q2, Q3, IQR) using ChartFx. So box plots generated by ProUCL can differ slightly from box plots 

generated by other programs (e.g., Excel). However, for all practical and exploratory purposes, box plots 

in ProUCL are equally good (if not better) as available in the various commercial software packages for 

investigating data distribution (skewed or symmetric), identifying outliers, and comparing multiple 

groups (main objectives of box plots).  

 

Precision in Box Plots: Box plots generated using ChartFx round values to the nearest integer. For 

increased precision of graphical displays (all graphical displays generated by ProUCL), the user can use 

the process described as follows. 

  

Position your cursor on the graph and right-click, a popup menu will appear.  Position the cursor on 

Properties and right-click; a windows form labeled Properties will appear.  There are three choices at 

the top: General, Series and Y-Axis.  Position the e cursor over the Y-Axis choice and left-click. You 

can change the number of decimals to increase the precision, change the step to increase or decrease the 

number Y-Axis values displayed and/or change the direction of the label.  To show values on the plot 

itself, position your cursor on the graph and right-click; a pop-up menu will appear. Position the cursor on 

Point Labels and right-click. There are other options available in this pop-up menu including changing 

font sizes.   
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CHAPTER 2 

 

Goodness-of-Fit Tests and Methods to Compute Upper 

Confidence Limit of Mean for Uncensored Data Sets 

without Nondetect Observations 

 

2.1 Introduction 

 
Many environmental decisions including exposure and risk assessment and management, and cleanup 

decisions are made based upon the mean concentrations of the contaminants/constituents of potential 

COPCs.  To address the uncertainty associated with the sample mean, a UCL95 is used to estimate the 

unknown population mean, µ1. A UCL95 is routinely used to estimate the EPC) term (EPA 1992a; EPA 

2002a).  A UCL95 of the mean represents that limit such that one can be 95% confident that the 

population mean, µ1, will be less than that limit. From a risk point of view, a UCL95 of the mean 

represents a number that is considered health protective when used to compute risk and health hazards. 

Since, many environmental decisions are made based upon a UCL95, it is important to compute a 

reliable, defensible (from human health point of view) and cost-effective estimate of the EPC.  To 

compute reliable estimates of practical merit, ProUCL software provides several parametric and 

nonparametric UCL computation methods covering a wide-range of skewed distributions (e.g., 

symmetric, mildly skewed to highly skewed) for data sets of various sizes. Based upon simulation results 

summarized in the literature (Singh, Singh, and Engelhardt [1997], Singh, Singh and Iaci [2002]), data 

distribution, data set size, and skewness, ProUCL makes suggestions on how to select an appropriate 

UCL95 of the mean to estimate the EPC.  It should be noted that a simulation study cannot cover all 

possible real world data sets of various sizes and skewness following different probability distributions. 

This ProUCL Technical Guide provides sufficient guidance to help a user select the most appropriate 

UCL as an estimate of the EPC. The ProUCL software makes suggestions to help a typical user select an 

appropriate UCL from all the UCLs incorporated in ProUCL and those available in the statistical 

literature. UCL values, other than those suggested by ProUCL, may be selected based upon project 

personnel’s experiences and project needs.  The user may want to consult a statistician before selecting an 

appropriate UCL95. 

 

The ITRC (2012) regulatory document recommends the use of a Student’s t-UCL95 and Chebyshev 

inequality based UCL95 to estimate EPCs for ISM based soil samples collected from DUs. In order to 

facilitate the computation of ISM data based estimates of the EPC, ProUCL5.1 (and ProUCL 5.0) can 

compute a UCL95 of the mean based upon data sets of sizes as small as 3. Additionally, the UCL module 

of ProUCL can be used on ISM-based data sets with NDs.  

 

However, it is advised that the users do not compute decision making statistics (e.g., UCLs, upper 

prediction limits [UPLs], upper tolerance limits [UTLs]) from discrete data sets consisting of less than 8-

10 observations. 
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For uncensored data sets without ND observations, theoretical details of the Student's t- and percentile 

bootstrap UCL computation methods, as well as the more complicated bootstrap-t and gamma distribution 

methods, are described in this Chapter.  One should not ignore the use of gamma distribution based UCLs 

(and other upper limits) just because it is easier to use a lognormal distribution. Typically, environmental 

data sets are positively skewed, and a default lognormal distribution (EPA 1992a) is used to model such 

data distributions. Additionally, an H-statistic based Land’s (Land, 1971, 1975) H-UCL is then typically 

used to estimate the EPC. Hardin and Gilbert (1993), Singh, Singh, and Engelhardt (1997, 1999), Schultz 

and Griffin (1999), and Singh, Singh, and Iaci (2002) pointed out several problems associated with the 

use of the lognormal distribution and the H-statistic to compute UCL of the mean. For lognormal data sets 

with high standard deviation (sd), σ, of the natural log-transformed data (e.g., σ exceeding 1.0 to 1.5), the 

H-UCL becomes unacceptably large, exceeding the 95% and 99% data quantiles, and even the maximum 

observed concentration, by orders of magnitude (Singh, Singh, and Engelhardt 1997). The H-UCL is also 

very sensitive to a few low or a few high values. For example, the addition of a single low measurement 

can cause the H-UCL to increase by a large amount (Singh, Singh, and Iaci, 2002) by increasing 

variability. Realizing that the use of the H-statistic can result in an unreasonably large UCL, it has been 

recommended (EPA 1992a) that the maximum value be used as an estimate of the EPC in cases when the 

H-UCL exceeds the largest value in the data set. For uncensored data sets without any NDs, ProUCL 

makes suggestions/recommendations on how to compute an appropriate UCL95 based upon data set size, 

data skewness and distribution.  

 
In practice, many skewed data sets follow a lognormal as well as a gamma distribution. Singh, Singh, and 

Iaci (2002) observed that UCLs based upon a gamma distribution yield reliable and stable values of 

practical merit. It is, therefore, desirable to test whether an environmental data set follows a gamma 

distribution.  A gamma distribution based UCL95 of the mean provides approximately 95% coverage to 

the population mean, μ1 = kθ of a gamma distribution, G (k, θ) with k and θ respectively representing the 

shape and scale parameters. For data sets following a gamma distribution with shape parameter, k > 1, the 

EPC should be estimated using an adjusted gamma (when n<50) or approximate gamma (when n≥50) 

UCL95 of the mean. For highly skewed gamma distributed data sets with values of the shape parameter, k 

≤ 1.0, a 95% UCL may be computed using the bootstrap-t-method or Hall’s bootstrap method when the 

sample size, n, is smaller, such as <15 to 20. For larger sample sizes with n> 20, a UCL of the mean may 

be computed using the adjusted or approximate gamma UCL (Singh, Singh, and Iaci 2002) computation 

method.  Based upon professional judgment and practical experience of the authors, some of these 

suggestions have been modified. Specifically, in earlier versions ProUCL, the cutoff value for the shape 

parameter, k was 0.1 which has been changed to 1.0 in this version. 

 

Unlike the percentile bootstrap and bias-corrected accelerated bootstrap (BCA) methods, bootstrap-t and 

Hall’s bootstrap methods (Efron and Tibshirani, 1993) account for data skewness and their use is 

recommended on skewed data sets when computing UCLs of the mean. However, the bootstrap-t and 

Hall’s bootstrap methods sometimes result in erratic, inflated, and unstable UCL values, especially in the 

presence of outliers (Efron and Tibshirani 1993). Therefore, these two methods should be used with 

caution. The user should examine the various UCL results and determine if the UCLs based upon the 

bootstrap-t and Hall’s bootstrap methods represent reasonable and reliable UCL values. If the results of 

these two methods are much higher than the rest of the UCL computation methods, it could be an 

indication of erratic behavior of these two bootstrap UCL computation methods.  ProUCL prints out a 

warning message whenever the use of these two bootstrap methods is recommended. In cases where these 

two bootstrap methods yield erratic and inflated UCLs, the UCL of the mean may be computed using the 

Chebyshev inequality. 
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ProUCL has graphical (e.g., quantile-quantile [Q-Q] plots) and formal goodness-of-fit (GOF) tests for 

normal, lognormal, and gamma distributions. These GOF tests are available for data sets with and without 

NDs. The critical values of the Anderson-Darling (A-D) test statistic and the Kolmogorov-Smirnov (K-S) 

test statistic to test for gamma distributions were generated using Monte Carlo simulation experiments 

(Singh, Singh, and Iaci 2002). Those critical values have been incorporated in ProUCL software and are 

tabulated in Appendix A for various levels of significance.  

 

ProUCL computes summary statistics for raw, as well as, log-transformed data sets with and without ND 

observations. In this Technical Guide and in ProUCL software, log-transformation (log) stands for the 

natural logarithm (ln, LN) or log to the base e. For uncensored data sets, mathematical algorithms and 

formulae used in ProUCL to compute the various UCLs are summarized in this chapter. ProUCL also 

computes the maximum likelihood estimates (MLEs) and the minimum variance unbiased estimates 

(MVUEs) of the population parameters of normal, lognormal, and gamma distributions. Nonparametric 

UCL computation methods in ProUCL include: Jackknife, central limit theorem (CLT), adjusted-CLT, 

modified Student's t (adjusts for skewness) Chebyshev inequality, and bootstrap methods. It is well 

known that the Jackknife method (with sample mean as an estimator) and Student’s t-method yield 

identical UCL values. Moreover, it is noted that UCLs based upon the standard bootstrap and the 

percentile bootstrap methods do not perform well by not providing the specified coverage of the mean for 

skewed data sets.  

 

Note on Computing Lower Confidence Limits (LCLs) of Mean: For some environmental projects an LCL 

of the unknown population mean is needed to achieve the project DQOs.  At present, ProUCL does not 

directly compute LCLs of mean. However, for data sets with and without nondetects, excluding the 

bootstrap methods, gamma distribution, and H-statistic based LCLs of mean, the same critical value (e.g., 

normal z value, Chebyshev critical value, or t-critical value) can be used to compute a LCL of mean as 

used in the computation of the UCL of the mean. Specifically, to compute a LCL, the '+' sign used in the 

computation of the corresponding UCL needs to be replaced by the '-' sign in the equation used to 

compute that UCL (excluding gamma, lognormal H-statistic, and bootstrap methods). For specific details, 

the user may want to consult a statistician. For data sets without nondetect observations, the user may 

want to use the Scout 2008 software package (EPA 2009d, 2010) to directly compute the various 

parametric and nonparametric LCLs of mean.  

2.2 Goodness-of-Fit (GOF) Tests 

Let x1, x2, ..., xn be a representative random sample (e.g., representing lead concentrations) from the 

underlying population (e.g., site areas under investigation) with unknown mean, μ1, and variance, σ1
2. Let 

µ and σ represent the population mean and the population standard deviation (sd) of the log-transformed 

(natural log to the base e) data. Let y  and sy ( σ̂ ) be the sample mean and sample sd, respectively, of the 

log-transformed data, yi = log (xi); i = 1, 2, ... , n. Specifically, let 
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Similarly, let x  and sx be the sample mean and sd of the raw data, x1 , x2 , .. , xn, obtained by replacing y 

by x in equations (2-1) and (2-2), respectively. In this chapter, irrespective of the underlying distribution, 
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µ1, and σ1
2 represent the mean and variance of the random variable X (in original units), whereas µ and σ2 

represent the mean and variance of Y = loge(X). 

  

Three data distributions have been considered in ProUCL 5.1 (and in older versions). These include the 

normal, lognormal, and the gamma distributions. Shapiro-Wilk, for n ≤2000, and Lilliefors (1967) test 

statistics are used to test for normality or lognormality of a data set. Lilliefors test (along with graphical 

Q-Q plot) seems to perform fairly well for samples of size 50 and higher. In ProUCL 5.1, updated critical 

values of Lilliefors test developed by Moling and Abdi (2007) and provided in the Encyclopedia of 

Measurement and Statistics have been used.  The empirical distribution function (EDF) based methods, 

the K-S and A-D tests, are used to test for a gamma distribution. Extensive critical values for these two 

test statistics have been obtained via Monte Carlo simulation experiments (Singh, Singh, and Iaci 2002). 

For interested users, those critical values are given in Appendix A for various levels of significance. In 

addition to these formal tests, the informal histogram and Q-Q plots (also called probability plots) are also 

available for visual inspection of the data distributions (Looney and Gulledge 1985). Q-Q plots also 

provide useful information about the presence of potential outliers and multiple populations in a data set. 

A brief description of the GOF tests follows. 

 

No matter which normality test is used, it may fail to detect the actual non-normality of the population 

distribution if the sample size is small, n<20 and with large sample sizes, n>50 or so, a small deviation 

from normality will lead to rejection of the normality hypothesis. The modified K-S test known as 

Lilliefors test is suggested for checking the normality assumption when the mean and sd of population 

distribution is not known.  

2.2.1 Test Normality and Lognormality of a Data Set   

ProUCL tests for normality and lognormality of a data set using three different methods described below. 

The program tests normality or lognormality at three different levels of significance, 0.01, 0.05, and 0.1 

(or confidence levels: 0.99, 0.95, and 0.90). For normal distributions, ProUCL outputs approximate 

probability values (p-values) for the S-W GOF test. The details of those methods can be found in the cited 

references. 

2.2.1.1  Normal Quantile-quantile (Q-Q) Plot  

A normal Q-Q represents a graphical method to test for approximate normality or lognormality of a data 

set (Hoaglin, Mosteller, and Tukey 1983; Singh 1993; Looney and Gulledge, 1985). A linear pattern 

displayed by the majority of the data suggests approximate normality or lognormality (when performed 

on log-transformed data) of the data set. For example, a high value, 0.95 or greater, of the correlation 

coefficient of the linear pattern may suggest approximate normality (or lognormality) of the data set under 

study. However, on this graphical display, observations well-separated from the linear pattern displayed 

by the majority of data may represent outlying observations not belonging to the dominant population, 

whose distribution one is assessing based upon a data set. Apparent jumps and breaks in the Q-Q plot 

suggest the presence of multiple populations. The correlation of the Q-Q plot for such a data set may still 

be high but that does not signify that the data set follows a normal distribution.  

 

Notes: Graphical displays provide added insight into a data set which might not be apparent based upon 

statistics such as S-W statistic or a correlation coefficient. The correlation coefficient of a Q-Q plot with 

curves, jumps and breaks can be high, which does not necessarily imply that the data follow a normal or 

lognormal distribution. AGOF test of a data set should always be judged based upon a formal (e.g., S-W 

statistic) as well as informal graphical displays. The normal Q-Q plot is used as an exploratory tool to 
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identify outliers or to identify multiple populations. On all Q-Q plots, ProUCL displays relevant statistics 

including: mean, sd, GOF test statistic, associated critical value, p-value (when available), and the 

correlation coefficient.  

 

There is no substitute for graphical displays of data sets. Graphical displays provide added insight about 

data sets and do not get distorted by outliers and/or mixture populations. The final conclusion regarding 

the data distribution should be based upon the formal GOF tests as wells as Q-Q plots. This statement is 

true for all GOF tests: normal, lognormal, and gamma distributions.  

2.2.1.2  Shapiro-Wilk (S-W) Test 

The S-W test is a powerful test used to test the normality or lognormality of a data set. ProUCL performs 

this test for samples of size up to 2000 (Royston 1982, 1982a).  For sample sizes ≤ 50, in addition to a test 

statistic and critical value, an approximate p-value associated with S-W test is also displayed. For samples 

of size >50, only approximate p-values are displayed. Based upon the selected level of significance and 

the computed test statistic, ProUCL informs the user if the data set is normally (or lognormally) 

distributed. This information should be used to compute an appropriate UCL of the mean.  

2.2.1.3  Lilliefors Test 

This test is useful for data sets of larger size (Lilliefors 1967; Dudewicz and Misra 1988; Conover 1999). 

This test is a slight modification of the Kolmogorov-Smirnov (K-S) test and is more powerful than a one-

sample K-S (with the estimated population mean and sd). In version 5.1 of ProUCL, critical values of 

Lilliefors test developed by Moling and Abdi and provided in the Encyclopedia of Measurement and 

Statistics (Salkind, N. Editor 2007) have been used and incorporated in the program.  The critical values 

as described in Salkind (2007) are used for n up to 50, and for values of n>50 approximate critical values 

are computed using the following formula: 

 

Critical Values = Factor/f(n); where   01.0
83.0





n

n
nf . 

The Factor used in the above equation depends upon the level of significance, α; Factor values are 0.741, 

0.819, 0.895, and 1.035 for α = 0.20, 0.1, 0.05, and 0.01 respectively. 

  

Based upon the selected level of significance and the computed test statistic, ProUCL informs the user if 

the data set is normally or lognormally distributed. This information should be used to compute an 

appropriate UCL of the mean. The program outputs the relevant statistics on the Q-Q plot of data.  

 

 For convenience, normality, lognormality, or gamma distribution test results for a built-in level of 

significance of 0.05 are displayed on the UCL and background statistics output sheets. This helps 

the user in selecting the most appropriate UCL to estimate the EPC. It should be pointed out that 

sometimes, the two GOF tests may lead to different conclusions. In such situations, ProUCL 

displays a message that data are approximately normally or lognormally distributed. It is 

suggested that the user makes a decision based upon the information provided by the associated 

Q-Q plot and the values of the GOF test statistics.  

 

New in ProUCL 5.1: Based upon the author’s professional experience and in an effort to streamline the 

decision process for computing upper limits (e.g., UCL95), some changes were made in the decision logic 

applied in ProUCL for suggesting/recommending UCL values.  Specifically, ProUCL 5.1 makes 

decisions about the data distribution based upon both the Lilliefors and S-W GOF test statistics for 
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normal and lognormal distributions and both the A-D and K-S GOF test statistics for the gamma 

distribution. When a data set passes one of the two GOF tests for a distribution, ProUCL outputs a 

statement that the data set follows that approximate distribution and suggests using appropriate decision 

statistic(s). Specifically, when only one of the two GOF statistic leads to the conclusion that data are 

normal, lognormal or gamma, ProUCL outputs the conclusion that the data set follows that approximate 

distribution and all suggestions provided by ProUCL regarding the use of parametric or nonparametric 

decision statistics are made based upon this conclusion. As a result, UCLs suggested by ProUCL 5.1 can 

differ from the UCLs suggested by earlier versions of ProUCL.   

 

Note: When dealing with a small data set, n <50, and Lilliefors test suggests that data are normal and the 

S-W test suggests that data are not normal, ProUCL will suggest that the data set follows an approximate 

normal distribution.  However, for smaller data sets, Lilliefors test results may not be reliable, therefore 

the user is advised to review GOF tests for other distributions and proceed accordingly.  It is emphasized, 

when a data set follows a distribution (e.g., distribution A) using all GOF tests, and also follows an 

approximate distribution (e.g., distribution B) using one of the available GOF tests, it is preferable to use 

distribution A over distribution B. However, when distribution A is a highly skewed (e.g., sd of logged 

data >1.0) lognormal distribution, use the guidance provided on the ProUCL generated output.   

 

In practice, depending upon the power associated with statistical tests, two tests (e.g., two sample t-test 

vs. WMW test; S-W test vs. Lilliefors test) used to address the same statistical issue (comparing two 

groups, assessing data distribution) can lead to different conclusions (e.g., GOF tests for normality in 

Example 2-4); this is especially true when dealing with data sets of smaller sizes. The power of a test can 

be increased by collecting more data. If this is not feasible due to resource constraints, the collective 

project team should determine which conclusion to use in the decision making process. It may, in these 

cases, be appropriate to consult a statistician. 

2.2.2 Gamma Distribution 

A continuous random variable, X (e.g., concentration of an analyte), is said to follow a gamma 

distribution, G(k, θ) with parameters k > 0 (shape parameter) and θ > 0 (scale parameter), if its probability 

density function is given by the following equation: 
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                           (2-3) 

 

Many positively skewed data sets follow a lognormal as well as a gamma distribution. The use of a 

gamma distribution tends to yield reliable and stable 95% UCL values of practical merit. It is therefore 

desirable to test if an environmental data set follows a gamma distribution. If a skewed data set does 

follow a gamma model, then a 95% UCL of the population mean should be computed using a gamma 

distribution. For data sets which follow a gamma distribution, the adjusted 95% UCL of the mean based 

upon a gamma distribution is optimal (Bain and Engelhardt 1991) and approximately provides the 

specified 95% coverage of the population mean, μ1 = kθ (Singh, Singh, and Iaci 2002).  

 

The GOF test statistics for a gamma distribution are based upon the EDF. The two EDF tests incorporated 

in ProUCL are the K-S test and the A-D test, which are described in D’Agostino and Stephens (1986) and 

Stephens (1970). The graphical Q-Q plot for a gamma distribution has also been incorporated in ProUCL. 

The critical values for the two EDF tests are not available, especially when the shape parameter, k, is 
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small (k < 1). Therefore, the associated critical values have been computed via extensive Monte Carlo 

simulation experiments (Singh, Singh, and Iaci 2002). The critical values for the two test statistics are 

given in Appendix A. The 1%, 5%, and 10% critical values of these two test statistics have been 

incorporated in ProUCL. The GOF tests for a gamma distribution depend upon the MLEs of the gamma 

parameters, k and θ, which should be computed before performing the GOF tests. Information about 

estimation of gamma parameters, gamma GOF tests, and construction of gamma Q-Q plots is not readily 

available in statistical textbooks. Therefore, a detailed description of the methods for a gamma 

distribution is provided as follows. 

2.2.2.1  Quantile-Quantile (Q-Q) Plot for a Gamma Distribution  

Let x1, x2, ... , xn be a random sample from the gamma distribution, G(k,); and let x(1)  x(2)   ...  x(n) 

represent the ordered sample. Let k̂ and ̂  represent the maximum likelihood estimates (MLEs) of k and 

, respectively; details of the computation of the MLEs of k and   can be found in  Singh, Singh, and Iaci 

(2002). The Q-Q plot for a gamma distribution is obtained by plotting the scatter plot of pairs, 

),( )(0 ii xx :i 1, 2, , n. The gamma quantiles, x0i, are given by the equation, ;2/ˆ
00 θzx ii   :i 1, 2, , 

n, where the quantiles z0i (already ordered) are obtained by using the inverse chi-square distribution and 

are given as follows: 

 

                ;/)2/1()( 2
ˆ2

0

2
ˆ2

0

nidf
k

z

k

i

     :i 1, 2, , n                               (2-4) 

In (2-4), 
2

ˆ2k
  represents a chi-square random variable with k̂2  degrees of freedom (df). The program, 

PPCHI2 (Algorithm AS91) described in Best and Roberts (1975) has been used to compute the inverse 

chi-square percentage points given by equation (2-4). All relevant statistics including the MLE of k are 

also displayed on a gamma Q-Q plot.  

 

Like a normal Q-Q plot, a linear pattern displayed by the majority of the data on a gamma Q-Q plot 

suggests that the data set follows an approximate gamma distribution. For example, a high value (e.g., 

0.95 or greater) of the correlation coefficient of the linear pattern may suggest an approximate gamma 

distribution of the data set under study. However, on this Q-Q plot, points well-separated from the bulk of 

data may represent outliers. Apparent breaks and jumps in the gamma Q-Q plot suggest the presence of 

multiple populations. The correlation coefficient of a Q-Q plot with outliers and jumps can still be high 

which does not signify that the data follow a gamma distribution. Therefore, a graphical Q-Q plot and 

other formal GOF tests, the A-D test or K-S test, should be used on the same data set to determine the 

distribution of a data set.  

2.2.2.2  Empirical Distribution Function (EDF)-Based Goodness-of Fit Tests 

Let F(x) be the cumulative distribution function (CDF) of a gamma distributed random variable, X. Let Z 

= F(X), then Z represents a uniform U(0,1) random variable (Hogg and Craig 1995). For each xi, compute 

zi by using the incomplete gamma function given by the equation zi = F (xi); :i 1, 2, , n. The 

algorithm (Algorithm AS 239, Shea 1988) as given in the book Numerical Recipes in C, the Art of 

Scientific Computing (Press et al. 1990) has been used to compute the incomplete gamma function. 
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Arrange the resulting zi in ascending order as z(1)   z(2)   ...   z(n). Let  nzz
n

i

i /
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 be the mean of the 

n, zi; :i 1, 2, , n.  

 

 

 

Compute the following two statistics:  
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  (2-5) 

 

The K-S test statistic is given by ),max(  DDD ; and the A-D test statistic is given as follows:  
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As mentioned before, the critical values for these two statistics, D and A2, are not readily available. For 

the A-D test, only the asymptotic critical values are available in the statistical literature (D’Agostino and 

Stephens 1986). Some raw critical values for the K-S test are given in Schneider (1978), and Schneider 

and Clickner (1976).  Critical values of these test statistics are computed via Monte Carlo experiments 

(Singh, Singh, and Iaci 2002). It is noted that the distributions of the K-S test statistic, D, and the A-D test 

statistic, A2, do not depend upon the scale parameter, θ; therefore, the scale parameter, θ, has been set 

equal to 1 in all simulation experiments. In order to generate critical values, random samples from gamma 

distributions were generated using the algorithm as given in Whittaker (1974). It is observed that the 

simulated critical values are in close agreement with all available published critical values.  

 

The critical values simulated by Singh, Singh, and Iaci (2002) for the two test statistics have been 

incorporated in the ProUCL software for three levels of significance, 0.1, 0.05, and 0.01. For each of the 

two tests, if the test statistic exceeds the corresponding critical value, then the hypothesis that the data set 

follows a gamma distribution is rejected. ProUCL computes the GOF test statistics and displays them on 

the gamma Q-Q plot and also on the UCL and background statistics output sheets generated by ProUCL. 

Like all other tests, in practice these two GOF test may lead to different conclusions. In such situations, 

ProUCL outputs a message that the data follow an approximate gamma distribution. The user should 

make a decision based upon the information provided by the associated gamma Q-Q plot and the values 

of the GOF test statistics. 

 

Computation of the Gamma Distribution Based Decision Statistics and Critical Values: When computing 

the various decision statistics (e.g., UCL and BTVs), ProUCL uses biased corrected estimates, kstar, 
*k̂  

and theta star, 
*̂  (described in Section 2.3.3) of the shape, k, and scale,  , parameters of the gamma 

distribution.  It is noted that the critical values for the two gamma GOF tests reported in the literature 

(D’Agostino and Stephens 1986; Schneider and Clickner 1976; and Schneider 1978) are computed using 

the MLE estimates, k̂  and ̂  of the two gamma parameters, k and . Therefore, the critical values of A-

D and K-S tests incorporated in ProUCL have also been computed using the MLE estimates: khat, k̂  and 

theta hat,̂  of the two gamma parameters, k and .  
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Updated Critical Values of Gamma GOF Test Statistics (New in ProUCL 5.0): For values of the gamma 

distribution shape parameter, k ≤ 0.1, critical values of the two gamma GOF tests, A-D and K-S tests, 

have been updated in ProUCL 5.0 and higher versions. Critical values incorporated in earlier versions 

were simulated using the gamma deviate generation algorithm (Whittaker 1974) available at the time and 

with the source code described in the book Numerical Recipes in C, the Art of Scientific Computing (Press 

et al. 1990). Th gamma deviate generation algorithm available at the time was not very efficient 

especially for smaller values of the shape parameter, k ≤ 0.1. For values of the shape parameter, k≤ 0.1, 

significant discrepancies were found in the critical values of the two gamma GOF test statistics obtained 

using the two gamma deviate generation algorithms: Whitaker (1974) and Marsaglia and Tsang (2000).  

 

Therefore, for values of k ≤ 0.2, critical values for the two gamma GOF tests have been re-generated and 

tables of critical values of the two gamma GOF tests have been updated in Appendix A.  Specifically, for 

values of the shape parameter, k ≤ 0.1, critical values of the two gamma GOF tests have been generated 

using the more efficient gamma deviate generation algorithm as described in Marsaglia and Tsang's 

(2000) and Best (1983). Detailed description about the implementation of Marsaglia and Tsang's 

algorithm to generate gamma deviates can be found in Kroese, Taimre, and Botev (2011).  From a 

practical point of view, for values of k greater than 0.1, the simulated critical values obtained using 

Marsaglia and Tsang's algorithm (2000) are in general agreement with the critical values of the two GOF 

test statistics incorporated in ProUCL 4.1 for the various values of the sample size considered. Therefore, 

those critical values for values of k > 0.1 do not have to be updated.  

 

Note: In March 2015 minor discrepancies were identified in critical values of the gamma GOF A-D tests, 

as summarized in Tables A1-A6 of ProUCL 5.0 Technical Guide. For example, for a specified sample 

size and level of significance, α, the critical values for GOF tests are expected to decrease as k increases. 

Due to inherent random variability in the simulated gamma data sets, critical values do not follow 

(deviations are minor occurring in 2nd or 3rd decimal places) this trend in a few cases. However, from a 

practical and decision making point of view those differences are minor (see below). These discrepancies 

can be eliminated by performing simulation experiments using more iterations. In ProUCL 5.1, these 

discrepancies in the critical values of gamma GOF tests have been fixed via interpolation. 

 

For example, in Table A-3, for the A-D test, with significance level α= 0.05 and n=7, critical values for 

k=10, 20, and 50 are 0.708, 0.707, and 0.708.  Also, in Table A-4 for n=200 and k=0.025, the critical 

value is 0.070489, and for n=200, k=0.05, the critical value is 0.07466. Due to a lack of resources and 

time, the critical values have not been re-simulated; however, this value has been replaced by an 

interpolated value using simulated values for k=0.025 and k=0.1.  

2.3 Estimation of Parameters of the Three Distributions Incorporated in 
ProUCL 

Let μ1 and σ1
2 represent the mean and variance of the random variable, X, and μ and σ2 represent the mean 

and variance of the random variable Y = log(X). Also, σ̂  represents the standard deviation of the log-

transformed data. For both lognormal and gamma distributions, the associated random variable can take 

only positive values. It is typical of environmental data sets to consist of only positive concentrations.  

2.3.1 Normal Distribution 

Let X be a continuous random variable (e.g., lead concentrations in surface soils of a site), which follows 

a normal distribution, N (μ1, σ1
2) with mean, μ1, and variance, σ1

2. The probability density function of a 

normal distribution is given by the following equation: 
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1 1 1 1 1( ; , ) exp[ ( ) / 2 ]/( 2 );   - x <f x x           (2-7) 

 

For normally distributed data sets, it is well known (Hogg and Craig 1995) that the MVUEs of the mean, 

μ1, and the variance, σ1
2, are given by the sample mean, x , and sample variance, sx

2. It is also well known 

that for normally distributed data sets, a UCL of the unknown mean, μ1, based upon the Student’s t-

distribution is optimal.  In practice, for normally distributed data sets, UCLs computed using Student's t-

distribution, the modified t-distribution, and bootstrap-t method are in close agreement.  

2.3.2 Lognormal Distribution 

If Y = log(X) is normally distributed with the mean, μ, and variance, σ2, then X is said to be lognormally 

distributed with parameters μ and σ2 and is denoted by LN(μ, σ2). It should be noted that μ and σ2 are not 

the mean and variance of the lognormal random variable, X, but they are the mean and variance of the 

log-transformed random variable, Y, whereas μ1, and σ1
2 represent the mean and variance of X. Some 

parameters of interest of a two-parameter lognormal distribution, LN(µ, σ2), are given as follows: 

 

                                 Mean = )5.0exp( 2

1 σμμ   (2-8) 

                                 Median = )exp(μM   (2-9) 

                                 Variance = ]1))[exp(2exp( 222

1  σσμσ  (2-10)  

                                 Coefficient of Variation = 1)exp( 2

11  σμσCV   (2-11) 

                                 Skewness = CV3+ 3CV (2-12)  

2.3.2.1  MLEs of the Parameters of a Lognormal Distribution 

For lognormally distributed data sets, note that y and sy (= σ̂ ) are the MLEs of μ and σ, respectively. The 

MLE of any function of the parameters μ and σ2 is obtained by substituting these MLEs in place of the 

parameters (Hogg and Craig 1995). Therefore, replacing μ and σ by their MLEs in equations (2-8) 

through (2-12) will result in the MLEs (but biased) of the respective parameters of the lognormal 

distribution. The program ProUCL computes all of these MLEs for lognormally distributed data sets. 

These MLEs are also printed on the Excel-type output spreadsheet generated by ProUCL. 

2.3.2.2  Relationship between Skewness and Standard Deviation, σ 

For a lognormal distribution, the CV (given by equation (2-11) above) and the skewness (given by 

equation (2-12)) depend only on σ. Therefore, in this Technical Guide and also in ProUCL software, the 

standard deviation, σ (sd of log-transformed variable, Y), or its MLE, sy (= σ̂ ), has been used as a measure 

of the skewness of lognormally distributed data sets and also of other data sets with positive values. The 

greater the sd, the greater are the CV and the skewness. For example, for a lognormal distribution with σ 

= 0.5, the skewness = 1.75; with σ =1.0, the skewness = 6.185; with σ =1.5, the skewness = 33.468; and 

with σ = 2.0, the skewness = 414.36. The skewness of a lognormal distribution becomes unreasonably 

large as σ starts approaching and exceeding 1.5. For a gamma distribution, the skewness is a function of 

the shape parameter, k. As k decreases, the skewness increases. It is observed (Singh, Singh, Engelhardt 

1997; Singh, Singh, and Iaci 2002) that for smaller sample sizes (such as smaller than 50), and for values 

of σ or σ̂  approaching and exceeding 1.5 to 1.75, the use of the H-statistic-based H-UCL results in 

impractical and unacceptably large values.  



55 

 

For positively skewed data sets, the various levels of skewness can be defined in terms σ or its MLE 

estimate, sy. These levels are described as follows in Table 2-1. ProUCL software uses the sample sizes 

and skewness levels defined below to make suggestions/recommendations to select an appropriate UCL 

as an estimate of the EPC. 
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Table 2-1. Skewness as a Function of σ (or its MLE, sy = σ̂ ), sd of log(X) 

 

Standard Deviation 

of Logged Data 

 

Skewness 

σ < 0.5 Symmetric to mild skewness 

0.5 ≤ σ < 1.0 Mild skewness to moderate skewness 

1.0 ≤ σ < 1.5 Moderate skewness to high skewness 

1.5 ≤ σ < 2.0 High skewness  

2.0 ≤ σ < 3.0 
Very high skewness (moderate probability of 

outliers and/or multiple populations) 

σ ≥ 3.0 
Extremely high skewness (high probability of 

outliers and/or multiple populations) 

Note: When data are mildly skewed with σ < 0.5, the three distributions considered in ProUCL tend to 

yield comparable upper limits irrespective of the data distribution. 

2.3.2.3  MLEs of the Quantiles of a Lognormal Distribution 

For highly skewed (σ > 1.5) lognormally distributed populations, the population mean, μ1, often exceeds 

the higher quantiles (80%, 90%, 95%) of the distribution. Therefore, the estimation of these quantiles is 

also of interest. This is especially true when one may want to use MLEs of the higher order quantiles such 

as 95%, 97.5%, etc. as estimates of the EPC. The formulae to compute these quantiles are described here.  

 

The pth quantile (or 100 pth percentile), xp, of the distribution of a random variable, X, is defined by the 

probability statement, P(X ≤ xp) = p. If zp is the pth quantile of the standard normal random variable, Z, 

with P(Z ≤  zp) = p, then the pth quantile of a lognormal distribution is given by  xp = exp(μ + zpσ). Thus 

the MLE of the pth quantile is given by: 

 

                                                                 )ˆˆexp(ˆ σzμx pp   (2-13) 

 

It is expected that 95% of the observations coming from a lognormal LN(μ, σ2) distribution would lie at or 

below exp(μ + 1.65σ). The 0.5th quantile of the standard normal distribution is z0.5 = 0, and the 0.5th 

quantile (or median) of a lognormal distribution is M = exp(μ), which is obviously smaller than the mean, 

μ1, as given by equation (2-8).  

 

Notes: The mean, μ1, is greater than xp if and only if σ > 2zp. For example, when p = 0.80, zp = 0.845, μ1 

exceeds x0.80, the 80th percentile if and only if σ > 1.69, and, similarly, the mean, μ1, will exceed the 95th 

percentile if and only if σ > 3.29 (extremely highly skewed). ProUCL computes the MLEs of the 50% 

(median), 90%, 95%, and 99% percentiles of lognormally distributed data sets.  
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2.3.2.4  MVUEs of Parameters of a Lognormal Distribution 

Even though the sample mean x  is an unbiased estimator of the population mean, μ1, it does not possess 

the minimum variance (MV). The MVUEs of μ1 and σ1
2 of a lognormal distribution are given as follows: 

 

                                  )2/()exp(ˆ 2

1 yn sgyμ   (2-14) 
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The series expansion of the function gn(x) is given in Bradu and Mundlak (1970), and Aitchison and 

Brown (1969). Tabulations of this function are also provided by Gilbert (1987). Bradu and Mundlak 

(1970) computed the MVUE of the variance of the estimate, 1μ̂ , 

 

                                  ))]1/()2(())2()[(2exp()ˆ(ˆ 222

1
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The square root of the variance given by equation (2-16) is called the standard error (SE) of the 

estimate, 1μ̂ , given by equation (2-14).  The MVUE of the median of a lognormal distribution is given by 

 

                                                ))]1(2/([)exp(ˆ 2  nsgyM yn   (2-17) 

 

For a lognormally distributed data set, ProUCL also computes these MVUEs given by equations (2-14) 

through (2-17). 

2.3.3 Estimation of the Parameters of a Gamma Distribution 

The population mean and variance of a two-parameter gamma distribution, G(k, θ), are functions of both 

parameters, k and θ. In order to estimate the mean, one has to obtain estimates of k and θ. The 

computation of the MLE of k is quite complex and requires the computation of Digamma and Trigamma 

functions. Several researchers (Choi and Wette 1969; Bowman and Shenton 1988; Johnson, Kotz, and 

Balakrishnan 1994) have studied the estimation of the shape and scale parameters of a gamma 

distribution. The MLE method to estimate the shape and scale parameters of a gamma distribution is 

described below. 

 

As before, let x1, x2, ..., xn be a random sample (e.g., representing constituent concentrations) of size n 

from a gamma distribution, G(k, θ), with unknown shape and scale parameters, k and θ, respectively. The 

log- likelihood function (obtained using equation (2-3)) is given as follows: 

 

          θxxkknθnkθkxxxLogL iin )log()1()(Γlog)log(),;,...,,( 21  (2-18) 

To find the MLEs of k and θ, one differentiates the log-likelihood function as given in (2-18) with respect 

to k and θ, and sets the derivatives to zero. This results in the following two equations: 
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Solving equation (2-20) for θ̂ , and substituting the result in (2-19), we get following equation: 
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There does not exist a closed form solution of equation (2-21). This equation needs to be solved 

numerically for k̂ , which requires the use of digamma and trigamma functions. An estimate of k can be 

computed iteratively by using the Newton-Raphson method (Press et al. 1990), leading to the following 

iterative equation: 
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The iterative process stops when k̂  starts to converge. In practice, convergence is typically achieved in 

fewer than 10 iterations. In equation (2-22), 

 

nxxM i )log()log( ,  )(Γlog)(Ψ k
dk

d
k  , and  )(Ψ)(Ψ k
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d
k   

 

Here )(Ψ k  is the digamma function and )(Ψ k  is the trigamma function. Good approximate values for 

these two functions (Choi and Wette 1969) can be obtained using the following two approximations. For 

k ≥ 8, these functions are approximated by: 

 

                            )2()6())21/(110/1(11)log()(Ψ 22 kkkkkk  , and (2-23) 

 

                              kkkkkk )2()3(/))7/(15/1(111)(Ψ 22  (2-24) 

 

For k < 8, one can use the following recurrence relations to compute these functions: 

 

                                                 kkk /1)1(Ψ)(Ψ  , and (2-25) 

 

                                                 2/1)1(Ψ)(Ψ kkk   (2-26) 

 

In ProUCL, equations (2-23) through (2-26) have been used to estimate k. The iterative process requires 

an initial estimate of k. A good starting value for k in this iterative process is given by k0 = 1 / (2M). Thom 

(1968) suggested the following approximation as an initial estimate of k: 
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Bowman and Shenton (1988) suggest using k̂ , given by (2-27) as a starting value of k for the iterative 

procedure, calculating lk̂  at the lth iteration using the following formula: 
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  (2-28) 

 

Both equations (2-22) and (2-28) have been used to compute the MLE of k. It is observed that the 

estimate, k̂ , based upon the Newton-Raphson method, as given by equation (2-22), is in close agreement 

with the one obtained using equation (2-28) with Thom’s approximation as an initial estimate. Choi and 

Wette (1969) further concluded that the MLE of k, k̂ , is biased high. A bias-corrected (Johnson, Kotz, 

and Balakrishnan 1994) estimate of k is given by: 

 

                                                       )3/(2/ˆ)3(ˆ* nnknk   (2-29) 

 

In (2-29), k̂  is the MLE of k obtained using either (2-22) or (2-28). Substitution of equation (2-29) in 

equation (2-20) yields an estimate of the scale parameter, θ, given as follows: 

 

                                                                    
** ˆ/ˆ kxθ   (2-30) 

 

ProUCL computes simple MLEs of k and θ, and also bias-corrected estimates given by (2-29) and (2-30) 

of k and θ. The bias-corrected estimate (called k star and theta star in ProUCL graphs and output sheets) 

of k as given by (2-29) has been used in the computation of the UCLs (as given by equations (2-34) and 

(2-35) below) of the mean of a gamma distribution. 

Note on Bias Corrected Estimates, 
*k̂  and 

*̂ : As mentioned above, Choi and Wette (1969) concluded 

that the MLE, k̂ , of k is biased high. They suggested the use of the bias-corrected (Johnson, Kotz, and 

Balakrishnan 1994) estimate of k given by (2-29) above. However, recently the developers performed a 

simulation study to evaluate the bias in the MLE of the mean of a gamma distribution for various values 

of the shape parameter, k and sample size, n. For smaller values of k (e.g., <0.2), the bias in the mean 

estimate (in absolute value) and mean square error (MSE) based upon the biased corrected MLE, 
*k̂  are 

higher than those computed using the MLE estimate, k̂ ; and for higher values of k (e.g., >0.2), the bias in 

the mean estimate and MSE computed using the biased corrected MLE, 
*k̂  are lower than those 

computed using the MLE, k̂ . For values of k around 0.2, the use of 
*k̂  and k̂  yields comparable results 

for all values of the sample size. The bias in the mean estimate obtained using the MLE, k̂ , increases as k 

increases, and as expected, bias and MSE decrease as the sample size increases. The results of this study 

will be published elsewhere.  

At present for uncensored and left-censored data sets, ProUCL computes all gamma UCLs and other 

upper limits (Chapters 3, 4 and 5) using bias corrected estimates, 
*k̂  and 

*̂  of k and θ. ProUCL 

generated output sheets display many intermediate results including k̂ and 
*k̂ ; θ̂  and 

*̂ .  Interested 

users may want to compute UCLs and other upper limits using MLE estimates, k̂  and ̂   of k and θ for 

values of k described in the above paragraph. 
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2.4 Methods for Computing a UCL of the Unknown Population Mean   

ProUCL computes a (1 – α)*100 UCL of the population mean, µ1, using several parametric and 

nonparametric methods. ProUCL can compute a (1 – α)*100 UCL (except for adjusted gamma UCL and 

Land’s H-UCL) of the mean for any user selected confidence coefficient, (1 – α), lying in the interval 

[0.5, 1.0]. For the computation of the adjusted gamma UCL, three confidence levels, namely: 0.90, 0.95, 

and 0.99 are supported by the ProUCL software. An approximate gamma UCL can be computed for any 

level of significance in the interval [0.5, 1.0].  

 

Parametric UCL Computation Methods in ProUCL include: 

 

 Student’s t-statistic (assumes normality or approximate normality) based UCL,  

 Approximate gamma UCL (assumes approximate gamma distribution),  

 Adjusted gamma UCL (assumes approximate gamma distribution),  

 Land’s H-Statistic UCL (assumes lognormality), and 

 Chebyshev inequality based UCL: Chebyshev (MVUE) UCL obtained using MVUE of the 

parameters (assumes lognormality). 

 

Nonparametric UCL Computation Methods in ProUCL include:  

 

 Modified-t-statistic (modified for skewness) UCL,  

 Central Limit Theorem (CLT) UCL to be used for large samples,  

 Adjusted Central Limit Theorem UCL: adjusted-CLT UCL (adjusted for skewness), 

 Chebyshev UCL: Chebyshev (Mean, sd) obtained using classical sample mean and standard 

deviation,  

 Jackknife UCL (yields the same result as Student’s t-statistic UCL), 

 Standard bootstrap UCL,  

 Percentile bootstrap UCL, 

 BCA bootstrap UCL, 

 Bootstrap-t UCL, and   

 Hall’s bootstrap UCL.  

 

For skewed data sets, Modified-t and adjusted CLT methods adjust for skewness. However, this 

adjustment is not adequate (Singh, Singh, and Iaci, 2002) for moderately skewed to highly skewed data 

sets (levels of skewness described in Table 2-1).  Even though some UCL methods (e.g., CLT, UCL 

based upon Jackknife method, standard bootstrap, and percentile bootstrap methods) do not perform well 

enough to provide the specified coverage to the population mean of skewed distributions. These methods 

have been included in ProUCL for comparison, academic, and research purposes. These comparisons are 

also necessary to demonstrate why the use of a Student's t-based UCL and Kaplan-Meier (KM) method 

based UCLs using t-critical values as suggested in some environmental books should be avoided. 

Additionally, the inclusion of these methods also helps the user to make better decisions. Based upon the 

sample size, n, data skewness, ̂ , and data distribution, ProUCL makes suggestions regarding the use of 

one or more 95% UCL methods to estimate the EPC. For additional gudidance, the users may want to 

consult a statistician to select the most appropriate UCL95 to estimate an EPC. 

 

It is noted that in the environmental literature, recommendations about the use of UCLs have been made 

without accounting for the skewness and sample size of the data set. Specifically, Helsel (2005, 2012) 

suggests the use t-statistic and percentile bootstrap method on robust regression on order statistics (ROS) 

and KM estimates to compute UCL95s without considering data skewness and sample size. For 
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moderately skewed to highly skewed data sets, the use of such UCLs underestimates the population mean. 

These issues are illustrated by examples discussed in the following sections and also in Chapters 4 and 5. 

2.4.1 (1 – α)*100 UCL of the Mean Based upon Student’s t-Statistic 

The widely used Student’s t-statistic is given by: 

 

                                                                    
ns

μx
t

x /

1
  (2-31) 

Where x and sx are, respectively, the sample mean and sample standard deviation obtained using the raw 

data. For normally distributed data sets, the test statistic given by equation (2-31) follows the Student’s t-

distribution with (n -1) df. Let tα,n-1 be the upper αth quantile of the Student’s t-distribution with (n -1) df. 

 

A (1 – α)*100 UCL of the population mean, μ1, is given by: 

 

                                                           UCL = nstx xnα /1,   (2-32) 

 

For a normally (when the skewness is approximately 0) distributed data sets, equation (2-32) provides the 

best (optimal) way of computing a UCL of the mean. Equation (2-32) may also be used to compute a 

UCL of the mean based upon symmetric or mildly skewed (|skewness|<0.5) data sets, where the skewness 

is defined in Table 2-1. For moderately skewed data sets (e.g., when̂ , the sd of log-transformed data, 

starts approaching and exceeding 0.5), the UCL given by (2-32) fails to provide the desired coverage of 

the population mean. This is especially true when the sample size is smaller than 20-25 (graphs 

summarized in Appendix B). The situation gets worse (coverage much smaller) for higher values of the 

sd,̂ , or its MLE, sy. 

 

Notes: ProUCL 5.0 and later versions make a decision about the data distribution based upon both of the 

GOF test statistics: Lilliefors and Shapiro-Wilk GOF statistics for normal and lognormal distributions; 

and A-D and K-S GOF test statistics for gamma distribution. Specifically, when only one of the two GOF 

statistic lead to the conclusion that data are normal (lognormal or gamma), ProUCL outputs the 

conclusion that the data set follows an approximate normal (lognormal, gamma) distribution; all decision 

statistics (parametric or nonparametric) are computed based upon this conclusion. Due to these changes, 

UCL(s) suggested by ProUCL 5.1 can differ from the UCL(s) suggested by ProUCL 4.1. Some examples 

illustrating these differences have been considered later in this chapter and also in Chapter 4.0.  

2.4.2 Computation of the UCL of the Mean of a Gamma, G (k, θ), Distribution 

It is well-known that the use of a lognormal distribution often yields unstable and unrealistic values of the 

decision statistics including UCLs and UTLs for moderately skewed to highly skewed lognormally 

distributed data sets; especially when the data set is of a small size (e.g., <30, 50, ...). Even though 

methods exist to compute 95% UCLs of the mean, UPLs and UTLs based upon gamma distributed data 

sets (Grice and Bain 1980; Wong 1993; Krishnamoorthy et al. 2008), those methods have not become 

popular due to their computational complexity and/or the lack of their availability in commercial software 

packages (e.g., Minitab 16). Despite the better performance (in terms of coverage and stability) of the 

decision making statistics based upon a gamma distribution, some practitioners tend to dismiss the use of 

gamma distribution based decision statistics by not acknowledging them (EPA 2009; Helsel 2012) and/or 
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stating that the use of a lognormal distribution is easier to compute the various upper limits. Throughout 

this document, several examples have been used to illustrate these issues.  

 

For gamma distributions, ProUCL software has both approximate (used for n>50) and adjusted (when 

n≤50) UCL computation methods.  Critical values of the chi-square distribution and an estimate of the 

gamma shape parameter, k along with the sample mean are used to compute gamma UCLs.  As seen 

above, computation of an MLE of k is quite involved, and this works as a deterrent to the use of a gamma 

distribution-based UCL of the mean. However, the computation of a gamma UCL currently should not be 

a problem due to the easy availability of statistical software to compute these estimates. It is noted that 

some of the gamma distribution based methods incorporated in ProUCL (e.g., prediction limits, tolerance 

limits) are also available in the R Script library. 

 

Update in ProUCL 5.0 and Higher Versions: For gamma distributed data sets, all versions of ProUCL 

compute both adjusted and approximate gamma UCLs. However, in earlier versions of ProUCL, an 

adjusted gamma UCL was recommended for data sets of sizes ≤40 (instead of 50 as in ProUCL 5.1), and 

an approximate gamma UCL was recommended for data sets of sizes>40, whereas ProUCL 5.1 suggests 

using approximate gamma UCL for sample sizes >50.  

 

Given a random sample, x1, x2, ... , xn , of size n from a gamma, G(k, θ), distribution, it can be shown that 

/2 xn follows a chi-square distribution, 2

2nkχ  with ν = 2nk degrees of freedom (df). When the shape 

parameter, k, is known, a uniformly most powerful test of size of α of the null hypothesis, H0: μ1 ≥ Cs, 

against the alternative hypothesis, HA: μ1 < Cs, is to reject H0 if nkαχCx nks 2)(/ 2

2 . The corresponding 

(1 – α) 100% uniformly most accurate UCL for the mean, μ1, is then given by the probability statement. 

 

                                                     αμαχxnkP nk  1))(2( 1

2

2
  (2-33)  

 

Where, 2 ( )  denotes the cumulative percentage point of the chi-square distribution (e.g., α is the area 

in the left tail) with ν (=2nk) df. That is, if Y follows 2

υχ , then ααχYP υ  ))(( 2 . In practice, k is not 

known and needs to be estimated from data. A reasonable method is to replace k by its bias-corrected 

estimate,
*k̂ , as given by equation (2-29). This yields the following approximate (1 – α)*100 UCL of the 

mean, μ1. 
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*
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It should be pointed out that the UCL given by equation (2-34) is an approximate UCL without guarantee 

that the confidence level of (1 – α) will be achieved by this UCL. Simulation results summarized in 

Singh, Singh, and Iaci (2002) suggest that an approximate gamma UCL given by (2-34) does provide the 

specified coverage (95%) for values of k > 0.5. Therefore, for values of k> 0.5, one should use the 

approximate gamma UCL given by equation (2-34) to estimate the EPC.  

 

For smaller sample sizes, Grice and Bain (1980) computed an adjusted probability level, β (adjusted level 

of significance), which can be used in (2-34) to achieve the specified confidence level of (1 – α). For α = 

0.05 (confidence coefficient of 0.95), α = 0.1, and α = 0.01, these probability levels are given below in 

Table 2-2 for some values of the sample size n. One can use interpolation to obtain an adjusted β for 

values of n not covered in Table 2-2. The adjusted (1 – α)*100 UCL of the gamma mean, μ1 = kθ, is given 

by the following equation:  
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                                              Adjusted – UCL = )(ˆ2 2
ˆ2

*
* βχxkn

kn
 (2-35) 

 

Where β is given in equation (2-2) for α = 0.05, 0.1, and 0.01. Note that as the sample size, n, becomes 

large, the adjusted probability level, β, approaches the specified level of significance, α. Except for the 

computation of the MLE of k, equations (2-34) and (2-35) provide simple chi-square-distribution-based 

UCLs of the mean of a gamma distribution. It should also be noted that the UCLs given by (2-34) and (2-

35) only depend upon the estimate of the shape parameter, k, and are independent of the scale parameter, 

θ, and its ML estimate. Consequently, coverage probabilities for the mean associated with these UCLs do 

not depend upon the values of the scale parameter, θ.  

 

  Table 2-2. Adjusted Level of Significance, β 

 

 

N 

α = 0.05 

probability level, β 

α = 0.1 

probability level, β 

α = 0.01 

probability level, β 

5 0.0086 0.0432 0.0000 

10 0.0267 0.0724 0.0015 

20 0.0380 0.0866 0.0046 

40 0.0440 0.0934 0.0070 

-- 0.0500 0.1000 0.0100 

    

For gamma distributed data sets, Singh, Singh, and Iaci (2002) noted that the coverage probabilities 

provided by the 95% UCLs based upon bootstrap-t and Hall’s bootstrap methods (discussed below) are in 

close agreement. For larger samples, these two bootstrap methods approximately provide the specified 

95% coverage and for smaller data sets (from a gamma distribution), the coverage provided by these two 

methods is slightly lower than the specified level of 0.95.  

 

Notes 

 

Note 1: Gamma UCLs do not depend upon the standard deviation of the data set which gets distorted by 

the presence of outliers. Thus, unlike the lognormal distribution, outliers have reduced influence on the 

computation of the gamma distribution based upon decision statistics including the UCL of the mean - a 

fact generally not known to a typical user.  

 

Note 2: For all gamma distributed data sets for all values of k and n, all modules and all versions of 

ProUCL compute the various upper limits based upon the mean and standard deviation obtained using the 

bias-corrected estimate, 
*k̂ . As noted earlier, the estimate 

*k̂  does yield better estimates (reduced bias) 

for all values of k >0.2.  For values of k <0.2, the differences between the various limits obtained using k̂  

and
*k̂  are not that significant. However from a theoretical point of view, when k <0.2, it is desirable to 

compute the mean, standard deviation, and the various upper limits using the MLE estimate, k̂ . ProUCL 

generated output sheets display many intermediate results including k̂ and
*k̂ ; θ̂  and 

*̂ . Interested users 

may want to compute UCLs and other upper limits using MLE estimates, k̂  and ̂ , of k and θ for values 

of k described in the above paragraph. 
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2.4.3 (1 – α)*100 UCL of the Mean Based Upon H-Statistic (H-UCL) 

The one-sided (1 – α)*100 UCL for the mean, μ1, of a lognormal distribution as derived by Land (1971, 

1975) is given as follows: 

 

                                                 UCL =  15.0exp 1

2   nHssy αyy   (2-36) 

 

Tables of H-statistic critical values can be found in Land (1975). When the population is lognormal, Land 

(1971) showed that theoretically the UCL given by equation (2-36) possesses optimal properties and is 

the uniformly most accurate unbiased confidence limit. However, in practice, the H-statistic based UCL 

can be quite disappointing and misleading, especially when the data set is skewed and/or consists of 

outliers, or represents a mixture data set coming from two or more populations (Singh, Singh, and 

Engelhardt 1997, 1999; Singh, Singh, and Iaci 2002). Even a minor increase in the sd, sy, drastically 

inflates the MVUE of μ1 and the associated H-UCL. The presence of low as well as high data values 

increases sy, which in turn inflates the H-UCL. Furthermore, it has been observed (Singh, Singh, 

Engelhardt 1997, 1999) that for samples of sizes smaller than 20-30 (sample size requirement also 

depends upon skewness), and for values of σ approaching and exceeding 1.0 (moderately skewed to 

highly skewed data), the use of the H-statistic results in impractical and unacceptably large UCL values.  

 

Notes: In practice, many skewed data sets can be modeled by both gamma and lognormal distributions; 

however, there are differences in the properties and behavior of these two distributions. Decision statistics 

computed using the two distributions can differ significantly (see Example 2-2 below). It is noted that 

some recent documents (Helsel and Gilroy, 2012) incorrectly state that the two distributions are similar. 

Helsel (2012, 2012a) suggests the use a lognormal distribution due its computational ease. However, one 

should not compromise the accuracy and defensibility of estimates and decision statistics by using easier 

methods which may underestimate (e.g., using a percentile bootstrap UCL based upon a skewed data set) 

or overestimate (e.g., H-UCL) the population mean. Computation of defensible estimates and decision 

statistics taking the sample size and data skewness into consideration is always recommended. For 

complicated and skewed data sets, several UCL computation methods (e.g., bootstrap-t, Chebyshev 

inequality, and Gamma UCL) are available in ProUCL to compute appropriate decision statistics (UCLs, 

UTLs) covering a wide-range of data skewness and sample sizes.  

 

For lognormally distributed data sets, the coverage provided by the bootstrap-t 95% UCL is a little lower 

than the coverage provided by the 95% UCL based upon Hall’s bootstrap method (Appendix B). 

However, it is noted that for lognormally distributed data sets, the coverage provided by these two 

bootstrap methods is significantly lower than the specified 0.95 coverage for samples of all sizes. This is 

especially true for moderately skewed to highly skewed (σ >1.0) lognormally distributed data sets. For 

such data sets, a Chebyshev inequality based UCL can be used to estimate the population mean. The H-

statistic often results in unstable values of the UCL95, especially when the sample size is small, n<20, as 

shown in Examples 2-1 through 2-3.  

 

Example 2-1. Consider the silver data set with n=56 (from NADA for R package [Helsel, 2013]). The 

normal GOF test graph is shown in Figure 2-1. It can be seen that the data set has an extreme outlier (an 

observation significantly different from the main body of the data set). The data set contains NDs, and 

therefore is considered in Chapter 4 and 5 again. Here this data set is considered assuming that all 

observations represent detected values. The data set does not follow a gamma distribution (Figure 2-3) but 

can be modeled by a lognormal distribution as shown in Figure 2-2, accommodating the outlier 560. The 

histogram shown in Figure 2-4 suggests that data are highly skewed. The sd of the logged data = 1.74. 
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The various UCLs computed using ProUCL 5.0 are displayed in Table 2-3 (with outlier) and Table 2-4 

(without outlier) following the Q-Q plots. 

 

 
Figure 2-1. Normal Q-Q Plot of Raw Data in Original Scale 

 

 
Figure 2-2. Lognormal Q-Q plot with GOF Test Statistics 
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Figure 2-3. Gamma Q-Q plot with GOF Test Statistics 

 

 
Figure 2-4. Histogram of Silver Data Set including Outlier 560 

 

The sample mean is 15.45 and all lognormal distribution based UCL95s (e.g., H-UCL=18.54) are 

unrealistically low. In this case, the use of a lognormal distribution appears to underestimate the EPC. The 

BCA bootstrap UCL95 is 52.45 and other nonparametric UCLs (e.g., percentile bootstrap UCL, Student's 

t-UCL) range from 31.98 to 35.5. If one insists that the outlier 560 represents a valid observation and 

comes from the same population, one may want to use a nonparametric Chebyshev UCL95 (Table 2-11) 

or BCA UCL95 to estimate the EPC.  
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Table 2-3. Lognormal and Nonparametric UCLs for Silver Data including the outlier 560 

 

 

 
 

The histogram without the outlier is shown in Figure 2-5. The data is positively skewed with skewness = 

5.45. UCLs based upon the data set without the outlier are summarized in Table 2-4 as follows. A quick 

comparison of the results presented in Tables 2-3 and 2-4 reveals how the presence of an outlier distorts 

the various decision making statistics.   
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Figure 2-5. Histogram of Silver Data Set Excluding Outlier 560 

 

Table 2-4. Lognormal and Nonparametric UCLs Not Including the Outlier Observation 560 
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Example 2-2: The positively skewed data set consisting of 25 observations, with values ranging from 

0.35 to 170, follows a lognormal as well as a gamma distribution. The data set is: 0.3489, 0.8526, 2.5445, 

2.5602, 3.3706, 4.8911, 5.0930, 5.6408, 7.0407, 14.1715, 15.2608, 17.6214, 18.7690, 23.6804, 25.0461, 

31.7720, 60.7066, 67.0926, 72.6243, 78.8357, 80.0867, 113.0230, 117.0360, 164.3302, and 169.8303. 

 

The mean of the data set is 44.09. The data set is positively skewed with sd of log-transformed data = 

1.68.  The normal GOF results are shown in the Q-Q plot of Figure 2-6, it is noted that the data do not 

follow a normal distribution.  The data set follows a lognormal as well as a gamma distribution as shown 

in Figures 2-6a and 2-6b and also in Tables 2-5 and 2-6. The various lognormal and nonparametric 

UCL95s (Table 2-5) and Gamma UCL95s (Table 2-6) are summarized in the following.  

 

 The lognormal distribution based UCL95 is 229.2 which is unacceptably higher than all other UCLs 

and an order of magnitude higher than the sample mean of 44.09. A more reasonable Gamma 

distribution based UCL95 of the mean is 74.27 (recommended by ProUCL). 

 

 The data set is highly skewed (Figure 2-6) with sd of the log-transformed data = 1.68; a Student's t-

UCL of 61.66 and a nonparametric percentile bootstrap UCL95 of 60.32 may represent 

underestimates of the population mean. 

 

 The intent of the ProUCL software is to provide users with methods which can be used to compute 

reliable decision statistics required to make decisions which are cost-effective and protective of 

human health and the environment.  

 

 
Figure 2-6. Normal Q-Q Plot of X 
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Figure 2-6a. Gamma Q-Q Plot of X 

 

 
Figure 2-6b. Lognormal Q-Q Plot of X 
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Table 2-5. Nonparametric and Lognormal UCL95 

 

 
 

Notes: The use of H-UCL is not recommended for moderately skewed to highly skewed data sets of 

smaller sizes (e.g., 30, 50, 70, etc.). ProUCL computes and outputs H-statistic based UCLs for historical 

and academic reasons. This example further illustrates that there are significant differences between a 

lognormal and a gamma model; for positively skewed data sets, it is recommended to test for a gamma 

model first. If data follow a gamma distribution, then the UCL of the mean should be computed using a 

gamma distribution. The use of nonparametric methods is preferred when computing a UCL95 for 

skewed data sets which do not follow a gamma distribution.  
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Table 2-6. Gamma UCL95 

 

 
 

2.4.4 (1 – α)*100 UCL of the Mean Based upon Modified-t-Statistic for Asymmetrical 

Populations 

It is well known that percentile bootstrap, standard bootstrap, and Student’s t-statistic based UCL of the 

mean do not provide the desired coverage of a population mean (Johnson 1978, Sutton 1993, Chen 1995, 

Efron and Tibshirani 1993) of skewed data distributions. Several researchers including: Chen (1995), 

Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton (1993) suggested the use of 

the modified-t-statistic and skewness adjusted CLT for testing the mean of a positively skewed 

distribution.  The UCLs based upon the modified t-statistic and adjusted CLT methods were included in 

earlier versions of ProUCL (e.g., versions 1.0 and 2.0) for research and comparison purposes prior to the 

availability of Gamma distribution based UCLs in ProUCL 3.0 (2004). Singh, Singh, and Iaci (2002) 

noted that these two skewness adjusted UCL computation methods work only for mildly skewed 

distributions. These methods have been retained in later versions of ProUCL for academic reasons.  The 

(1 – α)*100 UCL of the mean based upon a modified t-statistic is given by: 

  

                                                    UCL = nstnsμx xnαx 1,

2

3 )6(ˆ
   (2-37) 
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Where
3μ̂ , an unbiased moment estimate (Kleijnen, Kloppenburg, and Meeuwsen 1986) of the third 

central moment is given as follows:  
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 (2-38) 

 

This modification for a skewed distribution does not perform well even for mildly to moderately skewed 

data sets. Specifically, the UCL given by equation (2-37) may not provide the desired coverage of the 

population mean, μ1, when σ starts approaching and exceeding 0.75 (Singh, Singh, and Iaci 2002). This is 

especially true when the sample size is smaller than 20-25. This small sample size requirement increases 

as σ increases. For example, when σ starts approaching and exceeding 1 to 1.5, the UCL given by 

equation (2-37) does not provide the specified coverage (e.g., 95%), even for samples as large as 100.  

2.4.5 (1 – α)*100 UCL of the Mean Based upon the Central Limit Theorem 

The CLT states that the asymptotic distribution, as n approaches infinity, of the sample mean,
nx , is 

normally distributed with mean, μ1, and variance, σ1
2/n irrespective of the distribution of the population. 

More precisely, the sequence of random variables given by: 
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  (2-39) 

 

has a standard normal limiting distribution. For large sample sizes, n, the sample mean, x , has an 

approximate normal distribution irrespective of the underlying distribution function (Hogg and Craig 

1995). The large sample requirement depends upon the skewness of the underlying distribution function 

of individual observations. The large sample requirement for the sample mean to follow a normal 

distribution increases with skewness. Specifically, for highly skewed data sets, even samples of size 100 

may not be large enough for the sample mean to follow a normal distribution. This issue is illustrated in 

Appendix B. Since the CLT method requires no distributional assumptions, this is a nonparametric 

method.  As noted by Hogg and Craig (1995), if σ1 is replaced by the sample standard deviation, sx, the 

normal approximation for large n is still valid. This leads to the following approximate large sample (1 – 

α)*100 UCL of the mean: 

 

                                                           UCL = nszx xα /  (2-40) 

 

An often cited and used rule of thumb for a sample size associated with a CLT based method is n ≥ 30. 

However, this may not be adequate if the population is skewed, specifically when σ (sd of log-

transformed variable) starts exceeding 0.5 to 0.75 (Singh, Singh, Iaci 2002). In practice, for skewed data 

sets, even a sample as large as 100 is not large enough to provide adequate coverage to the mean of 

skewed populations. Noting these observations, Chen (1995) proposed a refinement of the CLT approach, 

which makes a slight adjustment for skewness.  
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2.4.6 (1 – α)*100 UCL of the Mean Based upon the Adjusted Central Limit Theorem   

(Adjusted-CLT) 

The “adjusted-CLT” UCL is obtained if the standard normal quantile, zα, in the upper limit of equation 

(2-40) is replaced by the following adjusted critical value (Chen 1995): 
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zz    (2-41) 

 

Thus, the adjusted- CLT (1 – α)*100 UCL for the mean, μ1, is given by 

 

                                         UCL =   nsnzkzx xαα )6()21(ˆ 2

3   (2-42) 

 

Here 3k̂ , the coefficient of skewness (raw data), is given by 

 

                                               Skewness (raw data) 
3

33
ˆˆ

xsμk   (2-43) 

 

where, 
3μ̂ , an unbiased estimate of the third moment, is given by equation (2-38). This is another large 

sample approximation for the UCL of the mean of skewed distributions. This is a nonparametric method, 

as it does not depend upon any of the distributional assumptions. 

 

Just like the modified-t-UCL, it is observed that the adjusted-CLT UCL also does not provide the 

specified coverage to the population mean when the population is moderately skewed, specifically when σ 

becomes larger than 0.75. This is especially true when the sample size is smaller than 20 to25. This large 

sample size requirement increases as the skewness (or σ) increases. For example, when σ starts 

approaching and exceeding 1.5, the UCL given by equation (2-42) does not provide the specified 

coverage (e.g., 95%), even for samples as large as 100. It is noted that UCL given by (2-42) does not 

provide adequate coverage to the mean of a gamma distribution, especially when the shape parameter (or 

its estimate) k ≤ 1.0 and the sample size is small.  

 

Notes: UCLs based upon these skewness adjusted methods, such as the Johnson’s modified-t and Chen’s 

adjusted-CLT, do not provide the specified coverage to the population mean even for mildly to 

moderately skewed (e.g., σ in [0.5, 1.0]) data sets. The coverage of the population mean provided by these 

UCLs becomes worse (much smaller than the specified coverage) for highly skewed data sets. These 

methods have been retained in ProUCL 5.1 for academic and research purposes. 

2.4.7 Chebyshev (1 – α)*100 UCL of the Mean Using Sample Mean and Sample sd 

Several commonly used UCL95 computation methods (e.g., Student’s t-UCL, percentile and BCA 

bootstrap UCLs) fail to provide the specified coverage (e.g., 95%) to the population mean of skewed data 

sets. The use of a lognormal distribution based H-UCL (EPA 2006a, EPA 2009) is still commonly used to 

estimate EPCs based upon lognormally distributed skewed data sets. However, the use of Land’s H-

statistic yields unrealistically large UCL95 values for moderately skewed to highly skewed data sets. On 

the other hand, when the mean of a logged data set is negative, the H-statistic tends to yield an 
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impractically low value of H-UCL (See Example 2-1 above) especially when the sample size is large 

(e.g., > 30-50). To address some of these issues associated with lognormal H-UCLs, Singh, Singh, and 

Engelhardt (1997) proposed the use of the Chebyshev inequality to compute a UCL of the mean of 

skewed distributions. They noted that a Chebyshev UCL tends to yield stable, realistic, and conservative 

estimates of the EPCs. The use of the Chebyshev UCL has been recently adopted by the ITRC (2012) to 

compute UCLs of the mean based upon data sets obtained using the incremental sampling methodology 

(ISM) approach.   

 

For moderately skewed data sets, the Chebyshev inequality yields conservative but realistic UCL95.  For 

highly skewed data sets, even a Chebyshev inequality fails to yield a UCL95 providing 95% coverage for 

the population mean (Singh, Singh, and Iaci 2002; Appendix B). To address these issues, ProUCL 

computes and displays 97.5% or 99% Chebyshev UCLs. The user may want to consult a statistician to 

select the most appropriate UCL (e.g., 95% or 97.5% UCL) for highly skewed nonparametric data sets. 

Since the use of the Chebyshev inequality tends to yield conservative UCL95s, especially for moderately 

skewed data sets of large sizes (e.g., >50), ProUCL 5.1 also outputs a UCL90 based upon the Chebyshev 

inequality.  

 

The two-sided Chebyshev theorem (Hogg and Craig 1995) states that given a random variable, X, with 

finite mean and standard deviation, μ1 and σ1, we have 

 

                                                   2

111 /11)( kσkμxσkP   (2-44) 

 

This result can be applied to the sample mean, x (with mean, μ1 and variance, nσ 2

1
), to compute a 

conservative UCL for the population mean, μ1. For example, if the right side of equation (2-44) is equated 

to 0.95, then k = 4.47, and UCL = nσx /47.4 1  represents a conservative 95% upper confidence limit 

for the population mean, μ1. Of course, this would require the user to know the value of σ1. The obvious 

modification would be to replace σ1 with the sample standard deviation, sx, but since this is estimated 

from data, the result is not guaranteed to be conservative. However, in practice, the use of the sample sd 

does yield conservative values of the UCL95 unless the data set is highly skewed with sd of the log-

transformed data exceeding 2 to 2.5, and so forth. In general, the following equation can be used to obtain 

a (1 – α)*100 UCL of the population mean, μ1: 

 

                                            UCL = nsαx x)/1(                (2-45) 

 

A slight refinement of equation (2-45) is given as follows: 

 

                                            UCL = nsαx x)1)/1((      (2-46) 

 

All versions of ProUCL compute the Chebyshev (1 – α)*100 UCL of the population mean using equation 

(2-46). This UCL is labeled as Chebyshev (Mean, Sd) on the output sheets generated by ProUCL. Since 

this Chebyshev method requires no distributional assumptions, it is a nonparametric method. This UCL 

may be used to estimate the population mean, μ1, when the data are not normal, lognormal, or gamma 

distributed, especially when sd, σ (or its estimate, sy) becomes large such as > 1.5.  

 

From simulation results summarized in Singh, Singh, and Iaci (2002) and graphical results presented in 

Appendix B, it is observed that for highly skewed gamma distributed data sets (with shape parameter k < 

0.5), the coverage provided by the Chebyshev 95% UCL (given by equation (2-46)) is smaller than the 
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specified coverage of 0.95. This is especially true when the sample size is smaller than 10-20. As 

expected, for larger samples sizes, the coverage provided by the 95% Chebyshev UCL is at least 95%. For 

larger samples, the Chebyshev 95% UCL tends to result in a higher (but stable) UCL of the mean of 

positively skewed gamma distributions.  

 

Based upon the number of observations and data skewness, ProUCL suggests using a 95%, 97.5%, or a 

99% Chebyshev UCL. If these limits appear to be higher than expected, collectively the project team 

should make the decision regarding using an appropriate confidence coefficient (CC) to compute a 

Chebyshev inequality based upper limit. ProUCL can compute upper limits (e.g., UCLs, UTLs) for any 

user-specified level of confidence coefficient in the interval [0.5, 1]. For convenience, ProUCL 5.0 also 

displays Chebyshev inequality based 90% UCL of the mean. 

 

Note about Chebyshev Inequality based UCLs:  The developers of ProUCL have made significant efforts 

to make suggestions that allows the user to choose the most appropriate UCL95 to estimate the EPC. 

However, suggestions made in ProUCL may not cover all real world data sets, especially smaller data sets 

with higher variability.  Based upon the results of the simulation studies and graphical displays presented 

in Appendix B, the developers noted that for smaller data sets with high variability (e.g., sd of logged data 

>1, 1.5, etc.) even a conservative Chebyshev UCL95 tends not to provide the desired 95% coverage to the 

population mean. In these scenarios, ProUCL suggests the use of a Chebyshev UCL97.5 or a Chebyshev 

UCL99 to provide the desired coverage (0.95) for the population mean. It is suggested that when data are 

highly skewed and ProUCL is recommending the use of a Chebyshev inequality based UCL, the project 

team collectively determines which UCL will be the most appropriate to address the project needs. 

ProUCL can calculate UCLs for many levels including non-typical levels such as 98%, 96%, 92%. 

2.4.8 Chebyshev (1 – α)*100 UCL of the Mean of a Lognormal Population Using the MVUE of 

the Mean and its Standard Error  

Earlier versions of ProUCL (when gamma UCLs were not available in ProUCL) used equation (2-44) on 

the MVUEs of the lognormal mean and sd to compute a UCL (denoted by (1 – α)*100 Chebyshev 

(MVUE)) of the population mean of a lognormal population. In general, if μ1 is an unknown mean, 1μ̂  is 

an estimate, and )ˆ(ˆ
11 μσ  is an estimate of the standard error of 1μ̂ , then the following equation:  

 

                                                 UCL = )ˆ(ˆ)1)/1((ˆ
111 μσαμ   (2-47) 

 

yields a (1 – α)*100 UCL for μ1, which tends to be conservative; where 1μ̂  and )ˆ(ˆ
11 μσ are given by 

equations (2-14) and (2-16), respectively. This UCL is retained in ProUCL 5.1 for historical reasons and 

research purposes. ProUCL 5.1 does not make any recommendations based upon this version of 

Chebyshev UCL.  

 

Notes: Many skewed data sets can be modeled both by a lognormal distribution as well as a gamma 

distribution. Since, the use of a lognormal distribution tends to yield inflated and unstable upper limits 

including UCLs (Singh, Singh, and Engelhardt 1997) and UPLs (Gibbons 1994), it is suggested that if a 

data set follows a gamma distribution (even when data may also be lognormally distributed), then the 

UCL of the mean, μ1, and other upper limits such as UPLs and UTLs should be computed using a gamma 

distribution.  
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For a confidence coefficient of 0.95, ProUCL UCLs/EPCs module makes suggestions which are based 

upon the extensive experience of the developers of ProUCL with environmental statistical methods, 

published literature (Singh, Singh, and Engelhardt 1997, Singh and Nocerino 2002, Singh, Singh, and Iaci 

2002, and Singh, Maichle, and Lee 2006) and procedures described in the various guidance documents. 

However, the project team is responsible for determining whether to use the suggestions made by 

ProUCL. This determination should be based upon the conceptual site model (CSM), expert site and 

regional knowledge. The project team may want to consult a statistician.  

2.4.9 (1 – α)*100 UCL of the Mean Using the Jackknife and Bootstrap Methods  

Bootstrap and jackknife methods (Efron 1981, 1982; Efron and Tibshirani 1993) are nonparametric 

statistical resampling techniques which can be used to reduce the bias in point estimates and construct 

approximate confidence intervals for parameters, such as the population mean, population percentiles. 

These methods do not require any distributional assumptions and can be applied to a variety of situations. 

The bootstrap methods incorporated in ProUCL for computing upper limits include: the standard 

bootstrap method, percentile bootstrap method, BCA percentile bootstrap method, bootstrap-t method 

(Efron,1981, 1982; Hall 1988), and Hall’s bootstrap method (Hall 1992; Manly 1997).  

 

As before,  let x1, x2, … , xn represent a random sample of size n from a population with an unknown 

parameter, θ, and let ̂  be an estimate of , which is a function of all n observations. Here, the 

parameter,, could be the population mean and a reasonable choice for the estimate, ̂ , might be the 

sample mean, x . Another choice for ̂  is the MVUE of the mean of a lognormal population, especially 

when dealing with lognormally distributed data sets.  

2.4.9.1  (1 – α)*100 UCL of the Mean Based upon the Jackknife Method 

For the jackknife method, n estimates of  are computed by deleting one observation at a time (Dudewicz 

and Misra 1988).  For each index, i (i=1,2,…n), denote by )(
ˆ

i , the estimate of  (computed similarly as 

̂ ) omit the ith observation from the original sample of size n and compute the arithmetic mean of these n 

jackknifed estimates using: 
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A quantity known as the ith "pseudo-value" is given by: 

 

                                                          )(
ˆ)1(ˆ

ii θnθnJ       (2-49) 

 

Using equations (2-48) and (2-49), compute the jackknife estimator of  as follows: 
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If the original estimate ̂  is biased, then under certain conditions, part of the bias is removed by the 

jackknife method, and an estimate of the standard error (SE) of the jackknife estimate, )ˆ(J , is given by 
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Next, using the jackknife estimate, compute a t-type statistic given by 
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        (2-52)  

The t-type statistic given above follows an approximate Student’s t- distribution with (n – 1) df, which 

can be used to derive the following approximate (1–α)*100% UCL for ,   

 

                                        UCL = 
)ˆ(1,

ˆ)ˆ(
 

JntJ       (2-53) 

 

If the sample size, n, is large, then the upper αth t-quantile in the above equation can be replaced with the 

corresponding upper αth standard normal quantile, zα. Observe, also, that when ̂  is the sample mean, x , 

then the jackknife estimate is the same as the sample mean, xxJ )( , the estimate of the standard error 

given by equation (2-51) simplifies to sx/n1/2, and the UCL in equation (2-53) reduces to the familiar t- 

statistic based UCL given by equation (2-32).  ProUCL uses the jackknife estimate as the sample mean, 

that yields xxJ )( , which in turn translates equation (2-53) to Student’s t- UCL given by equation (2-

32).  This method has been included in ProUCL to satisfy the curiosity of those users who are unaware 

that the jackknife method (with sample mean as the estimator) yields a UCL of the population mean 

identical to the UCL based upon the Student’s t- statistic as given by equation (2-32).  

 

Notes: It is well known that the Jackknife method (with sample mean as an estimator) and Student’s t- 

method yield identical UCLs.  However, some users may be unaware of this fact, and some researchers 

may want to see these issues described and discussed in one place.  Also, it has been suggested that a 95% 

UCL based upon the Jackknife method on the full data set obtained using the robust ROS (LROS) method 

may provide adequate coverage (Shumway, Kayhanian, and Azari 2002) to the population mean of 

skewed distributions, which of course is not true since like Student’s t-UCL, the Jackknife UCL does not 

account for data skewness.  Finally, users are cautioned to note that for large data sets (n>10,000), the 

Jackknife method may take a long time (several hours) to compute a UCL of the mean. 

2.4.9.2  (1 – α)*100 UCL of the Mean Based upon the Standard Bootstrap Method 

In bootstrap resampling methods, repeated samples of size n each are drawn with replacement from a 

given data set of size n. The process is repeated a large number of times (e.g., 2000 times), and each time 

an estimate, iθ̂ , of θ is computed. The estimates are used to compute an estimate of the SE of ̂ . A 

description of the bootstrap methods, illustrated by application to the population mean, μ1, and the sample 

mean, x , is given as follows.  
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Step 1. Let (xi1, xi2, ... , xin) represent the ith bootstrap sample of size n with replacement from the original 

data set, (x1, x2, ..., xn); denote the sample mean using this bootstrap sample by 
ix .  

 

Step 2. Repeat Step 1 independently N times (e.g., 1000-2000), each time calculating a new estimate. 

Denote these estimates (KM means, ROS means) by ,, 21 xx …, 
Nx . The bootstrap estimate of the 

population mean is the arithmetic mean, Bx , of the N estimates 
ix : i := 1, 2, …, N. The bootstrap 

estimate of the SE of the estimate, x , is given by: 
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If some parameter, θ (e.g., the population median), other than the mean is of concern with an associated 

estimate (e.g., the sample median), then same steps described above are applied with the parameter and its 

estimates used in place of μ1 and x . Specifically, the estimate, iθ̂ , would be computed, instead of 
ix , for 

each of the N bootstrap samples. The general bootstrap estimate, denoted by
B , is the arithmetic mean of 

those N estimates. The difference,  ˆB
, provides an estimate of the bias in the estimate, ̂ , and an 

estimate of the SE of ̂  is given by: 
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A (1–α)*100 standard bootstrap UCL for  is given by 

 

                                                           UCL = Bz  
ˆˆ   (2-56) 

 

ProUCL computes the standard bootstrap UCL by using the population mean and sample mean, given by 

μ1 and x . The UCL obtained using the standard bootstrap method is quite similar to the UCL obtained 

using the Student’s t-statistic given by equation (2-32), and, as such, does not adequately adjust for 

skewness. For skewed data sets, the coverage provided by the standard bootstrap UCL is much lower than 

the specified coverage (e.g., 0.95). 

 

Notes:  Typically, bootstrap methods are not recommended for small data sets consisting of less than 10-

15 distinct values.  Also, it is not desirable to use bootstrap methods on larger (n > 500) data sets. For 

small data sets, several bootstrap re-samples could be identical and/or all values in a bootstrap re-sample 

could be identical; no statistical computations can be performed on data sets with all identical 

observations. For larger data sets, there is no need to perform and use bootstrap methods as a large data 

set is already representative of the population itself. Methods based upon normal approximations, applied 

to data sets of larger sizes (n > 500), yield good estimates and results. Also, for larger data, bootstrap 

methods and especially the Jackknife method can take a long time to compute statistics of interest.  
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2.4.9.3  (1 – α)*100 UCL of the Mean Based upon the Simple Percentile Bootstrap  

  Method 

Bootstrap resampling of the original data set of size n is used to generate the bootstrap distribution of the 

unknown population mean. In this method, the N bootstrapped means, 
ix , i:=1,2,...,N, are arranged in 

ascending order as
)()2()1( Nxxx   . The (1 – α)*100 UCL of the population mean, µ1, is given by 

the value that exceeds the (1 – α)*100 of the generated mean values. The 95% UCL of the mean is the 

95th percentile of the generated means and is given by: 

 

                                         95% Percentile UCL = 95th %
ix ; i: = 1, 2, ..., N (2-57) 

 

For example, when N = 1000, the bootstrap 95% percentile UCL is given by the 950th ordered mean value 

given by x( )950
. It is well-known that for skewed data sets, the UCL95 of the mean based upon the 

percentile bootstrap method does not provide the desired coverage (95%) for the population mean. The 

users of ProUCL and other software packages are cautioned about the suggested use of the percentile 

bootstrap method for computing UCL95s of the mean based upon skewed data sets. Noting the 

deficiencies associated with the upper limits (UCLs) computed using the percentile bootstrap method, 

researchers (Efron 1981; Hall 1988, 1992; Efron and Tibshirani 1993) have developed and proposed the 

use of skewness adjusted bootstrap methods.  Simulations results and graphs presented in Appendix A 

verify that for skewed data sets, the coverage provided by the percentile bootstrap UCL95 and standard 

bootstrap UCL is much lower than the coverages provided by the UCL95s based upon the bootstrap-t and 

the Hall’s bootstrap methods. It is observed that for skewed (lognormal and gamma) data sets, the BCA 

bootstrap method performs slightly better (in terms of coverage probability) than the percentile method.  

2.4.9.4 (1 – α)*100 UCL of the Mean Based upon the Bias-Corrected Accelerated (BCA) 

Percentile Bootstrap Method 

The BCA bootstrap method adjusts for bias in the estimate (Efron and Tibshirani 1993; and Manly 1997). 

Results and graphs summarized in Appendix B suggest that the BCA method does provide a slight 

improvement over the simple percentile and standard bootstrap methods. However, for skewed data sets 

(parametric or nonparametric), the improvement is not adequate enough and yields UCLs with a coverage 

probability much lower than the coverage provided by bootstrap-t and Hall’s bootstrap methods. This is 

especially true when the sample size is small. For skewed data sets, the BCA method also performs better 

than the modified-t-UCL. Based upon gamma distributed data sets, the coverage provided by the BCA 

95%UCL approaches 0.95 as the sample size increases. For lognormally distributed data sets, the 

coverage provided by the BCA 95%UCL is much lower than the specified coverage of 0.95. 

 

The BCA upper confidence limit of intended (1 – α)*100 coverage is given by the following equation: 

 

                                                BCA – UCL = 
)( 2αx  (2-58) 
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Here )( 2x  is the α2*100th percentile computed using N bootstrap means
ix ; i: = 1, 2, …, N. For example, 

when N = 2000, 
)( 2αx = (2N)th ordered statistic of the N bootstrapped means, 

ix ; i: = 1, 2, …, N denoted 

by )( 2Nαx  represents a BCA-UCL; α2 is given by the following probability statement: 
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Φ(z) is the standard normal cumulative distribution function and z(1 – α) is the 100(1–α)th percentile of a 

standard normal distribution. For example, z(0.95) = 1.645, and Φ(1.645) = 0.95. Also for equation (2-59), 

the 
0ẑ  (bias correction factor) and ̂  (acceleration factor) are given as follows: 
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Here Φ-1 (x) is the inverse standard normal cumulative distribution function, e.g., Φ-1 (0.95) = 1.645; and 

# represents the number of bootstrap means, 
ix  (out of N means) less than the overall sample mean, x . 
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In (2-61), summation is being carried from i = 1 to i = n; x is the sample mean based upon all original n 

observation and 
ix
is the mean of (n-1) observations without the ith observation, i: = 1, 2, …, n. 

2.4.9.5  (1 – α)*100 UCL of the Mean Based upon the Bootstrap-t Method 

The nonparametric bootstrap-t (Efron 1982) method uses the bootstrap approach to estimate quantiles of 

the pivotal t-statistic given by equation (2-31). Rather than using the quantiles/percentiles/critical values 

of the familiar Student’s t-statistic, Hall (1988) proposed computing estimates of the quantiles of the 

statistic given by equation (2-31) directly from the data.  Specifically, as in Steps 1 and 2 of Section 

2.4.9.2 above, let x be the sample mean computed from the original data, and 
ix  and sx,i be the sample 

mean and sample standard deviation computed from the ith bootstrap sample. For N bootstrap sample, the 

N quantities ]/)[( ,ixii sxxnt   are computed and sorted, yielding ordered quantities, t(1)   t(2)  

…  t(N). The estimate of the lower αth quantile of the pivotal quantity in equation (2-31) is t(αN). For 

example, if N = 1000 bootstrap samples are generated, then the 50th ordered value, t(50) , would be the 

bootstrap estimate of the lower 0.05th quantile of the pivotal quantity given in equation (2-31). Then a (1–

α)*100 UCL of the mean based upon the bootstrap-t-method is given as follows: 

 

                                                    UCL = 
n

s
tx x

N )(  (2-62) 

 

Note the “ – ” sign in equation (2-62) is CORRECT.  
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From the simulation results summarized in Singh, Singh, and Iaci (2002) and in Appendix B, it is 

observed that for skewed data sets, the bootstrap-t method tends to yield more conservative (higher) UCL 

values than the other UCLs obtained using the Student’s t, modified-t, adjusted-CLT, and other bootstrap 

methods described above. It is noted that for highly skewed (k < 0.1 or σ > 2) data sets of small sizes (n < 

10 to 15), the bootstrap-t method performs better (in terms of coverage) than other (adjusted gamma UCL, 

or Chebyshev inequality UCL) UCL computation methods.  

 

2.4.9.6  (1 – α)*100 UCL of the Mean Based upon Hall’s Bootstrap Method 

Hall (1992) proposed a bootstrap method that adjusts for bias as well as skewness. This method has been 

included in UCL guidance document for CERCLA sites (EPA 2002a). In this method, 
ix , sx,i , and ik3

ˆ , 

the sample mean, the sample standard deviation, and the sample skewness, respectively, are computed 

from the ith bootstrap re-sample (i = 1, 2,..., N) of the original data. Let x  be the sample mean, sx be the 

sample standard deviation, and 3k̂  be the sample skewness (as given by equation (2-43)) computed using 

the original data set of size n. The quantities, Wi and Qi, given below are computed for the N bootstrap 

samples: 

 

                    
ixii sxxW ,)(  , and )6/(ˆ27/ˆ3/ˆ)( 3
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The quantities, )( ii WQ are arranged in ascending order. For a specified (1 – α) confidence coefficient, 

compute the (αN)th ordered value, 
αq , of the quantities, )( ii WQ . Next, compute )( αqW using the inverse 

function, which is given as follows: 
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   (2-63) 

In equation (2-63), 3k̂  is computed using equation (2-43). Finally, the (1 – α)*100 UCL of the population 

mean based upon Hall’s bootstrap method is given as follows: 

 

                                                     UCL = 
xα sqWx )(  (2-64) 

 

For both lognormal and gamma distributions, bootstrap-t and Hall’s bootstrap methods perform better 

than the other bootstrap methods, namely, the standard bootstrap method, simple percentile, and bootstrap 

BCA percentile methods. For highly skewed lognormal data sets, the coverages based upon Hall’s 

method and bootstrap-t method are significantly lower than the specified coverage, 0.95. This is true even 

for samples of larger sizes (n ≥ 100). For lognormal data sets, the coverages provided by Hall’s bootstrap 

and bootstrap-t methods do not increase much with the sample size, n. For highly skewed (sd > 1.5, 2.0) 

data sets of small sizes (n < 15), Hall’s bootstrap method and the bootstrap-t method perform better than 

the Chebyshev UCL, and for larger samples, the Chebyshev UCL performs better than Hall’s and 

bootstrap-t methods.  

 

Notes: The bootstrap-t and Hall’s bootstrap methods sometimes yield inflated and erratic values, 

especially in the presence of outliers (Efron and Tibshirani 1993). Therefore, these two methods should 
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be used with caution. If outliers are present in a data set and the project team decides to use them in UCL 

computations, the use of alternative UCL computation methods (e.g., based upon the Chebyshev 

inequality) is suggested. These issues are examined in Example 2-3. 

 

Also, when a data set follows a normal distribution without outliers, these nonparametric bootstrap 

methods, percentile bootstrap method, BCA bootstrap method and bootstrap-t method, will yield 

comparable results to the Student's t-UCL and modified-t UCL.  

 

Moreover, when a data set is mildly skewed sd of logged data <0.5), parametric methods and bootstrap 

methods discussed in this chapter tend to yield comparable UCL values. 

 

Example 2-3: Consider the pyrene data set with n = 56 selected from the literature (She 1997; Helsel 

2005). The pyrene data set has been used in several chapters of this technical guide to illustrate the 

various statistical methods incorporated in ProUCL. The pyrene data set contains several NDs and will be 

considered again in Chapter 4. However, here, the data set is considered as an uncensored data set to 

discuss the issues associated with skewed data sets containing outliers; and how outliers can distort UCLs 

based upon bootstrap-t and Hall's bootstrap UCL computation methods. The Rosner outlier test (see 

Chapter 7) and normal Q-Q plot displayed in Figure 2-7 below confirm that the observation, 2982.45, is 

an extreme outlier.  However, the lognormal distribution accommodated this outlier and the data set with 

this outlier follows a lognormal distribution (Figure 2-8).  Note that the data set including the outlier does 

not follow a gamma distribution. 

 

 
Figure 2-7. Normal Q-Q Plot of She's Pyrene Data Set 
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Figure 2-8. Lognormal Q-Q Plot of She's Pyrene Data Set  

Several lognormal and nonparametric UCLs (with outlier) are summarized in Table 2-7 below. 

 

Table 2-7. Nonparametric and Lognormal UCLs on Pyrene Data Set with Outlier 2982 
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Looking at the mean (173.2), standard deviation (391.4), and SE (52.3) in the original scale, the H-UCL 

(180.2) appears to represent an underestimate of the population mean; a nonparametric UCL such as a 

90% Chebyshev or a 95% Chebyshev UCL may be used to estimate the population mean. Since there is 

an outlier present in the data set, both bootstrap-t (UCL=525.2) and Hall's bootstrap (UCL=588.5) 

methods yield elevated values for the UCL95. A similar pattern was noted in Example 2-1 where the data 

set included an extreme outlier. 

 

Computations of UCLs without the Outlier 2982 

 

The data set without the outlier follows both a gamma and lognormal distribution with sd of the log-

transformed data = 0.649 suggesting that the data are moderately skewed. The gamma GOF test results 

are shown in Figure 2-9. The UCL output results for the pyrene data set without the outlier are 

summarized in Table 2-8. Since the data set is moderately skewed and the sample size of 55 is fairly 

large, all UCL methods (including bootstrap-t and Hall's bootstrap methods) yield comparable results. 

ProUCL suggested the use of a gamma UCL95.  This example illustrates how the inclusion of even a 

single outlier distorts all statistics of interest. The decision statistics should be computed based upon a 

data set representing the main dominant population. 

 

 
Figure 2-9. Gamma GOF Test on Pyrene Data Set without the Outlier 
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Table 2-8. Gamma, Nonparametric and Lognormal UCLs on Pyrene Data Set without 

Outlier=2982 

 
 

Table 2-8 (continued). Gamma, Nonparametric and Lognormal UCLs on Pyrene Data Set without 

Outlier=2982 

 

 
 



87 

Example 2-4: Consider the chromium concentration data set of size 24 from a real polluted site to 

illustrate the differences in UCL95 suggested by ProUCL 4.1 and ProUCL 5.0/ProUCL 5.1.  The data set 

is provided here in full as it has been also used in several examples in Chapter 3. 

 
Aluminum   Arsenic Chromium           Iron       Lead         Mn       Thallium  Vanadium   

6280 1.3 8.7 4600 16 39 0.0835 12 

3830 1.2 8.1 4330 6.4 30 0.068 8.4 

3900 2 11 13000 4.9 10 0.155 11 

5130 1.2 5.1 4300 8.3 92 0.0665 9 

9310 3.2 12 11300 18 530 0.071 22 

15300 5.9 20 18700 14 140 0.427 32 

9730 2.3 12 10000 12 440 0.352 19 

7840 1.9 11 8900 8.7 130 0.228 17 

10400 2.9 13 12400 11 120 0.068 21 

16200 3.7 20 18200 12 70 0.456 32 

6350 1.8 9.8 7340 14 60 0.067 15 

10700 2.3 14 10900 14 110 0.0695 21 

15400 2.4 17 14400 19 340 0.07 28 

12500 2.2 15 11800 21 85 0.214 25 

2850 1.1 8.4 4090 16 41 0.0665 8 

9040 3.7 14 15300 25 66 0.4355 24 

2700 1.1 4.5 6030 20 21 0.0675 11 

1710 1 3 3060 11 8.6 0.066 7.2 

3430 1.5 4 4470 6.3 19 0.067 8.1 

6790 2.6 11 9230 13 140 0.068 16 

11600 2.4 16.4  98.5 72.5 0.13  

4110 1.1 7.6  53.3 27.2 0.068  

7230 2.1 35.5  109 118 0.095  

4610 0.66 6.1  8.3 22.5 0.07  

The chromium concentrations follow an approximate normal distribution (determined using the two 

normality tests) and also a gamma distribution. ProUCL 5.1 uses the conclusion based upon both 

(Shapiro-Wilk and Lilliefors) normality tests and ProUCL 4.1 uses the conclusion based only upon the 

Shapiro-Wilk test leading to the conclusion that the data set does not follow a normal distribution and 

suggested the use of gamma UCLs. UCL results computed and suggested by ProUCL 5.1 and ProUCL 

4.1 are summarized as follows. Data are mildly skewed (with sd of logged data = 0.57), therefore, 

UCL95s obtained using normal and gamma distributions are comparable.  
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UCLs Suggested by ProUCL 5.0/ProUCL 5.1 

 

UCLs Suggested by ProUCL 4.1 
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Example 2-5: Consider another mildly skewed real-world data set consisting of lead (Pb) concentrations 

from a polluted site Questions were raised regarding ProUCL suggesting that the data are approximate 

normal and suggesting the use of the Student's t-UCL This example is included to illustrate that when data 

are mildly skewed (sd of logged data <0.5), the differences between UCLs computed using different 

distributions are not substantial from a practical point of view. The mildly skewed (with sd of logged data 

=0.47), zinc (Zn) data set of size 11 is given by: 38.9, 45.4, 40.1, 101.4, 166.7, 53.9, 57. 35.7, 43.2, 72.9, 

and 72.1. The Zn data set follows an approximate normal (using the Lilliefors test). As we know, the 

Lilliefors test works well for data sets of size >50; so it is valid to question why ProUCL suggests the use 

of a normal Student's t-UCL. This data set also follows a gamma (using both tests) and lognormal 

distribution (using both tests). Student's t-UCL95 suggested by ProUCL (using approximate normality) = 

87.26, Gamma UCL95 (adjusted) = 93.23, Gamma UCL95 (approximate) = 88.75, and a lognormal 

UCL95 = 90.51. So all UCLs are comparable for this mildly skewed data set. 

Note: When a data set follows all three distributions (when this happens, it is highly likely that data set is 

mildly skewed), one may want to use a UCL for the distribution with the highest p-value. Also when 

skewness in terms of sd of logged data is <0.5, all three distributions yield comparable UCLs. 

 
New in ProUCL 5.0 and ProUCL 5.1: Some changes have been made in the decision tables which are 

used to make suggestions for selecting a UCL to estimate EPCs.  In earlier versions, data distribution 

conclusions (internally) in the UCL and BTV modules were based upon only one GOF test statistic (e.g., 

Shapiro Wilk test for normality or lognormality). In ProUCL 5.0 and ProUCL 5.1, data distribution 

conclusions are based upon both GOF statistics (e.g., both Shapiro -Wilk and Lilliefors tests for 

normality) available in ProUCL. When only one of the GOF test passes, it is determined that the data set 

follows an approximate distribution and ProUCL makes suggestions accordingly. However, when a data 

set follows more than one distribution, the use of the distribution passing both GOF tests is preferred. For 

data sets with NDs, ProUCL 5.0/5.1 offers more UCL computation methods than ProUCL 4.1. These 

updates and additions have been incorporated in the decision tables of ProUCL 5.1. Due to these upgrades 

and additions, suggestions regarding the use of a UCL made by ProUCL 4.1 and ProUCL 5.1 can differ 

for some data sets.  

 

Suggestions made by ProUCL are based upon simulations performed by the developers. A typical 

simulation study does not (cannot) cover all data sets of various sizes and skewness from the various 

distributions. The ProUCL Technical Guide provides sufficient guidance which can help a user select the 

most appropriate UCL as an estimate of the EPC.  ProUCL makes these UCL suggestions to help a 

typical user select the appropriate UCL from the various available UCLs. Non-statisticians may want to 

seek help from a qualified statistician. 

2.5 Suggestions and Summary 

The suggestions provided by ProUCL for selecting an appropriate UCL of the mean are summarized in 

this section. These suggestions are made to help the users in selecting the most appropriate UCL to 

estimate the EPC which is routinely used in exposure assessment and risk management studies of the 

USEPA. The suggestions are based upon the findings of the simulation studies described in Singh, Singh, 

and Engelhardt (1997, 1999); Singh, Singh, and Iaci (2002); Singh et al. (2006); and Appendix B.  A 

typical simulation study does not (cannot) cover all data sets of all sizes and skewness from all 

distributions. For an analyte (data set) with skewness (sd of logged data) near the end points of the 

skewness intervals described in decision tables, Table 2-9 through Table 2-11, the user may select the 

most appropriate UCL based upon expert site knowledge, toxicity of the analyte, and exposure risk 

associated with that analyte.  ProUCL makes these UCL suggestions to help a typical user in selecting the 



90 

appropriate UCL from the many available UCLs. Non-statisticians may want to seek help from a qualified 

statistician. 

 

UCL suggestions have been summarized for: 1) normally distributed data sets, 2) gamma distributed data 

sets, 3) lognormally distributed data sets, and 4) nonparametric data sets (data sets not following any of 

the three distributions available in ProUCL).  For a given data set, an appropriate UCL can be computed 

by using more than one method.  Therefore, depending upon the data size, distribution, and skewness, 

sometimes ProUCL may suggest more than one UCL. In such situations, the user may choose any of the 

suggested UCLs. If needed, the user may consult a statistician for additional insight. When the use of a 

Chebyshev inequality based UCL (e.g., UCL95) is suggested, the user may want to compare that UCL95 

with other UCLs including the Chebyshev UCL90 (as Chebyshev inequality tends to yield conservative 

UCLs), before deciding upon the use of an appropriate UCL to estimate the population (site) average. 

2.5.1 Suggestions for Computing a 95% UCL of the Unknown Population Mean, µ1, Using 

Symmetric and Positively Skewed Data Sets 

For mildly skewed data sets with σ or σ̂  < 0.5, most of the parametric and nonparametric methods 

(excluding Chebyshev inequality which is used on skewed data sets) tend to yield comparable UCL 

values. Any UCL computation method may be used to estimate the EPC. However, for highly skewed 

( σ̂ >2.0) parametric and nonparametric data sets, there is no simple solution to compute a reliable 95% 

UCL of the population mean, μ1.  As mentioned earlier, the UCL95 based upon skewness adjusted 

methods, such as Johnson’s modified-t and Chen’s adjusted-CLT, do not provide the specified coverage 

to the population mean even for moderately skewed ( σ̂  in the interval [0.5, 1.0]) data sets for samples of 

sizes as large as 100. The coverage of the population mean by these skewness-adjusted UCLs gets poorer 

(much smaller than the specified level) for highly skewed data sets, where skewness levels have been 

defined in Table 2-1 as functions of σ̂ (standard deviation of logged data). Interested users may also want 

to consult graphs provided in Appendix B for a better understanding of the summary and suggestions 

described in this section.  

2.5.1.1  Normally or Approximately Normally Distributed Data Sets 

For normally distributed data sets, several methods such as: the Student’s t-statistic, modified-t-statistic, 

and bootstrap-t computation methods yield comparable UCL95s providing coverage probabilities close to 

the nominal level, 0.95.  

 

 For normally distributed data sets, a UCL based upon the Student’s t-statistic, as given by 

equation (2-32), provides the optimal UCL of the population mean. Therefore, for normally 

distributed data sets, one should always use a 95% UCL based upon the Student’s t-statistic.  

 

 The 95% UCL of the mean given by equation (2-32) based upon the Student’s t-statistic 

(preferably modified-t)  may also be used on non-normal data sets with sd, sy of the log-

transformed data less than 0.5, or when the data set follows an approximate normal distribution. 

A data set is approximately normal when: 1) the normal Q-Q plot displays a linear pattern 

(without outliers, breaks and jumps) and the resulting correlation coefficient is high (0.95 or 

higher); and/or 2) one of the two GOF tests for a normal distribution incorporated in ProUCL 

suggests that data are normally distributed. 
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 Student’s t-UCL may also be used to estimate the EPC when the data set is symmetric (but 

possibly not normally distributed). A measure of symmetry (or skewness) is 3k̂ , which is given 

by equation (2-43). A value of 3k̂  close to zero (absolute value of skewness is roughly less than 

0.2 or 0.3) suggests approximate symmetry. The approximate symmetry of a data distribution can 

also be judged by looking at a box plot and/or a histogram. 

 

Note: Use Student's t-UCL for normally distributed data sets. For approximately normally distributed data 

sets, non-normal symmetric data sets (when skewness is less than 0.2-0.3), and mildly skewed data sets 

with logged sd <0.5, one may use the modified t-UCL. 

2.5.1.2  Gamma or Approximately Gamma Distributed Data Sets 

In practice, many skewed data sets can be modeled both by a lognormal distribution and a gamma 

distribution. Estimates of the unknown population mean based upon the two distributions can differ 

significantly (see Example 2- 2 above). For data sets of small size (<20 and even <50) the 95% H-UCL of 

the mean based upon a lognormal model often results in unjustifiably large and impractical 95% UCL 

values. In such cases, a gamma model, G (k, θ), may be used to compute a 95% UCL provided the data 

set follows a gamma distribution.  

 

 One should always first check if a given skewed data set follows a gamma distribution. If a data 

set does follow a gamma distribution or an approximate gamma distribution (suggested by 

gamma Q-Q plots and gamma GOF tests), one should use a 95% UCL based upon a gamma 

distribution to estimate the EPC.  For gamma distributed data sets of sizes ≥ 50 with shape 

parameter, k>1, the use of the approximate gamma UCL95 is recommended to estimate the EPC.  

 

 For gamma distributed data sets of sizes <50, with shape parameter, k >1, the use of the adjusted 

gamma UCL95 is recommended. 

 

 For highly skewed gamma distributed data sets of small sizes (e.g., <15 or <20) and small values 

of the shape parameter, k (e.g., k < =1.0), a gamma UCL95 may fail to provide the specified 0.95 

coverage for the population mean (Singh, Singh, and Iaci 2002); the use of a bootstrap-t UCL95 

or Hall’s bootstrap UCL95 is suggested for small highly skewed gamma distributed data sets to 

estimate the EPC. The small sample size requirement increases as skewness increases. That is as 

k decreases, the required sample size, n, increases. In the case Hall’s bootstrap and bootstrap-t 

methods yield inflated and erratic UCL results (e.g., when outliers are present), the 95% UCL of 

the mean may be computed based upon the adjusted gamma 95% UCL.  

 

 For highly skewed gamma distributed data sets of sizes ≥ 15 and small values of the shape 

parameter, k (k < 1.0), the adjusted gamma UCL95 (when available) may be used to estimate the 

EPC, otherwise one may want to use the approximate gamma UCL. 

 

 For highly skewed gamma distributed data sets of sizes ≥ 50 and small values of the shape 

parameter, k (k < 1.0), the approximate gamma UCL95 may be used to estimate the EPC.   

 

 The use of an H-UCL should be avoided for highly skewed ( σ̂  > 2.0) lognormally distributed 

data sets. For such highly skewed lognormally distributed data sets that cannot be modeled by a 

gamma or an approximate gamma distribution, the use of nonparametric UCL computation 
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methods based upon the Chebyshev inequality (larger samples) or bootstrap-t and Hall’s 

bootstrap methods (smaller samples) is preferred.  

 

Notes: Bootstrap-t and Hall’s bootstrap methods should be used with caution as sometimes these methods 

yield erratic, unreasonably inflated, and unstable UCL values, especially in the presence of outliers (Efron 

and Tibshirani 1993). In the case Hall’s bootstrap and bootstrap-t methods yield inflated and erratic UCL 

results, the 95% UCL of the mean may be computed based upon the adjusted gamma 95% UCL. ProUCL 

prints out a warning message associated with the recommended use of the UCLs based upon the 

bootstrap-t method or Hall’s bootstrap method. 

 

Table 2-9. Summary Table for the Computation of a 95% UCL of the Unknown Mean, μ1, 

of a Gamma Distribution; Suggestions are made Based upon Biased Adjusted Estimates 

 
*k̂ (Skewness 

Bias Adjusted) 
Sample Size, n Suggestion 

*k̂  > 1.0 n>=50 

Approximate gamma 95% UCL (Gamma KM or  

GROS) 

 

*k̂ > 1.0 n<50 
Adjusted gamma 95% UCL (Gamma KM or GROS)  

 

*k̂ ≤ 1.0 n < 15 
95% UCL based upon bootstrap-t 

or Hall’s bootstrap method* 

*k̂  ≤1.0 n ≥ 15, n<50 

Adjusted gamma 95% UCL (Gamma KM) if 

available, otherwise use approximate gamma 95% 

UCL(Gamma KM) 

 
*k̂  ≤1.0 n ≥ 50 Approximate gamma 95% UCL (Gamma KM) 

 

*In case the bootstrap-t or Hall’s bootstrap method yields an erratic, inflated, and unstable UCL value, the 

UCL of the mean should be computed using the adjusted gamma UCL method. 

 

Note: Suggestions made in Table 2-9 are used for uncensored as well as left-censored data sets. This table 

is not repeated in Chapter 4. All suggestions have been made based upon bias adjusted estimates, 
*k̂ of k. 

When the data set is uncensored, use upper limits based upon the sample size and bias adjusted MLE 

estimates; and when the data set is left-censored, use upper limits based upon the sample size and biased 

adjusted estimates obtained using the KM method or GROS method provided 
*k̂ >1. When 

*k̂ >1, UCLs 

based upon the GROS method and gamma UCLs computed using KM estimates tend to yield comparable 

UCLs from a practical point of view. 

2.5.1.3  Lognormally or Approximately Lognormally Distributed Skewed Data Sets 

For lognormally, LN (μ, σ2), distributed data sets, the H-statistic-based UCL provides the specified 0.95 

coverage for the population mean for all values of σ; however, the H-statistic often results in unjustifiably 

large UCL values that do not occur in practice. This is especially true when skewness is high (σ > 1.5-2.0) 

and the data set is small (n<20-50). For skewed (σ or σ̂  > 0.5) lognormally distributed data sets, the 

Student’s t-UCL95, modified-t-UCL95, adjusted-CLT UCL95, standard bootstrap and percentile 
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bootstrap UCL95 methods fail to provide the specified 0.95 coverage for the population mean for samples 

of all sizes. Based upon the results of the research conducted to evaluate the appropriateness of the 

applicability of a lognormal distribution based estimates of the EPC (Singh, Singh, and Engelhardt 1997; 

Singh, Singh, and Iaci 2002), the developers of ProUCL suggest avoiding the use of the lognormal 

distribution to estimate the EPC.  Additionally, the use of the lognormal distribution based Chebyshev 

(MVUE) UCL should also be avoided unless skewness is mild with the sd of log-transformed data <0.5-

0.75.  The Chebyshev (MVUE) UCL has been retained in ProUCL software for historical and information 

purposes. ProUCL 5.0 and higher versions do not suggest its use.  

 

 ProUCL5.0 computes and outputs H-statistic based UCLs and Chebyshev (MVUE) UCLs for 

historical, research, and comparison purposes as it is noted that some recent guidance documents 

(EPA 2009) are recommending the use of lognormal distribution based decision statistics. 

ProUCL can compute an H-UCL of the mean for samples of sizes up to 1000.   

 

 It is suggested that all skewed data sets be first tested for a gamma distribution. For gamma 

distributed data sets, decisions statistics should be computed using gamma distribution based 

exact or approximate statistical methods as summarized in Section 2.5.1.2.  

 

 For lognormally distributed data sets that cannot be modeled by a gamma distribution, methods as 

summarized in Table 2-10 may be used to compute a UCL of the mean to estimate the EPC.  For 

highly skewed (e.g., sd >1.5) lognormally distributed data sets which do not follow a gamma 

distribution, one may want to compute a UCL using nonparametric bootstrap methods (Efron and 

Tibshirani 1993) and the Chebyshev (Mean, Sd) UCL.  

 

Table 2-10. Summary Table for the Computation of a UCL of the Unknown Mean, µ1, of a  

Lognormal Population to Estimate the EPC 

 

σ̂ (Skewness) Sample Size, n Suggestions 

σ̂  < 0.5 For all n Student’s t, modified-t, or H-UCL 

0.5 ≤ σ̂  < 1.0 For all n H-UCL 

1.0 ≤ σ̂  < 1.5 
n < 25 95% Chebyshev (Mean, Sd) UCL 

n ≥ 25 H-UCL 

 

1.5 ≤ σ̂  < 2.0 

n < 20 97.5% or 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 95% Chebyshev (Mean, Sd) UCL 

n ≥ 50 H-UCL 

 

2.0 ≤ σ̂  < 2.5 

 

n < 20 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 ≤ n < 70 95% Chebyshev (Mean, Sd) UCL 

n ≥ 70 H-UCL 

2.5 ≤ σ̂  < 3.0 

n < 30 99% Chebyshev (Mean, Sd) 

30 ≤ n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 ≤ n < 100 95% Chebyshev (Mean, Sd) UCL 
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σ̂ (Skewness) Sample Size, n Suggestions 

n ≥ 100 H-UCL 

 

3.0 ≤ σ̂ ≤ 3.5** 

 

n < 15 Bootstrap-t or Hall’s bootstrap method* 

15 ≤ n < 50 99% Chebyshev(Mean, Sd) 

50 ≤ n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 ≤ n < 150 95% Chebyshev (Mean, Sd) UCL 

n ≥ 150 H-UCL 

σ̂  > 3.5** For all n Use nonparametric methods* 

*In the case that the Hall’s bootstrap or bootstrap-t methods yield an erratic unrealistically large UCL95 

value, a UCL of the mean may be computed based upon the Chebyshev inequality: Chebyshev (Mean, Sd) 

UCL 

 

** For highly skewed data sets with σ̂  exceeding 3.0, 3.5, pre-process the data. It is very likely that the 

data includes outliers and/or come from multiple populations. The population partitioning methods may 

be used to identify mixture populations present in the data set.  

2.5.1.4 Nonparametric Skewed Data Sets without a Discernible Distribution  

For moderately and highly skewed data sets which are neither gamma nor lognormal, one can use a 

nonparametric Chebyshev UCL, bootstrap-t, or Hall’s bootstrap UCL (for small samples) of the mean to 

estimate the EPC. For skewed nonparametric data sets with negative and zero values, use a 95% 

Chebyshev (Mean, Sd) UCL for the population mean, μ1. For all other nonparametric data sets with only 

positive values, the following procedure may be used to estimate the EPC. The suggestions described here 

are based upon simulation experiments and may not cover all skewed data sets or various sizes originating 

from the real world practical studies and applications.  

 

 As noted earlier, for mildly skewed data sets with σ (or σ̂ ) < 0.5, most of the parametric and 

 nonparametric methods (excluding Chebyshev inequality which is meant for skewed data sets) 

 yield comparable UCL95 values; therefore, any of those UCL computation method (as 

 summarized in Table 2-11) may be used to estimate the EPC.  To be more precise, for mildly 

 skewed data sets of smaller sizes (n <30) with σ̂ ≤ 0.5, one can use the bootstrap BCA method, 

 Student’s t-statistic or modified-t- statistic to compute a 95% UCL of the mean, μ1; and  for 

 mildly skewed data sets of larger sizes (e.g., n ≥30) with σ̂ ≤ 0.5 one can use the BCA 

 bootstrap method or the adjusted CLT to compute a 95% UCL of the mean, μ1. 

 

 For nonparametric moderately skewed data sets (e.g., σ or its estimate, σ̂  in the interval [0.5, 1]), 

 one may use a 95% Chebyshev (Mean, Sd) UCL of the population mean, μ1. In practice, for 

 values of σ̂  closer to 0.5, a 95% Chebyshev (Mean, Sd) UCL may represent an over estimate of 

 the EPC. The user is advised to compare 95% and 90% Chebyshev (Mean, Sd) UCLs.  

 For nonparametric moderately and highly skewed data sets (e.g., σ̂  in the interval [1.0, 2.0]), 

 depending upon the sample size, one may use a 97.5% Chebyshev (Mean, Sd) UCL or a 95% 

 Chebyshev (Mean, Sd) UCL to estimate the EPC.  
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 For highly and extremely highly skewed data sets with σ̂  in the interval [2.0, 3.0], depending 

 upon the sample size, one may use Hall’s UCL95 or the 99% Chebyshev (Mean, Sd) UCL or the 

 97.5% Chebyshev (Mean, Sd) UCL or the 95% Chebyshev (Mean, Sd) UCL to estimate the EPC.  

 

For skewed data sets with σ̂ >3, none of the methods considered in this chapter provide the specified 95% 

coverage for the population mean, μ1. The coverages provided by the various methods decrease as σ ( σ̂ ) 

increases. For such data sets of sizes less than 30, a 95% UCL can be computed based upon Hall’s 

bootstrap method or bootstrap-t method. Hall’s bootstrap method provides the highest coverage (but < 

0.95) when the sample size is small; and the coverage for the population mean provided by Hall’s method 

(and the bootstrap-t method) does not increase much as the sample size, n, increases. However, as the 

sample size increases, the coverage provided by the Chebyshev (Mean, Sd) UCL increases. Therefore, for 

larger skewed data sets with σ̂ >3, the EPC may be estimated by the 99% Chebyshev (Mean, Sd) UCL. 

The large sample size requirement increases as σ̂  increases. Suggestions are summarized in Table 2-11. 

 

Table 2-11. Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ1, Based 

upon a Skewed Data Set (with All Positive Values) without a Discernible Distribution, Where σ̂  is 

the sd of Log-transformed Data 

 

σ̂  (Skewness) Sample Size, n Suggestions 

σ̂  < 0.5 For all n 
Student’s t, modified-t, or H-UCL 

Adjusted CLT UCL, BCA Bootstrap UCL 

0.5 ≤ σ̂  < 1.0 For all n 95% Chebyshev (Mean, Sd) UCL 

1.0 ≤ σ̂  < 1.5 For all n 95% Chebyshev (Mean, Sd) UCL 

1.5 ≤ σ̂  < 2.0 
n < 20 97.5% Chebyshev (Mean, Sd) UCL 

20 ≤ n  95% Chebyshev (Mean, Sd) UCL 

2.0 ≤ σ̂  < 2.5 

 

n < 15 Hall’s bootstrap method 

15 ≤  n < 20 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 ≤ n  95% Chebyshev (Mean, Sd) UCL 

2.5 ≤ σ̂  < 3.0 

n < 15 Hall’s bootstrap method 

15 ≤ n < 30 99% Chebyshev (Mean, Sd) 

30 ≤ n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 ≤ n  95% Chebyshev (Mean, Sd) UCL 

 

3.0 ≤ σ̂ ≤ 3.5** 

 

n < 15 Hall’s bootstrap method* 

15 ≤ n < 50 99% Chebyshev(Mean, Sd) UCL 

50 ≤ n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 ≤ n  95% Chebyshev (Mean, Sd) UCL 

σ̂  > 3.5** For all n 99% Chebyshev (Mean, Sd) UCL 
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*If Hall’s bootstrap method yields an erratic and unstable UCL value (e.g., happens when outliers are 

present), a UCL of the population mean may be computed based upon the 99% Chebyshev (Mean, Sd) 

method.  

 

** For highly skewed data sets with σ̂  exceeding 3.0 to 3.5, pre-process the data. Data sets with such 

high skewness are complex and it is very likely that the data includes outliers and/or come from multiple 

populations. The population partitioning methods may be used to identify mixture populations present in 

the data set.  

 

2.5.2 Summary of the Procedure to Compute a 95% UCL of the Unknown Population Mean, 

µ1, Based upon Full Uncensored Data Sets without Nondetect Observations 

A summary of the process used to compute an appropriate UCL95 of the mean is summarized as follows.    

 

 Formal GOF tests are performed first so that based on the determined data distribution, an 

appropriate parametric or nonparametric UCL of the mean can be computed to estimate the EPC. 

ProUCL generates formal GOF Q-Q plots to graphically evaluate the distribution (normal, 

lognormal, or gamma) of the data set.  

 

 For a normally or approximately normally distributed data set, the user is advised to use a 

Student’s t-distribution-based UCL of the mean. Student’s t-UCL or modified-t-statistic based 

UCL can be used to compute the EPC when the data set is symmetric (e.g., 3k̂ is smaller than 0.2 

to 0.3) or mildly skewed, that is, when σ or σ̂  is less than 0.5.  

 

 For mildly skewed data sets with σ̂  (sd of logged data) less than 0.5, all distributions available in 

ProUCL tend to yield comparable UCLs.  Also, when a data set follows all three distributions in 

ProUCL, compute the upper limits based upon the distribution with highest p-value. 

 

 For gamma or approximately gamma distributed data sets, the user is advised to: 1) use the 

approximate gamma UCL when biased adjusted MLE, 
*k̂  of k >1 and n ≥ 50; 2) use the adjusted 

gamma UCL when biased MLE, 
*k̂  of k > 1 and n < 50; 3) use the bootstrap-t method or Hall’s 

bootstrap method when 
*k̂ ≤ 1 and the sample size, n < 15 (or <20, sample size requirement 

depends upon k); 4) use the adjusted gamma UCL (if available) for 
*k̂  ≤ 1 and sample size, 15 ≤ 

n < 50; and 5) use approximate gamma UCL when 
*k̂ ≤1 but n ≥50. If the adjusted gamma UCL 

is not available, then use the approximate gamma UCL as an estimate of the EPC. When the 

bootstrap-t method or Hall’s bootstrap method yields an erratic inflated UCL (when outliers are 

present) result, the UCL may be computed using the adjusted gamma UCL (if available) or the 

approximate gamma UCL.  

 

 For lognormally or approximately lognormally distributed data sets, ProUCL recommends a UCL 

computation method based upon the sample size, n, and standard deviation of the log-transformed 

data, σ̂ . These suggestions are summarized in Table 2-10.  
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 For nonparametric data sets, which are not normally, lognormally, or gamma distributed, a 

nonparametric UCL is used to estimate the EPC.  Methods used to estimate EPCs based upon 

nonparametric data sets are summarized in Table 2-11.  For example, for mildly skewed 

nonparametric data sets (sd of logged data <0.5) of smaller sizes (n <30), one may use a 

modified-t UCL or BCA bootstrap UCL; and for larger mildly skewed data sets, one may use a 

CLT-UCL, adjusted-CLT UCL, or BCA bootstrap UCL.  

 

 For moderately skewed to highly skewed nonparametric data sets, the use of a Chebyshev (Mean, 

Sd) UCL is suggested. For extremely skewed data sets ( σ̂  > 3.0), even a Chebyshev inequality-

based 99% UCL of the mean fails to provide the desired coverage (e.g., 0.95) of the population 

mean. It is likely that such high skewed data sets do not occur with high probability representing 

a single statistical population.  

 

 For highly skewed data sets with σ̂  exceeding 3.0, 3.5, it is suggested the user pre-processes the 

data. It is very likely that the data contains outliers and/or come from multiple populations. 

Population partitioning methods (available in Scout; EPA 2009d) may be used to identify mixture 

populations present in the data set; and decision statistics, such as EPCs, may be computed 

separately for each of the identified sub-population.  

 

Notes: It should be pointed out that when dealing with a small data set (e.g., <50), and the Lilliefors test 

suggests that data are normal and S-W test suggests that data are not normal, ProUCL will suggest that 

the data set follows an approximate normal distribution.  However, for smaller data sets, Lilliefors test 

results may not be reliable, therefore the user is advised to review GOF tests for other distributions and 

proceed accordingly.  It is emphasized, when a data set follows a distribution (e.g., distribution A) using 

all GOF tests, and also follows an approximate distribution (e.g., Distribution B) using one of the 

available GOF tests, it is preferable to use distribution A over distribution B. However, when distribution 

A is a highly skewed (sd of logged data >1.0) lognormal distribution, use the guidance provided on the 

ProUCL generated output.   

 

Once again, contrary to the common belief and practice, for moderately skewed to highly skewed data 

sets, the CLT and t-statistic based UCLs of the mean cannot provide defensible estimates of EPCs. 

Depending upon data skewness of a nonparametric data set, sample size as large as 50, 70, or 100 is not 

large enough to apply the CLT and conclude that the sample mean approximately follows a normal 

distribution. The sample size requirement increases with skewness. The use of nonparametric methods 

such as bootstrap-t and Chebyshev inequality based upper limits is suggested for skewed data sets.  

 

Finally, ProUCL makes suggestions about the use of one or more UCLs based upon the data distribution, 

sample size, and data skewness. Most of the suggestions made in ProUCL are based upon the simulation 

studies performed by the developers and their professional experience. However, simulations performed 

do not cover all real world scenarios and data sets. The users may use UCLs values other than those 

suggested by ProUCL based upon their own experiences and project needs. 
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CHAPTER 3 

 

Computing Upper Limits to Estimate Background 

Threshold Values Based Upon Uncensored Data Sets 

without Nondetect Observations 

 

3.1 Introduction 
 
In background evaluation studies, site-specific (e.g., soils, groundwater) background level constituent 

concentrations are needed to compare site concentrations with background level concentrations also 

known as background threshold values (BTVs). The BTVs are estimated, based upon sampled data 

collected from reference areas and/or unimpacted site-specific background areas (e.g., upgradient wells) 

as determined by the project team. The first step in establishing site-specific background level constituent 

concentrations is to collect an appropriate number of samples from the designated background or 

reference areas. The Stats/Sample Sizes module of ProUCL software can be used to compute DQOs-

based sample sizes. Once an adequate amount of data has been collected, the next step is to determine the 

data distribution. This is typically done using exploratory graphical tools (e.g., Q-Q plots) and formal 

GOF tests. Depending upon the data distribution, one will use a parametric or nonparametric methods to 

estimate BTVs.  

 

In this chapter and also in Chapter 5 of this document, a BTV is a parameter of the background population 

representing an upper threshold (e.g., 95th upper percentile) of the background population.  When one is 

interested in comparing averages, a BTV may represent an average value of a background population 

which can be estimated by a UCL95 (e.g., Chapter 21 of EPA 2009 RCRA Guidance). However, in 

ProUCL guidance and in ProUCL software, a BTV represents an upper threshold of the background 

population. The Upper Limits/BTVs module of ProUCL software computes upper limits which are often 

used to estimate a BTV representing an upper threshold of the background population. With this 

definition of a BTV, an onsite observation in exceedance of a BTV estimate may be considered as not 

coming from the background population; such a site observation may be considered as exhibiting some 

evidence of contamination due to site-related activities. Sometimes, locations exhibiting concentrations 

higher than a BTV estimate are re-sampled to verify the possibility of contamination. Onsite values less 

than BTVs represent unimpacted locations and can be considered part of the background (or comparable 

to the background) population. This approach, comparing individual site or groundwater (GW) 

monitoring well (MW) observations with BTVs, is particularly helpful to: 1) identify and screen 

constituents/contaminants of concern (COCs); and 2) use after some remediation activities (e.g., 

installation of a GW treatment plant) have already taken place and the objective is to determine if the 

remediated areas have been remediated close enough to the background level constituent concentrations.  

 

Background versus site comparisons can also be performed using two-sample hypothesis tests (see 

Chapter 6). However, BTV estimation methods described in this chapter are useful when not enough site 

data are available to perform hypotheses tests such as the two-sample t-test or the nonparametric 

Wilcoxon Rank Sum (WRS) test. When enough (more than 8 to10 observations) site data are available, 
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hypotheses testing approaches can be used to compare onsite and background data or onsite data with 

some pre-established threshold or screening values. The single-sample hypothesis tests (e.g., t-test, WRS 

test, proportion test) are used when screening levels or BTVs are known or pre-established.  The two-

sample hypotheses tests are used when enough data (at least 8-10 observations from each population) are 

available from background (e.g., upgradient wells) as well as site (e.g., monitoring wells) areas. This 

chapter describes statistical limits that may be used to estimate the BTVs for full uncensored data sets 

without any ND observations. Statistical limits for data sets consisting of NDs are discussed in Chapter 5.  

 

It is implicitly assumed that the background data set used to estimate BTVs represents a single statistical 

population. However, since outliers (well-separated from the main dominant data) are inevitable in most 

environmental applications, some outliers such as the observations coming from populations other than 

the background population may also be present in a background data set. Outliers, when present, distort 

decision statistics of interest (e.g., upper prediction limits [UPLs], upper tolerance limits [UTLs]), which 

in turn may lead to incorrect remediation decisions that may not be cost-effective or protective of human 

health and the environment. The BTVs should be estimated by statistics representing the dominant 

background population represented by the majority of the data set. Upper limits computed by including a 

few low probability high outliers (e.g., coming from the far tails of data distribution) tend to represent 

locations with those elevated concentrations rather than representing the main dominant background 

population. It is suggested that all relevant statistics be computed using the data sets with and without low 

probability occasional outliers. This extra step often helps the project team to see the potential influence 

of outlier(s) on the decision making statistics (UCLs, UPLs, UTLs) and to make informative decisions 

about the disposition of outliers. That is, the project team and experts familiar with the site should decide 

which of the computed statistics (with outliers or without outliers) represent more accurate estimate(s) of 

the population parameters (e.g., mean, EPC, BTV) under consideration. Since the treatment and handling 

of outliers in environmental applications is a subjective and controversial topic, the project team 

(including decision makers, site experts) may decide to treat outliers on a site-specific basis using all 

existing knowledge about the site and reference areas under investigation. A couple of classical outlier 

tests, incorporated in ProUCL, are discussed in Chapter 7.  

 
Extracting a Site-Specific Background Data Set from a Broader Mixture Data Set:  Typically, not many 

background samples are collected due to resource constraints and difficulties in identifying suitable 

background areas with anthropogenic activities and natural geological characteristics comparable to 

onsite areas (e.g., at large Federal Facilities, mining sites). Under these conditions, due to confounding of 

site related chemical releases with anthropogenic influences and natural geological variability, it becomes 

challenging to:1) identify background/reference areas with comparable anthropogenic activities and 

geological conditions/formations; and 2) collect an adequate amount of data needed to perform 

meaningful and defensible site versus background comparisons for each geological stratum to determine 

chemical releases only due to the site related operations and releases.  Moreover, a large number of 

background samples (not impacted by site related chemical releases) may need to be collected 

representing the various soil types and anthropogenic activities present at the site; which may not be 

feasible due to resource constraints and difficulties in identifying background areas with anthropogenic 

activities and natural geological characteristics comparable to onsite areas. The lack of sufficient 

background data makes it difficult to perform defensible background versus site comparisons and 

compute reliable estimates of BTVs. A small background data set may not adequately represent the 

background population; and due to uncertainty and larger variability, the use of a small data set tends to 

yield non-representative estimates of BTVs. 

 

Knowing the complexity of site conditions and that within all environmental site samples (data sets) exist 

both background level concentrations and concentrations indicative of site-related releases, sometimes it 



100 

is desirable to extract a site-specific background data set from a mixture data set consisting of all 

available onsite and offsite concentrations. This is especially true for larger sites including Federal 

Facilities and Mining Sites.  Several researchers (Sinclair 1976; Holgresson and Jorner 1978; 

Fleischhauer and Korte 1990) have used normal Q-Q/probability plots methods to delineate multiple 

populations which can be present in a mixture data set collected from environmental, geological and 

mineral exploration studies. 

 

Therefore, when not enough observations are available from reference areas with geological and 

anthropogenic influences comparable to onsite areas, the project team may want to use an iterative 

population partitioning methods (Singh, Singh, and Flatman 1994; Fleischhauer and Korte 1990) on a 

broader mixture data set to extract a site-specific background data set with geological conditions and 

anthropogenic influences comparable to those of the various onsite areas.  Using the information provided 

by iteratively generated Q-Q plots, the project team then determines a background breakpoint (BP) 

distinguishing between background level concentrations and onsite concentrations potentially 

representing locations impacted by onsite releases. The background BP is determined based upon the 

information provided by iterative Q-Q plots, site CSM, expert site knowledge, and toxicity of the 

contaminant. The extracted background data set is used to compute upper limits (BTVs) which take data 

(contaminant) variability into consideration.  If all parties of a project team do not come to a consensus on 

a background BP, then the best approach is to: identify comparable background areas and collect a 

sufficient amount of background data representing all formations and potential anthropogenic influences 

present at the site.  The topics of population partitioning and the extraction of a site-specific background 

data set from a mixture data set are beyond the scope of ProUCL software and this technical guidance 

document. It requires the development of a separate chapter describing the iterative population 

partitioning method including the identification and extraction of a defensible background data set from a 

mixture data set consisting of all available data collected from background areas (if available), and 

unimpacted and impacted onsite locations.  

 

A review of the environmental literature reveals that one or more of the following statistical upper limits 

are used to estimate BTVs:  

 

 Upper percentiles  

 Upper prediction limits (UPLs)  

 Upper tolerance limits (UTLs) 

 Upper Simultaneous Limits (USLs) – New in ProUCL 5.0/ProUCL 5.1 

 

Note: The upper limits which are selected to estimate the BTV are dependent on the project objective 

(e.g., comparing a single future observation, or comparing an unknown number of observations with a 

BTV estimate). . ProUCL does not provide suggestions as to which estimate of a BTV is appropriate for a 

project; the appropriate upper limit is determined by the project team. Once the project team has decided 

on an upper limit (e.g., UTL95-95), a similar process used to select a UCL95 can be used for selecting a 

UTL95-95 from among the UTLs computed by ProUCL. The differences between the various limits used 

to estimate BTVs are not clear to many practitioners. Therefore, a detailed discussion about the use of the 

different limits with their interpretation is provided in the following sections. Since 0.95 is the most 

commonly used confidence coefficient (CC), these limits are described for a CC of 0.95 and coverage 

probability of 0.95 associated with a UTL. ProUCL can compute these limits for any valid combination of 

CC and coverage probabilities including some commonly used values of CC levels (0.80, 0.90, 0.95, 

0.99) and coverage probabilities (0.80, 0.90, 0.95, 0.975).  

 



101 

Caution: To provide a proper balance between false positives and false negatives, the upper limits 

described above, especially a 95% USL (USL95), should be used only when the background data set 

represents a single environmental population without outliers (observations not belonging to background). 

Inclusion of multiple populations and/or outliers tends to yield elevated values of USLs (and also of  

UPLs and UTLs) which can result in a high number (and not necessarily high percentage) of undesirable 

false negatives, especially for data sets of larger sizes (n > 30). 

 

Note on Computing Lower Limits:  In many environmental applications (e.g., in GW monitoring), one 

needs to compute lower limits including: lower confidence limits (LCL) of the mean, lower prediction 

limits (LPLs), lower tolerance limits (LTLs), or lower simultaneous limit (LSLs).  At present, ProUCL 

does not directly compute a LCL, LPL, LTL, or a LSL. For data sets with and without NDs, ProUCL 

outputs several intermediate results and critical values (e.g., khat, nuhat, tolerance factor K for UTLs, 

d2max for USLs) needed to compute the interval estimates and lower limits. For data sets with and 

without NDs, except for the bootstrap methods, the same critical value (e.g., normal z value, Chebyshev 

critical value, or t-critical value) can be used to compute a parametric LPL, LSL, or a LTL (for samples of 

size >30 to be able to use Natrella's approximation in LTL) as used in the computation of a UPL, USL, or 

a UTL (for samples of size >30). Specifically, to compute a LPL, LSL, and LTL (n>30) the '+' sign used 

in the computation of the corresponding UPL, USL, and UTL (n>30) needs to be replaced by the '-' sign 

in the equations used to compute UPL, USL, and UTL (n>30). For specific details, the user may want to 

consult a statistician. For data sets without ND observations, the Scout 2008 software package (EPA 

2009d) can compute the various parametric and nonparametric LPLs, LTLs (all sample sizes), and LSLs.  

3.1.1 Description and Interpretation of Upper Limits used to Estimate BTVs 

Based upon a background data set, upper limits such as a 95% upper confidence limit of the 95th 

percentile (UTL95-95) are used to estimate upper threshold value(s) of the background population. It is 

expected that observations coming from the background population will lie below that BTV estimate with 

a specified CC. BTVs should be estimated based upon an “established” data set representing the 

background population under consideration.  

 

Established Background Data Set: This data set represents background conditions free of outliers which 

potentially represent locations impacted by the site and/or other activities. An established background 

data set should be representative of the environmental background population. This can be determined by 

using a normal Q-Q plot on a background data set.  If there are no jumps and breaks in the normal Q-Q 

plot, the data set may be considered representative of a single environmental population. A single 

environmental background population here means that the background (and also the site) can be 

represented by a single geological formation, or by single soil type, or by a single GW aquifer etc.   

Outliers, when present in a data set, result in inflated values of many decision statistics including UPLs, 

UTLs, and USLs. The use of inflated statistics as BTV estimates tends to result in a higher number of 

false negatives.  

 

However, when a site consists of various formations or soil types, separate background data sets may 

need to be established for each formation or soil type, therefore the project team may want to establish 

separate BTVs for different formations. When it is not feasible (e.g., due to implementation complexities) 

or desirable  to establish separate background data sets for different geological formations present at a site 

(e.g., large mining sites), the project team may decide to use the same BTV for all formations.. In this 

case, a Q-Q plot of background data set collected from unimpacted areas may display discontinuities as 

concentrations in different formations may vary naturally. In these scenarios, use a Q-Q plot and outlier 
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test only to identify outliers (well separated from the rest of the data) which may be excluded from the 

computation of BTV estimates.  

 

Notes: The user specifies the allowable false positive error rate, α (=1-CC The false negative error rate 

(declaring a location clean when in fact it is contaminated) is controlled by making sure that one is 

dealing with a defensible/established background data set representing a background population and the 

data set is free of outliers. 

  

Let x1, x2, xn represent sampled concentrations of an established background data set collected from some 

site-specific or general background reference area. 

 

Upper Percentile, x0.95: Based upon an established background data set, a 95th percentile represents that 

statistic such that 95% of the sampled data will be less than or equal to (≤) x0.95 . It is expected that an 

observation coming from the background population (or comparable to the background population) will 

be ≤ x0.95 with probability 0.95. A parametric percentile takes data variability into account. 

 

Upper Prediction Limit (UPL): Based upon an established background data set, a 95% UPL (UPL95) 

represents that statistic such that an independently collected observation (e.g., new/future) from the target  

population (e.g., background, comparable to background) will be less than or equal to the UPL95 with CC 

of 0.95. We are 95% sure that a single future value from the background population will be less than the 

UPL95 with CC= 0.95. A parametric UPL takes data variability into account. 

 

In practice, many onsite observations are compared with a BTV estimate. The use of a UPL95 to compare 

many observations may result in a higher number of false positives; that is the use of a UPL95 to compare 

many observations just by chance tends to incorrectly classify observations coming from the background 

or comparable to background population as coming from the impacted site locations. For example, if 

many (e.g., 30) independent onsite comparisons (e.g., Ra-226 activity from 30 onsite locations) are made 

with the same UPL95, each onsite value may exceed that UPL95 with a probability of 0.05 just by 

chance. The overall probability, αactual of at least one of those 30 comparisons being significant (exceeding 

BTV) just by chance is given by: 

  

αactual = 1-(1-α)k =1 – 0.9530  ~1-0.21 = 0.79 (false positive rate).  

 

This means that the probability (overall false positive rate) is 0.79 (and is not equal to 0.05) that at least 

one of the 30 onsite locations will be considered contaminated even when they are comparable to 

background. The use of a UPL95 is not recommended when multiple comparisons are to be made. 

 

Upper Tolerance Limit (UTL): Based upon an established background data set, a UTL95-95 represents 

that statistic such that 95% of observations (current and future) from the target  population (background, 

comparable to background) will be less than or equal to the UTL95-95 with CC of 0.95.  A UTL95-95 

represents a 95% UCL of the 95th percentile of the data distribution (population).  A UTL95-95 is 

designed to simultaneously provide coverage for 95% of all potential observations (current and future) 

from the background population (or comparable to background) with a CC of 0.95. A UTL95-95 can be 

used when many (unknown) current or future onsite observations need to be compared with a BTV. A 

parametric UTL95-95 takes the data variability into account. 

 

By definition a UTL95-95 computed based upon a background data set just by chance can classify 5% of 

background observations as not coming from the background population with CC 0.95. This percentage 

(false positive error rate) stays the same irrespective of the number of comparisons that will be made with 
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a UTL95-95. However, when a large number of observations coming from the target population 

(background, comparable to background) are compared with a UTL95-95, the number of exceedances 

(not the percentage of exceedances) of UTL95-95 by background observations can be quite large. This 

implies that a larger number (but not greater than 5%) of onsite locations comparable to background may 

be falsely declared as requiring additional investigation which may not be cost-effective.  

To avoid this situation, ProUCL provides a limit called USL which can be used to estimate the BTV 

provided the background data set represents a single population free of outliers. The use of a USL is not 

advised when the background data set may represent several geological formations/soil types. 

 

Upper Simultaneous Limit (USL):  Based upon an established background data set free of outiers and 

representing a single statistical population (representing a single formation, representing the same soil 

type, same aquifer), a USL95 represents that statistic such that all observations from the “established” 

background data set are less than or equal to the USL95 with a CC of 0.95. Outliers should be removed 

before computing a USL as outliers in a background data set tend to represent observations coming from a 

population other than the background population represented by the majority of observations in the data set. 

Since USL represents an upper limit on the largest value in the sample, that largest value should come from 

the same background population. A parametric USL takes the data variability into account. It is expected that 

all current or future observations coming from the background population (comparable to background 

population, unimpacted site locations) will be less than or equal to the USL95 with CC, 0.95 (Singh and 

Nocerino 2002). The use of a USL as a BTV estimate is suggested when a large number of onsite 

observations (current or future) need to be compared with a BTV. 

 

The false positive error rate does not change with the number of comparisons, as the USL95 is designed to 

perform many comparisons simultaneously.  Furthermore, the USL95 also has a built in outlier test (Wilks 

1963), and if an observation (current or future) exceeds the USL95, then that value definitely represents 

an outlier and does not come from the background population. The false negative error rate is controlled 

by making sure that the background data set represents a single background population free of outliers. 

Typically, the use of a USL95 tends to result in a smaller number of false positives than a UTL95-95, 

especially when the size of the background data set is greater than 15. 

3.1.2 Confidence Coefficient (CC) and Sample Size 

This section briefly discusses sample sizes and the selection of CCs associated with the various upper 

limits used to estimate BTVs. 

 

 Higher statistical limits are associated with higher levels of CCs. For example, a 95% UPL is 

higher than a 90% UPL. 

 Higher values of a CC (e.g., 99%) tend to decrease the power of a test, resulting in a higher 

number of false negatives - dismissing contamination when present.  

Therefore, the CC should not be set higher than necessary.  

 

 Smaller values of the CC (e.g., 0.80) tend to result in a higher number of false positives (e.g., 

declaring contamination when it is not present). 

 In most practical applications, choice of a 95% CC provides a good compromise between 

confidence and power.  
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 Higher level of uncertainty in a background data set (e.g., due to a smaller background data set) 

and higher values of critical values associated with smaller (n <15-20) samples tend to dismiss 

contamination as representing background conditions (results in higher number of false negatives; 

identifying a location that may be dirty as background). This is especially true when one uses 

UTLs and UPLs to estimate BTVs. 

 Nonparametric upper limits based upon order statistics (e.g., the largest, the second largest, etc.) 

may not provide the desired coverage as they do not take data variability into account. 

Nonparametric methods are less powerful than the parametric methods; and they require larger 

data sets to achieve power comparable to parametric methods.  

3.2 Treatment of Outliers 

The inclusion of outliers in a background data set tends to yield distorted and inflated estimates of BTVs. 

Outlying observations which are significanly higher than the majority of the background data may not be 

used in establishing background data sets and in the computation of BTV estimates. A couple of classical 

outlier tests cited in environmental literature (Gilbert 1987; EPA 2006b, 2009; Navy 2002a, 2002b) are 

available in the ProUCL software.  The classical outlier procedures suffer from masking effects as they 

get distorted by the same outlying observations that they are supposed to find!  It is therefore 

recommended to supplement outlier tests with graphical displays such as box plots, Q-Q plots. On a Q-Q 

plot, elevated observations which are well-separated from the majority of data represent potential outliers.   

  

It is noted that nonparametric upper percentiles, UPLs and UTLs, are often represented by higher order 

statistics such as the largest value or the second largest value. When high outlying observations are 

present in a background data set, the higher order statistics may represent observations coming from the 

contaminated onsite/offsite areas. Decisions made based upon outlying observations or distorted 

parametric upper limits can be incorrect and misleading. Therefore, special attention should be given to 

outlying observations. The project team and the decision makers involved should decide about the proper 

disposition of outliers, to include or not include them, in the computation of the decision making statistics 

such as the UCL95 and the UTL95-95. Sometimes, performing statistical analyses twice on the same data 

set, once using the data set with outliers and once using the data set without outliers, can help the project 

team in determining the proper disposition of high outliers. Examples elaborating on these issues are 

discussed in several chapters (Chapters 2, 4, 7) this document. 

 

Notes: It should be pointed out that methods incorporated in ProUCL can be used on any data set with or 

without NDs and with or without outliers. Do not misinterpret that ProUCL is restricted and can only be 

used on data sets without outliers. It is not a requirement to exclude outliers before using any of the 

statistical methods incorporated in ProUCL. The intent of the developers of the ProUCL software is to 

inform the users on how the inclusion of occasional outliers coming from the low probability tails of the 

data distribution can yield distorted values of UCL95, UPLs, UTLs, and various other statistics. The 

decision limits and test statistics should be computed based upon the majority of data representing the 

main dominant population and not by accommodating a few low probability outliers resulting in distorted 

and inflated values of the decision statistics. Statistics computed based upon a data set with outliers tend 

to represent those outliers rather than the population represented by the majority of the data set. The 

inflated decision statistics tend to represent the locations with those elevated observations rather than 

representing the main dominant population. The outlying observations may be separately investigated to 

determine the reasons for their occurrences (e.g., errors or contaminated locations). It is suggested to 

compute the statistics with and without the outliers, and compare the potential impact of outliers on the 

decision making processes. 
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Let x1, x2, ..., xn represent concentrations of a contaminant/constituent of concern (COC) collected from 

some site-specific or general background reference area. The data are arranged in ascending order and the 

ordered sample (called ordered statistics) is denoted by x(1)  x(2)   ...  x(n). The ordered statistics are used 

as nonparametric estimates of upper percentiles, UPLs, UTLs and USLs. Also, let yi = ln (xi); i = 1, 2, ... , 

n, and y and sy represent the mean and standard deviation (sd) of the log-transformed data. Statistical 

details of some parametric and nonparametric upper limits used to estimate BTVs are described in the 

following sections. 

3.3 Upper p*100% Percentiles as Estimates of BTVs 

In most statistical textbooks (e.g., Hogg and Craig 1995), the pth (e.g., p = 0.95) sample percentile of the 

measured sample values is defined as that value,
px̂ , such that p*100% of the sampled data set lies at or 

below it. The carat sign over xp, indicates that it represents a statistic/estimate computed using the 

sampled data. The same use of the carat sign is found throughout this guidance document. The 

statistic
px̂ represents an estimate of the pth population percentile.  It is expected that about p*100% of the 

population values will lie below the pth percentile. Specifically, x0.95 represents an estimate of the 95th 

percentile of the background population.  

3.3.1 Nonparametric p*100% Percentile 

Nonparametric 95% percentiles are used when the background data (raw or transformed) do not follow a 

discernible distribution at some specified (e.g., α = 0.05, 0.1) level of significance. Different software 

packages (e.g., SAS, Minitab, and Microsoft Excel) use different formulae to compute nonparametric 

percentiles, and therefore yield slightly different estimates of population percentiles, especially when the 

sample size is small, such as less than 20-30. Specifically, some software packages estimate the pth 

percentile by using the p*nth order statistic, which may be a whole number between 1 and n or a fraction 

lying between 1 and n, while other software packages compute the pth percentile by the p*(n+1)th order 

statistic (e.g., used in ProUCL versions 4.00.02 and 4.00.04) or by the (pn+0.5) th order statistic.  For 

example, if n = 20, and p = 0.95, then 20*0.95 = 19, thus the 19th ordered statistic represents the 95th 

percentile. If n = 17, and p = 0.95, then 17*0.95= 16.15, thus the 16.15th ordered value represents the 95th 

percentile. The 16.15th ordered value lies between the 16th and the 17th order statistics and can be 

computed by using a simple linear interpolation given by:  

 

 x(16.15) = x(16) + 0.15 (x(17) - x(16) ). (3-1) 

 

Earlier versions of ProUCL (e.g., ProUCL 4.00.02, 4.00.04) used the p*(n+1)th order statistic to estimate 

the nonparametric pth percentile. However, since most users are familiar with Excel and some consultants 

have developed statistical software packages using Excel, and at the request of some users, it was decided 

to use the same algorithm as incorporated in Excel to compute nonparametric percentiles.  ProUCL 4.1 

and higher versions compute nonparametric percentiles using the same algorithm as used in Excel 2007.  

This algorithm is used on data sets with and without ND observations.  

 

Notes: From a practical point of view, nonparametric percentiles computed using the various percentile 

computation methods described in the literature are comparable unless the data set is small (e.g., n <20-

30) and/or comes from a mixed population consisting of some extreme high values.  No single percentile 

computation method should be considered superior to other percentile computation methods available in 
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the statistical literature. In addition to nonparametric percentiles, ProUCL also computes several 

parametric percentiles described as follows. 

3.3.2 Normal p*100% Percentile 

The sample mean, x . and sd, s, are computed first. For normally distributed data sets, the p*100th sample 

percentile is given by the following statement: 

 

 
pp szxx ˆ  (3-2) 

 

Here zp is the p*100th percentile of a standard normal, N(0, 1), distribution, which means that the area 

(under the standard normal curve) to the left of zp is p. If the distributions of the site and background data 

are comparable, then it is expected that an observation coming from a population (e.g., site) comparable 

to the background population would lie at or below the p*100% upper percentile, 
px̂ , with probability p.  

3.3.3 Lognormal p*100% Percentile 

To compute the pth percentile, 
px̂ , of a lognormally distributed data set, the sample mean, y , and sd, sy, 

of log-transformed data, y are computed first. For lognormally distributed data sets, the p*100th percentile 

is given by the following statement: 

 

 )exp(ˆ
pyp zsyx  , (3-3) 

 

zp is the p*100th percentile of a standard normal, N(0,1), distribution.  

3.3.4 Gamma p*100% Percentile 

Since the introduction of a gamma distribution, G (k, ), is relatively new in environmental applications, a 

brief description of the gamma distribution is given first; more details can be found in Section 2.3.3. The 

maximum likelihood estimator (MLE) equations to estimate gamma parameters, k (shape parameter) and 

 (scale parameter), can be found in Singh, Singh, and Iaci (2002). A random variable (RV), X (arsenic 

concentrations), follows a gamma distribution, G(k,), with parameters k > 0 and  > 0, if its probability 

density function is given by the following equation: 

 

 

otherwise

xex
kθ

θkxf θxk

k

;0

0;
)(Γ

1
),;( 1



 

 (3-4) 

 

The mean, variance, and skewness of a gamma distribution are: µ = k, variance = 2 = k2, and 

skewness = k/2 . Note that as k increases, the skewness decreases, and, consequently, a gamma 

distribution starts approaching a normal distribution for larger values of k (e.g., k  10).  In practice, k is 

not known and a normal approximation may be used even when the MLE estimate of k is as small as 6.   

 

Let k̂  and ̂  represent the MLEs of k and  respectively. The relationship between a gamma RV, X = G 

(k, ), and a chi-square RV, Y, is given by X = Y *  /2, where Y follows a chi-square distribution with 
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2k degrees of freedom (df). Thus, the percentiles of a chi-square distribution (as programmed in ProUCL) 

can be used to determine the percentiles of a gamma distribution. In practice, k is replaced by its MLE. 

Once an α*100% percentile, y() 2k, of a chi-square distribution with 2k df is obtained, the α*100% 

percentile for a gamma distribution is computed using the following equation: 

 

 x = y * /2 (3-5) 

3.4 Upper Tolerance Limits 

A UTL (1-α)-p (e.g., UTL95-95) based upon an established background data set represents that limit such 

that p*100% of the observations (current and future) from the target population (background, comparable 

to background) will be less than or equal to UTL with a CC, (1-α). It is expected that p*100% of the 

observations belonging to the background population will be less than or equal to a UTL with a CC, (1-α). 

A UTL (1-α)-p represents a (1–α) 100% UCL for the unknown pth percentile of the underlying 

background population.  

 

A UTL95-95 is designed to provide coverage for 95% of all observations potentially coming from the 

background or comparable to background population(s) with a CC of 0.95. A UTL95-95 will be exceeded 

by all (current and future) values coming from the background population less than 5% of the time with a 

CC of 0.95, that is 5 exceedances per 100 comparisons (of background values) can result just by chance 

for an overall CC of 0.95.  Unlike a UPL95, a UTL95-95 can be used when many, or an unknown number 

of current or future onsite observations need to be compared with a BTV. A parametric UTL95-95 takes 

the data variability into account.  

 

When a large number of comparisons are made with a UTL95-95, the number of exceedances (not the 

percentage of exceedances) of the UTL95-95 by those observations can also be large just by chance. This 

implies that just by chance, a larger number (but not larger than 5%) of onsite locations comparable to 

background can be greater than a UTL95-95 potentially requiring unnecessary investigation which may 

not be cost-effective. In order to avoid this situation, it is suggested to use a USL95 to estimate a BTV, 

provided the background data set represents a single statistical population, free of outliers.  

3.4.1 Normal Upper Tolerance Limits 

First, compute the sample mean, x , and sd, s, using a defensible data set representing a single 

background population. For normally distributed data sets, an upper (1 – α)*100% UTL with coverage 

coefficient, p, is given by the following statement. 

 

 UTL = sKx *  (3-6) 

 

Here, K = K (n, α, p) is the tolerance factor and depends upon the sample size, n, CC = (1 – α), and the 

coverage proportion = p. For selected values of n, p, and (1-α), values of the tolerance factor, K, have 

been tabulated extensively in the various statistical books (e.g., Hahn and Meeker 1991). Those K values 

are based upon the non-central t-distribution. Also, some large sample approximations (Natrella 1963) are 

available to compute the K values for one-sided tolerance intervals (same for both UTLs and lower 

tolerance limits). The approximate value of K is also a function of the sample size, n, coverage 

coefficient, p, and the CC, (1 – α). For samples of small sizes, n≤ 30, ProUCL uses the tabulated (Hahn 

and Meeker 1991) K values. Tabulated K values are available only for some selected combinations of p 

(0.90, 0.95, 0.975) and (1-α) values (0.90, 0.95, 0.99).  For sample sizes larger than 30, ProUCL computes 

the K values using the large sample approximations, as given in Natrella (1963).  The Natrella’s 
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approximation seems to work well for samples of sizes larger than 30. ProUCL computes these K values 

for all valid values of p and (1-α) and samples of sizes as large as 5000.  

3.4.2 Lognormal Upper Tolerance Limits 

The procedure to compute UTLs for lognormally distributed data sets is similar to that for normally 

distributed data sets. First, the sample mean, y , and sd, sy, of the log-transformed data are computed. An 

upper (1 – α)*100% tolerance limit with tolerance or coverage coefficient, p is given by the following 

statement: 

 

 UTL = )*exp( ysKy   (3-7) 

 

The K factor in (3-7) is the same as the one used to compute the normal UTL.  

 

Notes: Even though there in no back-transformation bias present in the computation of a lognormal UTL, 

a lognormal distribution based UTL is typically higher (sometimes unrealistically higher as shown in the 

following example) than other parametric and nonparametric UTLs; especially when the sample size is 

less than 20. Therefore, the use of lognormal UTLs to estimate BTVs should be avoided when skewness 

is high (sd of logged data > 1 or 1.5) and sample size is small (e.g., n < 20-30). 

3.4.3 Gamma Distribution Upper Tolerance Limits 

Positively skewed environmental data can often be modeled by a gamma distribution.  ProUCL software 

has two goodness-of-fit tests: the Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S) tests for a 

gamma distribution. These GOF tests are described in Chapter 2. UTLs based upon normal approximation 

to the gamma distribution (Krishnamoorthy et al. 2008) have been incorporated in ProUCL 4.00.05 (EPA 

2010d) and higher versions. Those approximations are based upon Wilson-Hilferty (WH)(Wilson and 

Hilferty 1931) and Hawkins-Wixley (HW) (Hawkins and Wixley 1986) approximations.  

 

Note: It should be pointed out that the performance of gamma UTLs and gamma UPLs based upon these 

HW and WH approximations is not well-studied and documented.  Interested researchers may want to 

evaluate the performance of these gamma upper limits based upon HW and WH approximations.  

 

A description of method to compute gamma UTLs is given as follows. 

 

Let x1, x2, …, xn represent a data set of size n from a gamma distribution, G(k, θ) with shape parameter, k 

and scale parameter θ.  

 

 According to the WH approximation, the transformation, Y = X1/3 follows an approximate normal 

distribution. The mean, µ and variance, σ2 of the transformed normally distributed variable, Y are 

given as follows: 

 

)(/)]3/1([ 3/1 kk   ; and 
23/22 )(/)]3/2([   kk  

 

 According to the HW approximation, the transformation, Y = X1/4  follows an approximate 

normal distribution. 

 

Let y  and sy represent the mean and sd of the observations in the transformed scale (Y). 
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Using the WH approximation, the gamma UTL (in original scale, X), is given by: 

 

    UTL =   3

max 0, * yy K s      (3-8) 

 

Similarly, using the HW approximation, the gamma UTL in original scale is given by: 

 

    UTL =  
4

* yy K s       (3-9) 

  
The tolerance factor, K is defined earlier in (3-6) while computing a UTL based upon normal distribution. 

 

Note: For mildly skewed to moderately skewed gamma distributed data sets, HW and WH 

approximations yield fairly comparable UTLs. However, for highly skewed data sets (k <0.5-1.0) with 

higher variability, the HW method tends to yield higher limits than the WH method.  A couple of 

examples are discussed later in this chapter.  

3.4.4 Nonparametric Upper Tolerance Limits 

The computation of nonparametric UTLs and associated achieved confidence levels are described as 

follows. A nonparametric UTLp,(1-α) =UTL p-(1 - α) providing coverage to p*100% observations with CC, 

(1 – α) represents an (1 – α)*100% UCL for the pth percentile of the target population under study. It is 

expected that about p*100% of the observations (current and future) coming from the target population 

(e.g., background, comparable to background) will be ≤ UTLp,(1-α) with CC, (1 – α)*100.   

 

Let 
(1) (2) ( ) ( )... ...r nx x x x     represent n ordered statistics (arranged in ascending order) of a given 

data set, 
1, 2 ,...., nx x x . A nonparametric UTL is computed by higher order statistics such as the largest, the 

second largest, the third largest, and so on. The order, r of the statistic, x(r) used to compute a 

nonparametric UTL depends upon the sample size, n, coverage probability, p, and the desired CC, (1 - α). 

It is noted that in comparison with parametric UTLs, nonparametric UTLs require larger data sets to 

achieve the desired CC; a nonparametric UTL p-(1 - α) computed by order statistics often fails to achieve 

the specified CC, (1 – α).  

 

Note:  Higher order statistics are used to compute nonparametric upper limits which do not account for 

data variability. Depending upon the data set size, those limits may not provide the specified coverage 

(e.g., 95% CC) to the parameter (BTV) of interest (e.g., 95% upper percentile of the population). 

Therefore, before using a nonparametric estimate of the BTV, one should make sure that the data set does 

not follow a known distribution.  Specifically, when dealing with a data set with NDs, account for the 

NDs and determine the distribution of detected values instead of using a nonparametric UTL. If the 

detected data follow a parametric distribution, one may want to compute a UTL (and other upper limits) 

using that distribution and KM estimates. These issues are discussed in Chapter 5. 

 

The formula to compute the order statistic, sample size, and CC achieved by nonparametric UTLs are 

described below. More details can be found in David and Nagaraja (2003), Conover (1999), Hahn and 

Meeker (1991), Wald (1963), Scheffe and Tukey (1944) and Wilks (1941). 

Note:  Just like UCLs, for mildly skewed nonparametric data sets with standard deviation of log-

transformed data less than 0.5, one may use a normal distribution based UTLs and UPLs.  
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3.4.4.1  Determining the Order, r, of the Statistic, x(r), to Compute UTLp,(1-α) 

Using the cumulative binomial probabilities, a number, r: 1  r  n, is chosen such that the cumulative 

binomial probability: 
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)()1( becomes as close as possible to (1 – α). The binomial 

distribution (BD) based algorithm has been incorporated in ProUCL for data sets of sizes up to 2000. For 

data sets of size, n >2000, ProUCL computes the rth (r: 1  r  n) order statistic by using the normal 

approximation (Conover, 1999) given by the equation (3-10). 

 

 5.0)1()1(   pnpznpr   (3-10) 

 

Depending upon the sample size, p, and (1 - α) the largest, the second largest, the third largest, and so 

forth order statistic is used to estimate the UTL. As mentioned earlier for a given data set of size n, the rth 

order statistic, x(r) may or may not achieve the specified CC, (1 - α). ProUCL uses the F-distribution based 

probability statement to compute the CC achieved by the UTL determined by the rth order statistic.  

3.4.4.2  Determining the Achieved Confidence Coefficient, CCachieve, Associated with x(r) 

For a given data set of size, n, once the rth order statistic, x(r), has been determined, ProUCL can be used to 

determine if a UTL computed using x(r) achieves the specified CC, (1 - α).  ProUCL computes the 

achieved CC by using the following approximate probability statement based upon the F-distribution with 

ν1 and ν2 degrees of freedom.  
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                           (3-11) 

 

For a given data set of size n, ProUCL 5.1 first computes the order statistic that is used to compute a 

nonparametric UTLp,(1-α). Once the order statistic has been determined, ProUCL 5.1 computes the CC 

actually achieved by that UTL. 

3.4.4.3  Determining the Sample Size 

For specified values of p and (1 - α), the minimum sample size can be computed using Scheffe and Tukey 

(1944) approximate sample size formula given by equation (3-12). The minimum sample size formula 

should be used before collecting any data/samples. Once the data set of size n has been collected, using 

the binomial distribution or approximate normal distribution, one can compute the order, r, of the statistic 

to compute a UTL.  As mentioned earlier, the UTLs based upon order statistics often do not achieve the 

desired confidence level. One can use equation (3-11) to compute the CC achieved by a UTL.  

 
2

2 ,(1 )0.25* *(1 ) /(1 ) ( 1) / 2needed mn p p m                                                                      (3-12) 

 

In equation (3-12), χ2
2m,(1-α)  represents the (1 - α) quantile of a chi-square distribution with 2m df. It 

should be noted that in addition to p and (1 - α), the Scheffe and Tukey (1944) approximate minimum 

sample size formula (3-12) also depends upon the order, r, of the statistic, x(r), used to compute the UTLp, 

(1 - α). Here m: 1≤ m≤n; and m=1 when the largest value, x(n), is used to compute the UTL; and m=2, 
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when the second largest value, x(n-1) is used to compute a UTL, and m=n-r+1 when the rth order statistic, 

x(r), is used to compute a UTL. For example, if the largest sample value, x(n), is used to compute a UTL95-

95, then a minimum sample size of 59 (see equation (3-12)) will be needed to achieve a confidence level 

of 0.95 providing coverage to 95% of the observations coming from the target population.  A UTL95-95 

estimated by the largest value and computed based upon a data set of size less than 59 may not achieve 

the desired confidence of 0.95 for the 95th percentile of the target population.  

 

Note: The minimum sample size requirement of 59 cited in the literature is valid when the largest value, 

x(n) (with m=1) in the data set is used to compute a compute a UTL95-95. For example, when the largest 

order statistic, x(n) (with m=1) is used to compute a nonparametric UTL95-95, the approximate minimum 

sample size needed 0.25*5.99*1.95/0.05 ≈ 58.4 (using equation (3-12)) which is rounded upward to 59; 

and when the second largest value, x(n-1) (with m=2) is used to compute a UTL95-95, the approximate 

minimum sample size needed = [(0.25*9.488*1.95)/0.05] + 0.5 ≈ 93. Similarly, to compute a UTL90-95 

by the largest sample value, about 29 observations will be needed to provide coverage for 90% of the 

observations from the target population with CC = 0.95. Other sample sizes for various values of p and 

(1-α) can be computed using equation, (3-12). In environmental applications, the number of available 

observations from the target population is much smaller than 29, 59 or 93 and a UTL computed based 

upon those data sets may not provide specified coverage with the desired CC. For specified values of CC, 

(1-α) and coverage, p, ProUCL 5.1 outputs the achieved CC by a computed UTL and the minimum 

sample size needed to achieve the pre-specified CC.   

3.4.4.4  Nonparametric UTL Based upon the Percentile Bootstrap Method 

A couple of bootstrap methods to compute nonparametric UTLs are also available in ProUCL 5.1. Like 

the percentile bootstrap UCL computation method, for data sets without a discernible distribution, one can 

use percentile bootstrap resampling method to compute UTLp,(1-α) =UTL p,(1 - α). The N bootstrapped 

nonparametric  pth percentiles, p,( i:=1,2,...,N), are arranged in ascending order: 
Nppp  ....21

 . The 

UTLp,(1-α) for the target population is given by the value that exceeds the (1 – α)*100 of the N bootstrap 

percentile values. The UTL95-95 is the 95th percentile and is given by: 

 

95% Percentile UTL = 95th percentile of pi values; i: = 1, 2, ..., N  

 

For example, when N = 1000, the ULT95-95 is given by the 950th order percentile value of the 1000 

bootstrapped 95th percentiles. Typically, this method yields the largest value in the data set to compute a 

UTL which may not provide the desired coverage (e.g., 0.95) to the 95th population percentile. 

3.4.4.5  Nonparametric UTL Based upon the Bias-Corrected Accelerated (BCA)   

  Percentile Bootstrap Method 

Like the percentile bootstrap method, one can use the BCA bootstrap method (Efron and Tibshirani 1993) 

to compute nonparametric UTLs.  However, this method needs further investigation.  This method is 

incorporated in ProUCL 4.00.04 and higher versions for interested users. In this method one replaces the 

sample mean, bootstrap and jackknife (deleting one observation at a time) means by the corresponding 

bootstrap percentiles and jackknife (computed using (n - 1) observations by deleting one observation at a 

time) percentiles.  The details of the BCA bootstrap method are given in Section 2.4.9.4. 
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3.5 Upper Prediction Limits 

Based upon a background data set, UPLs are computed for a single (UPL1) and k (UPLk) future 

observations. Additionally, in groundwater monitoring applications, an upper prediction limit of the mean 

of the k future observations, UPLk (mean) is also used. A brief description of parametric and 

nonparametric upper prediction limits is provided in this section. 

 

UPL1 for a Single Future Observation: A UPL1 computed based upon an established background data set 

represents that statistic such that a single future observation from the target  population (e.g., background, 

comparable to background) will be less than or equal to the UPL195 with a CC of 0.95. A parametric UPL 

takes the data variability into account. A UPL1 is designed for a single future observation comparison; 

however in practice users tend to use UPL195 to perform many future comparisons which results in a high 

number of false postives (observations declared contaminated when in fact they are clean).  

When k>1 future comparisons are made with a UPL1, some of those future observations will exceed the 

UPL1 just by chance, each with probability 0.05. For proper comparison, a UPL needs to be computed 

accounting for the number of comaprisons that will be performed. For example, if 30 independent onsite 

comparisons (e.g., Pu-238 activity from 30 onsite locations) are made with the same background UPL195, 

each onsite value comparable to background may exceed that UPL195 with probability 0.05. The overall 

probability of at least one of those 30 comparisons being significant (exceeding the BTV) just by chance 

is given by: 

αactual = 1-(1-α)k =1 – 0.9530  ~1-0.21 = 0.79 (false positive rate).  

This means that the probability (overall false positive rate) is 0.79 (and not 0.05) that at least one of the 30 

onsite observations will be considered contaminated even when they are comparable to background. 

Similar arguments hold when multiple (=j, a positive integer) constituents are analyzed, and status (clean 

or impacted) of an onsite location is determined based upon j comparisons (one for each analyte). The use 

of a UPL1 is not recommended when multiple comparisons are to be made. 

3.5.1 Normal Upper Prediction Limit 

The sample mean, x , and the sd, s, are computed first based upon a defensible background data set. For 

normally distributed data sets, an upper (1 – α)*100% prediction limit is given by the following well 

known equation: 

 

UPL = )/11(**))1(),1(( nstx n      (3-13) 

 

Here ))1(),1((  nt   is a critical value from the Student’s t-distribution with (n–1) df.  

3.5.2 Lognormal Upper Prediction Limit 

An upper (1 – α)*100% lognormal UPL is similarly given by the following equation: 

 

UPL = ))/11(**exp( ))1(),1(( nsty yn    (3-14) 

 

Here ))1(),1((  nt   is a critical value from the Student’s t-distribution with (n–1) df. 
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3.5.3 Gamma Upper Prediction Limit 

Given a sample, x1, x2, …, xn of size n from a gamma distribution G(k,  ), approximate (based upon WH 

and HW approximations described earlier in Section 3.4.3, Gamma Distribution Upper Tolerance Limits), 

(1 – α)*100% upper prediction limits for a future observation from the same gamma distributed 

population are given by: 

 

             Wilson-Hilferty (WH) UPL = 
     

3

1 , 1
1max 0, * * 1yn
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             Hawkins-Wixley (HW) UPL = 
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   (3-16) 

 

Here 
))1(),1((  nt   is a critical value from the Student’s t-distribution with (n–1)df.   

 
Note: As noted earlier, the performance of gamma UTLs and gamma UPLs based upon these WH and 

HW approximations is not well-studied.  Interested researchers may want to evaluate their performances 

via simulation experiments. These approximations are also available in R script.   

3.5.4 Nonparametric Upper Prediction Limit 

A one-sided nonparametric UPL is simple to compute and is given by the following mth order statistic. 

One can use linear interpolation if the resulting number, m, given below does not represent a whole 

number (a positive integer). 

 

UPL = X(m), where m = (n + 1) * (1 – α). (3-17) 

 

For example, for a nonparametric data set of size n=25, a 90% UPL is desired. Then m = (26*0.90) = 

23.4. Thus, a 90% nonparametric UPL can be obtained by using the 23rd and the 24th ordered statistics and 

is given by the following equation: 

 

UPL = X(23) + 0.4 * (X(24) - X(23) ) 

 

Similarly, if a nonparametric 95% UPL is desired, then m = 0.95 * (25 + 1) = 24.7, and a 95% UPL can 

be similarly obtained by using linear interpolation between the 24th and 25th order statistics. However, if a 

99% UPL needs to be computed, then m = 0.99 * 26 = 25.74, which exceeds 25, the sample size; for such 

cases, the highest order statistic is used to compute the 99% UPL of the background data set. The largest 

value(s) should be used with caution (as they may represent outliers) to estimate the BTVs. 

 

Since nonparametric upper limits (e.g., UTLs, UPLs) are based upon higher order statistics, often the CC 

achieved by these nonparametric upper limits is much lower than the specified CC of 0.95, especially 

when the sample size is small. In order to address this issue, one may want to compute a UPL based upon 

the Chebyshev inequality. In addition to various parametric and nonparametric upper limits, ProUCL 

computes Chebyshev inequality based UPL.  
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3.5.4.1  Upper Prediction Limit Based upon the Chebyshev Inequality 

Like a UCL of the mean, the Chebyshev inequality can be used to compute a conservative but stable UPL 

and is given by the following equation: 

 

UPL = [ ((1/ ) 1)*(1 1/ )] xx n s     

 

This is a nonparametric method since the Chebyshev inequality does not require any distributional 

assumptions. It should be noted that just like the Chebyshev UCL, a UPL based upon the Chebyshev 

inequality tends to yield higher estimates of BTVs than the various other methods. This is especially true 

when skewness is mild (sd of log-transformed data is low < 0.75), and the sample size is large (n > 30). 

The user is advised to apply professional judgment before using this method to compute a UPL. 

Specifically, for larger skewed data sets, instead of using a 95% UPL based upon the Chebyshev 

inequality, the user may want to compute a Chebyshev UPL with a lower CC (e.g., 85%, 90%) to estimate 

a BTV.  ProUCL can compute a Chebyshev UPL (and all other UPLs) for any user specified CC in the 

interval [0.5, 1].  

3.5.5 Normal, Lognormal, and Gamma Distribution based Upper Prediction Limits for k

 Future Comparisons  

A UPLk95 computed based upon an established background data set represents that statistic such that k 

future (next, independent and not belonging to the current data set) observations from the target 

population (e.g., background, comparable to background) will be less than or equal to the UPLk95 with a 

CC of 0.95. A UPLk95 for k (≥1) future observations is designed to compare k future observations; we are 

95% sure that “k” future values from the background population will be less than or equal to UPLk95  

with CC of 0.95.  In addition to UPLk, ProUCL also computes an upper prediction limit of the mean of k 

future observations, UPLk (mean).  A UPLk (mean) is commonly used in groundwater monitoring 

applications. A UPLk controls the false positive error rate by using the Bonferroni inequality based critical 

values to perform k future comparisons. These UPLs statisfy the relationship: UPL1 ≤UPL2  ≤UPL3   ≤….≤ 

UPLk. ProUCL can compute an upper prediction limit for any number of , k, future observations. 

A normal distribution based UPLk(1 - α) for k future observations,
 1 2, ,...,n n n kx x x  

 is given by the 

probability statement: 

1 2 ((1 / ), 1)

1
, ,..., 1 1n n n k k nP x x x x t s

n
     

 
      

 
    (3-18) 

 
(1 ), 1

1
* 1k n

k

UPL x s t
n

 
    

 
((1 0.05/ ), 1)

1
95 1k k nUPL x t s

n
 

 
    
 

 

For an example, a UPL3 95 for 3 future observations: 
01, 02 03,x x x is given by: 
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3 ((1 0.05/3), 1)

1
95 1nUPL x t s

n
 

 
    
 

 

A lognormal distribution based UPLk (1 - α) for k future observations,
1 2, ,...,n n n kx x x  

 is given by the 

following equation: 

   
(1 ), 1

1
exp( * 1 )k y n

k

UPL y s t
n

 
    

A gamma distribution based UPLk for the next k > 1 (k future observations) are computed similarly using 

the WH and HW approximations described in Section 3.4.3. 

3.5.6 Proper Use of Upper Prediction Limits 

It is noted that some users tend to use UPLs without taking their definition and intended use into 

consideration; this is an incorrect application of a UPL. Some important points to note about the proper 

use of UPL1  and UPLk for k>1 are described as follows. 

 When a UPLk is computed to compare k future observations collected from a site area or a group 

of MW within an operating unit (OU), it is assumed that the project team will make a decision 

about the status (clean or not clean) of the site (MWs in an OU) based upon those k future 

observations.  

 

 The use of an UPLk implies that a decision about the site-wide status will be made only after k 

comparisons have been made with the UPLk. It does not matter if those k observations are 

collected (and compared) simultaneously or successively. The k observations are compared with 

the UPLk as they become available and a decision (about site status) is made based upon those k 

observations. 

 

 An incorrect use of a UPL1 95 is to compare many (e.g., 5, 10, 20, etc.) future observations. This 

results in a higher than 0.05 false positive rate. Similarly, an inappropriate use of a UPL100 would 

be to compare less than 100 (i.e., 10, 20, or 50 observations) future observations.  Using a UPL100 

to compare 10 or 20 observations can potentially result in a high number of false negatives (a test 

with reduced power), declaring contaminated areas comparable to background.  

 

 The use of other statistical limits such as 95%-95% UTLs (UTL95-95) is preferred to estimate BTVs 

and not-to-exceed values. The computation of a UTL does not depend upon the number of future 

comparisons which will be made with the UTL.    

3.6 Upper Simultaneous Limits 

An (1 – α) * 100% upper simultaneous limit (USL) based upon an established background data set is meant 

to provide coverage for all observations, xi, i = 1, 2, n simultaneously in the background data set. It is 

implicitly assumed that the data set comes from a single background population and is free of outliers 

(established background data set). A USL95 represents that statistic such that all observations from the 

“established” background data set will be less than or equal to the USL95 with a CC of 0.95. It is expected 

that observations coming from the background population will be less than or equal to the USL95 with a 95% 
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CC. A USL95 can be used to perform any number (unknown) of comparisons of future observations. The 

false positive error rate does not change with the number of comparisons as the purpose of the USL95 is to 

perform any number of comparisons simultaneously.  

Notes: If a background population is established based upon a small data set; as one collects more 

observations from the background populations, some of the new background observations will exceed the 

largest value in the existing data set. In order to address these uncertainties, the use of a USL is suggested, 

provided the data set represents a single population without outliers. 

3.6.1 Upper Simultaneous Limits for Normal, Lognormal and Gamma Distributions  

The normal distribution based two-sided (1 – α) 100% simultaneous interval obtained using the first order 

Bonferroni inequality (Singh and Nocerino 1995, 1997) is given as follows: 

    ; : 1, 2,...,b b

iP x sd x x sd i n = 1-  .          (3-19) 

Here, 2( )bd  represents the critical value (obtained using the Bonferroni inequality) of the maximum 

Mahalanobis distance (Max (MDs)) for α level of significance (Singh 1993).  The details about the 

Mahalanobis distances and computation of the critical values, 2( )bd , can be found in Singh (1993) and Singh 

and Nocerino (1997). These values have been programmed in ProUCL version 4.1 and higher versions to 

compute USLs for any combination of the sample size, n, and CC, (1 - α).  

The normal distribution based, one-sided (1 – α) 100% USL providing coverage for all n sample observations 

is given as follows: 

   2 ; : 1, 2,...,b

iP x x sd i n = 1-      ;     

 
2* bUSL x s d   ;        (3-20) 

Here 2

2( )bd  is the critical value of Max (MDs) for a 2*α level of significance. 

The lognormal distribution based one-sided (1 – α) 100% USL providing coverage for all n sample 

observations is given by the following equation: 

 
2exp( * )bUSL x s d          (3-21) 

A gamma distribution based (using WH approximation), one-sided (1 – α) 100% USL providing coverage 

to all sample observations is given by: 

                           
  3

2max 0, *b

yUSL y d s 
   

 

A gamma distribution based (using the HW approximation), one-sided (1 – α) 100% USL providing 

coverage to all sample observations is given as follows: 
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4

2 *b

yUSL y d s   

Nonparametric USL: For nonparametric data sets, the largest value, x(n) is used to compute a 

nonparametric USL. Just like a nonparametric UTL, a nonparametric USL may fail to provide the 

specified coverage, especially when the sample size is small (e.g., <60). The confidence coefficient 

actually achieved by a USL can be computed using the same process as used for a nonparametric UTL 

described in Sections 3.4.4.2 and 3.4.4.3. Specifically, by substituting r = n in equation (3-11), the 

confidence coefficient achieved by a USL can be computed, and by substituting m=1 in equation (3-12), 

one can compute the sample size needed to achieve the desired confidence. 

 

Note: Nonparametric USLs, UTLs or UPLs should be used with caution; nonparametric upper limits are 

based upon order statistics and therefore do not take the variability of the data set into account. Often 

nonparametric BTVs estimated by order statistics do not achieve the specified CC unless the sample size 

is fairly large.  

 

Dependence of UTLs and USLs on the Sample Size: For smaller samples (n <10), a UTL tends to yield 

impractically large values, especially when the data set is moderately skewed to highly skewed. For data 

sets of larger sizes, the critical values associated with UTLs tend to stabilize whereas critical values 

associated with a USL increase as the sample size increases. Specifically, a USL95 is less than a UTL95-

95 for samples of sizes, n ≤16, they are equal/comparable for samples of size 17, and a USL95 becomes 

greater than a UTL95-95 as the sample size becomes greater than 17. Some examples illustrating the 

computations of the various upper limits described in this chapter are discussed as follows.  

 

Example 3-1. Consider the real data set used in Example 2-4 of Chapter 2 consisting of concentrations 

for several constituents of potential concern, including aluminum, arsenic, chromium (Cr), and lead. The 

computation of background statistics obtained using ProUCL for some of the metals are summarized as 

follows.  

 

Upper Limits Based upon a Normally Distributed Data Set:  The aluminum data set follows a normal 

distribution as shown in the following GOF Q-Q plot of Figure 3-1.  

 

 
Figure 3-1. Normal Q-Q plot of Aluminum with GOF Statistics 
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From the normal Q-Q plot shown in Figure 3-1, it is noted that the 3 largest values are higher (but not 

extremely high) than the rest of the 21 observations.  These observations may or may not come from the 

same population as the rest of the 21 observations.  

 

Table 3-1. BTV Estimated Based upon All 24 Observations 

 

 
 

The classical outlier tests (Dixon and Rosner tests) did not identify these 3 data points as outliers. Robust 

outlier tests, MCD (Rousseeuw and Leroy 1987), and PROP influence function (Singh and Nocerino, 

1995) based tests identified the 3 high values as statistical outliers.  The project team should decide 

whether or not the 3 higher concentrations represent outliers.  A brief discussion about robust outlier 

methods is given in Chapter 7.  The inclusion of the 3 higher values in the data set resulted in higher 

upper limits. The various upper limits have been computed with and without the 3 high observations and 

are summarized respectively, in Tables 3-1 and 3-2 as follows. The project team should make a 

determination of which statistics (with outliers or without outliers) should be used to estimate BTVs.   
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Table 3-2. BTV Estimated Based upon 21 Observations without 3 Higher Values 

 

 
 

Example 3-2. As noted in Example 2-4, chromium concentrations follow a lognormal distribution. The 

lognormal GOF test is shown in Figure 3-2, and computation of background statistics using a lognormal 

model are shown in Table 3-3.  

 

 
Figure 3-2. Lognormal Q-Q Plot of Chromium with GOF Statistics 

 



120 

Table 3-3. Lognormal Distribution Based UPLs, UTLs, and USLs 

 

 
 

Example 3-3. Arsenic concentrations of the data set used in Example 2-4 follow a gamma distribution. 

The background statistics, obtained using a gamma model, are shown in Table 3-4. Figure 3-3 is the 

gamma Q-Q plot with GOF statistics.  

 

 
Figure 3-3. Gamma Q-Q plot of Arsenic with GOF Statistics 
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Table 3-4. Gamma Distribution Based UPLs, UTLs, and USLs 
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Example 3-4. Lead concentrations of the data set used in Example 2-4 do not follow a discernible 

distribution. The various nonparametric background statistics for lead are shown in Table 3-5.  

 

Table 3-5. Nonparametric UPLs, UTLs, and USLs for Lead in Soils 

 

 
 

Notes:  

 

Note: As mentioned before, nonparametric upper limits are computed by higher order statistics, or by 

some value in between (based upon linear interpolation) the higher order statistics. In practice, 

nonparametric upper limits do not provide the desired coverage to the population parameter (upper 

threshold) unless the sample size is large. From Table 3-5, it is noted that a UTL95-95 is estimated by the 

maximum value in the data set of size 24. However, the CC actually achieved by UTL95-95 (and also by 

USL95) is only 0.708. Therefore, one may want to use other upper limits such as 95% Chebyshev UPL = 

141.8 to estimate a BTV. 

 

Note:  As mentioned earlier, for symmetric and mildly skewed nonparametric data sets (when sd of 

logged data is <=0.5), one can use the normal distribution to compute percentiles, UPLs, UTLs and USLs. 

 

Example 3-5: Why Use a Gamma Distribution to Model Positively Skewed Data Sets? 

 

The data set considered in Example 2-2 of Chapter 2 is used to illustrate the deficiencies and problems 

associated with the use of a lognormal distribution to compute upper limits.  The data set follows a 

lognormal as well as a gamma model; the various upper limits, based upon a lognormal and a gamma 

model, are summarized as follows.  The data set is highly skewed with sd of logged data = 1.68. The 
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largest value in the data set is 169.8, the UTL95-95 and UPL95 based upon a lognormal model are 799.7 

and 319 both of which are significantly higher than the maximum value of 169.8. UTL95-95s based upon 

WH and HW approximations to gamma distributions are 245.3 and 285.6; UPLs based upon WH and HW 

approximations are 163.5 and 178.2 which appear to represent more reasonable estimates of the BTV.  

These statistics are summarized in Table 3-6 (lognormal) and Table 3-7 (gamma) below. 

 

Table 3-6. Background Statistics Based upon a Lognormal Model 
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Table 3-7. Background Statistics Based upon a Gamma Model 
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CHAPTER 4 
 

Computing Upper Confidence Limit of the Population Mean 
Based upon Left-Censored Data Sets Containing Nondetect 

Observations 

4.1 Introduction 

Nondetect (ND) observations are inevitable in most environmental data sets. It should be noted that the 

estimation of the mean and sd, and the computation of the upper limits (e.g., upper confidence limits 

[UCLs], upper tolerance intervals [UTLs]) are two different tasks. For left-censored data sets with NDs, 

in addition to the availability of good estimation methods, the availability of rigorous statistical methods 

which account for data skewness is needed to compute the decision making statistics such as UCLs, 

UTLs, and UPLs. For left-censored data sets consisting of multiple detection limits (DLs) or reporting 

limits (RLs), ProUCL 4.0 (2007) and its higher versions offer methods to: 1) impute NDs using 

regression on order statistics (ROS) methods; 2) perform GOF tests; 3) estimate the mean, standard 

deviation (sd), and standard error of the mean; and 4) compute skewness adjusted upper limits (e.g., 

UCLs, UTLs, UPLs). Based upon KM (Kaplan and Meier1958) estimates, and the distribution and 

skewness of detected observations, several upper limit computation methods which adjust for data 

skewness have also been incorporated in ProUCL 5.1.   

 

For left-censored data sets with NDs, Singh and Nocerino (2002) compared the performances of the 

various estimation methods (in terms of bias and MSE) to estimate the population mean, 
1 , and sd,

1  

including the MLE method (Cohen 1950, 1959), restricted MLE (RMLE) method (Perrson and Rootzen 

1977); Expectation Maximization (EM) method (Gleit 1985), EPA Delta lognormal method (EPA 1991; 

Hinton 1993), Winsorization method (Gilbert 1987), and regression on order statistics (ROS) method 

(Helsel 1990). Singh, Maichle, and Lee (EPA 2006) performed additional simulation experiments to 

study and evaluate the performances (in terms of bias and MSE) of KM and ROS methods for estimating 

the population mean. They concluded that the KM method yields better estimates, in terms of bias, of 

population mean in comparison with other estimation methods including the LROS (ROS on logged data) 

method. Singh, Maichle, and Lee (EPA 2006) also studied the performances, in terms of coverage 

probabilities, of some parametric and nonparametric UCL computation methods based upon ROS, KM, 

and other estimation methods. They concluded that for skewed data sets, KM estimates based UCLs 

computed using bootstrap methods (e.g., BCA bootstrap, bootstrap-t) and Chebyshev inequality perform 

better than the Student's t statistic UCL and percentile bootstrap UCL computed using ROS and KM 

estimates as described in Helsel (2005, 2012) and incorporated in NADA packages (2013).  

 

As mentioned above, computing good estimates of the mean and sd based upon left-censored data sets 

addresses only half of the problem. The main issue is computing decision statistics (UCL, UPL, UTL) 

which account for NDs as well as uncertainty and data skewness inherently present in environmental data 

sets. Until recently (ProUCL 4.0, 4.00.05, 4.1; Singh, Maichle, and Lee 2006), not much guidance was 

available on how to compute the various upper limits (UCLs, UPLs, UTLs) based upon skewed left-

censored data sets with multiple DLs. For left-censored data sets, the existing literature (Helsel 2005, 

2012) suggests computing upper limits using a Student's t-type statistic and percentile bootstrap methods 

on KM and LROS estimates without adjusting for data skewness. Environmental data sets tend to follow 

skewed distributions, and UCL95s and other upper limits computed using methods described in Helsel 
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(2005, 2012) will under estimate the population parameters of interest including EPCs and background 

threshold values.  

 

In earlier versions of ProUCL (ProUCL versions 4 [2007, 2009, 2010]), all evaluated estimation methods 

including the poor performing methods (MLE and RMLE, and Winsorization methods) and better 

performing, in terms of bias in the mean estimate, estimation (KM method) and UCL computation 

methods (BCA bootstrap, bootstrap-t) were incorporated in ProUCL version 4 (2007, 2009, 2010). 

Currently, the KM estimation method is widely used in environmental applications to compute parametric 

(when detected data follow a known distribution) and nonparametric upper limits needed to estimate 

environmental parameters of interest such as the population mean and upper thresholds of a background 

population. Note that the KM method is now included in a recent EPA RCRA groundwater monitoring 

guidance document (2009).  

 

Due to the poor performances and/or failure to correctly verify probability distributions for data sets with 

multiple DLs, the parametric MLE and RMLE methods, the normal ROS and the Winsorization 

estimation methods for computing upper limits are no longer available in ProUCL version 5.0/5.1. The 

normal ROS method is available only under the Stats/Sample Sizes module of ProUCL 5.0/5.1 to impute 

NDs based upon the normal distribution assumption for advanced users who may want to use the imputed 

data in other graphical and exploratory methods such as scatter plots, box plots, cluster analysis and 

principal component analysis (PCA). The estimation methods for computing upper limits retained in 

ProUCL 5.0/5.1 include the two ROS (lognormal, and gamma) methods and the KM method. The KM 

estimation method can be used on a wide-range of skewed data sets with multiple DLs and NDs 

exceeding detected observations.  Also, the substitution methods such as replacing NDs by half of their 

respective DLs and the H-UCL method (EPA 2009 recommends its use in Chapter 15) have been retained 

in ProUCL 5.0/5.1 for historical reasons, and academic and research purposes. Inclusion of the DL/2 

method (substitution of ½ the DL for NDs) in ProUCL should not be inferred as a recommended method. 

The developers of ProUCL are not endorsing the use of the DL/2 estimation method or H-UCL 

computation method. 

 

Note on the use of letter k (k): Not to get confused with the use of letter "k (k)" in this Chapter and  in 

Chapters 2, 3, 4, and 5. Following the standard statistical terminology, "k" is used to denote the shape 

parameter of a gamma distribution, G(k,) as described in Chapter 2; "k" is used to represent future (next) 

observations (Chapter 3 and 5), and "k" is used to represent the number of ND observations present in a 

data set (Chapters 4 and 5).  

 

Notes on Skewness of Left-Censored Data Sets: Skewness of a data set is measured as a function of sd, σ 

(or its estimate,̂ ) of log-transformed data. Like uncensored full data sets, σ, or its estimate, ̂ , of the 

log-transformed detected data is used to get an idea about the skewness of a data set consisting of ND 

observations. This information along with the distribution of detected observations is used to decide 

which UCL should be used to estimate the EPC and other upper limits for data sets consisting of both 

detects and NDs. For data sets with NDs, output sheets generated by ProUCL 5.0/5.1 display the sd, ̂ , 

of log-transformed data based upon detected observations. For a gamma distribution, skewness is a 

function of the shape parameter, k. Therefore, in order to assess the skewness of gamma distributed data 

sets, the associated output screens exhibit the MLE, k hat (and also the bias corrected MLE, k star) of the 

shape parameter, k, based upon detected observations. 
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4.2 Pre-processing a Data Set and Handling of Outliers 

Throughout this chapter (and in other chapters such as Chapters 2, 3, and 5), it has been implicitly 

assumed that the data set under consideration represents a “single” statistical population as a UCL is 

computed for the mean of a "single" statistical population.  In addition to representing "wrong" values 

(e.g., typos, lab errors), outliers may also represent observations coming from population(s) significantly 

different from the main dominant population whose parameters (mean, upper percentiles) we are trying to 

estimate based upon the available data set.  The main objective of using a statistical procedure is to model 

the majority of data representing the main dominant population and not to accommodate a few low          

probability (coming from far and extreme tails) outlying observations potentially representing impacted 

locations (site related or otherwise). Statistics such as a UCL95 of the mean computed using data sets 

with occasional low probability outliers tend to represent locations exhibiting those elevated low 

probability outlying observations rather than representing the main dominant population.  

4.2.1 Assessing the Influence of Outliers and Disposition of Outliers  

One can argue against “not using the outliers” while estimating the various environmental parameters 

such as the EPCs and BTVs. An argument can be made that outlying observations are inevitable and can 

be naturally occurring (not impacted by site activities) in some environmental media (and therefore in 

data sets). For example, in groundwater applications, a few elevated values (coming from the far tails of 

the data distribution with low probabilities) may be considered to be naturally occurring and as such may 

not represent the impacted MW data values. However, the inclusion of a few outliers (impacted or 

naturally occurring observations) tends to yield distorted and elevated values of the decision statistics of 

interest (UCLs, UPLs, and UTLs); and those statistics tend not to represent the main dominant population 

(MW concentrations). As mentioned earlier, instead of representing the main dominant population, the 

inflated decision statistics (UCLs, UTLs) computed with outliers included, tend to represent those low 

probability outliers. This is especially true when one is dealing with smaller data sets (n <20-30) and a 

lognormal distribution is used to model those data sets.  

 

To assess the influence of outliers on the various statistics (upper limits) of interest, it is suggested to 

compute all relevant statistics using data sets with outliers and without outliers, and then compare the 

results. This extra step often helps the project team/users to see the direct potential influence of outlier(s) 

on the various statistics of interest (mean, UPLs, UTLs). This in turn will help the project team to make 

informative decisions about the disposition of outliers. That is, the project team and experts familiar with 

the site should decide which of the computed statistics (with outliers or without outliers) represent better 

and more accurate estimate(s) of the population parameters (mean, EPC, BTV) under consideration.  

4.2.2 Avoid Data Transformation  

Data transformations are performed to achieve symmetry of the data set and be able to use parametric 

(normal distribution based) methods on transformed data.  In most environmental applications, the 

cleanup decisions are made based on statistics and results computed in the original scale as the cleanup 

goals need to be attained in the original scale. Therefore, statistics and results need to be back-

transformed in the original scale before making any cleanup decisions. Often, the back-transformed 

statistics (UCL of the mean) in the original scale suffer from an unknown amount of transformation bias; 

many times the transformation bias can be unacceptably large (for highly skewed data sets) leading to 

incorrect decisions. The use of a log-transformation on a data set tends to accommodate outliers and hide 
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contaminated locations instead of revealing them. Specifically, an observation that is a potential outlier 

(representing a contaminated location) in the original raw scale may not appear to be an outlier in the log-

scale. This does not imply that the location with elevated concentrations in the original scale does not 

represent an impacted location.  This issue has been considered and illustrated throughout this guidance 

document. 

 

The use of a gamma model does not require any data transformation therefore whenever applicable the 

use of a gamma distribution is suggested to model skewed data sets.  In cases when a data set in the 

original scale cannot be modeled by a normal or a gamma distribution, it is better to use nonparametric 

methods rather than testing or estimating parameters in the transformed space. For data sets which do not 

follow a discernible parametric distribution, nonparametric and computer intensive bootstrap methods can 

be used to compute the upper limits needed to estimate environmental parameters. Several of those 

methods are available in ProUCL 5.1(ProUCL 5.0) for data sets consisting of NDs with multiple DLs.  

4.2.3 Do Not Use DL/2(t) UCL Method 

In addition to environmental scientists, ProUCL is also used by students and researchers. Therefore, for 

historical and comparison purposes, the substitution method of replacing NDs by half of the associated 

DLs (DL/2) is retained in ProUCL 5.1.; that is the DL/2 GOF tests, UCL, UPL, and UTL computation 

methods have been retained in ProUCL 5.0/5.1 for historical reasons, and comparison and academic 

purposes. For data sets with NDs, output sheets generated by ProUCL display a message suggesting that 

DL/2 is not a recommended method. It is suggested that the use of the DL/2 (t) UCL method (UCL 

computed using Student’s t-statistic) be avoided when estimating a EPC or BTVs, unless the data set 

consists of only a small fraction of NDs (<5%) and the data are mildly skewed. The DL/2 UCL 

computation method does not provide adequate coverage (Singh, Maichle, and Lee 2006) for the 

population mean, even for censoring levels as low as 10% or 15%. This is contrary to statements (EPA 

2006b) made that the DL/2 UCL method can be used for lower (≤ 20%) censoring levels. The coverage 

provided by the DL/2 (t) UCL method deteriorates fast as the censoring intensity, percentage of NDs, 

increases and/or data skewness increases. 

4.2.4 Minimum Data Requirement 

Whenever possible, it is suggested that a sufficient number of samples be collected to satisfy the 

requirements for the data quality objectives (DQOs) for the site.  Often, in practice, it is not feasible to 

collect the number of samples as determined by DQOs-based sample size formulae.  Therefore, some 

rule-of-thumb minimum sample size requirements are described in this section. At the minimum, collect a 

data set consisting of about 10 observations to compute reasonably reliable and accurate estimates of 

EPCs (UCLs) and BTVs (UPLs, UTLs). The availability of at least 15 to 20 observations is desirable to 

compute UCLs and other upper limits based upon re-sampling bootstrap methods. Some of these issues 

have also been discussed in Chapter 1 of this Technical Guide. However, from a theoretical point of view, 

ProUCL can compute various statistics (KM UCLs) based upon data sets consisting of at least 3 detected 

observations.  The accuracy of the decisions based upon statistics computed using such small data sets 

remains questionable. 

4.3 Goodness-of-Fit (GOF) Tests and Skewness for Left-Censored Data Sets 

It is not easy to assess and verify the distribution of data sets with NDs, especially when multiple DLs are 

present and those DLs exceed the detected values. One can perform GOF tests on detected data and 

consider/expect that NDs (not the DLs) also follow the same distribution of detected data. For data sets 
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with NDs, ProUCL has GOF tests for normal, lognormal, and gamma distributions which are also 

supplemented with graphical Q-Q plots. GOF tests in ProUCL include: 1) exclude all NDs; 2) replace 

NDs by their DL/2s; and 3) ROS methods. In the environmental literature (Helsel 2005, 2012), some 

other graphs such as censored probability plots have also been described. However, the usefulness of 

those graphs in the computation of decision making statistics is not clear. Some practitioners have 

criticized that ProUCL does not offer censored probability plots, therefore, even though those graphs do 

not provide additional useful information, ProUCL 5.1 now offers those graphs as well. 

 

Formally, let x1, x2, ..., xn (including k NDs and (n-k) detected measurements) represent a random sample 

of n observations obtained from a population under investigation (e.g., background area, or an area of 

concern [AOC]). Out of the n observations, k: 1≤k≤n, values are reported as NDs lying below one or 

more DLs, and the remaining (n-k) observations represent the detected values. Such data sets consisting 

of ND observations are called left-censored data sets. The (n-k) detected values are ordered and are 

denoted by x(i); i: =k+1, k+2, ..., n. The k ND observations are denoted by x(ndi) ;  i:=1,2,...k.   The detected 

observations might come from a well-known parametric distribution such as a normal, a lognormal, or a 

gamma distribution, or from a population with a nondiscernible distribution. Using the Statistical Tests 

module of ProUCL 5.1, one can use GOF tests (described in Chapter 2) to assess the distribution of 

detected observations.  

 

Like uncensored full data sets, for data sets with NDs, the skewness and data distribution of detected 

values plays an important role in selecting appropriate estimates of EPCs and BTVs. If the data set 

obtained by excluding the NDs is skewed, the data set consisting of all detects and NDs most likely will 

also be skewed. Therefore, for data sets with NDs, it is important to determine the distribution and 

skewness of the data set obtained by excluding the NDs. This information helps in selecting appropriate 

parametric or nonparametric methods to compute the various upper limits which account for NDs and 

adjust for data variability and skewness.  For skewed data sets, a UCL (and other limits) of the mean 

computed using KM estimates in the t-statistic UCL equation or obtained using the percentile bootstrap 

method tend to fail to achieve the specified coverage for the population mean. One may also want to 

know the distribution of detects to determine which statistical methods should be used on the ROS or KM 

estimates when computing the various upper limits.  There is no need to determine the plotting 

positions/percentiles when assessing the distribution of detected observations. Also, the use of the 

substitution DL/2 method yields a data set of size n, and GOF methods described in Chapter 2 can be 

used to determine the distribution of the data set thus obtained. Similarly, any of the GOF methods 

described in Chapter 2 can be used on the data set of size n obtained using a ROS method (normal, 

lognormal, and gamma).  The ROS method is described in Section 4.5. 

4.4 Nonparametric Kaplan-Meier (KM) Estimation Method 

The KM estimation method (Kaplan and Meier 1958), also known as the product limit estimation (PLE) 

method, is based upon a distribution function estimate, like the sample distribution function, except that 

the KM method adjusts for censoring. The KM method is commonly used in survival analysis (e.g., 

dealing with right-censored data associated with terminally ill patients) and various other biomedical 

applications.  A brief description of the KM method to estimate the population mean and sd, and standard 

error (SE) of the mean for left-censored data sets is described in this section. For details, refer to Kaplan 

and Meier (1958) and the report prepared by Bechtel Jacobs Company for the DOE (2000). The 

properties of the KM method are well researched (Gillespie, Chen et al. 2010). Specifically, the KM 

estimator represents a consistent estimator and for large data sets the KM estimator is asymptotically 

efficient and normally distributed (Gu, Zhang 1993).  
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Formally, let x1, x2, ..., xn represent n data values of a left-censored data set. Let ˆ
KM  and 2ˆ

KM  represent 

KM estimates of the mean and variance based upon such a data set with NDs.  Let ,21 xx  …< 

nx denote the n΄ distinct values at which detects are observed. That is, n΄ ( n) represents distinct detected 

values in the collected data set of size n. For j = 1, …, n΄ , let mj denote the number of detects at 
jx  and 

let nj denote the number of xi   
jx . Also, let x(1) denote the smallest  xi. Then  
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Note that in the last equality statement of )(
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xF  above, 0)(
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xF when x(1) is a detect, and is undefined 

when x(1) is a ND. An estimate of the population mean based upon the KM method is given as follows. 
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Using the PLE (or KM) method, an estimate of the SE of the mean is given by the following equation. 
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Where k = number of ND observations, and 
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The KM variance is computed as follows: 
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In addition to the KM mean, ProUCL computes both the SE of the mean given by (4-2) and the variance 

given by (4-3). The SE is used to estimate EPCs (e.g., UCLs) whereas the variance is used to compute 

BTV estimates (e.g., UTLs, USLs). The KM method in ProUCL can be used directly on left-censored 

environmental data sets without requiring any flipping of data and back flipping of the KM estimates and 
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other statistics (e.g., flipping LCL to compute a UCL) which may be burdensome for most users and 

practitioners.  

 

Note: Decision making statistics (e.g., UPLs and UTLs) used in background evaluations projects require 

good estimates of the population standard deviation, sd.  The decision statistics (e.g., UTLs) obtained 

using the direct estimate of sd (Equation 4-3) and an indirect "back door" estimate of sd (Helsel 2012) can 

differ significantly, especially for skewed data sets.  An example illustrating this issue is described as 

follows. 

 

Example 4-1 (Oahu Data Set): Consider the moderately skewed well-cited Oahu data set (Helsel 2012). 

A direct KM estimate of the sd obtained using equation (4-3) is σ= 0.713; and an indirect KM estimate of 

sd = sqrt (24)*SE = 4.899 * 0.165 = 0.807 (Helsel 2012, p 87). A UTL95-95 (direct) = 2.595 and a 

UTL95-95 (based upon indirect estimate of sd) = 2.812. The discrepancy between the two estimates of sd 

and upper limits (e.g., UTL95-95) computed using the two estimates increases with skewness. 

 

Cautionary notes for NADA (2013) in R Users: It is well known that the KM method yields a good (in 

terms of bias) estimate of the population mean (Singh, Maichle, and Lee 2006). However, the use of KM 

estimates in the Student's t-statistic based UCL equation or percentile bootstrap method as included in 

NADA packages do not guarantee that those UCLs will provide the desired (e.g., 0.95) coverage for the 

population mean in all situations. Specifically, it is highly likely that for moderately skewed to highly 

skewed data sets (determined using detected values) the Student's t-statistic or percentile bootstrap 

method based UCLs computed using KM estimates will fail to provide the desired coverage to the 

population mean, as these methods do not account for skewness.  Several UCL (and other limits) 

computation methods based upon KM estimates which adjust for data skewness are available in ProUCL 

5.0 and ProUCL 5.1; those methods were not available in ProUCL 4.1. 

4.5 Regression on Order Statistics (ROS) Methods 

In this guidance document and in ProUCL software, LROS represents the ROS (also known as robust 

ROS) method for a lognormal distribution and GROS represents the ROS method for a gamma 

distribution.  The ROS methods impute NDs based upon a hypothesized distribution such as a gamma or 

a lognormal distribution. The “Stats/Sample Sizes” menu option of ProUCL 5.1 can be used to impute 

and store imputed NDs along with the original detected values in additional columns generated by 

ProUCL.  ProUCL assigns self-explanatory titles for those generated columns. It is a good idea to store 

the imputed values to determine the validity of the imputed NDs and assess the distribution of the 

complete data set consisting of detects and imputed NDs. As a researcher, one may want to have access to 

imputed NDs to be used by other methods such as regression analysis and PCA. Moreover, one cannot 

easily perform multivariate methods on data sets with NDs; and the availability of imputed NDs makes it 

possible for researchers to use multivariate methods on data sets with NDs. The developers believe that 

statistical methods to evaluate data sets with NDs require further investigation and research. Providing the 

imputed values along with the detected values may be helpful to practitioners conducting research in this 

area.  For data sets with NDs, ProUCL 5.0/ProUCL 5.1 also performs GOF tests on data sets obtained 

using the LROS and GROS methods. The ROS methods yield a data set of size n with (n-k) original 

detected observations and k imputed NDs. The full data set of size n thus obtained can be used to compute 

the various summary statistics, and to estimate the EPCs and BTVs using methods described in Chapters 

2 and 3 of this technical guidance document.   

 

In a ROS method, the distribution (e.g., gamma, lognormal) of the (n-k) detected observations is assessed 

first; and assuming that the k ND observations, x1, x2, ..., xk follow the same distribution (e.g., gamma or a 



132 

lognormal distribution when used on logged data) of the (n-k) detected observations, the NDs are imputed 

using an OLS regression line obtained using the (n-k) pairs: (ordered detects, hypothesized quantiles). 

Earlier versions of ProUCL software also included the normal ROS (NROS) method for computing the 

various upper limits.  The use of NROS on environmental data sets (with positive values) tends to yield 

unfeasible and negative imputed ND values; and the use of negative imputed NDs yields biased and 

incorrect results (e.g., UCL, UTLs). Therefore, the NROS method is no longer available in the 

UCLs/EPCs and Upper Limits/BTVs modules of ProUCL version 5.0 and ProUCL 5.1. Instead, when 

detected data follow a normal distribution, the use of KM estimates in normal equations is suggested for 

computing the upper limits as described in Chapters 2 and 3.   

4.5.1 Computation of the Plotting Positions (Percentiles) and Quantiles 

Before computing the n hypothesized (lognormal, gamma) quantiles, q(i); i:=k+1, k+2,...,n, and q(ndi); i:= 

1, 2, …, k, the plotting positions (also known as percentiles) need to be computed for the n observations 

with k NDs and (n-k) detected values. There are several methods available in the literature (Blom 1958; 

Barnett, 1976; Singh and Nocerino, 1995, Johnson and Wichern, 2002) to compute the plotting positions 

(percentiles). Note that plotting positions for the three ROS methods: LROS, GROS, and NROS are the 

same. For a full data set of size n, the most commonly used plotting position for the ith observation 

(ordered) is given by (i – ⅜) / (n + ¼) or (i – ½)/n; i:=1,2,…,n. These plotting positions are routinely used 

to generate Q-Q plots based upon full uncensored data sets (Singh 1993; Singh and Nocerino 1995; 

ProUCL 3.0 and higher versions). For the single DL case (with all observations below the DL reported as 

NDs), ProUCL uses Blom’s percentiles, (i – ⅜) / (n + ¼) for normal and lognormal distributions, and uses 

empirical percentiles given by (i – ½)/n for a gamma distribution.  Specifically, for normal and lognormal 

distributions, once the plotting positions have been obtained, the n normal quantiles, q(i) are computed 

using the probability statement: P(Z ≤ q(i)) = (i – ⅜) / (n + ¼), i : = 1, 2, …, n , where Z represents a 

standard normal variate (SNV). The gamma quantiles are computed using the probability statement: P(X 

≤ q(i)) = (i – ½) /n, i : = 1, 2, …, n , where X represents a gamma (~constant *chi-square) random variable.  

 

In case multiple DLs are present with NDs potentially exceeding the detected observations, the plotting 

positions (percentiles) are computed using methods that adjust for multiple DLs. The details of the 

computation of such plotting positions (percentiles), pi; i: =1, 2, ..., n, for data sets with multiple DLs or 

with ND observations exceeding the DLs are given in Helsel (2005) and also in Singh, Maichle, and Lee 

(2006), a document that can be downloaded freely from the ProUCL website. The associated 

hypothesized quantiles, q(i) are obtained by using the following probability statements: 

 

P (Z ≤ q(i)) = pi; i : = 1, 2, …, n (Normal or Lognormal Distribution)  

 

P (X ≤ q(i)) = pi; i : = 1, 2, …, n  (Gamma Distribution)  

 

Once the n plotting positions have been computed, the n quantiles, q(ndi); i:= 1, 2, …, k, and  q(i); i:=k+1, 

k+2,...,n  are computed using the specified distribution (e.g., normal, gamma) corresponding to those n 

plotting positions. 

 

Example 4-2 (Pyrene Data Set): Using the well-cited She's (1997) pyrene data set (Helsel 2012) of size 

n=56, the plotting positions (same for NROS, LROS, and GROS) and LROS and GROS quantiles 

(denoted by Q) generated by ProUCL are summarized in Table 4-1. The gamma quantiles are computed 

using the MLE estimates of shape and scale parameters.  
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4.5.2 Computing OLS Regression Line to Impute NDs 

An ordinary least squares (OLS) regression model is obtained by fitting a linear straight line to the (n-k) 

ordered (in ascending order) detected values, x(i) (perhaps after a suitable transformation), and the (n-k) 

hypothesized (e.g., normal, gamma) quantiles, q(i); i:=k+1, k+2,...,n, associated with those (n-k) detected 

ordered observations. The hypothesized quantiles are obtained for all of the n data values by using the 

hypothesized distribution for the (n-k) detected observations. The quantiles associated with (n-k) detected 

values are denoted by q(i); i:=k+1, k+2,...,n, and the k quantiles associated with ND observations are 

denoted by q(ndi); i:= 1, 2, …, k..  

 

An OLS regression line is obtained first by using the (n - k) pairs, (q(i), x(i)); i:= k + 1,  k + 2, …, n, where 

x(i) are the (n-k) detected values arranged in ascending order. The OLS regression line fitted to the (n - k) 

pairs (q(i), x(i)); i:= k + 1, k + 2, …, n corresponding to the detected values is given by: 

 

x(i) = a + bq(i); i:= k + 1, k + 2, …, n.  (4-4) 

 

Table 4-1. Plotting Positions, Gamma and Lognormal (Normal) Quantiles (Q) 

 

 
 

When ROS is used on transformed data (e.g., log-transformed), then ordered values, x(i) ; i: = k + 1, k + 2, 

…, n  represent ordered detected data in that transformed scale (e.g., log-scale, Box-Cox (BC)-type 
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transformation). Equation (4-4) is then used to impute or estimate the ND values. Specifically, for 

quantile, q(ndi) corresponding to the ith ND, the imputed ND is given by x(ndi) = a + bq(ndi) ; i:=1,2,...k. 

When there is only a single DL and all values lying below the DL represent ND observations, then the 

quantiles corresponding to those ND values typically are lower than the quantiles associated with the 

detected observations. However, when there are multiple DLs, and when some of those DLs exceed 

detected values, then quantiles, q(ndi) corresponding to some of those ND values might become greater 

than the quantiles, q(i) associated with some of the detected values.  

4.5.2.1  Influence of Outliers on Regression Estimates and Imputed NDs 

Like all other statistics, it is well-known (Rousseeuw and Leroy 1987; Singh and Nocerino 1995; Singh 

and Nocerino 2002) that presence of outliers (detects) also distorts the regression estimates of slope and 

intercept which are used to impute NDs based upon a ROS method. It is noted that for skewed data sets 

with outliers, the imputed values computed using the ROS method on raw data in the original scale 

become negative (e.g., GROS method). Therefore, inclusion of outliers (e.g., impacted locations) can 

yield distorted statistics and upper limits computed using the ROS method. This issue is also discussed 

later in this chapter.   

 

Note: It is noted that a linear regression line can be obtained even when only two detected observations 

are available. Therefore, methods (e.g., ROS) discussed here and incorporated in ProUCL can be used on 

data sets with 2 or more detected observations. However, to obtain a reliable OLS model (slope and 

intercept) and imputed NDs for computation of defensible upper limits, enough (> 4-6 as a rule of thumb, 

more are desirable) detected observations should be made available.  

4.5.3 ROS Method for Lognormal Distribution 

Let Org stand for the data in the original unit and Ln stand for the data in the natural logarithmic unit. The 

LROS method may be used when the log-transformed detected data follow a lognormal distribution.  For 

the LROS method, the OLS model given by (4-4) is obtained using the log-transformed detected data and 

the corresponding normal quantiles. Using the OLS linear model on log-transformed, detected 

observations, the NDs in log-transformed scale are imputed corresponding to the k normal quantiles, q(ndi) 

associated with the ND observations which are back-transformed in original, Org scale by exponentiation.  

4.5.3.1  Fully Parametric Log ROS Method 

Once the k NDs have been imputed, the sample mean and sd can be computed using the back-

transformation formula (El Shaarawi, 1989) given by equation (4-5) below. This method is called the 

fully parametric method (Helsel, 2005). The mean,
Lnμ̂ , and sd, 

Lnσ̂ , are computed in log-scale using a 

full data set obtained by combining the (n - k) detected log-transformed data values and the k imputed ND 

(in log scale) values. Assuming lognormality, El-Shaarawi (1989) suggested estimating μ and σ by back-

transformation using the following equations as one of the several ways of computing these estimates. 

The estimates given by equation (4-5) are neither unbiased nor have minimum variance (Gilbert 1987). 

Therefore, it is recommended to avoid the use of this version of ROS method on log-transformed data to 

compute UCL95s and other statistics. This method is not available in the ProUCL software. 

 

                    )2/ˆˆexp(ˆ 2

LnLnOrg σμμ  , and )1)ˆ(exp(ˆˆ 222  LnOrgOrg σμσ  (4-5) 
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4.5.3.2  Robust ROS Method on Log-Transformed Data 

The robust ROS method is performed on log-transformed data as described above. In the robust ROS 

method, ND observations are first imputed in the log-scale, based upon a linear ROS model fitted to the 

log-transformed detects and normal quantiles. The imputed NDs are transformed back in the original 

scale by exponentiation.  The process of using the ROS method based upon a lognormal distribution and 

imputing NDs by exponentiation does not yield negative estimates for ND values; perhaps that is why it 

got the name robust ROS (or LROS in ProUCL). This process yields a full data set of size n, and methods 

described in Chapters 2 and 3 can be used to compute the decision statistics of interest including estimates 

of EPCs and BTVs. If the detected observations follow a lognormal, the data set consisting of detects and 

imputed NDs also follow a lognormal distribution.  As expected, the process of imputing NDs using the 

LROS method does not reduce the skewness of the data set and therefore, appropriate methods need to be 

used to compute upper limits (Chapters 2 and 3) which provide specified (e.g., 0.95) coverage by 

adjusting for skewness. 

Note: The use of the robust ROS method has become quite popular.  Helsel (2012) suggests the use of a 

classical t-statistic or a percentile bootstrap method to compute a UCL of the mean based upon the full 

data set obtained using the LROS method.  These methods are also available in his NADA packages. 

However, these methods do not adjust for skewness and for moderately skewed to highly skewed data 

sets, and UCLs based upon these two methods fail to provide the specified coverage to the population 

mean.  For skewed data sets, methods described in Chapter 2 can be used on LROS data sets to compute 

UCLs of the mean.  

 

Example 4-3 (Oahu Data Set). Consider the Oahu arsenic data set of size 24 with 13 NDs. The detected 

data set of size 11 follows a lognormal distribution as shown in Figure 4-1; this graph simply represents a 

Q-Q plot of detects and does not account for NDs when computing quantiles. The censored probability 

plot (new in ProUCL 5.1) is shown in Figure 4-2; its details can be found in the literature (Chapter 15 of 

Unified Guidance, EPA 2009).  A censored probability plot is also based upon detected observations and 

it computes quantiles by accounting for NDs. The LROS data set consisting of 11 detects and 13 imputed 

NDs also follows a lognormal distribution as shown in Figure 4-3. Summary statistics and LROS UCLs 

are summarized in Table 4-2. 
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Figure 4-1. Lognormal GOF Test on Detected Oahu Data Set - Does not Account for NDs to Compute 

Quantiles 

 

 
Figure 4-2. Lognormal Censored Probability Plot (Oahu Data) - Uses Only Detects but Accounts for NDs  

to Compute Quantiles 

 

Note: The two graphs displayed in Figures 4-1 and 4-2 provide similar information about data 

distributions, as GOF tests simply use detected values (and not quantiles). Both graphs are okay without 

any preference. 

 



137 

 
Figure 4-3. Lognormal GOF Test on LROS Data Obtained Using the Oahu Data Set 

 

Table 4-2. Summary Statistics and UCL95 Based upon LROS data 
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The data set is moderately skewed with sd of logged detects equal to 0.694. All methods tend to yield 

comparable results. One may want to use a 95% BCA bootstrap UCL or a bootstrap-t UCL to estimate the 

EPC. However, the detected data follow a gamma distribution, therefore ProUCL recommends gamma 

UCLs as shown in the following section. 

4.5.3.3  Gamma ROS Method   

Many positively skewed data sets tend to follow a lognormal as well as a gamma distribution. Singh, 

Singh, and Iaci (2002) noted that the gamma distribution is better suited to model positively skewed 

environmental data sets. When a moderately skewed to highly skewed data set (uncensored data set or 

detected values in a left-censored data set) follows a gamma, as well as, a lognormal distribution, the use 

of a gamma distribution tends to result in more stable and realistic estimates of EPCs and BTVs 

(Examples 2-2 and 3-2, Chapters 2 and 3).  Furthermore, when using a gamma distribution to compute 

decision statistics such as a UCL of the mean, one does not have to transform the data and back-transform 

the resulting UCL into the original scale.  

 

Let x(k+1)  x(k+2)   ...  x(n) represent the (n-k) ordered detected values. If (n-k) detected observations 

follow a gamma distribution (can be verified using GOF tests in ProUCL) then the NDs can be imputed 

using the OLS line (4-4) based upon (n - k) pairs given by: (n - k) gamma quantiles, ordered (n - k) 

detected observations). Let xnd1, xnd2, …, xndk, xk+1, xk+2, …, xn be a random sample (with k NDs and (n-k) 

detects) of size n where the detected (n-k) observations follow a gamma distribution, G(k,).  

 

Note: Not to get confused with k, the shape parameter of a gamma distribution, G(k,), which is different 

from k, the number of ND observations. Due to these notations used in the statistical literature and also 

in ProUCL software and output sheet, the same letter k is used for the shape parameter of a gamma 

distribution and number of NDs. 

 

The n plotting positions, pi; i:=1,2,…,n used to compute the gamma quantiles are computed for each 

observation (detected and nondetected) using the methods described earlier in Section 4.5.1. To compute 

n gamma quantiles associated with the n plotting positions (percentiles, empirical probabilities), one 

needs to estimate the gamma parameters, k and θ based upon the (n-k) detected values. This process may 

have some effect on the accuracy of the estimated gamma quantiles (which use an estimated value of the 

shape parameter, k), and consequently on the accuracy of the imputed NDs. The availability of enough (at 

least 8-10) detected gamma distributed observations is suggested to compute the estimates of k and θ.  

Let k̂ and ̂  represent the MLEs of k and , respectively, based upon detected data.  

 

The gamma quantiles, x0i are computed using the relationship between a gamma and a chi-square 

distribution; and are given by the equation, ;2/ˆ
00 ii zx   :i 1, 2, , n, where quantiles z0i (already 

ordered) are obtained by using the inverse chi-square distribution given as follows: 
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In the above equation, 
2

ˆ2k
  represents a chi-square random variable with k̂2  degrees of freedom (df), and 

pi are the plotting positions (percentiles) obtained using the process described above. The process of 

computing plotting positions, pi, i:=1,2,...,n, for left-censored data sets with multiple DLs has been 

incorporated in ProUCL. The inverse chi-square algorithm function (AS91) from Best and Roberts (1975) 

has been used to compute the inverse chi-square percentage points, z0i, as given by the above equations.  

Using the OLS line (4-4) fitted to the (n - k) detected pairs, one can impute the k NDs resulting in a full 

data set of size n = k + (n - k).  

 

Notes about GROS for smaller values of k (e.g., ≤): In the ProUCL 5.0 Technical Guide (and its earlier 

versions) and ProUCL software, a suggestion was made that GROS may not be used when the shape 

parameter, k is less than 0.1 or less than 0.5.  However, during late 2014, some users pointed out that k 

should be higher. Therefore, the latest version of ProUCL 5.1 now suggests that GROS may not be used 

for values of k ≤ 1.0. It should be pointed out that the GROS algorithm incorporated in ProUCL works 

well for values of k > 2.   

 

The GROS method incorporated in ProUCL does not appear to work well for smaller values of k or its 

MLE estimate, k̂ (e.g., ≤1). The algorithm used to compute gamma quantiles is not efficient enough and 

does not perform well for smaller values of k. The developers thus far have not found time to look into 

this issue. In January 2015, the developers of ProUCL requested the statistical community (via the 

American Statistical Association’s section on environmental statistics and/or personal communication) to 

provide code/algorithms which may be used to improve the computation of gamma quantiles for smaller 

values of k.   

 

For now, GROS may not be used when the data set with detected observations (used to compute OLS 

regression line) consists of outliers and/or is highly skewed (e.g., estimated values of k are small such as 

<=1.0). When the estimated value (MLE) of the shape parameter, k, based upon detected data is small (<= 

1.0), or when the data set consists of many tied NDs at multiple DLs with a high percentage of NDs 

(>50%), the GROS tends to not perform well and often yields negative imputed NDs, due to outliers 

distorting the OLS regression. Since environmental concentration data are non-negative, one needs to 

replace the imputed negative values by a small positive value such as 0.1, 0.001. In ProUCL, negative 

imputed values are replaced by 0.01. The use of such imputed values tends to yield inflated values of sd, 

UCLs, and BTV estimates (e.g., UPLs, UTLs).   

 

Preferred Method: Alternatively, when detected data follow a gamma distribution, one can use KM 

estimates (described above) in gamma distribution based equations to compute UCLs (and other limits) 

which account for data skewness, unlike KM estimates when used in normal UCL equations. This hybrid 

gamma-KM method for computing upper limits is available in ProUCL 5.0/ProUCL 5.1. The details are 

provided in Section 4.6. The hybrid KM-gamma method yields reasonable UCLs and accounts for NDs as 

well as data skewness as demonstrated in Example 4-4.  

 

Note: It is noted that when 
*k̂ >1, UCLs based upon the GROS method and gamma UCLs computed 

using KM estimates tend to yield comparable UCLs from practical a point of view. This can also be seen 

in Example 4-4 below. 
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Example 4-4 (Oahu Data Set Continued):  The detected data set of size 11 follows a gamma 

distribution as shown in Figure 4-4. The GROS data consisting of 11 detects and 13 imputed NDs also 

follows a gamma distribution as shown in Figure 4-5. Summary statistics and GROS UCLs are 

summarized in Table 4-3 following Figure 4-5. Since the data set is only mildly skewed all methods 

(GROS and Hybrid KM-Gamma) yield comparable results. 

 

 
Figure 4-4. Gamma GOF Test on Detected Concentrations of the Oahu Data Set 

 

 
Figure 4-5. Gamma GOF Test on GROS Data Obtained Using the Oahu Data Set 
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Table 4-3. Summary Statistics and UCL95 Based upon Gamma ROS data 

 

 
 

ProUCL suggests using GROS UCL of 1.27. 

 

4.6 A Hybrid KM Estimates and Distribution of Detected Observations Based 
Approach to Compute Upper Limits for Skewed Data Sets – New in ProUCL 
5.0/ ProUCL 5.1 

 
The KM method yields good estimates of the population mean and sd. Since it is hard to verify and justify 

the distribution of an entire left-censored data set consisting of detects and NDs with multiple DLs, it is 

suggested that the KM method be used to compute estimates of the mean, sd, and standard error of the 

mean. Depending upon the distribution and skewness of detected observations, one can use KM estimates 

in parametric upper limit computation formulae to compute upper limits including UCLs, UPLs, UTLs, 

and USLs. The use of this hybrid approach will yield more appropriate skewness adjusted upper limits 

than those obtained using KM estimates in normal distribution based UCL and UTL equations. 

Depending upon the distribution of detected data, ProUCL5.1 (and its earlier version ProUCL 5.0) 

computes upper limits using KM estimates in parametric (normal, lognormal, and gamma) equations to 

compute the various upper limits.  The use of this hybrid approach has also been suggested in Chapter 15 

of EPA (2009) to compute upper limits using KM estimates in the lognormal distribution based equations 

to compute the various upper limits.   

 

ProUCL 5.1 and its earlier versions compute a 95% UCL of the mean based upon the KM method using: 

1) the standard normal critical value, zα and Student’s t-critical value, tα,(n-1); 2) bootstrap methods 

including the percentile bootstrap method, the bias-corrected accelerated (BCA) bootstrap method, and 
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bootstrap-t method, and 3) the Chebyshev inequality. Additionally, when detected observations of a left- 

censored data set follow a gamma or a lognormal distribution, ProUCL 5.1 also computes KM UCLs and 

other upper limits using a lognormal or a gamma distribution. The use of these methods yields skewness 

adjusted upper limits. For a gamma distributed detected data,  UCLs based upon the GROS and gamma 

distribution on KM estimates are generally in good agreement unless the data set is highly skewed (with 

estimated  values of shape parameter, k≤1), or contains of outliers, or consists of many NDs (e.g., >50%) 

with NDs tied at multiple DLs. The various UCL computation formulae based upon KM estimates and 

incorporated in ProUCL 5.0/ProUCL 5.1 are described as follows. 

4.6.1 Detected Data Set Follows a Normal Distribution 

Based upon Student's t-statistic, a 95% UCL of the mean based upon the KM estimates is as follows:  

 

KM UCL95 (t) =
2

)1(,95.0
ˆˆ

SEn σtμ   (4-8) 

  

The above KM UCL (t) represents a good estimate of the EPC when detected data are normally 

distributed or mildly skewed. However, KM UCLs, computed using a normal or t-critical value, do not 

account for data skewness.  The various bootstrap methods for left-censored data described in Section 4.7 

can also be used on KM estimates to compute UCLs of the mean. 

4.6.2 Detected Data Set Follows a Gamma Distribution 

For highly skewed gamma distributed left-censored data with a large percentage of NDs and several NDs 

tied at multiple RLs, the GROS method tends to yield impractical, negative imputed values for NDs.  It is 

also well known that the OLS estimates get distorted by outliers, therefore, GROS estimates and upper 

limits also get distorted when outliers are present in a data set.  

 

In order to avoid these situations, one can use the gamma distribution on KM estimates to compute the 

various upper limits provided the detected data follow a gamma distribution. Using the properties of the 

gamma distribution, an estimate of the shape parameter, k, is computed based upon a KM mean and a KM 

variance. The mean and variance of a gamma distribution are given as follows: 

 

Mean=k*θ, and 

Variance = k*θ2  

 

Substituting a KM mean, ˆ
KM , and a KM variance, 2ˆ

KM  , in the above equations, an estimate of the 

shape parameter, k, is computed by using the following equation: 

 
2 2ˆ ˆ ˆ/KM KMk    

 

Using ˆ
KM ,

2ˆ
KM , n, and k̂ in equations (2-34) and (2-35), gamma distribution based approximate and 

adjusted UCLs of the mean can be computed.  Similarly, for gamma distributed left-censored data sets 

with detected observations following a gamma distribution, KM mean and KM variance estimates can be 

used to compute gamma distribution based upper limits described in Chapter 3. ProUCL 5.0/ProUCL 5.1 

computes gamma distribution and KM estimates based UCLs and upper limits to estimate BTVs when 

detected data follow a gamma distribution. 
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Notes: It should be noted that the KM method does not require concentration data to be positive. In radio 

chemistry, the DLs (or minimum detectable concentration [MDC]) for the various radionuclides are often 

reported as negative values. Statistical models such as a gamma distribution cannot be used on data sets 

consisting of negative values. However, the hybrid gamma-KM method described above can be used on 

radionuclides data provided detected activities are all positive and follow a gamma distribution. One can 

compute KM estimates using the entire data sets consisting of negative NDs and detected positive values. 

Those KM estimates can be used to compute gamma UCLs described above provided ˆ
KM >0.  

4.6.3 Detected Data Set Follows a Lognormal Distribution 

The EPA RCRA (2009) guidance document suggests computing KM estimates on logged data and 

computing a lognormal H-UCL based upon the H-statistic. ProUCL computes lognormal and KM 

estimates based UCLs and upper limits to estimate BTVs when detected data follow a lognormal 

distribution.  Like uncensored lognormally distributed data sets, for moderately skewed to highly skewed 

left-censored data sets, the use of a lognormal distribution on KM estimates tends to yield unrealistically 

high values of the various decision statistics; especially when the data sets are of sizes less than 30 to 50. 

   

Example 4-5 (Oahu Data Set Continued): It was noted earlier that the detected Oahu data set follows a 

gamma as well as a lognormal distribution. The hybrid normal, lognormal and gamma UCLs obtained 

using the KM estimates are summarized in Table 4-4 as follows. 

 

The hybrid Gamma UCL is 1.27, close to the UCL obtained using the GROS method of 1.271 (Example 

4-4). The H-UCL as suggested in EPA (2009) is 1.155 which appears to be a little lower than the other 

LROS BCA bootstrap UCL of 1.308 (Table 4-2). 
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Table 4-4. UCL95 Based on Hybrid KM Method and Normal, Lognormal and Gamma Distribution 

 

 
 

Example 4-6. A real data set of size 55 with 18.8% NDs is considered next. The data set can be 

downloaded from the ProUCL website.  The minimum detected value is 5.2 and the largest detected value 

is 79000, sd of detected logged data is 2.79 suggesting that the data set is highly skewed. The detected 

data follow a gamma as well as a lognormal distribution as shown in Figures 4-6 and 4-7. It is noted that 

GROS data set with imputed values follows a gamma distribution and LROS data set with imputed values 

follows a lognormal distribution (results not included). 
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Figure 4-6. Lognormal GOF Test on Detected TRS Data Set 

 

 
Figure 4-7. Gamma GOF Test on Detected TRS Data Set 
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Table 4-5. Statistics and UCL95s Obtained Using Gamma and Lognormal Distributions  
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Table 4-5 (continued). Statistics and UCL95s Obtained Using Gamma and Lognormal Distributions  

 

 
 

From the above table, it is noted that the percentile bootstrap method on LROS method as described in 

Helsel (2012) yields a lower value of the UCL95 = 12797, which is comparable to a KM (t)-UCL 

=12802. The student's t statistic based upper limits (e.g., KM (t)-UCL) do not adjust for data skewness; 

the two UCLs, bootstrap LROS UCL and KM(t)-UCL, appear to represent underestimates of the 

population mean. As expected, H-UCL on the other hand, resulted in impractically large UCL values 

(using both the LROS and KM methods).  Based upon the data skewness, ProUCL suggested three UCLs 

(e.g., Gamma UCL = 15426) out of several UCL methods available in the literature and incorporated in 

ProUCL software.   
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4.6.3.1 Issues Associated with the Use of Lognormal distribution to Compute a UCL of 

Mean for Data Sets with Nondetects  

Some drawbacks associated with the use of the lognormal distribution based UCLs on data sets with NDs 

are discussed next. 

 

Example 4-7. Consider the benzene data set (Benzene-H-UCL-RCRA.xls) of size 8 used in Chapter 21 of 

the RCRA Unified Guidance document (EPA 2009). The data set consists of one ND value with DL of 

0.5 ppb. In the RCRA guidance, the ND value was replaced by 0.5/2=0.25 to compute a lognormal H-

UCL. In this example, lognormal 95% UCLs (H-UCLs) are computed replacing the ND by the DL (0.5) 

and also replacing the ND by DL/2=0.25. Normal and lognormal GOF tests using DL/2 for the ND value 

are shown in Figures 4-8 and 4-9 as follows.  

 

 
Figure 4-8. Normal Q-Q Plot on Benzene Data with ND Replaced by DL/2 

 

From the above Q-Q plot, it is easy to see that observation 16.1 ppb represents an outlier. The Dixon test 

on logged data suggests that 2.779 (=ln(16.1)) is an outlier and observation 16.1 is an outlier in the 

original scale. The outlier, 2.779 was accommodated by the lognormal distribution resulting in the 

conclusion that the data set follows a lognormal distribution (Figure 4-9).  
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Figure 4-9. Lognormal Q-Q Plot on Benzene Data with ND Replaced by DL/2 

 

4.6.3.1.1 Impact of Using DL and DL/2 for Nondetects on UCL95 Computations 

 

Lognormal distribution based H-UCLs computed by replacing ND by DL and by DL/2 are respectively 

given in Tables 4-6 and 4-7 below. 

 

Table 4-6. Lognormal 95% UCL (H-UCL) - Replacing ND by DL (=0.5) 
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Table 4-7. Lognormal 95% UCL (H-UCL) - Replacing ND by DL/2 (=0.25) 

 

 

 
 

Note: 95% H-UCL (with ND replaced by DL/2) computed by ProUCL is in agreement with results 

summarized in Chapter 21 of the RCRA Guidance (EPA 2009). However, it should be noted that the UCL 

computed using the DL for ND is 13.62, and the UCL computed using DL/2 for ND is 18.86. Substitution 

by DL/2 resulted in a data set with higher variability and a UCL higher than the one obtained using the 

DL method. These two UCLs differ considerably confirming that the use of substitution methods should 

be avoided. 

 

From results summarized above, it is noted that replacing NDs reported as <DL (=0.5) by DL/2 = 0.25 

resulted in an increase in the sd of the logged data from 1.152 to 1.257 which resulted in an increase in 

the H-critical value. The minor increase in the sd of logged data coupled with an increase in the H-critical 

value resulted in an unacceptable increase in the H-UCL, from 13.62 to 18.86. This gives another reason 

to avoid the use of the lognormal distribution to compute decision statistics.  UCLs represent estimates of 

population means; inclusion of one outlier 16.1 resulted in a UCL95 of 18.86 (or 13.36) which appears to 

more closely represent the largest value of the data set rather than the average. This issue is illustrated as 

follows in Section 4.6.3.1.2. 

4.6.3.1.2 Impact of Outlier, 16.1 ppb on UCL95 Computations 

 

The benzene data set without the outlier follows a normal distribution, and normal distribution based 

UCL95s are summarized below in Tables 4-8 (KM estimates), 4-9 (ND by DL), and 4-10 (ND by DL/2)  . 

 

Table 4-8. Normal 95% UCL Computed using KM Estimates  
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Table 4-9. Normal 95% UCL Computed by Replacing ND by DL = 0.5 

 

 
 

Table 4-10. Normal 95% UCL Computed by Replacing ND by DL/2 = 0.25 

 

 
 

Note: The recommended UCL is the KM UCL= 1.523. It is noted that normal UCLs are not influenced by 

changing a single ND from 0.5 (UCL95=1.517) to 0.25 (UCL95=1.516). Normal UCL95s without the 

outlier appear to represent more realistic estimates of the EPC (population mean).  The Lognormal UCL 

based upon the data set with the outlier represents the outlying value(s) rather than representing the 

population mean.  

4.7 Bootstrap UCL Computation Methods for Left-Censored Data Sets 

The use of bootstrap methods has become popular with the easy access to fast personal computers. As 

described in Chapter 2, for full-uncensored data sets, repeated samples of size n are drawn with 

replacement (that is each xi has the same probability = 1/n of being selected in each of the N bootstrap 

replications) from the given data set of n observations. The process is repeated a large number of times, N 

(e.g., 1000-2000), and each time an estimate, ̂  of  (e.g., mean) is computed. These estimates are used 

to compute an estimate of the SE of the estimate, ̂ . Just as for the full uncensored data sets without any 

NDs, for left-censored data sets, the bootstrap resamples are obtained with replacement. An indicator 

variable, I (1 = detected value, and 0 = nondetected value), is tagged to each observation in a bootstrap 

sample (Efron 1981).  

 

Singh, Maichle, and Lee (EPA 2006) studied the performances, in terms of coverage probabilities, of four 

bootstrap methods for computing UCL95s for data sets with ND observations. The four bootstrap 
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methods included the standard bootstrap method, the bootstrap-t method, the percentile bootstrap method, 

and the bias-corrected accelerated (BCA) bootstrap method (Efron and Tibshirani 1993; Manly 1997). 

Some bootstrap methods, as incorporated in ProUCL, for computing upper limits on left-censored data 

sets are briefly discussed in this section.  

4.7.1 Bootstrapping Data Sets with Nondetect Observations 

As before, let xnd1, xnd2, …, xndk, xk+1, xk+2, …, xn be a random sample of size n from a population (e.g., 

AOC, or background area) with an unknown parameter  such as the mean, , or the pth  upper percentile 

(used to compute bootstrap UTLs), xp, that needs to be estimated from the sampled data set with ND 

observations. Let ̂  be an estimate of , which is a function of k ND and (n – k) detected observations. 

For example, the parameter, , could be the population mean, μ, and a reasonable choice for the 

estimate,̂ , might be the robust ROS, gamma ROS, or KM estimate of the population mean. If the 

parameter, , represents the pth upper percentile, then the estimate,̂ , may represent the pth sample 

percentile, 
px̂ , based upon a full data set obtained using one of the ROS methods described above. The 

bootstrap method can then be used to compute a UCL of the percentile, also known as upper tolerance 

limit. The computations of upper tolerance limits are discussed in Chapter 5. 

 

An indicator variable, I (taking only two values: 1 and 0), is assigned to each observation (detected or 

nondetected) when dealing with left-censored data sets (Efron 1981; Barber and Jennison 1999). The 

indicator variables, Ij : j:=1,2,...,n, represent the detection status of the sampled observations, xj ; j: = 1, 

2,..., n. A large number, N (1000, 2000) of two-dimensional bootstrap resamples, (xiJ, IiJ ),j:= j: = 1, 2,..., 

N, and i: = 1, 2,..., n, of size n are drawn with replacement. The indicator variable, I, takes on a value = 1 

when a detected value is selected and I = 0 if a nondetected value is selected. The two-dimensional 

bootstrap process keeps track of the detection status of each observation in a bootstrap re-sample. In this 

setting, the DLs are fixed as entered in the data set, and the number of NDs vary from bootstrap sample to 

bootstrap sample. There may be k1 NDs in the first bootstrap sample, k2 NDs in the second sample, ..., and 

kN NDs in the Nth bootstrap sample. Since the sampling is conducted with replacement, the number of 

NDs, ki, i: = 1, 2, ..., N, in a bootstrap re-sample can take any value from 0 to n inclusive. This is typical 

of a Type I left-censoring bootstrap process. On each of the N bootstrap resample, one can use any of the 

ND estimation methods (e.g., KM, ROS) to compute the statistics of interest (e.g., mean, sd, upper 

limits). It is possible that all (or most) observations in a bootstrap re-sample are the same. This is 

specifically true, when one is dealing with small data sets. To avoid such situations (with all equal values) 

it is suggested that there be at least 15 to 20 (preferably more) observations in the data set. As noted in 

Chapter 2, it is not advisable to compute statistics based upon a bootstrap resample consisting of only a 

few detected values such as < 4-5.  

 

Let ̂  be an estimate of   based upon the original left-censored data set of size n; if the parameter, , 

represents the population mean, then a reasonable choice for the estimate, ̂ , can be the sample ROS 

mean, or sample KM mean. Similarly, calculate the sd using one of these methods for left-censored data 

sets. The following two steps are common to all bootstrap methods incorporated in the ProUCL software. 

 

Step 1. Let (xi1, xi2, ... , xin) represent the ith bootstrap resample of size n with replacement from the 

original left-censored data set  (x1, x2, ..., xn). Note that an indicator variable (as mentioned above) is 

tagged along with each data value, taking values 1 (if a detected value is chosen) and 0 (if a ND is chosen 

in the resample). Compute an estimate of the mean (e.g., KM, and ROS) using the ith bootstrap resample, 

i: = 1, 2, ..., N. 
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Step 2. Repeat Step 1 independently N times (e.g., N = 2000), each time calculating new estimates (e.g., 

KM estimates) of the population mean. Denote these estimates (e.g., KM means, and ROS means) by 

,, 21 xx …, 
Nx . The bootstrap estimate of the population mean is given by the arithmetic mean, Bx , of the 

N estimates 
ix  (N ROS means or N KM means). The bootstrap estimate of the standard error is given by: 

 








N

i

BiB xx
N

σ
1

2)(
1

1
ˆ . (4-9) 

  

In general, a bootstrap estimate of θ may be denoted by 
Bθ  (instead of Bx ). The estimate, 

B  is the 

arithmetic mean of the N bootstrap estimates (e.g., KM mean, or ROS mean) given by i
, i:=1,2,…N. If 

the estimate, ̂ , represents the KM estimate of, θ, then i
 (denoted by xi

 in the above paragraph) also 

represents the KM mean based upon the ith bootstrap resample. The difference, θθB
ˆ , provides an 

estimate of the bias of the estimate, ̂ . After these two steps, a bootstrap procedure (percentile, BCA, or 

bootstrap-t) is used similarly to the conventional bootstrap procedure on a full uncensored data set as 

described in Chapter 2.  

 

Notes: Just like for small uncensored data sets, for small left-censored data sets (<8-10) with only a few 

distinct values (2 or 3), it is not advisable to use bootstrap methods. In these scenarios, ProUCL does not 

compute bootstrap limits.  However, due to the complexity of decision tables and lack of enough funding, 

there could be some rare cases where ProUCL may recommend a bootstrap method based UCL which is 

not computed by ProUCL (due to lack of enough data). 

4.7.1.1  UCL of Mean Based upon Standard Bootstrap Method 

Once the desired number of bootstrap samples and estimates has been obtained following the two steps 

described above, a UCL of the mean based upon the standard bootstrap method can be computed as 

follows. The standard bootstrap confidence interval is derived from the following pivotal quantity, t: 

 

   

B

t




ˆ

ˆ 
 . (4-10) 

 

A (1 – α)*100% standard bootstrap UCL for  is given as follows: 

 

UCL = Bz  
ˆˆ   (4-11) 

 

Here zα is the upper αth critical value (quantile) of the standard normal distribution (SND). It is observed 

that the standard bootstrap method does not adequately adjust for skewness, and the UCL given by the 

above equation fails to provide the specified (1 – α)*100% coverage of the mean of skewed (e.g., 

lognormal and gamma) data distributions (populations). 
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4.7.1.2  UCL of Mean Based upon Bootstrap-t Method 

A (1 – α)*100% UCL of the mean based upon the bootstrap-t method is given as follows. 

  

 UCL = 
n

s
tx x

N )(  (4-12) 

 

It should be noted that the mean and sd used in equation (4-12) represent estimates (e.g., KM estimates, 

ROS estimates) obtained using original left-censored data set. Similarly, the t-cutoff value used in 

equation (4-12) is computed using the pivotal t-values based upon KM estimates or some other estimates 

obtained using bootstrap re-samples. Typically, for skewed data sets (e.g., gamma, lognormal), the 95% 

UCL based upon the bootstrap-t method performs better than the 95% UCLs based upon the simple 

percentile and the BCA percentile methods. However, the bootstrap-t method sometimes results in 

unstable and erratic UCL values, especially in the presence of outliers (Efron and Tibshirani 1993). 

Therefore, the bootstrap-t method should be used with caution. In case this method results in erratic 

unstable UCL values. The use of an appropriate Chebyshev inequality-based UCL is recommended. 

Additional suggestions on this topic are offered in Chapter 2. 

4.7.1.3  Percentile Bootstrap Method 

A detailed description of the percentile bootstrap method is given in Chapter 2. For left-censored data 

sets, sample means are computed for each bootstrap sample using a selected method (e.g., KM, ROS), 

which are arranged in ascending order. The 95% UCL of the mean is the 95th percentile and is given by: 

 

 95% Percentile – UCL = 95th%
ix ; i: = 1, 2, ..., N (4-13) 

 

For example, when N = 1000, a simple 95% percentile-UCL is given by the 950th ordered mean value 

given by )950(x . It is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap 

method performs (described below) slightly better (in terms of coverage probability) than the simple 

percentile method. 

4.7.1.4  Bias-Corrected Accelerated (BCA) Percentile Bootstrap Procedure 

Singh, Maichle and Lee (2006) noted that for skewed data sets, the BCA method does represent a slight 

improvement, in terms of coverage probability, over the simple percentile method. However, for 

moderately skewed to highly skewed data sets with the sd of log-transformed data >1, this improvement 

is not adequate and yields UCLs with a coverage probability lower than the specified coverage of 0.95. 

The BCA UCL for a selected estimation method (e.g., KM, ROS) is given by the following equation: 

 

(1- )*100% UCLPROC = BCA – UCL= 2

PROCx  (4-14) 

 

Here 2

PROCx  is the α2100th percentile of the distribution of statistics given by
PROCx ; i: = 1, 2, ..., N, and 

PROC is one of the many (e.g., KM, DL/2, ROS) mean estimation methods. Here α2 is given by the 

following probability statement: 
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Φ(Z) is the standard normal cumulative distribution function and z(1 – α) is the 100*(1 – α)th percentile of a 

standard normal distribution. Also, 
0ẑ  (bias correction) and ̂  (acceleration factor) are given as follows: 
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0 , i: = 1, 2, ..., N (4-16) 

Φ-1 (x) is the inverse standard normal cumulative distribution function, e.g., Φ-1 (0.95) = 1.645 and ̂  is 

the acceleration factor and is given by the following equation: 
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Summation in the above equation is being carried from i = 1 to n, the sample size. 
PROCx  and 

PROCix ,
 

are respectively the PROC mean (e.g., KM mean) based upon all n observations, and the PROC mean of 

(n-1) observations without the ith observation, i: = 1, 2, ..., n. 

4.8 (1-α)*100% UCL Based upon Chebyshev Inequality 

The use of the Chebyshev-type inequality (as used in Chapter 2) based UCLs has been suggested to 

provide better coverage to the population mean of skewed data distributions. The two-sided Chebyshev 

theorem (Dudewicz and Misra 1988) states that given a random variable, X, with finite mean and sd, µ1 

and 1, we have: 

 
2

111 /11)( kkXkP   . 

 

A (1 – α)*100 UCL of population mean, μ1, can be obtained by: 

 

UCL = nsαx x)1)/1((  . (4-20) 

 

In the above UCL equation, the sample mean and sd are computed using one of the many estimation 

methods for left-censored data sets with ND observations as described in earlier sections of this chapter.  

The UCL95 based upon Chebyshev inequality (with KM estimates) yields a conservative but reasonable 

UCL of the mean.  

 

Example 4-8. Pyrene Data Set(continued): A great deal of discussion has been provided in the literature 

(Helsel 2005, 2012; Helsel 2013 [NADA Package for R]) about estimation of mean and standard 

deviation based upon this data set; however, not much guidance is provided on how to compute upper 

limits such as a UCL of the mean for this data set. This data set is used here to illustrate the various 

bootstrap UCL computation methods incorporated in ProUCL, and how one can compute a UCL95 based 

upon this left-censored data set. This data set also illustrates the impact of a few outliers  on the various 

estimates and statistics. Table 4-11a has statistics computed using the outlier, 2982, and Table 4-11b has 

statistics computed without the outlier. It is noted that the detected data with the outlier does not follow a 
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gamma or a lognormal distribution however, the detected data set without the outlier follows a lognormal 

distribution.  

 

Table 4-11a. Statistics Computed Using Outlier=2982 

 

 

UCLs computed using the KM method and percentile bootstrap and t-statistic are 261 and 252.2. The 

corresponding UCLs obtained using the LROS method are 262.6 and 251.2, which appear to 

underestimate the population mean. The H-UCL based upon the LROS method is unrealistically lower 

(170.4) than the other UCLs. Depending upon the data skewness (sd of detected logged data =0.81), one 

can use the Chebyshev UCL95 (or Chebyshev UCL90) to estimate the EPC.  Note that as expected, the 

presence of one outlier resulted in a bootstrap-t UCL95 significantly higher than the various other UCLs. 

Table 4-11b has UCLs computed without the outlier. Exclusion of the outlier resulted in all comparable 

UCL values. Any of those UCLs can be used to estimate the EPC.  
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Table 4-11b. Statistics Computed without Outlier=2982 

 

 

The data set is not highly skewed with sd = 0.64 of logged detected data. Most methods (including H-

UCL) yield comparable results. Based upon data skewness, ProUCL recommends the use of a UCL95 

based upon the KM BCA method (highlighted in blue in Table 4-11b). 
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4.9 Saving Imputed NDs Using Stats/Sample Sizes Module of ProUCL  

Using this option, NDs are imputed based upon the selected distribution (normal, lognormal, or gamma) 

of the detected observations. Using the menu option, “Imputed NDs using ROS Methods” ProUCL 5.1 

can be used to impute and save imputed NDs along with the original data in additional columns 

automatically generated by ProUCL. ProUCL assigns self-explanatory titles for those generated columns. 

This option is available in ProUCL for researchers and advanced users who want to experiment with the 

full data sets consisting of detected and imputed ND observations for other applications (e.g., ANOVA, 

PCA).  

4.10 Parametric Methods to Compute UCLs Based upon Left-Censored Data 
 Sets  

Some researchers have suggested that parametric methods such as the expectation maximization (EM) 

method and maximum likelihood method (MLE) cited earlier in this chapter would perform better than 

the GROS method for data sets with NDs. As reported in ProUCL guidance and on ProUCL generated 

output sheets, the developers do realize that the GROS method does not perform well when the shape 

parameter, k, or its MLE estimate is small (≤1).  The GROS method appears to work fine when k is large 

(> 2). However, for data sets with NDs and with many DLs, the developers are not sure if parametric 

methods such as the MLE method and the EM method perform better than the GROS method and other 

methods available in ProUCL. More research needs to be conducted to verify these statements.  As noted 

earlier, it is not easy (perhaps not possible in most cases) to correctly assess the distribution of a data set 

containing NDs with multiple censoring points, a common occurrence in environmental data sets. If 

distributional assumptions are incorrect, the decision statistics computed using this incorrect distribution 

may also be incorrect. To the best of our knowledge, the EM method can be used on data sets with a 

single DL. Earlier versions of ProUCL (e.g., ProUCL 4.0, 2007) had some parametric methods including 

the MLE and RMLE methods; those methods were excluded from later versions of ProUCL due to their 

poor performances.  

 

The research in this area is limited; to the best of our knowledge, parametric methods (MLE and EM) for 

data sets with multiple censoring points are not well-researched. The enhancement of these parametric 

methods to accommodate left-censored data sets with multiple DLs will be a big achievement in 

environmental statistical literature. The developers will be happy to include contributed better 

performing methods in ProUCL.  

4.11 Summary and Suggestions 

Most of the parametric methods including the MLE, the RMLE, and the EM method assume that there is 

only one DL. Like parametric estimates computed using uncensored data sets, MLE and EM estimates 

obtained using a left-censored data set are influenced by outliers, especially when a lognormal model is 

used. These issues are illustrated by an example as follows.   

 

Example  4-9: Consider a left-censored data set of size 25 with multiple censoring points: <0.24, <0.24, 

<1, <0.24, <15, <10, <0.24, <22, <0 .24, < 5.56, <6.61, 1.33, 168.6, 0.28, 0.47, 18.4, 0.48, 0.26, 3.29, 

2.35, 2.46, 1.1, 51.97, 3.06, and 200.54. The data set appears to have 2 extreme outliers and 1 

intermediate outlier as can be seen from Figure 4-10. From Figure 4-10 and the results of the Rosner 

outlier test performed on the data set, it can be concluded that the 3 high detected values represent 



159 

outliers. The Shapiro-Wilk test results performed on detected data shown in Figure 4-11 (censored 

probability plot) suggest that the detected data set (with outliers) follows a lognormal distribution 

accommodating the outliers. 

 

 
Figure 4-10. Exploratory Q-Q Plot to Identify Outliers Showing All Detects and Nondetects 

 

 
Figure 4-11. Censored Q-Q Plot Showing GOF Test Results on Detected Log-transformed Data  
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Statistics Computed with Outliers 

 

 
 

Nonparametric estimates of the mean and sd using the KM method are summarized as follows. 

 

 
 

MLE estimates of the mean and sd obtained using Minitab 16, UCL95, and a 95%-95% upper tolerance 

limit based upon a lognormal distribution are summarized as follows. ML estimates in log scale are: 

 

Parameter Estimate 

Standard 

Error 

Upper 

Bound 

Location -0.247900 0.641686 0.807580 

Scale 2.71896 0.530176 3.74710 

    

Log Likelihood = -58. 151; MLE estimates in original raw scale are (back transformation): 

Mean = 31. 45, SE of mean = 43.1279, and UCL95 = 300.041 

 

The inclusion of outliers has resulted in inflated estimates, mean = 31.45, UCL95 = 300.41, and a 

UTL95-95 = 346.54. The estimate of the mean based upon a data set with NDs should be smaller (e.g., 

KM mean = 18.48) than the mean estimate obtained using all NDs at their reported DLs, 20.64. For this 

left-censored data set, the MLE of the mean based upon a lognormal distribution is 31.45 which appears 

to be incorrect.    
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Statistics Computed without Outliers 

 

Detected data without the 2 extreme outliers also follow a lognormal distribution. MLE estimates, 

UCL95, UTL95-95 computed without the outliers and lognormal distribution (using Minitab) are: 

 

Estimates in log scale are provided as follows: 

 

Parameter Estimate 

Standard 

Error 

95% Upper 

Bound 

Location -0.561639 -0.561639 0.28616 

Scale 2.02381 0.421546    2.85079 

    

Log Likelihood = -38.56; MLE estimates in original raw scale are: 

 

Mean = 4.42, SE of mean = 3.688, and UCL95 = 17.433, and UTL95-95 = 63.42 

 

 Substantial differences are noted in the UCL95s ranging from 300.04 to 17.43, and in the UTL95-

95s ranging from 346.54 to 63.42.  

 

It is not easy to verify the data distribution of a left-censored data set consisting of detects and NDs with 

multiple DLs, therefore some poor performing estimation methods including the parametric MLE 

methods and the Winsorization method are not retained in ProUCL 4.1 and higher versions. In ProUCL 

5.1, emphasis is given on the use of nonparametric UCL computation methods and hybrid parametric 

methods based upon KM estimates which account for data skewness in the computation of UCL95s. It is 

recommended that one avoid the use of transformations to achieve symmetry while computing the upper 

limits based upon left-censored data sets. It is not easy to correctly interpret statistics computed in the 

transformed scale. Moreover, the results and statistics computed in the original scale do not suffer from 

transformation bias.   

 

When the sd of the log-transformed data, σ, becomes >1.0, avoid the use of a lognormal model even when 

the data appear to be lognormally distributed. Its use often results in unrealistic statistics of no practical 

merit (Singh, Singh, and Engelhard 1997; Singh, Singh, and Iaci 2002). It is also recommended the user 

identifies potential outliers representing observations coming from population(s) different from the main 

dominant population and investigate them separately. Decisions about the disposition of outliers should 

be made by all interested members of the project team.  

 

It is recommended that the use of  the DL/2 (t) UCL method be avoided, as the DL/2 UCL does not 

provide the desired coverage (for any distribution and sample size) for the population mean, even for 

censoring levels as low as 10% and 15%. This is contrary to the conjecture and assertion (EPA 2006a) 

made that the DL/2 method can be used for lower (≤ 20%) censoring levels. The coverage provided by 

the DL/2 (t) method deteriorates fast as the censoring intensity increases. The DL/2 (t) method is not 

recommended by the authors or developers of this document and ProUCL software.  

 

The use of the KM estimation method is a preferred method as it can handle multiple DLs. Therefore, the 

use of KM estimates is suggested for computing decision statistics based upon methods which adjust for 

data skewness. Depending upon the data set size, distribution of the detected data, and data skewness, the 

various nonparametric and hybrid KM UCL95 methods including KM (BCA), bootstrap-t KM UCL, 
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Chebyshev KM UCL, and Gamma-KM UCL based upon the KM estimates provide good coverages for 

the population mean. Suggestions regarding the selection of a 95% UCL of the mean are provided to help 

the user select the most appropriate 95% UCL. These suggestions are based upon the results of the 

simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh, Maichle, and Lee (2006).  It is 

advised that the project team collectively determine which UCL will be most appropriate for their site 

project. For additional insight, the user may want to consult a statistician. 
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CHAPTER 5 
 

Computing Upper Limits to Estimate Background Threshold 
Values Based upon Data Sets Consisting of Nondetect (ND) 

Observations 

5.1 Introduction 

As described in Chapter 3, a BTV considered in this chapter represents an upper threshold parameter 

(e.g., 95th) of the background population; which is used to perform point-by-point comparisons of onsite 

observations. Estimation of BTVs and comparison studies require the computation of UPLs and UTLs 

based upon left-censored data sets containing ND observations. Not much guidance is available in the 

statistical literature on how to compute UPLs and UTLs based upon left-censored data sets of varying 

sizes and skewness levels. Like UCLs, the use of Student’s t-statistic and percentile bootstrap methods 

based UPLs and UTLs are difficult to defend for moderately skewed to highly skewed data sets with 

standard deviation (sd) of the log-transformed data exceeding 0.75-1.0. Since it is not easy to reliably 

perform GOF tests on left-censored data sets; emphasis is given on the use of distribution-free 

nonparametric methods including the KM, Chebyshev inequality, and other computer intensive bootstrap 

methods to compute upper limits needed to estimate BTVs.   

 

All BTV estimation methods for full uncensored data sets as described in Chapter 3 can be used on data 

sets consisting of detects and imputed NDs obtained using ROS methods (e.g., GROS and LROS). 

Moreover, all other comments about the use of substitution methods, disposition of outliers, and 

minimum sample size requirements as described in Chapter 4 also apply to BTV estimation methods for 

data sets with ND observations. 

5.2 Treatment of Outliers in Background Data Sets with NDs  

Just like full uncensored data sets, a few outlying observations present in a left-censored data set tend to 

yield distorted estimates of the population parameters (means, upper percentiles, OLS estimates) of 

interest. OLS regression estimates (slope and intercept) become distorted (Rousseeuw and Leroy 1987; 

Singh and Nocerino 1995) by the presence of outliers. Specifically, in the presence of outliers, the ROS 

method performed on raw data (e.g., GROS) tends to yield unfeasible imputed negative values for ND 

observations.  Singh and Nocerino (2002) suggested the use of robust regression methods to compute 

regression estimates needed to impute NDs based upon ROS methods. Robust regression methods are 

beyond the scope of ProUCL.  It is therefore suggested that potential outliers be manually identified 

where they may be present in a data set before proceeding with the computation of the various BTV 

estimates as described in this chapter.  As mentioned in earlier chapters, upper limits computed by 

including a few low probability high outliers tend to represent locations with those elevated 

concentrations rather than representing the main dominant population. It is suggested that relevant 

statistics be computed using data sets with outliers and without outliers for comparison. This extra step 

helps the project team to see the potential influence of outlier(s) on the various decision making statistics 

(e.g., UCLs, UPLs, UTLs); and helps the project team in making informative decisions about the 

disposition of outliers. That is, the project team and experts familiar with the site should decide which of 

the computed statistics (with outliers or without outliers) represent more accurate estimate(s) of the 

population parameters (e.g., mean, EPC, BTV) under consideration.  
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A couple of classical outlier tests (Dixon and Rosner tests) are available in the ProUCL software. These 

tests can be used on data sets with or without ND observations. Additionally, one can use graphical 

displays such as Q-Q plots and box plots to visually identify high outliers in a left-censored data set. It 

should be pointed out, that for environmental applications, it is the identification of high outliers (perhaps 

representing contaminated locations and hot spots) that is important. The occurrence of ND (less than 

values) observations and other low values is quite common in environmental data sets, especially when 

the data are collected from a background or a reference area.  For the purpose of the identification of high 

outliers, one may replace ND values by their respective DLs or half of the DLs or may just ignore them 

(especially when high reporting limits are associated with NDs) from the outlier tests. A similar approach 

can be used to generate graphical displays, Q-Q plots and histograms. Except for the identification of high 

outlying observations, the outlier test statistics, computed with NDs or without NDs, are not used in any 

of the estimation and decision making processes. Therefore, for the purpose of testing for high outliers, it 

does not matter how the ND observations are treated.  

5.3 Estimating BTVs Based upon Left-Censored Data Sets 

This section describes methods for computing upper limits (UPLs, UTLs, USLs, upper percentiles) that 

may be used to estimate BTVs and other not-to-exceed levels from data sets with ND observations. 

Several Student’s t-type statistic and normal z-scores based methods have been described in the literature 

(Helsel 2005; Millard and Neerchal 2002; USEPA 2007, 2010d, 2011) to compute UPLs and UTLs based 

upon statistics (e.g., mean, sd) obtained using MLE, KM, or ROS methods.  The methods used to 

compute upper limits (e.g., UPL, UTL, and percentiles) based upon a Student’s t-type statistic are also 

described in this chapter; however, the use of such methods is not recommended for moderately skewed 

to highly skewed data sets. These methods may yield reasonable upper limits (e.g., with proper coverage) 

for normally distributed and mildly skewed to moderately skewed data sets with the sd of the detected 

log-transformed data less than 1.0.  

 

Singh, Maichle, and Lee (EPA 2006) demonstrated that the use of the t-statistic and the percentile 

bootstrap method on moderately to highly skewed left-censored data sets yields UCL95s with coverage 

probabilities much lower than the specified CC, 0.95. A similar pattern is expected in the behavior and 

properties of the various other upper limits (e.g., UTLs, UPLs) used in the decision making processes of 

the USEPA.  It is anticipated that the performance (in terms of coverages) of the percentile bootstrap and 

Student’s t-type upper limits (e.g., UPLs, UTLs) computed using the KM and ROS estimates for 

moderately skewed to highly skewed left-censored data sets (sd of detected logged data >1) would also be 

less than acceptable. For skewed data sets, the use of the gamma distribution on KM estimates (when 

applicable) or nonparametric methods, which account for data skewness, is suggested for computing BTV 

estimates. A brief description of those methods is provided in the following sections.  

5.3.1 Computing Upper Prediction Limits (UPLs) for Left-Censored Data Sets 

This section describes some parametric and nonparametric methods for computing UPLs for left-censored 

data sets.  

5.3.1.1 UPLs Based upon Normal Distribution of Detected Observations and KM 

Estimates 

When detected observations in a data set containing NDs follow a normal distribution (which can be 

verified by using the GOF module of ProUCL), one may use the normal distribution on KM estimates to 

compute the various upper limits needed to estimate BTVs (also available in ProUCL 4.1). A (1 – )*100 
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UPL for a future (or next) observation (observation not belonging to the current data set) can be computed 

using the following KM estimates based equation: 

 

UPL1 = 
2

((1 ),( 1))
ˆ ˆ (1 1/ )KM n KMt n     (5-1) 

 

Here 
))1(),1((  nt   is the critical value of the Student’s t-distribution with (n–1) degrees of freedom 

 (df).  If the distributions of the site data and the background data are comparable, then a new (next) 

observation coming from the site population (e.g., site) should lie at or below the UPL195 with probability 

0.95.  A similar equation can be developed for upper prediction limits for future k observations (described 

in Chapter 3) and the mean of k future observations (incorporated in ProUCL 5.0/ProUCL 5.1).  

5.3.1.2  UPL Based upon the Chebyshev Inequality 

The Chebyshev inequality can be used to compute a reasonably conservative but stable UPL and is given 

as follows: 

 

UPL = [ ((1/ ) 1)*(1 1/ )] xx n s    (5-2) 

 

The mean, x , and sd, sx, used in the above equation are computed using one of the estimation methods 

(e.g., KM) for left-censored data sets. Just like the Chebyshev UCL, a UPL based upon the Chebyshev 

inequality tends to yield higher estimate of BTVs than the other methods. This is especially true when 

skewness is moderately mild (sd of log-transformed data is low < 0.75), and the sample size is large n > 

30). It is advised to apply professional/expert judgment before using this method to compute a UPL. 

Specifically, for larger skewed data sets, instead of using a 95% UPL based upon the Chebyshev 

inequality, the user may want to compute a Chebyshev UPL with a lower CC (e.g., 85%, 90%) to estimate 

a BTV.  ProUCL can compute a Chebyshev UPL (and all other UPLs) for any user specified CC in the 

interval [0.5, 1].  

5.3.1.3  UPLs Based upon ROS Methods 

As described earlier, ROS methods first impute k ND values using an OLS linear regression model 

(Chapter 4). This results in a full data set of size n. For ROS methods (gamma, lognormal), ProUCL 

generates additional columns consisting of (n - k) detected values and k imputed values of the k ND 

observations present in a data set. Once, the ND observations have been imputed, the user may use any of 

the available parametric and nonparametric BTVs estimation methods for full data sets (without NDs), as 

described in Chapter 3. Those BTV estimation methods are not repeated here. The users may want to 

review the behavior of the various ROS methods as described in Chapter 4.  

5.3.1.4  UPLs when Detected Data are Gamma Distributed 

When detected data follow a gamma distribution, methods described in Chapter 3 can be used on KM 

estimates to compute gamma distribution based upper prediction limits for future k≥1 observations. These 

limits are described below when k=1. 

 

            Wilson-Hilferty (WH) UPL = 
     

3

1 , 1
1max 0, * * 1KM y KMn

y t s
n 
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             Hawkins-Wixley (HW) UPL =        
     

4

1 , 1
1* * 1KM yKMn

y t s
n 

    

 

Here 
))1(),1((  nt   is a critical value from the Student’s t-distribution with (n–1) degrees of freedom (df), 

and KM estimates are computed based upon the transformed y data as described in Chapter 3.  All detects 

and NDs are transformed to y-space to compute the KM estimates. 

One of the advantages of using this method is that one does not have to impute NDs based upon the data 

distribution using LROS or GROS method. 

5.3.1.5  UPLs when Detected Data are Lognormally Distributed 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on KM 

estimates to compute lognormal distribution based upper prediction limits for future k≥1 observations. 

These limits are described below when k=1. An upper (1 – α)*100% lognormal UPL is given by the 

following equation: 

 

UPL = ))/11(**exp( ))1(),1(( nsty yn     

 

Here ))1(),1((  nt   is a critical value from Student’s t-distribution with (n–1) df, and y  and sy represent the 

KM mean and sd based upon the log-transformed data (detects and NDs), y.  All detects and NDs are 

transformed to y-space to compute the KM estimates. 

5.3.2 Computing Upper p*100% Percentiles for Left-Censored Data Sets  

This section briefly describes some parametric and nonparametric methods to compute upper percentiles 

based upon left-censored data sets.  

5.3.2.1  Upper Percentiles Based upon Standard Normal Z-Scores 

In a left-censored data set, when detected data are normally distributed, one can use normal percentiles 

and KM estimates (or some other estimates such as ROS estimates) of the mean and sd to compute the pth 

percentile given as given as follows: 

 

2ˆ ˆ ˆ
p KM p KMx z    (5-3) 

 

Here zp is the p*100th percentile of a standard normal, N (0, 1), distribution which means that the area 

(under the standard normal curve) to the left of zp is p. If the distributions of the site data and the 

background data are comparable, then an observation coming from a population (e.g., site) similar 

(comparable) to that of the background population should lie at or below the p*100% percentile, with 

probability p.  
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5.3.2.2  Upper Percentiles when Detected Data are Lognormally Distributed 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on the 

KM estimates to compute lognormal distribution based upper percentiles. The lognormal distribution 

based pth percentile based upon KM estimates is given as follows: 

     )exp(ˆ
pyp zsyx   

In the above equation, y  and sy represent the KM mean and sd based upon the log-transformed data 

(detects and NDs), y. All detects and NDs are transformed to y-space to compute the KM estimates. 

5.3.2.3  Upper Percentiles when Detected Data are Gamma Distributed 

When detected data are gamma distributed, gamma percentiles can be computed similarly using the HW 

and WH approximations to compute KM estimates. According to the WH approximation, the transformed 

detected data Y = X1/3   follow an approximate normal distribution; and according to the HW 

approximation, the transformed detected data Y = X1/4 follow an approximate normal distribution. Let y  

and sy represent the KM mean and sd of the transformed data (detects and NDs), y. The percentiles based 

upon the WH and HW transformations respectively are given as follows: 

                            
  3

ˆ max 0, *p p yx y z s 
   

 

     
 

4

ˆ *p p yx y z s   

Alternatively, following the process described in Section 4.6.2, one can use KM estimates to compute 

KM estimates, k̂  and ̂  of the shape, k and scale, θ parameters of the gamma distribution, and use the 

chi-square distribution to compute gamma percentiles using the equation: X = Y *  /2, where Y follows 

a chi-square distribution with 2 k̂  degrees of freedom (df). This method does not require HW or WH 

approximations to compute gamma percentiles. Once an α*100% percentile, y = y() 2k, of a chi-square 

distribution with 2 k̂  df is obtained, the α*100% percentile for a gamma distribution is computed using 

the equation: x = y *̂ /2. ProUCL 5.1 computes gamma percentiles using this equation based upon KM 

estimates. 

5.3.2.4  Upper Percentiles Based upon ROS Methods 

As noted in Chapter 4, all ROS methods first impute k ND values using an OLS linear regression 

(Chapter 4) assuming a specified distribution of detected observations. This process results in a full data 

set of size n consisting of k imputed NDs and (n-k) detected original values. For ROS methods (normal, 

gamma, lognormal), ProUCL generates additional columns consisting of the (n-k) detected values, and k 

imputed ND values. Once, the ND observations have been imputed, an experienced user may use any of 

the parametric or nonparametric percentile computation methods for full uncensored data sets as 

described in Chapter 3. Those methods are not repeated in this chapter. 
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5.3.3 Computing Upper Tolerance Limits (UTLs) for Left-Censored Data Sets 

UTL computation methods for data sets consisting of NDs are described in this section. 

5.3.3.1  UTLs Based on KM Estimates when Detected Data are Normally Distributed 

Normal distribution based UTLs computed using KM estimates may be used when the detected data are 

normally distributed (can be verified using GOF module of ProUCL) or moderately to mildly skewed, 

with the sd of log-transformed detected data, σ, less than 0.5-0.75.  An upper (1 – α)*100% tolerance limit 

with tolerance or coverage coefficient, p, is given by the following statement: 

 

   UTL = 
2

, ,
ˆ ˆ*KM n p KMK         (5-4) 

 

Here K = K (n,, p) is the tolerance factor used to compute upper tolerance limits and depends upon the 

sample size, n, CC = (1- ), and the coverage proportion = p. The K critical values are based upon the 

non-central t-distribution, and have been tabulated extensively in the statistical literature (Hahn and 

Meeker 1991).  For samples of sizes larger than 30, one can use Natrella’s approximation (1963) to 

compute the tolerance factor, K = K (n, , p). 

5.3.3.2  UTLs Based on KM Estimates when Detected Data are Lognormally Distributed 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on KM 

estimates to compute lognormal distribution based upper tolerance limits. An upper (1 – α)*100% 

tolerance limit with tolerance or coverage coefficient, p, is given by the following statement: 

 

 UTL = )*exp( ysKy   

 

The K factor in the above equation is the same as the one used to compute the normal UTL; y  and sy 

represent the KM mean and sd based upon the log-transformed data. All detects and NDs are transformed 

to y-space to compute KM estimates. 

5.3.3.3  UTLs Based on KM Estimates when Detected Data are Gamma Distributed 

According to the WH approximation, the transformed detected data Y = X1/3   follow an approximate 

normal distribution; and according to the HW approximation, the transformed detected data Y = X1/4 

follow an approximate normal distribution when detected X data are gamma distributed. Let y  and sy 

represent the KM mean and sd based upon transformed data (detects and NDs), Y. 

Using the WH approximation, the gamma UTL (in original scale, X), is given by: 

 

    UTL =   3

max 0, * yy K s      

 

Similarly, using the HW approximation, the gamma UTL in original scale is given by: 

 

    UTL =  
4

* yy K s    
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5.3.3.4  UTLs Based upon ROS Methods 

As noted in Chapter 4, all ROS methods first impute k ND values using an OLS linear regression line 

assuming a specified distribution of detected and nondetected observations. This process results in a full 

data set of size n consisting of k imputed NDs and (n-k) detected original values. For ROS methods 

(normal, gamma, lognormal), ProUCL generates additional columns consisting of the (n-k) detected 

values, and k imputed ND values. Once, the ND observations have been imputed, an experienced user 

may use any of the parametric or nonparametric UTL computation methods for full data sets as described 

in Chapter 3. Those methods are not repeated in this chapter.  

 

Note: In the Stats/Sample Sizes module, using the General Statistics option for data sets with NDs, for 

information and summary purposes, percentiles are computed using detects and nondetects, where 

reported DLs are used for NDs. Those percentiles do not account for NDs. However, KM method based 

upper limits such as the UTL95-95 account for NDs; therefore, sometimes, a UTL95-95 computed based 

upon a ND method (e.g., KM method) may be lower than the 95% percentile computed using the General 

Statistics option of Stats/Sample Sizes module.  

5.3.4 Computing Upper Simultaneous Limits (USLs) for Left-Censored Data Sets 

Parametric and nonparametric USL computation methods for are described as follows. 

5.3.4.1 USLs Based upon Normal Distribution of Detected Observations and KM 

Estimates 

When detected observations follow a normal distribution (can be verified by using the GOF module of 

ProUCL), one can use the normal distribution on KM estimates to compute a USL95.  

 

A one-sided (1 – α) 100% USL providing (1 – α) 100% coverage for all sample observations is given by: 

    USL = 
2

2
ˆ ˆ*b

KM KMd    

 

Here 2

2( )bd  is the critical value of Max (Mahalanobis Distances) for 2*α level of significance.  

5.3.4.2 USLs Based upon Lognormal Distribution of Detected Observations and KM 

Estimates 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on the 

KM estimates to compute lognormal distribution based USLs. Let y  and sy represent the KM mean and 

sd of the log-transformed data (detects and NDs), y; a (1 – α) 100% USL is given by as follows: 

 
2exp( * )b

yUSL y s d    

5.3.4.3  USLs Based upon Gamma Distribution of Detected Observations and KM   

  Estimates 

According to the WH approximation, the transformed detected data Y = X1/3 follow an approximate 

normal distribution; and according to the HW approximation, the transformed detected data Y = X1/4 
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follow an approximate normal distribution. Let y  and sy represent the KM mean and sd of the 

transformed data (detects and NDs), y.  A gamma distribution based (using WH approximation), one-

sided (1 – α) 100% USL is given by: 

                             
  3

2max 0, *b

yUSL y d s 
   

A gamma distribution based (HW approximation) one-sided (1 – α) 100% USL is given as follows: 

    
 

4

2 *b

yUSL y d s   

5.3.4.4  USLs Based upon ROS Methods 

Once, the ND observations have been imputed, one can use parametric or nonparametric USL 

computation methods for full data sets as described in Chapter 3.  

 

Example 5-1 (Oahu Data Set). The detected data are only moderately skewed (sd of logged detects = 

0.694) and follow a lognormal as well as a gamma distribution. The various upper limits computed using 

ProUCL 5.1 are listed in Tables 5-1 through 5-3 as follows.   

 

Table 5-1. Nonparametric and Normal Upper Limits Using KM Estimates  
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Table 5-1 (continued). Nonparametric and Normal Upper Limits Using KM Estimates  

 

 
 

Note that the upper limits, based upon the gamma and lognormal distribution, are comparable. The upper 

limits computed using KM estimates based upon normal equations are slightly lower than other upper 

limits which adjust for data skewness. Table 5-1 mostly contains normal distribution based upper limits 

computed using KM estimates as described in Helsel (2012) irrespective of the distribution of the 

detected data. The detected data follow a gamma distribution as shown in Table 5-2 below. A gamma 

UTL95-95 using KM estimates = 2.66 (WH); and a UTL95-95 based upon the GROS method is 3.15 

(WH). From Table 5-3, a lognormal UTL95-95 using KM estimates = 2.79, and a UTL95-95 using the 

LROS method =3.03. 

 

Table 5-2.  Upper Limits Using GROS, KM Estimates and Gamma Distribution of Detected Data 
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Table 5-2 (continued). Upper Limits Using GROS, KM Estimates and Gamma Distribution of 

Detected Data 

 

 
 

Table 5-3.  Upper Limits Using LROS method and KM Estimates and Lognormal Distribution of 

Detected Data 

 

 
 

 



173 

Example 5-2 A real data set of size 55 with 18.8% NDs is considered next. This data was used in Chapter 

4 to illustrate the differences in UCLs computed using a lognormal and a gamma distribution. This data 

set is considered here to illustrate the merits of the gamma distribution based upper limits. It can be seen 

that the detected data follow a gamma as well as a lognormal distribution.  The minimum detected value 

is 5.2 and the largest detected value is 79000. The sd of the detected logged data is 2.79 suggesting that 

the detected data set is highly skewed.  Relevant statistics and upper limits including a UPL95, UTL95-

95, and UCL95 have been computed using both the gamma and lognormal distributions. The gamma 

GOF Q-Q plot is shown as follows. 

 

 
 

Summary Statistics for Data Set of Example 5-2 

 

 
 

Mean of detects (=10556) reported above ignores all 18.18% NDs. 
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KM Method Based Estimates of the Mean, SE of the Mean, and sd 

 

 
 

KM mean (= 8638) reported above accounts for 18.18% NDs reported in the data set. 

 

Notes:  Direct estimate of KM sd = 18246 

Indirect Estimate of KM sd (Helsel 2012) = 18451.5 

 

The gamma GOF test results on detected data and various upper limits including UCLs obtained using the 

GROS method and gamma distribution on KM estimates are provided in Table 5-4; and the lognormal 

GOF test results on detected data and the various upper limits obtained using the LROS method and 

lognormal distribution on KM estimates are provided in Table 5-5. Table 5-6 is a summary of the main 

upper limits computed using the lognormal and gamma distribution of the detected data. 

 

Table 5-4.  Upper Limits Using GROS, KM Estimates and Gamma Distribution of Detected Data 

 

 
 

Upper Limits Computed Using Gamma ROS Method 
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Upper Limits Computed Using Gamma Distribution and KM Estimates 

 

 
 

95% UCL of the Mean Based upon GROS Method 

 

 
 

95% UCL of the Mean Using Gamma Distribution on KM Estimates  

 

 
 

Table 5-5.  Upper Limits Using LROS and KM Estimates and Lognormal Distribution of Detected 

Data 

 

 
 

 

 

 

 



176 

95% UCL of the mean Using LROS and Lognormal Distribution on KM Estimates Methods 

 

 
 

Nonparametric upper percentiles are: 9340 (80%), 25320 (90%), 46040 (95%), and 77866 (99%). Other 

upper limits, based upon the gamma and lognormal distribution, are described in Table 5-6. All 

computations have been performed using the ProUCL software. In the following Table 5-6, method 

proposed/described in the literature have been cited in the Reference Method of Calculation column. 

 

Table 5-6. Summary of Upper Limits Computed using Gamma and Lognormal Distribution of 

Detected Data: Sample Size = 55, No. of NDs=10, % NDs = 18.18% 

 

Upper Limits 

Gamma Distribution Lognormal Distribution 

Result 

Reference/  

Method of Calculation Result 

Reference/  

Method of Calculation 

Min (detects) 5.2 -- 1.65  Logged 

Max (detects) 79,000 -- 11.277 Logged 

Mean (KM) 8,638 -- 6.3 Logged 

Mean (ROS) 8,642 -- 8,638 -- 

95% Percentile (ROS) 42,055 -- 104,784 -- 

UPL95 (ROS) 33,332 WH- ProUCL 121,584 Helsel (2012), EPA 2009 

UTL95-95 (ROS) 47,429 WH- ProUCL 394,791 Helsel (2012), EPA 2009 

UPL95 (KM) 32,961 WH-ProUCL  106,741 EPA (2009) 

UTL95-95 (KM) 46,978 WH-ProUCL  334,181 EPA(2009) 

UCL95 (ROS) 14,445 ProUCL 
14,659 bootstrap-t, ProUCL 5.0 

12,676 
percentile bootstrap, Helsel 

(2012) 

UCL (KM) 14,844 ProUCL  1,173,988 
H-UCL, KM mean and sd 

on logged data - EPA 

(2009) 

 

The statistics listed in Tables 5-4 and 5-5, and summarized in Table 5-6 demonstrate the need and merits 

of using the gamma distribution for computing practical and meaningful estimates (upper limits) of the 

decision parameters (e.g., mean, upper percentile) of interest.  

Example 5.3. The benzene data set (Benzene-H-UCL-RCRA.xls) of size 8 used in Chapter 21 of the 

RCRA Unified Guidance document (EPA 2009) was used in Section 4.6.3.1 to address some issues 

associated with the use of lognormal distribution to compute a UCL of mean for data sets with 
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nondetects. The benzene data set is used in this example to illustrate similar issues associated with the 

computation of UTLs and UPLs based upon lognormal distribution using substitution methods. 

Lognormal distribution based upper limits using ROS and KM methods are summarized in Table 5-7. 

Table 5-7. Lognormal 95%-95% Upper Limits based upon LROS and KM Estimates 

 

 

 
 

The data set has only one ND with a DL of 0.5. Lognormal upper limits computed by replacing the ND 

by DL and DL/2, respectively are given in Tables 5-8 and 5-9.  

 

Table 5-8. Lognormal Distribution Based Upper Limits using DL (=0.5) for ND  
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Table 5-9. Lognormal Distribution Based Upper Limits using DL/2 (=0.25) for ND  

 

 

 
 

Note: Even though UPLs and UTLs computed using the lognormal distribution do not suffer from 

transformation bias, a minor increase in the sd of logged data (from 1.152 to 1.257 above) causes a 

significant increase in upper limits, especially in UTLs (from 52.5 to 67.44) computed using a small data 

set (<15-20). This is particularly true when the data set consists of outliers.  

 

Impact of Outlier, 16.1 ppb on the Computations of Upper Limits 

 

Benzene data set without the outlier, 16.1 ppb, follows a normal distribution, and normal distribution 

based upper limits without the outlier 16.1 are summarized as follows in Tables 5-10 (KM estimates),  5-

11 (ND by DL), and 5-12 (ND by DL/2).   

 

Table 5-10 Normal Distribution Based Upper Limits Computed Using KM estimates  
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Table 5-11 Normal Distribution Based Upper Limits Computed using DL for ND  

 

 
 

Note: DL (=0.5) has been used for the ND value (does not accurately account for its ND status). 

Therefore, upper limits are slightly higher than those computed using KM estimates.  

 

Table 5-12 Normal Distribution Based Upper Limits Computed using DL/2 for ND  

 

 
 

Note: DL/2 (=0.25) has been used for the ND value (does not accurately account for its ND status).  The 

use of DL/2 has increased the variance slightly which causes a slight increase in the various upper limits. 

Therefore, upper limits are slightly higher than those computed using KM estimates and using DL for the 

ND value.  Based upon the benzene data set, normal UTL95-95 (= 2.93) computed using KM estimates 

appears to represent a more realistic estimate of background threshold value.    
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Example 5-4: The manganese (Mn) data set used in Chapter 15 of the Unified RCRA Guidance (2009) 

has been used here to demonstrate how LROS method generates elevated BTVs.  Summary statistics are 

summarized as follows. 

 

 
 

The detected data follow a lognormal distribution, the maximum value in the data set is 106, and using the 

LROS method (robust ROS method), one gets a 99% percentile = 183.4, and a UTL of 175.  These 

statistics are summarized in Table 5-13. 

 

The detected data also follows a gamma distribution. Gamma-KM method based upper limits are 

summarized as follows. The Gamma UTL95-95s (KM) are 92.5 (WH) and 99.32 (HW) and the 99% 

percentiles are: 94.42 (WH) and 101.8 (HW). The Gamma UTL (KM) appears to represent a reasonable 

estimate of BTV. These BTV estimates are summarized in Table 5-14.  

 

Table 5-13 LROS and Lognormal KM Method Based Upper Limits  
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Table 5-14 Gamma KM Method Based Upper Limits  

 

 

Notes: Even though one can argue that there is no transformation bias when computing lognormal 

distribution based UTLs and UPLs, the use of a lognormal distribution on data with or without NDs often 

yields inflated values which are not supported by the data set used to compute them. Therefore, its use 

including LROS method should be avoided.  

Before using a nonparametric BTV estimate, one should make sure that the detected data do not follow a 

known distribution. When dealing with a data set with NDs, it is suggested to account for NDs and 

determine the distribution of detected values instead of using a nonparametric UTL as used in Example 

17-4 on page 17-21 of Chapter 17 of the EPA Unified Guidance, 2009. If detected data follow a 

parametric distribution, one may want to compute a UTL using that distribution and KM estimates; this 

approach will account for data variability instead defaulting to higher order statistics.  

Summary and Recommendation  
 

 It is recommended that occasional low probability outliers not be used in the computation of 

decision making statistics. The decision making statistics (e.g., UCLs, UTLs, UPLs) should be 

computed using observations representing the main dominant population. The use of a lognormal 

distribution should be avoided in computing upper limits (UCLs, UTLs, UPLs) based upon data 

sets with sd of detected logged data for moderately skewed to highly skewed data sets of sizes 

smaller than 20-30. It is reasonable to state that, like uncensored data sets without NDs, the 

minimum sample size requirement increases as the skewness increases.  

 

 The project team should collectively make a decision about the disposition of outliers. It is often 

helpful to compute decision statistics (upper limits) and hypothesis test statistics twice: once 

including outliers, and once without outliers. By comparing the upper limits computed with and 

without outliers, the project team can determine which limits are more representative of the site 

conditions under investigation. 

5.4 Computing Nonparametric Upper Limits Based upon Higher Order 
Statistics 

For full data sets without any discernible distribution, nonparametric UTLs and UPLs are computed using 

higher order statistics. Therefore, when the data set consists of enough detected observations, and if some 

of those detected data are larger than all of the NDs and the DLs, ProUCL computes USLs, UTLs, UPLs, 

and upper percentiles by using nonparametric methods as described in Chapter 3. Since, nonparametric 

UTLs, UPLs, USLs, and upper percentiles are represented by higher order statistics (or by some value in 

between higher order statistic obtained using linear interpolation) every effort should be made to make 

sure that those higher order statistics do not represent observations coming from population(s) other than 

the main dominant (e.g., background) population under study.  
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CHAPTER 6 
 

Single and Two-sample Hypotheses Testing Approaches  
 

Both single-sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 

polluted sites, and compare constituent concentrations of two (e.g., site versus background) or more (GW 

in MWs) populations. This chapter provides guidance on when to use single-sample hypothesis test and 

when to use two-sample hypotheses approaches. These issues were also discussed in Chapter 1 of this 

Technical Guide. For interested users, this chapter presents a brief description of the mathematical 

formulations of the various parametric and nonparametric hypotheses testing approaches as incorporated 

in ProUCL. ProUCL software provides hypotheses testing approaches for data sets with and without ND 

observations.  For data sets containing multiple nondetects, a new two-sample hypothesis test, the Tarone-

Ware (T-W; 1978) test has been incorporated in the current ProUCL, versions 5.0 and 5.1. The developers 

of ProUCL recommend supplementing statistical test results with graphical displays.  It is assumed that 

the users have collected an appropriate amount of good quality (representative) data, perhaps based upon 

data quality objectives (DQOs). The Stats/Sample Sizes module can be used to compute DQOs based 

sample sizes needed to perform the hypothesis tests described in this chapter.  

6.1 When to Use Single Sample Hypotheses Approaches 

When pre-established background threshold values and not-to-exceed values (e.g., USGS background 

values, Shacklette and Boerngen 1984) exist, there is no need to extract, establish, or collect a background 

or reference data set. Specifically, when not-to-exceed action levels or average cleanup standards are 

known, one-sample hypotheses tests can be used to compare onsite data with known and pre-established 

threshold values, provided enough onsite data needed to perform the hypothesis tests are available. When 

the number of available site observations is less than 4-6, one might perform point-by-point site 

observation comparisons with a BTV; and when enough onsite observations (> 8 to 10, more are 

preferable) are available, it is suggested to use single-sample hypothesis testing approaches. Some recent 

EPA guidance documents (EPA 2009) also recommend the availability of at least 8-10 observations to 

perform statistical inference.  Some minimum sample size requirements related to hypothesis tests are 

also discussed in Chapter 1 of this Technical Guide. 

 

Depending upon the parameter (e.g., the average value, 0, or a not-to-exceed action level, A0), 

representing a known threshold value, one can use single-sample hypothesis tests for the population mean 

(t-test, sign test) or single-sample tests for proportions and percentiles. Several single-sample tests listed 

below are available in ProUCL 5.1 and its earlier versions.  

 

One-Sample t-Test: This test is used to compare the site mean,, with some specified cleanup standard, Cs 

(µ0), where Cs represents a specified value of the true population mean, . The Student’s t- test or UCL of 

the mean is used (assuming normality of site data, or when the sample size is larger than 30, 50, or 100) to 

verify the attainment of cleanup levels at a polluted sites (EPA 1989a, 1994). Note that the large sample 

size requirement (n= 30, 50, or 100) depends upon the data skewness. Specifically, as skewness increases 

measured in terms of the sd, σ, of the log-transformed data, the large sample size requirement also 

increases to be able to apply the normal distribution and Student’s t-statistic, due to the central limit 

theorem (CLT). 

 

One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests which 

can also handle ND observations, provided all NDs and therefore their associated DLs are less than the 
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specified threshold value, Cs. These tests are used to compare the site location (e.g., median, mean) with 

some specified cleanup standard, Cs, representing the similar location measure. 

 

One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a 

preliminary remediation goal (PRG), or a compliance limit (CL) represents an upper threshold value of a 

constituent concentration distribution rather than the mean threshold value, , a test for proportion or a 

test for percentile (e.g., UTL95-95, UTL95-90) can be used to compare exceedances to the actionable 

level. The proportion, p, of exceedances of A0 by site observations are compared to some pre-specified 

allowable proportion, P0, of exceedances. One scenario where this test may be applied is following 

remediation activities at an AOC. The proportion test can also handle NDs provided all NDs are below 

the action level, A0.  

 

It is beneficial to use DQO-based sampling plans to collect an appropriate amount of data. In any case, in 

order to obtain reasonably reliable estimates and compute reliable test statistics, an adequate amount of 

representative site data (at least 8 to 10 observations) should be made available to perform the single-

sample hypotheses tests listed above. As mentioned before, if only a small number of site observations are 

available, instead of using hypotheses testing approaches, point-by-point site concentrations may be 

compared with the specified action level, A0. Individual point-by-point observations are not to be 

compared with the average cleanup or threshold level, Cs. The estimated sample mean, such as a UCL95, 

is compared with a threshold representing an average cleanup standard.  

6.2 When to Use Two-Sample Hypotheses Testing Approaches 

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 

compared directly with the background data. In such cases, a two-sample hypothesis testing approach is 

used to perform site versus background comparisons provided enough data are available from each of the 

two populations. Note that this approach can be used to compare concentrations of any two populations 

including two different site areas or two different MWs. The Stats/Sample Sizes module of ProUCL can 

be used to compute DQO-based sample sizes for two-sample parametric and nonparametric hypothesis 

testing approaches. While collecting site and background data, for better representation of populations 

under investigation, one may also want to account for the size of the background area (and site area for 

site samples) in sample size determinations. That is, a larger number (>10 to 15) of representative 

background (or site) samples may need to be collected from larger background (or site) areas to capture 

the greater inherent heterogeneity/variability typically present in larger areas.  

 

The two-sample hypotheses approaches are used when the site parameters (e.g., mean, shape, distribution) 

are compared with the background parameters (e.g., mean, shape, distribution). Specifically, two-sample 

hypotheses testing approaches can be used to compare the average (also medians or upper tails) 

constituent concentrations of two or more populations such as the background population and the 

potentially contaminated site areas. Several parametric and nonparametric two-sample hypotheses testing 

approaches, including Student’s t-test, the Wilcoxon-Mann-Whitney (WMW) test, Gehan’s test, and the 

T-W test are included in ProUCL 5.1. Some details of those methods are described in this chapter for 

interested users. It is recommended that statistical results and test statistics be supplemented with 

graphical displays, such as the multiple Q-Q plots and side-by-side box plots as graphical displays do not 

require any distributional assumptions and are not influenced by outlying observations and NDs. 

  

Data Types: Analytical data sets collected from the two (or more) populations should be of the same type 

obtained using similar analytical methods and sampling equipment. Additionally, site and background 

data should be all discrete or all composite (obtained using the same design, pattern, and number of 
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increments), and should be collected from the same medium (soil) at comparable depth levels (e.g., all 

surface samples or all subsurface samples) and time (e.g., during the same quarter in groundwater 

applications). Good sample collection methods and sampling strategies are described in Gerlach, R. W., 

and J. M. Nocerino (2003) and the ITRC Technical Regulatory guidance document (2012).  

6.3 Statistical Terminology Used in Hypotheses Testing Approaches 

The first step in developing a hypothesis test is to state the problem in statistical terminology by 

developing a null hypothesis, H0, and an alternative hypothesis, HA. These hypotheses tests result in two 

alternative decisions: acceptance of the null hypothesis or the rejection of the null hypothesis based on the 

computed hypothesis test statistic (e.g., t-statistic, WMW test statistic). The statistical terminologies 

including error rates, hypotheses statements, Form 1, Form 2, and two-sided tests, are explained in terms 

of two-sample hypotheses testing approaches. Similar terms apply to all parametric and nonparametric 

single-sample and two-sample hypotheses testing approaches. Additional details may be found in EPA 

guidance documents (2002b, 2006b), and MARSSIM (2000) or in statistical text books including Bain 

and Engelhardt (1992), Hollander and Wolfe (1999), and Hogg and Craig (1995).  

  

Two forms, Form 1 and Form 2, of the statistical hypothesis test are useful for environmental 

applications. The null hypothesis in the first form (Form 1) states that the mean/median concentration of 

the potentially impacted site area does not exceed the mean/median of the background concentration. The 

null hypothesis in the second form (Form 2) of the test is that the concentrations of the impacted site area 

exceed the background concentrations by a substantial difference, S, with S≥0.  

 

Formally, let X1, X2, …, Xn represent a random sample of size n collected from Population 1 (e.g., 

downgradient MWs or a site AOC) with mean (or median) µX, and Y1, Y2, …, Ym represent a random 

sample of size m from Population 2 (upgradient MWs or a background area) with mean (or median) µY.  

Let Δ = µX - µY represent the difference between the two means (or medians). 

6.3.1 Test Form 1 

The null hypothesis (H0): The mean/median of Population 1 (constituent concentration in samples 

collected from potentially impacted areas (or monitoring wells)) is less than or equal to the mean/median 

of Population 2 (concentration in samples collected from background (or upgradient wells) areas) with 

H0: Δ  0. 

 

The alternative hypothesis (HA). The mean/median of Population 1 (constituent concentration in samples 

collected from potentially impacted areas) is greater than the mean of Population 2(background areas) 

with HA: Δ > 0.  

 

When performing this form of hypothesis test, the collected data should provide statistically significant 

evidence that the null hypothesis is false leading to the conclusion that the site mean/median does exceed 

background mean/median concentration. Otherwise, the null hypothesis cannot be rejected based on the 

available data, and the mean/median concentration found in the potentially impacted site areas is 

considered equivalent and comparable to that of the background areas.  
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6.3.2 Test Form 2 

The null hypothesis (H0): The mean/median of Population 1 (constituent concentration in potentially 

impacted areas) exceeds the mean/median or Population 2 (background concentrations) by more than S 

units. Symbolically, the null hypothesis is written as H0: ∆ ≥ S, where S≥0. 

 

The alternative hypothesis (HA): The mean/median of Population 1 (constituent concentration in 

potentially impacted areas) does not exceed the mean/median of Population 2 (background constituent 

concentration) by more than S (HA: ∆ < S). 

 

Here, S is the background investigation level. When S>0, Test Form 2 is called Test Form 2 with 

substantial difference, S. Some details about this hypothesis form can be found in the background 

guidance document for CERCLA sites (EPA 2002b). 

6.3.3 Selecting a Test Form 

The test forms described above are commonly used in background versus site comparison evaluations. 

Therefore, these test forms are also known as Background Test Form 1 and Background Test Form 2 

(EPA, 2002b). Background Test Form 1 uses a conservative investigation level of Δ = 0, but relaxes the 

burden of proof by selecting the null hypothesis that the constituent concentrations in potentially impacted 

areas are not statistically greater than the background concentrations. Background Test Form 2 requires a 

stricter burden of proof, but relaxes the investigation level from 0 to S. 

6.3.4 Errors Rates and Confidence Levels 

Due to the uncertainties that result from sampling variation, decisions made using hypotheses tests will be 

subject to errors, also known as decision errors. Decisions should be made about the width of the gray 

region, Δ, and the degree of decision errors that is acceptable. There are two ways to err when analyzing 

sampled data (Table 6-1) to derive conclusions about population parameters.  

 

Type I Error: Based on the observed collected data, the test may reject the null hypothesis when in fact 

the null hypothesis is true (a false positive or equivalently a false rejection). This is a Type I error. The 

probability of making a Type I error is often denoted by  (alpha); and 

 

Type II Error: On the other hand, based upon the collected data, the test may fail to reject the null 

hypothesis when the null hypothesis is in fact false (a false negative or equivalently a false acceptance). 

This is called Type II error. The probability of making a Type II error is denoted by β (beta). 

 

 Table 6-1. Hypothesis Testing: Type I and Type II Errors 

 

Decision Based on 

Sample Data 

Actual Site Condition 

H0 is True H0 is not true 

H0 is not rejected Correct Decision: (1 – α) 
Type II Error: 

False Negative (β) 

H0 is rejected 
Type I Error: 

False Positive (α) 
Correct Decision: (1 – β) 
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The acceptable level of decision error associated with hypothesis testing is defined by two key 

parameters: confidence level and power. These parameters are related to two error probabilities,  and β. 

 

Confidence level 100(1– )%: As the confidence level is lowered (or alternatively, as  is increased), the 

likelihood of committing a Type I error increases. 

 

Power 100(1 – β)%: As the power is lowered (or alternatively, as β is increased), the likelihood of 

committing a Type II error increases. 

 

Although a range of values in the interval (0, 1) can be selected for these two parameters, as the demand 

for precision increases, the number of samples and the associated cost (sampling and analytical cost) will 

generally also increase. The cost of sampling is often an important determining factor in selecting the 

acceptable level of decision errors. However, unwarranted cost reduction at the sampling stage may incur 

greater costs later in terms of increased threats to human health and the environment, or unnecessary 

cleanup at a site area under investigation. The number of samples, and hence the cost of sampling, can be 

reduced but at the expense of a higher possibility of making decision errors that may result in the need for 

additional sampling, or increased risk to human health and the environment.  

 

There is an inherent tradeoff between the probabilities of committing a Type I or a Type II error, a 

simultaneous reduction in both types of errors can only occur by increasing the number of samples. If the 

probability of committing a false positive error is reduced by increasing the level of confidence associated 

with the test (in other words, by decreasing ), the probability of committing a false negative is increased 

because the power of the test is reduced (increasing β). The choice of α determines the probability of the 

Type I error. The smaller the α-value, the less likely to incorrectly reject the null hypothesis (H0). 

However, a smaller value for α also means lower power with decreased probability of detecting a 

difference when one exists. The most commonly used α value is 0.05. With α = 0.05, the chance of 

finding a significance difference that does not really exist is only 5%. In most situations, this probability 

of error is considered acceptable.  

 

Suggested values for the Two Types of Error Rates: Typically, the following values for error probabilities 

are selected as the minimum recommended performance measures: 

 

 For the Background Test Form 1, the confidence level should be at least 80% ( = 0.20) and the 

power should be at least 90% (β = 0.10). 

 

 For the Background Test Form 2, the confidence level should be at least 90% ( = 0.10) and the 

power should be at least 80% (β = 0.20). 

 

Seriousness of the Two Types of Error Rates:   

 

 When using the Background Test Form 1, a Type I error (false positive) is less serious than a Type II 

error (false negative). This approach favors the protection of human health and the environment. To 

ensure that there is a low probability of committing a Type II error, a Test Form 1 statistical test 

should have adequate power at the right edge of the gray region. 

 

 When the Background Test Form 2 is used, a Type II error is preferable to committing a Type I error. 

This approach favors the protection of human health and the environment. The choice of the 

hypotheses used in the Background Test Form 2 is designed to be protective of human health and the 

environment by requiring that the data contain evidence of no substantial contamination.  
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6.4 Parametric Hypotheses Tests 

Parametric statistical tests assume that the data sets follow a known statistical distribution (mostly 

normal); and that the data sets are statistically independent with no expected spatial and temporal trends 

in the data sets. Many statistical tests (e.g., two-sample t-test) and models are only appropriate for data 

that follow a particular distribution. Statistical tests that rely on knowledge of the form of the population 

distribution of data are known as parametric tests. The most commonly used distribution for tests 

involving environmental data is the normal distribution. It is noted that GOF tests which are used to 

determine data set’s distribution (e.g., S-W test for normality) often fail if there are not enough 

observations, if the data contain multiple populations, or if there is a high proportion of NDs in the 

collected data set. Tests for normality lack statistical power for small sample sizes. In this context, a 

sample consisting of less than 20 observations may be considered a small sample. However, in practice, 

many times it may not be possible, due to resource constraints, to collect data sets of sizes greater than 10. 

This is especially true for background data sets, as the decision makers often do not want to collect many 

background samples. Sometimes they want to make cleanup decisions based upon data sets of sizes even 

smaller than 10. Statistics computed based upon small data sets of sizes < 5 cannot be considered reliable 

to derive important decisions affecting human health and the environment.  

6.5 Nonparametric Hypotheses Tests 

Statistical tests that do not assume a specific statistical form for the data distribution(s) are called 

distribution-free or nonparametric statistical tests. Nonparametric tests have good test performance for a 

wide variety of distributions, and their performances are not unduly affected by NDs and the outlying 

observations. In two-sample comparisons (e.g., t-test), if one or both of the data sets fail to meet the test 

for normality, or if the data sets appear to come from different distributions with different shapes and 

variability, then nonparametric tests may be used to perform site versus background comparisons. 

Typically, nonparametric tests and statistics require larger size data sets to derive correct conclusions. 

Several two-sample nonparametric hypotheses tests, the WMW test, Gehan test, and Tarone-Ware (T-W) 

test, are available in ProUCL. Like the Gehan test, the T-W test is used for data sets containing NDs with 

multiple RLs. The T-W test was new in ProUCL 5.0 and is also included in ProUCL 5.1.  

 

The relative performances of different testing procedures can be assessed by comparing, p-values 

associated with those tests. The p-value of a statistical test is defined as the smallest value of α (level of 

significance, Type I error) for which the null hypothesis would be rejected based upon the given data sets 

of sampled observations. The p-value of a test is sometimes called the critical level or the significance 

level of the test. Whenever possible, critical values and p-values have been computed using the exact or 

approximate distribution of the test statistics (e.g., GOF tests, t-test, Sign test, WMW test, Gehan test, M-

K trend test). 

 

Performance of statistical tests is also compared based on their robustness. Robustness means that the test 

has good performance for a wide variety of data distributions, and that its performance is not significantly 

affected by the occurrence of outliers. Not all nonparametric methods are robust and resistant to outliers. 

Specifically, nonparametric upper limits used to estimate BTVs can get affected and misrepresented by 

outliers. This issue has been discussed earlier in Chapter 3 of this Technical Guide.  

 

 If a parametric test for comparing means is applied to data from a non-normal population and the 

sample size is large, then a parametric test may work well, provided that the data sets are not heavily 

skewed. For heavily skewed data sets, the sample size requirement associated with the CLT can 

become quite large, sometimes larger than 100. A brief simulation study elaborating on the sample 
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size requirements to apply the CLT on skewed data sets is given in Appendix B. For moderately 

skewed (Chapter 4) data sets, the CLT ensures that parametric tests for the mean will work because 

parametric tests for the mean are robust to deviations from normal distributions as long as the sample 

size is large. Unless the population distribution is highly skewed, one may choose a parametric test 

for comparing means when there are at least 25-30 data points in each group.  

 

 If a nonparametric test for comparing means is applied on a data set from a normal population and the 

sample size is large, then the nonparametric test will work well. In this case, the p-values tend to be a 

little too large, but the discrepancy is small. In other words, nonparametric tests for comparing means 

are only slightly less powerful than parametric tests with large samples.  

 

 If a parametric test is applied on a data set from a non-normal population and the sample size is small 

(< 20 data points), then the p-value may be inaccurate because the CLT does not apply in this case. 

 

 If a nonparametric test is applied to a data set from a non-normal population and the sample size is 

small, then the p-values tend to be too high. In other words, nonparametric tests may lack statistical 

power with small samples.  

 

Notes: It is suggested that the users supplement their test statistics and conclusions by using graphical 

displays for visual comparisons of two or more data sets. ProUCL software has side-by-side box plots and 

multiple Q-Q plots that can be used to graphically compare two or more data sets with and without ND 

observations. 

6.6 Single Sample Hypotheses Testing Approaches 

This section describes the mathematical formulations of parametric and nonparametric single-sample 

hypotheses testing approaches incorporated in ProUCL software. For the sake of interested users, some 

directions to perform these hypotheses tests are described as follows. The directions are useful when the 

user wants to manually perform these tests.  

6.6.1 The One-Sample t-Test for Mean 

The one-sample t-test is a parametric test used for testing a difference between a population (site area, 

AOC) mean and a fixed pre-established mean level (cleanup standard representing a mean concentration 

level). The Stats/Sample Sizes module of ProUCL can be used to determine the minimum number of 

observations needed to achieve the desired DQOs.  The collected sample should be a random sample 

representing the AOC under investigation.  

6.6.1.1  Limitations and Robustness of One-Sample t-Test 

The one-sample t-test is not robust in the presence of outliers and may not yield reliable results in the 

presence of ND observations. Do not use this test when dealing with data sets containing NDs. Some 

nonparametric tests described below may be used in cases where NDs are present in a data set. This test 

may yield reliable results when performed on mildly or moderately skewed data sets. Note that levels of 

skewness are discussed in Chapters 3 and 4. The use of a t-test should be avoided when data are highly 

skewed (sd of log-transformed data exceeding 1, 1.5), even when the data set is of a large size such as 

n=100.   
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6.6.1.2  Directions for the One-Sample t-Test 

Let x1, x2, . . . , xn  represent a random sample (analytical results) of size, n, collected from a population 

(AOC). The use of the One-Sample t-Test requires that the data set follows a normal distribution; that is 

when using a typical software package (e.g., Minitab), the user needs to test for the normality of the data 

set. For the sake of users and to make sure that users do not skip this step, ProUCL verifies normality of 

the data set automatically. 

 

STEP 1: Specify an average cleanup goal or action level, µ0 (Cs), and choose one of the following 

combination of null and alternative hypotheses:  

 

Form 1: H0: site µ ≤ µ0 vs. HA: site µ > µ0 

Form 2: H0: site µ ≥ µ0 vs. HA: site µ < µ0 

Two-Sided: H0: site µ = µ0 vs. HA: site µ ≠ µ0.  

Form 2 with substantial difference, S: H0: site µ ≥ µ0 + S vs. HA: site µ < µ0 + S, here S> 0.  

 

STEP 2: Calculate the test statistic: 

 

0
0

x S
t

sd

n

 
  (6-1) 

 

In the above equation, S is assumed to be equal to “0”, except for Form 2 with substantial difference. 

 

STEP 3: Use Student’s t-table (ProUCL computes them) to find the critical value tn-1, 1-α 

 

Conclusion:  

 

Form 1: If t0 > tn-1,α, then reject the null hypothesis that the site population mean is less than the cleanup 

level, µ0 

 

Form 2: If t0 < -tn-1,α, then reject the null hypothesis that the site population mean exceeds the cleanup 

level, µ0 

 

Two-Sided: If |t0 | > tn-1, α/2, then reject the null hypothesis that the site population mean is same as the 

cleanup level, µ0 

 

Form 2 with substantial difference, S: If t0 < -tn-1, 1-α, then reject the null hypothesis that the site population 

mean is more than the cleanup level, µ0 + the substantial difference, S. Here, tn-1,α represents the critical 

value from t-distribution with (n-1) degrees of freedom (df) such that the area to the right of tn-1,α under 

the t-distribution probability density function is α. 

6.6.1.3  P-values  

In addition to computing critical values (some users still like to use critical values for a specified α), 

ProUCL computes exact or approximate p-values. A p-value is the smallest value for which the null 

hypothesis is rejected in favor of the alternative hypotheses. Thus, based upon the given data set, the null 

hypothesis is rejected for all values of α (the level of significance) greater than or equal to the p-value. 
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The details of computing a p-value for a t-test can be found in any statistical text book such as Daniel 

(1995). ProUCL computes p-values for t-tests associated with each form of the null hypothesis. 

Specifically, if the computed p-value is smaller than the specified value of, α, the conclusion is to reject 

the null hypothesis based upon the collected data set. 

 

6.6.1.4 Relation between One-Sample Tests and Confidence Limits of the Mean or 

Median 
 

There has been some confusion among the users whether to use a LCL or a UCL of the mean to determine 

if the remediated site areas have met the cleanup standards. There is a direct relation between one sample 

hypothesis tests and confidence limits of the mean or median. For example, depending upon the 

hypothesis test form, a t-test is related to the upper or lower confidence limit of the mean, and a Sign test 

is related to the confidence limits of the median. In confirmation sampling, either a one sample hypothesis 

test (e.g., t-test, WSR test) or a confidence interval of the mean (e.g., LCL, UCL) can be used.  Both 

approaches result in the same conclusion.  

 

These relationships have been illustrated for the t-test and the LCLs and upper UCLs for normally 

distributed data sets. The use of a UCL95 to determine if a polluted site has attained the cleanup standard, 

µ0, after remediation is very common.  If a UCL95 < µ0, then it is concluded that the site meets the 

standard. The conclusion based upon the UCL or LCL, or the interval (LCL, UCL) is derived from 

hypothesis test statistics. For an example, while using a 95% lower confidence limit (LCL95), one is 

testing hypothesis test Form 1, and when using UCL95, one is testing hypothesis Form 2. 

 

For a normally distributed data set: x1,x2, . . . , xn  ( e.g., collected after excavation), the UCL95 and 

LCL95 are given as follows: 

 

1,0.0595 * /nUCL x t sd n  , and 

1,0.0595 * /nLCL x t sd n   

 

Objective:  Does the site average, µ, meet the cleanup level, µ0? 

 

Form 1: H0: site µ ≤ µ0 vs. HA: site µ > µ0 

Form 2: H0: site µ ≥ µ0 vs. HA: site µ < µ0 

Two-Sided: H0: site µ = µ0 vs. a HA: site µ ≠ µ0.  

 

Based upon the t-test, conclusions are: 

 

Form 1: If t > tn-1, 0.05, then reject the null hypothesis in favor of the alternative hypothesis 

Form 2: If t0 < -tn-1, 0.05, then reject the null hypothesis in favor of the alternative hypothesis 

Two-Sided: If |t0 | > tn-1, 0.025, then reject the null hypothesis that the site population mean is same as the 

cleanup level  

 

Here tn-1, 0.05 represents a critical value from the right tail of the t-distribution with (n-1) degrees of 

freedom such that area to right of tn-1, 0.05 is 0.05. 
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For Form 1, we have: 

 

Reject H0 if t>tn-1,0.05 , that is reject the null hypothesis when  

 

0 1,0.05 * /nx t sd n  
 

Equivalently reject the null hypothesis and conclude that site has not met the cleanup standard when 

 

1,0.05 0* / ;nx t sd n    or when  LCL95>cleanup goal, µ0. 

 

The site is concluded dirty when LCL95> µ0. 

 

For Form 2, we have: 

 

Reject H0 if t< -tn-1,0.05 , that is reject the null hypothesis when 

 

 

 

Equivalently reject the null hypothesis and conclude that site meets the cleanup standard when 

 

1,0.05 0* / ;nx t sd n    or when UCL95 < µ0. 

 

The site is concluded clean when UCL95< µ0. 

6.6.2 The One-Sample Test for Proportions 

The one-sample test for proportions represents a test for evaluating the difference between the population 

proportion, P, and a specified threshold proportion, P0. Based upon the sampled data set and sample 

proportion, p, of exceedances of a pre-specified action level, A0, by the n sample observations (e.g., onsite 

observations); the objective is to determine if the population proportion (of exceedances of the threshold 

value, A0) exceeds the pre-specified proportion level, P0. This proportion test is equivalent to a sign test 

(described next), when P0 = 0.5. The Stats/Sample Sizes module of ProUCL can be used to determine the 

minimum sample size needed to achieve pre-specified DQOs. 

6.6.2.1  Limitations and Robustness 

Normal approximation to the distribution of the test statistic is applicable when both (nP0) and n (1- P0) 

are at least 5. For smaller data sets, ProUCL uses the exact binomial distribution (e.g., Conover, 1999) to 

compute the critical values when the above statement is not true.  

 

The Proportion test may also be used on data sets with ND observations, provided all ND values (DLs, 

reporting limits) are smaller than the action level, A0.   

6.6.2.2  Directions for the One-Sample Test for Proportions 

Let x1, x2, . . . , xn  represent a random sample (data set) of size, n, from a population (e.g., the site (e.g., 

exposure area) under investigation. Let A0 represent a compliance limit or an action level to be met by site 

0 1,0.05 * /nx t sd n  
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data. It is expected (e.g., after remediation) that the proportion of site observations exceeding the action 

level, A0, is smaller than the specified proportion, P0.  

 

Let B = number of site values in the data set exceeding the action level, A0. A typical observed sample 

value of B (based upon a data set) is denoted by b. It is noted that the random variable, B follows a 

binomial distribution (BD) ~ B(n, P) with n equal to the number of trials and P being the unknown 

population proportion (probability of success). Under the null hypothesis, the variable B follows a 

binomial distribution (BD) ~ B(n, P0 ).  

 

The sample proportion, p=b/n = (number of site values in the sample > A0)/n 

 

STEP 1: Specify a proportion threshold value, P0, and state the following null hypotheses: 

 

Form 1: H0: P ≤ P0 vs. HA: P > P0 

Form 2: H0: P ≥ P0 vs. HA: P < P0 

Two-Sided: H0: P = P0 vs. HA: P ≠ P0 

 

STEP 2: Calculate the test statistic: 

 

0
0

0 0(1 )

p c P
z

P P
n

 



 (6-2) 

Where 

0

0

0.5
,

0.5
,

if p P
n

c
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n




 
 


 and 0(#  of site values > A )x
p

n
  

Here c is the continuity correction factor for use of the normal approximation. 

 

Large Sample Normal Approximation 

 

STEP 3: Typically, one should use BD (as described above) to perform this test. However, when both 

(nP0) and n (1- P0) are at least 5, a normal (automatically computed by ProUCL) approximation may be 

used to compute the critical values (z-values) and p-values. 

 

STEP 4: Conclusion described for the approximate test based upon the normal approximation:  

 

Form 1: If z0 > zα, then reject the null hypothesis that the population proportion, P, of exceedances of 

action level, A0, is less than the specified proportion, P0. 

 

Form 2: If z0 < -zα, then reject the null hypothesis that the population proportion, P, is more than the 

specified proportion, P0. 

 

Two-Sided: If |z0 | > zα/2, then reject the null hypothesis that the population proportion, P, is the same as 

the specified proportion, P0.  

 

Here, zα represents the critical value of a standard normal variable, Z, such that area to the right of zα 

under the standard normal curve is α. 
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P-Values Based upon a Normal Approximation 

As mentioned before, a p-value is the smallest value for which the null hypothesis is rejected in favor of 

the alternative hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values 

of α (the level of significance) greater than or equal to the p-value. The details of computing a p-value for 

the proportion test based upon large sample normal approximation can be found in any statistical text 

book such as Daniel (1995). ProUCL computes large sample p-values for the proportion test associated 

with each form of null hypothesis.  

6.6.2.3  Use of the Exact Binomial Distribution for Smaller Samples 

ProUCL 5.0 also performs the proportion test based upon the exact binomial distribution when the sample 

size is small and one may not be able to use the normal approximation as described above. ProUCL 5.0 

checks for the availability of appropriate amount of data, and performs the tests using a normal 

approximation or the exact binomial distribution accordingly. 

 

STEP 1: When the sample size is small (e.g., < 30), and either (nP0), or n (1 – P0) is less than 5, one 

should use the exact BD to perform this test. ProUCL 5.0 performs this test based upon the BD, when the 

above conditions are not satisfied. In such cases, ProUCL 5.0 computes the critical values and p-values 

based upon the BD and its cumulative distribution function (CDF). The probability statements concerning 

the computation of p-values can be found in Conover (1999). 

 

STEP 2: Conclusion Based upon the Binomial Distribution  

 

Form 1: Large values of B cause the rejection of the null hypothesis. Therefore, reject the null hypothesis, 

when B ≥ b. Here b is obtained using the binomial cumulative probabilities based upon a BD (n, P0). The 

critical value, b (associated with α) is given by the probability statement: P(B≥b) = α, or equivalently,  

P(B < b) = (1 – α). Since B is a discrete binomial random variable, the level, α may not be exactly 

achieved by the critical value, b. 

 

Form 2: For this form, small values of B will cause the rejection of the null hypothesis. Therefore, reject 

the null hypothesis, when B ≤ b. Here b is obtained using the binomial cumulative probabilities based 

upon a BD(n, P0). The critical value, b is given by the probability statement: P(B≤b) = α. As mentioned 

before, since B is a discrete binomial random variable, the level, α may not be exactly achieved by the 

critical value, b. 

 

Two-Sided Alternative: The critical or the rejection region for the null hypothesis is made of two areas, 

one in the right tail (of area ~ α2) and the other in the left tail (with area ~ α1), so that the combined area of 

the two tails is approximately, α = α1 + α2. That is for this hypothesis form, both small values and large 

values of B will cause the rejection of the null hypothesis. Therefore, reject the null hypothesis, when B ≤ 

b1 or B > b2. Typically α1 and α2 are roughly equal, and in ProUCL, both are chosen to be equal to α /2; b1 

and b2 are given by the probability statements: P (B ≤ b1) ~ α/2, and P(B > b2) ~ α/2. B being a discrete 

binomial random variable, the level, α may not be exactly achieved by the critical values, b1 and b2. 

 

P-Values Based upon Binomial Distribution as Incorporated in ProUCL: The probability statements for 

computing a p-value for a proportion test based upon BD can be found in Conover (1999). Using the BD, 

ProUCL computes p-values for the proportion test associated with each form of null hypothesis. If the 

computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 

based upon the collected data set used in the computations. There are some variations in the literature 
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regarding the computation of p-values for a proportion test based upon the exact BD. Therefore, the p-

value computation procedure as incorporated in ProUCL 5.0 is described below. 

 

Let b be the calculated value of the binomial random variable, B under the null hypothesis. ProUCL 5.0 

computes the p-values using the following probability (Prob) statements: 

 

Form 1: p-value = Prob(B ≥ b) 

Form 2: p-value = Prob(B ≤ b) 

 

Two-sided Alternative:  

For b > (n - b): P-value = 2* Prob(B ≤ b) 

For b ≤ (n - b): P-value = 2*Prob(B ≥ b) 

6.6.3 The Sign Test 

The Sign test is used to detect a difference between the population median and a fixed cleanup goal, C 

(e.g., representing the desired median value). Like the WSR test, the Sign test can also be used on paired 

data to compare the location parameters of two dependent populations. This test makes no distributional 

assumptions. The Sign test is used when the data are not symmetric and the sample size is small (EPA, 

2006). The Stats/Sample Sizes module of ProUCL can be used to determine minimum number of 

observations needed to achieve pre-specified DQOs associated with the Sign test. 

6.6.3.1  Limitations and Robustness 

Like the Proportion test, the Sign test can also be used on data sets with NDs, provided all values reported 

as NDs are smaller than the cleanup level/action level, C.  For data sets with NDs, the process to perform 

a Sign test is the same as that for data sets without NDs, provided DLs associated with all NDs are less 

than the cleanup level. Per EPA guidance document (2006), all NDs exceeding the action level are 

discarded from the computation of Sign test statistic; also all observations, detects and NDs equal to the 

action level are discarded from the computation of the Sign test statistic.  Discarding of observations 

(detects and NDs) will have an impact on the power of the test (reduced power). ProUCL has the Sign test 

for data sets with NDs as described in USEPA (2006). However, the performance of the Sign test on data 

sets with NDs requires some evaluation. 

6.6.3.2  Sign Test in the Presence of Nondetects 

A principal requirement when applying the sign test is that the cleanup level, C, should be greater than the 

largest ND value; in addition all observations (detects and NDs) equal to the action level and all NDs 

greater than or equal to the action level are discarded from the computation of the Sign test statistic. 

6.6.3.3  Directions for the Sign Test 

Let x1, x2, . . . , xn represent a random sample of size n collected from a site area under investigation. As 

before, S  0 represents the substantial difference used in Form 2 hypothesis tests.  

STEP 1: Let
~

X be the site population median.  

State the following null and the alternative hypotheses: 

 



195 

Form 1: H0: 
~

X ≤ C vs. HA: 
~

X > C 

Form 2: H0: 
~

X ≥ C vs. HA: 
~

X < C 

Two-Sided: H0: 
~

X = C vs. HA: 
~

X ≠ C 

Form 2 with substantial difference, S: Ho:
~

X  ≥ C + S vs. HA: 
~

X < C + S 

 

STEP 2: Calculate the n differences, 
i id x C  . If some of the 0id  , then reduce the sample size until 

all the remaining |di|>0. This means that all observations (detects and NDs) tied at C are ignored from the 

computation. Compute the binomial random variable, B representing the number of 0id  , i: = 1,2,...,n. 

Note that under the null hypothesis, the binomial random variable, B follows a binomial distribution (BD) 

~ BD (n, ½) where n represents the reduced sample size after discarding observations as described above.  

Thus, one can use the exact BD to compute the critical values and p-values associated with this test. 

 

STEP 3: For n ≤ 40, ProUCL computes the exact BD based test statistic, B; and 

For n > 40, one may use the approximate normal test statistic given by, 

                                                                        
0

2

4

n
B S

z
n

 

 . (6-3) 

 

The substantial difference, S =0, except for Form 2 hypotheses with substantial difference. 

 

STEP 4: For n ≤ 40, one can use the BD table as given in EPA (2006). These critical values are 

automatically computed by ProUCL) to calculate the critical values. For n > 40, use the normal 

approximation and the associated normal z critical values.  

 

STEP 5: Conclusion when n ≤ 40 (following EPA 2006): 

 

Form 1: If B   BUPPER (n, 2α), then reject the null hypothesis that the population median is less than the 

cleanup level, C. 

 

Form 2: If B   BUPPER (n, 2α), then reject the null hypothesis that the population median is more than the 

cleanup level. 

 

Two-Sided: If B   BUPPER (n, α) or B   BUPPER (n, α) - 1, then reject the null hypothesis that the 

population median is comparable to the cleanup level, C.  

 

Form 2 with substantial difference, S: If B   BUPPER (n, 2α), then reject the null hypothesis that the 

population median is more than the cleanup level, C + substantial difference, S. 

 

ProUCL calculates the critical values and p-values based upon the BD (n, ½) for both small samples and 

large samples. 

 

Conclusion: Large Sample Approximation when n>40 
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Form 1: If z0 > zα, then reject the null hypothesis that population median is less than the cleanup level, C. 

 

Form 2: If z0 <- zα, then reject the null hypothesis that the population median is greater than the cleanup 

level, C. 

 

Two-Sided: If |z0 | > zα/2, then reject the null hypothesis that the population median is comparable to the 

cleanup level, C. 

 

Form 2 with substantial difference, S: If z0 <- zα, then reject the null hypothesis that the population 

median is more than the cleanup level, C + substantial difference, S. 

 

Here, zα represents the critical value of a standard normal distribution (SND) such that area to the right of 

zα under the standard normal curve is α. 

 

P-Values for One-Sample Sign Test 

 

ProUCL calculates the critical values and p-values based upon: the BD(n, ½) for small data sets; and 

normal approximation for larger data sets as described above. 

6.6.4 The Wilcoxon Signed Rank Test 

The Wilcoxon Signed Rank (WSR) test is used for evaluating the difference between the location 

parameter (mean or median) of a population and a fixed cleanup standard such as C, with Cs representing 

a location value.  It can also be used to compare the medians of paired populations (e.g., placebo versus 

treatment).  Hypotheses about parameters of paired populations require that data sets of equal sizes are 

collected from the two populations. 

6.6.4.1  Limitations and Robustness 

For symmetric distributions, the WSR test appears to be more powerful than the Sign test. However, 

WSR test tends to yield incorrect results in the presence of many tied values.  On data sets with NDs, the 

process to perform a WSR test is the same as that for data sets without NDs once all NDs are assigned 

some surrogate value. However, like the Sign test, not much guidance is available in the literature for 

performing WSR test on data sets consisting of ND observations.  The WSR test for data sets with NDs as 

described in USEPA (2006) and incorporated in ProUCL requires further investigation especially when 

multiple DLs with NDs exceeding the detects are present in the data set.  

 

For data sets with NDs with a single DL, DL, a surrogate value of DL/2 is used for all ND values (EPA, 

2006).  The presence of multiple DLs makes this test less powerful.  It is suggested not to use this test 

when multiple DLs are present with NDs exceeding the detected values. Per EPA (2006) guidance, when 

multiple DLs are present, then all detects and NDs less than the largest DL may be censored which tends 

to reduce the power of the test.  In ProUCL 5.0, all NDs including the largest ND value are replaced by 

half of their respective reporting limit values. All detected values are used as reported.  
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6.6.4.2  Wilcoxon Signed Rank (WSR) Test in the Presence of Nondetects 

Following the suggestions made in the EPA guidance document (2006), ProUCL uses the following 

process to perform WSR test in the presence of NDs. 

 

 For left-censored data sets with a single DL (it is preferred to have all detects greater than the 

NDs), it is suggested (EPA, 2006) to replace all NDs by DL/2. This suggestion (EPA, 2006) has 

been used in the WSR test as incorporated in ProUCL software. Specifically, if there are k ND 

values with the same DL, then they are considered as “ties” and are assigned the average rank for 

this group. 

 

 The presence of multiple DLs makes this test less powerful. When multiple DLs are present, then 

all NDs are replaced by half of their respective DLs. All detects are used as reported.  

6.6.4.3  Directions for the Wilcoxon Signed Rank Test 

Let x1, x2, . . . , xn represent a random sample of size, n collected from a site area under investigation, and 

C represent the cleanup level. 

 

STEP 1: State/select one of the following null hypotheses: 

 

Form 1: H0: Site location ≤ C vs. HA: Site location > C 

Form 2: H0: Site location ≥ C vs. HA: Site location < C 

Two-Sided: H0: Site location = C vs. HA: Site location ≠ C 

Form 2 with substantial difference, S: H0: Site location ≥ C + S vs. Ha: Site location < C + S, here S  0. 

 

STEP 2: Calculate the deviations, 
i id x C  . If some 0id  , then reduce the sample size until all  

|di| > 0. That is, ignore all observations with 0id  .  

 

STEP 3: Rank the absolute deviations, |di|, from smallest to the largest. Assign an average rank to the 

tied observations.  

 

STEP 4: Let Ri be the signed rank of |di|, where the sign of Ri is determined by the sign of di. 

 

STEP 5: Test statistic calculations:  

 

For n ≤ 20, compute 
{ : 0}i

i

i R

T R



  , where T 
 is the sum of the positive signed ranks. 

For n > 20, use a normal approximation and compute the test statistic given by 
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  (6-4) 

Here  var T 
 is the variance of T+ and is given by 
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   ; g = number of tied groups. 

STEP 6: Conclusion when n ≤ 20: 

 

Form 1: Larger values of the test statistic, T+ , will cause the rejection of the Form 1 null hypothesis. That 

is if 
 1

2

n n
T 


 - wα = w(1-α), then reject the null hypothesis that the location parameter is less than the 

cleanup level, C. 

 

Form 2: Smaller values of the test statistic will cause the rejection of the Form 2 null hypothesis. If 

T w

  , then reject the null hypothesis that the location parameter is greater than the cleanup level, C. 

Two-Sided Alternative: If 
 

/ 2

1

2

n n
T w




  or   
/ 2T w

   , then reject the null hypothesis that the 

location parameter is comparable to the action level, C. 

 

Form 2 with substantial difference, S: IfT w

  , then reject the null hypothesis that the location 

parameter is more than the cleanup level, C + the substantial difference, S. 

 

Notes: In the above, wα represents the αth quantile (lower αth critical value) of the distribution of the test 

statistic T+. The upper αth critical value, w(1-α) (=(1-α)th quantile of the test statistic, T+ , as needed for the 

Form 1 hypothesis is given as follows: 

 

1

1

( ) 1 , with

( 1) / 2

P T w

w n n w



 







  

  
 

 

The lower critical values (quantiles of the test statistic, T+) for α≤0.5 are tabulated in the various statistics 

books (e.g., Conover, 1999; Hollander and Wolfe, 1999) and Technical Guidance document (EPA 

2006b). The upper quantiles used in the Form 1 hypothesis or two-sided hypothesis are obtained using the 

equation described above. 

 

Conclusion when n > 20: 

 

Form 1: If z0 > zα, then reject the null hypothesis that location parameter is less than the cleanup level, C. 

 

Form 2: If z0 < - zα, then reject the null hypothesis that the location parameter is greater than the cleanup 

level, C. 

 

Two-Sided: If |z0 | > zα/2, then reject the null hypothesis that the location parameter is comparable to the 

cleanup level, C. 

 

Form 2 with substantial difference, S: If z0 <- zα, then reject the null hypothesis that the location 

parameter is more than the cleanup level, C + the substantial difference, S. 

 

It should be noted that WSR can be used to compare medians (means when data are symmetric) of two 

correlated (paired) data sets. 
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Notes: The critical values, w
 as tabulated in EPA (2006b) have been programmed in ProUCL.  For 

smaller data sets with n ≤ 20 the p-values are computed using the BD; and for larger data sets with n > 20 

the normal approximation is used to compute the critical values and p-values. 

 

Example 6-1: Consider the aluminum and thallium concentrations of the real data set used in Example 2-

4 of Chapter 2.  Please note that the aluminum data set follows a normal distribution and the thallium data 

set does not follow a discernible distribution. One-sample t-test (Form 2), Proportion test (2-sided) and 

WRS test (Form 1) results are shown below. 

 

Single-sample t-Test, H0: Aluminum Mean Concentration ≥10000 

 

 
 

Conclusion: Reject the null hypothesis and conclude that mean aluminum concentration <10000. 
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Single-sample Proportion Test 

 

H0: Proportion, P, of exceedances by thallium values exceeding the action level of 0.2 is equal to 0.1, vs.  

HA: Proportion of exceedances is not equal to 0.1.  

 

 
 

Conclusion: Proportion of thallium concentrations exceeding 0.2 is not equal to 0.1. 
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Single-sample WRS Test 

 

H0: Median of thallium concentrations ≤0.2 

 

 
 

Conclusion: Do not reject the null hypothesis and conclude that median of thallium concentrations < 0.2. 

 

Example 6-2: Consider the blood lead-levels data set discussed in the environmental literature (Helsel, 

2013). The data set consists of several NDs. The box plot shown in Figure 6-1 suggests that median of 

lead concentrations is less than the action level.  The WSR tests the null hypothesis: Median lead 

concentrations in blood ≥ action level of 0.1 

 

 
Figure 6-1. Box Plot of Lead in Blood Data Comparing Pb Concentrations with the Action Level of 0.1 

 



202 

 
 

Conclusion: Both the graphical display and the WSR test suggest that median of lead concentrations in 

blood is less than 0.1. 

6.7 Two-sample Hypotheses Testing Approaches 

The use of parametric and nonparametric two-sample hypotheses testing approaches is quite common in 

environmental applications including site versus background comparison studies. Several of those 

approaches for data sets with and without ND observations have been incorporated in the ProUCL 

software. Additionally some graphical methods (box plots and Q-Q plots) for data sets with and without 

NDs are also available in ProUCL to visually compare two or more populations.  

 

Student’s two-sample t-test is used to compare the means of the two independently distributed normal 

populations such as the potentially impacted site area and a background reference area. Two cases arise: 

1) the variances (dispersion) of the two populations are comparable, and 2) the variances of the two 

populations are not comparable. Generally, a t-test is robust and not sensitive to minor deviations from the 

assumptions of normality.  

6.7.1 Student’s Two-sample t-Test (Equal Variances) 

6.7.1.1  Assumptions and their Verification 

X1, X2, …, Xn represent site samples and Y1, Y2, … , Ym represent background samples that are collected at 

random from the two independent populations. The validity of random samples and independence 

assumptions may be confirmed by reviewing the procedures described in EPA (2006b). Let X  and Y  

represent the sample means of the two data sets. Using the GOF tests (available in ProUCL 5.0 under 
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Statistical Tests Module), one needs to verify that the two data sets are normally distributed. If both m and 

n are large (and the data are mildly to moderately skewed), one may make this assumption without further 

verification (due to the CLT). If the data sets are highly skewed (skewness discussed in Chapters 3 and 4), 

the use of nonparametric tests such as the WMW test supplemented with graphical displays is preferable.  

6.7.1.2  Limitations and Robustness 

The two-sample t-test with equal variances is fairly robust to violations of the assumption of normality. 

However, if the investigator has tested and rejected normality or equality of variances, then nonparametric 

procedures such as the WMW may be applied. This test is not robust to outliers because sample means 

and standard deviations are sensitive to outliers. It is suggested that a t-test not be used on log-

transformed data sets as a t-test on log-transformed data tests the equality of medians and not the equality 

of means. For skewed distributions there are significant differences between mean and median. The 

Student’s t- test assumes the equality of variances of the two populations under comparison; if the two 

variances are not equal and the normality assumption of the means is valid, then the Satterthwaite’s t-test 

(described below) can be used.   

 

In the presence of NDs, it is suggested to use a Gehan test or T-W (new in ProUCL 5.0) test. Sometimes, 

users tend to use a t-test on data sets obtained by replacing all NDs by surrogate values, such as respective 

DL/2 values, or DL values.  The use of such methods can yield incorrect results and conclusions. The use 

of substitution methods (e.g., DL/2) should be avoided.   

6.7.1.3  Guidance on Implementing the Student’s Two-sample t-Test 

The number of site (Population 1), n and background (Population 2), m measurements required to conduct 

the two-sample t-test should be calculated based upon appropriate DQO procedures (EPA [2006a, 

2006b]). In case, it is not possible to use DQOs, or to collect as many samples as determined using DQOs, 

one may want to follow the minimum sample size requirements as described in Chapter 1. The 

Stats/Sample Sizes module of ProUCL can be used to determine DQOs based sample sizes.  ProUCL also 

has an F-test to verify the equality of two variances.  ProUCL automatically performs this test to verify 

the equality of two dispersions. The user should review the output for the equality of variances test 

conclusions before using one of the two tests: Student’s t-test or Satterthwaite’s t-test. If some 

measurements appear to be unusually large compared to the majority of the measurements in the data set, 

then a test for outliers (Chapter 7) should be conducted. Once any identified outliers have been 

investigated to determine if they are mistakes or errors and, if necessary, discarded, the site and 

background data sets should be re-tested for normality using formal GOF tests and normal Q-Q plots.  

 

The project team should decide the proper disposition of outliers. In practice, it is advantageous to carry 

out the tests on data sets with and without the outliers. This extra step helps the users to assess and 

determine the influence of outliers on the various test statistics and the resulting conclusions. This process 

also helps the users in making appropriate decisions about the proper disposition (include or exclude from 

the data analyses) of outliers.  

6.7.1.4  Directions for the Student’s Two-sample t-Test 

Let X1, X2, . . . , Xn represent a random sample collected from a site area (Population 1)  and Y1, Y2, . . . , 

Ym represent a random data set collected from another independent population such as a background 

population. The two data sets are assumed to be normally distributed or mildly skewed. 
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STEP 1: State the following null and the alternative hypotheses: 

Form 1: H0: 0X Y    vs. HA: 0X Y    

Form 2: H0: 0X Y    vs. HA: 0X Y     

Two-Sided: H0: 0X Y    vs. HA: 0X Y      

Form 2 with substantial difference, S: H0: X Y S    vs. HA: 
X Y S      

 

STEP 2: Calculate the sample mean X  and the sample variance 2

XS  for the site (e.g., Population 1, 

Sample 1) data and compute the sample mean Y  and the sample variance 2

YS  for the background data 

(e.g., Population 2, Sample 2). 

 

STEP 3: Determine if the variances of the two populations are equal. If the variances of the two 

populations are not equal, use the Satterthwaite’s test. Calculate the pooled sd, Sp and the t-test statistic, t0: 

 

2 2( 1) ( 1)

( 1) ( 1)

x y

p

n s m s
s

m n

  


  
; (6-5) 

 

 
t

X Y S

s
m n

p

0

1 1


 



 (6-6) 

 

Here S = 0, except when used in Form 2 hypothesis with substantial difference, S ≥ 0. 

 

STEP 4: Compute the critical value tm+n-2,1-α such that 100(1 – α) % of the t-distribution with (m + n - 2) 

df is below tm+n-2,1-α.  

 

STEP 5: Conclusion:  

 

Form 1: If t0 > tm+n-2, 1-α, then reject the null hypothesis that the site population mean is less than or equal 

(comparable) to the background population mean. 

 

Form 2: If t0 < -tm+n-2, 1-α, then reject the null hypothesis that the site population mean is greater than or 

equal to the background population mean. 

 

Two-Sided: If |t0 | > tm+n-2, 1-α/2, then reject the null hypothesis that the site population mean comparable to 

the background population mean. 

 

Form 2 with substantial difference, S: If t0 <- tm+n-2, 1- α, then reject the null hypothesis that the site mean is 

greater than or equal to the background population mean + the substantial difference, S. 

6.7.2 The Satterthwaite Two-sample t-Test (Unequal Variances) 

Satterthwaite’s t-test is used to compare two population means when the variances of the two populations 

are not equal. It requires the same assumptions as the two-sample t-test (described above) except for the 

assumption of equal variances. 
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6.7.2.1  Limitations and Robustness 

In the presence of NDs, replacement by a surrogate value such as the DL or DL/2gives biased results. As 

mentioned above, the use of these substitution methods should be avoided. Instead the use of 

nonparametric tests such as the Gehan test or Tarone-Ware test is suggested when the data sets consist of 

NDs.  In cases where the assumptions of normality of means are violated, the use of nonparametric tests 

such as the WMW test is preferred.  

6.7.2.2  Directions for the Satterthwaite Two-sample t-Test 

Let X1, X2, . . . , Xn represent random site (Population 1) samples and Y1, Y2, . . . , Ym represent random 

background (Population 2) samples collected from two independent populations.  

 

STEP 1: State the following null and the alternative hypotheses: 

Form 1: H0:  X Y  0 vs. HA:  X Y  0   

Form 2: H0: 0X Y    vs. HA: 0 YX    

Two-Sided: H0: 0X Y    vs. HA: 0X Y      

Form 2 with substantial difference, S: H0: X Y S    vs. HA: 
X Y S      

 

STEP 2: Calculate the sample mean X  and the sample variance 2

XS  for the site data and compute the 

sample mean Y  and the sample variance 2

YS  for the background data. 

 

STEP 3: Use the F-test described below (in ProUCL) to verify if the variances of the two populations are 

comparable. Compute the t-statistic:  

   

m

s

n

s

SYX
t

YX

22
0




  (6-7) 

 

Here S = 0, except when used in Form 2 hypothesis with substantial difference, S ≥ 0. 

 

STEP 4: Use a t-table (ProUCL computes them) to find the critical value t1-α such that 100(1 – α)% of the 

t-distribution with df degrees of freedom is below t1-α, where the Satterthwaite’s Approximation for df is 

given by:  
2
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 (6-8) 

 

STEP 5: Conclusion:  

 

Form 1: If t0 > tdf, 1-α, then reject the null hypothesis that the site (Population 1) mean is less than or equal 

(comparable) to the background (Population 2) mean. 
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Form 2: If t0 < -tdf, 1-α, then reject the null hypothesis that the site (Population 1) mean is greater than or 

equal to the background (Population 2) mean. 

 

Two-Sided: If |t0 | > tdf, 1-α/2, then reject the null hypothesis that the site (Population 1) mean is comparable 

to the background (Population 2) mean. 

 

Form 2 with substantial difference, S: If t0 < -tdf, 1- α, then reject the null hypothesis that the site 

(Population 1) mean is greater than or equal to the background (Population 2) mean + the substantial 

difference, S. 

 

P-Values for Two-sample t-Test 

 

A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 

hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the level 

of significance) greater than or equal to the p-value. ProUCL computes (based upon an appropriate t-

distribution) p-values for two-sample t-tests associated with each form of the null hypothesis. If the 

computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 

based upon the collected data set used in the various computations. 

6.8 Tests for Equality of Dispersions  

This section describes a test that verifies the assumption of the equality of two variances. This assumption 

is needed to perform a simple two-sample Student’s t-test described above.  

6.8.1 The F-Test for the Equality of Two-Variances 

An F-test is used to verify whether the variances of two populations are equal. Usually the F-test is 

employed as a preliminary test, before conducting the two-sample t-test for the equality of two means. 

The assumptions underlying the F-test are that the two-samples represent independent random samples 

from two normal populations. The F-test for equality of variances is sensitive to departures from 

normality. There are other statistical tests such as the Levene's test (1960) which also tests the equality of 

the variances of two normally distributed populations. However, the inclusion of the Levene test will not 

add any new capability to the software. Therefore, taking the budget constraints into consideration, the 

Levene's test has not been incorporated in the ProUCL software.  

 

Moreover, it should be noted that, although it makes sense to first determine if the two variances are equal 

or unequal, this is not a requirement to perform a t-test. The t-distribution based confidence interval or 

test for 1 - 2 based on the pooled sample variance does not perform better than the approximate 

confidence intervals based upon Satterthwaite's test. Hence testing for the equality of variances is not 

required to perform a two-sample t-test. The use of Welch-Satterthwaite's or Cochran's method is 

recommended in all situations (see, for example, F. Hayes [2005]).  

6.8.1.1  Directions for the F-Test 

Let X1, X2, . . . , Xn represent the n data points from site (Population 1) and Y1, Y2, . . . , Ym represent the 

m data points from background (Population 2). To manually perform an F-test, one can proceed as 

follows: 

 

STEP 1: Calculate the sample variances 
2

XS  (for the X’s) and 
2

YS  (for the Y’s) 
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STEP 2: Calculate the variance ratios FX = sX

2
/sY

2 
and FY = sY

2
/sX

2
. Let F equal the larger of these two 

values. If F = Fx, then let k = n - 1 and q = m - 1. If F = Fy, then let k = m - 1 and q = n – 1. 

STEP 3: Using a table of the F- distribution (ProUCL 5.0 computes them), find a cutoff, U = f1-α/2(k, q) 

associated with the F distribution with k and q degrees of freedom for some significance level, α. If the 

calculated F value > U, conclude that the variances of the two populations are not equal.  

 

P-Values for Two-sample Dispersion Test for Equality of Variances 
 

ProUCL computes p-values for the two-sample F-test based upon an appropriate F-distribution. If the 

computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 

based upon the collected data sets. 

Example 6-3: Consider a real manganese data set collected from an upgradient well (Well 1) and two 

downgradient MWs (Wells 2 and 3). The side-by-side box plots comparing concentrations of the three 

wells are shown in Figure 6-2. The two-sample t-test comparing the manganese concentrations of the two 

downgradient MWs are summarized in Table 6-2. 

 
Figure 6-2.  Box Plots Comparing Concentrations of Three Wells: One Upgradient and Two 

Downgradient 



208 

Table 6-2. T-Test Comparing Mn in MW8 vs. MW9 

H0: Mean Mn concentrations of MW 8 and MW9 are comparable 

 

Conclusion: The variances of the two populations are comparable, both the t-test and Satterthwaite test 

lead to the conclusion that there are no significant differences in the mean manganese concentrations of 

the two downgradient monitoring wells. 
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6.9 Nonparametric Tests 

When the data do not follow a discernible distribution, the use of parametric statistical tests may lead to 

inaccurate conclusions. Additionally, if the data sets contain outliers or ND values, an additional level of 

uncertainty is faced when conducting parametric tests. Since most environmental data sets tend to consist 

of observations from two or more populations including some outliers and ND values, it is unlikely that 

the current wide-spread use of parametric tests is justified, given that these tests may be adversely 

affected by outliers and by the assumptions made for handling ND values. Several nonparametric tests 

have been incorporated in ProUCL that can be used on data sets consisting of ND observations with 

single and multiple DLs.  

6.9.1 The Wilcoxon-Mann-Whitney (WMW) Test 

The Mann-Whitney (M-W) (or WMW) test (Bain and Engelhardt, 1992) is a nonparametric test used for 

determining whether a difference exists between the site and the background population distributions. 

This test is also known as the WRS test. The WMW test statistic tests whether or not measurements 

(location, central) from one population consistently tend to be larger (or smaller) than those from the 

other population based upon the assumption that the dispersion/shapes of the two distributions are 

roughly the same (comparable).  

6.9.1.1  Advantages and Disadvantages 

The main advantage of the WMW test is that the two data sets are not required to be from a known type 

of distribution. The WMW test does not assume that the data are normally distributed, although a normal 

distribution approximation is used to determine the critical value of the WMW test statistic for large 

sample sizes. The WMW test may be used on data sets with NDs provided the DL or the reporting limit 

(RL) is the same for all NDs. If NDs with multiple DLs are present, then the largest DL is used for all ND 

observations. Specifically, the WMW test handles ND values by treating them as ties.  Due to these 

constraints, other tests such as the Gehan test and theTarone-Ware test are better suited to perform two-

sample tests on data sets consisting of NDs. The WMW test is more resistant to outliers than two-sample 

t-tests discussed earlier. It should be noted that the WMW test does not place enough weight on the larger 

site and background measurements. This means, a WMW may lead to the conclusion that two populations 

are comparable even when the observations in the right tail of one distribution (e.g., site) are significantly 

larger than the right tail observations of the other population (e.g., background).  Like all other tests, it is 

suggested that the WMW test results be supplemented with graphical displays. 

6.9.1.2  WMW Test in the Presence of Nondetects 

If there are t ND values with a single DL, then they are considered as “ties” and are assigned the average 

rank for this group. If more than one DL is present in the data set, then WMW test censors all of the 

observations below the largest DL, and are treated as NDs at the largest DL. This of course results in loss 

of power associated with WMW test.  
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6.9.1.3  WMW Test Assumptions and Their Verification 
 

The underlying assumptions of the WMW test are: 

 

 The soil sample measurements obtained from the site and background areas are statistically and 

spatially independent (not correlated). This assumption requires: 1) that an appropriate probability-

based sampling design strategy be used to determine (identify) the sampling locations of the soil 

samples for collection, and 2) those soil sampling locations are spaced far enough apart that a spatial 

correlation among concentrations at different locations is not likely to be present. 

 

The probability distribution of the measurements from a site area (Population 1) is similar to (e.g., 

including variability, shape) the probability distribution of measurements collected from a 

background or reference area (Population 2). The assumption of equal variances of the two regions: 

site vs. background should also be evaluated using descriptive statistics and graphical displays such as 

side-by-side box plots. The WMW test may result in an incorrect conclusion if the assumption of 

equality of variability is not met.  

6.9.1.4  Directions for the WMW Test when the Number of Site and Background 

 Measurements is small (n ≤ 20 or m ≤20) 

Let X1, X2, . . . , Xn represent systematic and random site samples (Group 1, Sample 1) and Y1, Y2, . . . , Ym 

represent systematic and random background samples (Group 2, Sample 2) collected from two 

independent populations.  It should be noted that instead of 20, some texts suggest to use 10 as a small 

sample size for the two populations. 

STEP 1: Let 
~

X  represent site (Population 1) median and 
~

Y represent the background (Population 2) 

median. State the following null and the alternative hypotheses: 

Form 1: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y    

Form 2: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y     

Two-Sided: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y      

Form 2 with substantial difference, S: H0: 
~ ~ ~ ~

 . :X Y A X YS vs H S        

 

It should be noted that when the Form 2 hypothesis is used with substantial difference, S, the value S is 

added to all observations in the background data set before ranking the combined data set of size (n+m) as 

described in the following. 

 

STEP 2: List and rank the pooled data set of size, N = n + m site and background measurements from 

smallest to largest, keeping track of which measurements came from the site and which came from the 

background area. Assign a rank of 1 to the smallest value among the pooled data, a rank of 2 to the 

second smallest value among the pooled data, and so forth. 

 

 If a few measurements are tied (identical in value), then assign the average of the ranks that 

would otherwise be assigned to those tied observations. If several measurement values have ties, 

then average the ranks separately for each of those measurement values. 
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 If a few less-than values (NDs) occur (say, < 10%), and if all such values are less than the 

smallest detected measurement in the pooled data set, then treat all NDs as tied values at the 

reported DL or at an arbitrary (when no DL is reported) value less than the smallest detected 

measurement. Assign the average of the ranks that would otherwise be assigned to these tied less-

than values (the same procedure as for tied detected measurements). Today with the availability 

of advanced technologies and instruments, instead of reporting NDs as less-than values, NDs are 

typically reported at DL levels below which the instrument cannot accurately measure the 

concentrations present in a sample. The use of DLs is particularly helpful when NDs are reported 

with multiple DLs (RLs).   

 

 If between 10% and 40% of the pooled data set are reported as NDs, and all are less than the 

smallest detected measurement, then one may use the approximate WMW test procedure 

described below provided enough (e.g., n > 10 and m > 10) data are available. However, the use 

of the WMW test is not recommended in the presence of multiple DLs or RLs with NDs larger 

than the detected values.  

 

STEP 3: Calculate the sum of the ranks of the n site measurements. Denote this sum by WS and then 

calculate the Mann-Whitney (M-W), U-statistic as follows: 

 

                                                      ( 1) / 2SU W n n    (6-9) 

 

The test proposed by Wilcoxon based upon the rank sum, Ws is called the WRS test. The test based upon 

the U-statistic given by (6-9) was proposed by Mann and Whitney and is called the WMW test. These two 

tests are equivalent tests and yield the same results and conclusions.  ProUCL outputs both statistics; 

however the conclusions are derived based upon the U-statistic and its critical and p-values. Mean and 

variance of the U-statistic are given as follows: 

 

( ) / 2

( ) ( 1) /12

E U nm

Var U nm n m



  
 

 

Notes: Note the difference between the definitions of U and Ws. Obviously the critical values for Ws and 

U are different. However, critical values for one test can be derived from the critical values of the other 

test by using the relationship given by the above equation (6-9).  These two tests (WRS test and WMW 

test) are equivalent tests, and the conclusions derived by using these test statistics are equivalent. For data 

sets of small sizes (with m or n <20), ProUCL computes exact as well as normal distribution based 

approximate critical values. For large samples with n and m both greater than 20, ProUCL computes 

normal distribution based approximate critical values and p-values. 

 

STEP 4: For specific values of n, m, and , find an appropriate WMW critical value, w, from the table  

as given in EPA (2006) and also in Daniel (1995). These critical values have been incorporated in the 

ProUCL software. 

 

STEP 5: Conclusion:  

 

Form 1: If U ≥ nm - w, then reject the null hypothesis that the site population median is less than or equal 

to the background population median. 
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Form 2: If U ≤ w, then reject the null hypothesis that the site population median is greater than or equal 

to the background population median. 

 

Two-Sided: If U ≥ nm - w/2 or U≤ w/2, then reject the null hypothesis that the site population median 

(location) is comparable to that of the background population median (location). 

 

Form 2 with substantial difference, S: If U≤ w, then reject the null hypothesis that the site population 

median is greater than or equal to the background population median + the substantial difference, S. S 

takes a positive value only for this form of the hypothesis with substantial difference, in all other forms of 

the null hypothesis, S = 0. 

 

P-Values for Two-sample WMW Test for Small Samples 

 

For small samples, ProUCL computes only approximate (as computed for large samples) p-values for the 

WMW test.  Details of computing approximate p-values are given in the next section for larger data sets. 

If the computed p-value is smaller than the specified value of, α, the conclusion is to reject the null 

hypothesis based upon the collected data set. 

6.9.1.5  Directions for the WMW Test when the Number of Site and Background   

  Measurements is Large (n > 20 and m > 20) 

It should be noted that some texts suggest that both n and m needs to be ≥10 to be able to use the large 

sample approximation. ProUCL uses large sample approximations when n>20 and m>20. 

STEP 1: As before, let 
~

X  represent the site and 
~

Y represent the background population medians 

(means). State the following null and the alternative hypotheses: 

Form 1: H0: 
~ ~

0X Y    vs. H1: 
~ ~

0X Y    

Form 2: H0: 
~ ~

0X Y    vs. H1: 
~ ~

0X Y     

Two-Sided: H0: 
~ ~

0X Y    vs. H1: 
~ ~

0X Y      

Form 2 with substantial difference, S: H0: 
~ ~

X Y S    vs. 
~ ~

X Y S    

 

Note that when the Form 2 hypothesis is used with substantial difference, S, the value S is added to all 

observations in the background data set before ranking the combined data set of size (n+m). For data sets 

with NDs, the Form 2 hypothesis test with substantial difference, S is not incorporated in ProUCL 5.0.  

 

STEP 2: List and rank the pooled set of n + m site and background measurements from smallest to 

largest, keeping track of which measurements came from the site and which came from the background 

area. Assign the rank of 1 to the smallest value among the pooled data, the rank of 2 to the second 

smallest value among the pooled data, and so forth.  All observations tied at a give value, x0, are assigned 

the average rank of the observations tied at x0. The same process is used for all tied values.  

 

 The WMW test is not recommended when many NDs observations with multiple DLs and /or 

NDs exceeding the detected values are present in the data sets.  Other tests such as the T-W and 

Gehan tests also available in ProUCL 5.0 are better suited for data sets consisting of many NDs 

with multiple DLs and/or NDs exceeding detected values.   
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 It should however be noted these nonparametric tests (WMW test, Gehan test, and T-W test) 

assume that the shape (variability) of the two data distributions (e.g., background and site) are 

comparable. If this assumption is not met, these tests may lead to incorrect test statistics and 

conclusions. 

 

STEP 3: Calculate the sum of the ranks of the site (Population 1) measurements. Denote this sum by Ws. 

ProUCL 5.1 computes the WMW test statistics by adjusting for tied observations using equation (6-11); 

that is the large sample variance of the WMW test statistic is computed using equation (6-11) which 

adjusts for ties. 

 

STEP 4: When no ties are present, calculate the approximate WMW test statistic, Z0 as follows: 
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The above test statistic, Z0 is equivalent to the following approximate Z0 statistic based upon the Mann-

Whitney U-statistic: 
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When ties are present in the combined data set of size (n+m), the adjusted large sample approximate test 

value, Z0 is computed by using the following equation: 
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Here g represents the number of tied groups and tj is the number of tied values in the jth group. 

 

STEP 5:  For large data sets with both n and m ≥ 20, ProUCL computes an approximate test statistic 

given by equations (6-10) and (6-11) and computes a normal distribution based p-value and critical value, 

z , where z  is the upper α*100 critical value of the standard normal distribution and is given by the 

probability statement: P(Z> z)=α. 

 

STEP 6: Conclusion for Large Sample Approximations:  

 

Form 1: If Z0  >  zα, then reject the null hypothesis that the site population mean/median is less than or 

equal to the background population mean/median. 

 

Form 2: If Z0  < - zα, then reject the null hypothesis that the site population mean is greater than or equal to 

the background population mean. 

 



214 

Two-Sided: If |Z0| > zα/2, then reject the null hypothesis that the site population mean is same as the 

background population mean. 

 

Form 2 with substantial difference, S: If Z0 < - zα, then reject the null hypothesis that the site population 

mean is greater than or equal to the background population location + the substantial difference, S. 

 

P-Values for Two-sample WMW Test – For Large Samples 
 

A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 

hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the level 

of significance) greater than or equal to the p-value. Based upon the normal approximation, ProUCL 

computes p-values for each form of the null hypothesis of the WMW test. If the computed p-value is 

smaller than the specified value of, α, the conclusion is to reject the null hypothesis based upon the 

collected data set used in the various computations. 

 

Example 6-4. The data set used here can be downloaded from the ProUCL website. The data set consists 

of several tied observations.  The test results are summarized in Table 6-3. 

Table 6-3. WMW Test Comparing Location Parameters of X3 versus Y3 

Null hypothesis: Location Parameter of X3 > Location Parameter of Y3 

  

 

 



215 

Table 6-3 (continued). WMW Test Comparing Location Parameters of X3 versus Y3 

 

Conclusion: Based upon the WMW test results, the null hypothesis is rejected, and it is concluded that the 

median of X3 is significantly less than the median of Y3. This conclusion is also supported by the box 

plots shown in following figure. 

Box Plots Comparing Values of Two Groups used in Example 6-4. 

Note about Quantile Test: For smaller data sets, the Quantile test as described in EPA documents ((1994, 

2006 a) and Hollander and Wolfe (1999) is available in ProUCL 4.1 (see ProUCL 4.1 Technical Guide).  

In the past, some of the users incorrectly have used this test for larger data sets.  Due to lack of resources, 
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this test has not been expanded for data sets of all sizes.  Therefore, to avoid confusion and its misuse for 

large data sets, the Quantile test was not included in ProUCL 5.0 and ProUCL 5.1. Interested users may 

use R script to perform the Quantile test. 

6.9.2 Gehan Test 

The Gehan test (Gehan 1965) is one of several nonparametric tests that have been proposed to test for the 

differences between two populations when the data sets have multiple censoring points and DLs. Among 

these tests, Palachek et al. (1993) indicate that they selected the Gehan test primarily because: 1) it was 

the easiest to explain, 2) other methods (e.g., Tarone-Ware test) generally behave comparably, and 3) it 

reduces to the WRS test, a relatively well-known test to environmental professionals. The Gehan test as 

described here is available in the ProUCL software. 

6.9.2.1  Limitations and Robustness 

The Gehan test can be used when the background or site data sets contain many NDs with varying DLs. 

This test also assumes that the variabilities of the two data distributions (e.g., background vs. site, 

monitoring wells) are comparable. 

 

 The Gehan test is somewhat tedious to perform by hand. The use of a computer program is 

desirable. 

 

 If the censoring mechanisms are different for the site and background data sets, then the test 

results may be an indication of this difference in censoring mechanisms rather than an indication 

that the null hypothesis is rejected. 

 

The Gehan test is used when many ND observations or multiple DLs are present in the two data sets; 

therefore, the conclusions derived using this test may not be reliable when dealing with samples of sizes 

smaller than 10. Furthermore, it has been suggested throughout this guide to have a minimum of 8-10 

observations (from each of the population) to use hypotheses testing approaches, as decisions derived 

based upon smaller data sets may not be reliable enough to draw important decisions about human health 

and the environment. For data sets of sizes ≥ 10, the normal distribution based approximate Gehan’s test 

statistic is described as follows. 

6.9.2.2  Directions for the Gehan Test when m ≥ 10 and n ≥ 10 

Let X1, X2, . . . , Xn represent data points from the site population and  Y1, Y2, . . . , Ym represent 

background data from the background population.  Like the WMW test, this test also assumes that the 

variabilities of the two distributions (e.g., background vs. Site, MW1 vs. MW2) are comparable. Since we 

are dealing with data sets consisting of many NDs, the use of graphical methods such as the side-by-side 

box plots and multiple Q-Q plots is also desirable to compare the spread/variability of the two data 

distributions. For data sets of sizes larger than 10 (recommended), a test based upon normal 

approximations is described in the following. 

STEP 1: Let 
~

X  represent the site and 
~

Y represent the background population medians. State the 

following null and the alternative hypotheses: 

Form 1: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y    



217 

Form 2: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y     

Two-Sided: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y      

 

For data sets with NDs, the Form 2 hypothesis test with substantial difference, S is not incorporated in 

ProUCL 5.0/5.1. The user may want to adjust their background data sets accordingly to perform this 

hypothesis test form. 

 

STEP 2: List the combined m background and n site measurements, including the ND values, from 

smallest to largest, where the total number of combined samples is N = m + n. The DLs associated with 

the ND (or less-than values) observations are used when listing the N data values from smallest to largest. 

 

STEP 3: Determine the N ranks, R1, R2, …, Rn, for the N ordered data values using the method described 

in the example given below. 

 

STEP 4: Compute the N scores, a(R1), a(R2),…, a(Rn), using the formula a(Ri) = 2Ri – N – 1, where i is 

successively set equal to 1, 2, …, N. 

 

STEP 5: Compute the Gehan statistic, G, as follows: 
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Where 
1

0

i

i

h

h





 or 

 

hi = 1 if the ith datum is from the site population 

hi = 0 if the ith datum is from the background population 

N = n + m 

a(Ri) = 2 Ri – N –1, as indicated above. 

 

STEP 6: Use the normal z-table to get the critical values. 

 

STEP 7: Conclusion based upon the approximate normal distribution of the G-statistic: 

 

Form 1: If G ≥ z1-α, then reject the null hypothesis that the site population median is less than or equal to 

the background population median. 

 

Form 2: If G ≤- z1-α, then reject the null hypothesis that the site population median is greater than or equal 

to the background population median. 

 

Two-Sided: If |G| ≥ z1-α/2, then reject the null hypothesis that the site population median is same as the 

background population median. 
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P-Values for Two-sample Gehan Test 

 

For the Gehan’s test, p-values are computed using a normal approximation for the Gehan’s G-statistic. 

The p-values can be computed using the simple procedure as used for computing large sample p-values 

for the two-sample nonparametric WMW test. ProUCL computes p-values for the Gehan test for each 

form of the null hypothesis. If the computed p-value is smaller than the specified value of, α, the 

conclusion is to reject the null hypothesis based upon the collected data set used in the various 

computations. 

6.9.3 Tarone-Ware (T-W) Test 

Like the Gehan test, the T-W test (1978) is a nonparametric test which can be used to test for the 

differences between the distributions of two populations (e.g., two sites, site versus background, two 

monitoring wells) when the data sets have multiple censoring points and DLs. The T-W test as described 

below has been incorporated in ProUCL 5.0 and 5.1.  It is noted that the Gehan and T-W tests yield 

comparable test results. 

6.9.3.1  Limitations and Robustness 

The T-W test can be used when the background and/or site data sets contain multiple NDs with different 

DLs and NDs exceeding detected values. 

 

 If the censoring mechanisms are different for the site and background data sets, then the test 

results may be an indication of this difference in censoring mechanisms (e.g., high DLs due to 

dilution effects) rather than an indication that the null hypothesis is rejected. 

 

 Like the Gehan test, the T-W test can be used when many ND observations or multiple DLs may 

be present in the two data sets; conclusions derived using this test may not be reliable when 

dealing with samples of small sizes (<10). Like the Gehan test, the T-W test described below is 

based upon the normal approximation of the T-W statistic and should be used when enough (e.g., 

m ≥ 10 and n ≥ 10) site and background (or monitoring well) data are available. 

6.9.3.2  Directions for the Tarone-Ware Test when m ≥ 10 and n ≥ 10 

Let X1, X2, . . . , Xn represent n data points from the site population and Y1, Y2, . . . , Ym represent sample 

data from the background population. Like the Gehan test, this test also assumes that the variabilities of 

the two data distributions (e.g., background vs. site, monitoring wells) are comparable. One may use 

exploratory graphical methods to informally verify this assumption.  Graphical displays are not affected 

by NDs and outlying observations.  

STEP 1: Let 
~

X  represent the site and 
~

Y represent the background population medians. The following 

null and alternative hypotheses can be tested: 

Form 1: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y    

Form 2: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y     

Two-Sided: H0: 
~ ~

0X Y    vs. HA: 
~ ~

0X Y      
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STEP 2: Let N denote the number of distinct detected values in the combined background and site data 

set of size (n+m) including the ND values.  Arrange the N distinct detected measurements in the 

combined data set in ascending order from smallest to largest. Note that N will be less than n+m. Let 

Nzzzz  ...321
represent N distinct ordered detected values in the data set of size, (n+m). 

 

STEP 3: Determine the N ranks, R1, R2, …, RN, for the N ordered distinct detected data values: 

Nzzzz  ...321
 in the combined data set of size (n+m). 

 

STEP 4: Count the number, ni, i=1,2, …, N of detects and NDs (reported as DLs or reporting limits) less 

than or equal to zi in the combined data set of size (n+m).  For each distinct detected value, zi compute ci 

= number of detects exactly equal to zi ; i=1,2,….N 

 

STEP 5: Repeat Step 4 on the site data set. That is count the number, mi ,i=1,2,….N of detects and NDs 

(reported as DLs or reporting limits) less than or equal to zi in site data set of size, (n).  Also, for each 

distinct detected value, zi, compute di = number of detects in the site data set exactly equal to zi; 

i=1,2,….N. Finally, compute, li ,i=1,2,….N, the number of detects and NDs (reported as DLs or reporting 

limits) less than or equal to zi in background data set of size (m). 

 

STEP 6: Compute the expected value and variance of detected values in the site data set of size, n, using 

the following equations: 

 

iiiSite nmcDetectionE /*)(   (6-13) 

 

))1(/()(*)( 2  iiiiiiiSite nnlmcncDetectionV                    (6-14) 

 

STEP 7: Compute the normal approximation of the TW test statistic using the following equation: 
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STEP 8: Conclusion based upon the approximate normal distribution of the T-W statistic: 

 

Form 1: If T-W ≥ z1-α, then reject the null hypothesis that the site population median is less than or equal to 

the background population median. 

 

Form 2: If T-W ≤- z1-α, then reject the null hypothesis that the site population median is greater than or 

equal to the background population median. 

 

Two-Sided: If |T-W| ≥z1-α/2, then reject the null hypothesis that the site population median is same as the 

background population median. 



220 

P-Values for Two-sample T-W Test 

 

Critical values and p-values for the T-W test are computed following the same procedure as used for the 

Gehan test. ProUCL computes normal distribution based approximate critical values and p-values for the 

T-W test for each form of the null hypothesis. If the computed p-value is smaller than the specified value 

of, α, the conclusion is to reject the null hypothesis based upon the data set used in the computations. 

 

Example 6-5.  The copper (Cu) and zinc (Zn) concentrations data with NDs (from Millard and Deverel 

1988) collected from groundwater of the two zones, Alluvial Fan and Basin Trough, is used to perform 

the Gehan and T-W tests using ProUCL 5.0. Box plots comparing Cu in the two zones are shown in 

Figure 6-3 and box plots comparing Zn concentrations in the two zones are shown in Figure 6-4. 

 

 
Figure 6-3. Box plots Comparing Cu in Two Zones: Alluvial Fan versus Basin Trough 

 

 
Figure 6-4. Box Plots Comparing Zn in Two Zones: Alluvial Fan versus Basin Trough 
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Table 6-4. Gehan Test Comparing the Location Parameters of Copper (Cu) in Two Zones 

H0: Cu concentrations in two zones, Alluvial Fan and Basin Trough, are comparable 

 

Conclusion: Based upon the box plots shown in Figure 6-3 and the Gehan test summarized in Table 6-4, 

the null hypothesis is not rejected, and it is concluded that the mean/median Cu concentrations in 

groundwater from the two zones are comparable. 
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Table 6-5. Tarone-Ware Comparing Location Parameters of Zinc Concentrations  

H0: Zn concentrations in groundwaters of Alluvial Fan = groundwaters of Basin Trough  

 

 

Conclusion: Based upon the box plots shown in Figure 6-4 and the T-W test results summarized in Table 

6-5, the null hypothesis is rejected, and it is concluded that the Zn concentrations in groundwaters of two 

zones are not comparable (p-value = 0.0346). 
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CHAPTER 7 
 

Outlier Tests for Data Sets with and without Nondetect Values 
 

Due to resource constraints, it is not possible (nor needed) to sample an entire population (e.g., reference 

area) of interest under investigation; only parts of the population are sampled to collect a random data set 

representing the population of interest.  Statistical methods are then used on sampled data sets to draw 

conclusions about the populations under investigation. In practice, a sampled data set can consist of some 

wrong/incorrect values, which often result from transcription errors, data-coding errors, or instrument 

breakdown errors.  Such wrong values could be outlying (well-separated, coming from 'low' probability 

far tails), with respect to the rest of the data set; these outliers need to be fixed and corrected (or removed) 

before performing a statistical method.  However, a sampled data set can also consist of some correct 

measurements that are extremely large or small relative to the majority of the data, and therefore those 

low probability extreme values are suspected of misrepresenting the main dominant background 

population from which they were collected. Typically, correct extreme values represent observations 

coming from population(s) other than the main dominant population; and such observations are called 

outliers with respect to the main dominant population. 

 

In practice, the boundaries of an environmental population (background) of interest may not be well-

defined and the selected population actually may consist of areas (concentrations) not belonging to the 

main dominant population of interest (e.g., reference area). Therefore, a sampled data set may consist of 

outlying observations coming from population(s) not belonging to the main dominant background 

population of interest. Statistical tests based on parametric methods generally are more sensitive to the 

existence of outliers than are those based on nonparametric distribution-free methods. It is well-known 

(e.g., Rousseeuw and Leroy 1987; Barnett and Lewis 1994; Singh and Nocerino 1995) that the presence 

of outliers in a data set distorts the computations of all classical statistics (e.g., sample mean, sd, upper 

limits, hypotheses test statistics, GOF statistics, OLS regression estimates, covariance matrices, and also 

outlier test statistics themselves) of interest. Outliers also lead to both Types I and Type II errors by 

distorting the test statistics used for hypotheses testing. Statistics computed using a data set with outliers 

lack statistical power to address the objective/issue of interest (e.g., use of a BTV to identify 

contaminated locations). The use of such distorted statistics (e.g., two-sample tests, UCL95, UTL95-95) 

may lead to incorrect cleanup decisions which may not be cost-effective or protective of human health 

and the environment.  

 

A distorted estimate (e.g., UCL95) computed by accommodating a few low probability outliers (coming 

from far tails) tends to represent the population area represented by those outliers and not the main 

dominant population of interest.  

 

It is also well-known that classical outlier tests such as the Rosner Test suffer from masking effects 

(Huber 1981; Rousseeuw and Leroy 1987; Barnett and Lewis 1994; Singh and Nocerino 1995, and 

Marona, Martin, and Yohai 2006); this is especially true when outliers are present in clusters of data 

points and /or the data set represents multiple populations. Masking means that the presence of some 

outliers hides the presence of other intermediate outliers.  The use of robust and resistant outlier 

identification methods is recommended in the presence of multiple outliers. Several modern robust outlier 

identification methods exist in the statistical literature cited above. However, robust outlier identification 

procedures are beyond the scope of the ProUCL software and this technical guidance document. In order 

to compute robust and resistant estimates of the population parameters of interest (e.g., EPCs, BTVs), 

EPA NERL-Las Vegas, NV developed a multivariate statistical software package, Scout 2008, Version 
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1.0 (EPA 2009d) consisting of several univariate and multivariate robust outlier identification and 

estimation methods. Scout software can be downloaded from the following EPA website:  

http://archive.epa.gov/esd/archive-scout/web/html/ 

7.1 Outliers in Environmental Data Sets 

In addition to representing contaminated locations, outliers in an environmental data set occur due to non-

random, random and seasonal fluctuations in the environment. Outliers tests identify statistical outliers 

present in a data set. The variabilities of data sets originating from environmental applications are much 

higher than the variabilties of data sets collected from other applications such as the biological and 

manufacturing processes, therefore, in environmental applications, not all outliers identified by a 

statistcial test may represent real physical outliers. Typically, extreme statistical outliers in a data set 

represent non-random situations potentially representing impacted locations; extreme outliers should not 

be included in statistical evaluations. Mild and intermediate statistical outliers may be present due to 

random natural fluctuations and variability in the environment; those outlying observations may be 

retained in statistical evaluations such as estimating BTVs. Based upon site CSM and expert knowledge, 

the project team should make these determinations. 

 

The use of graphical displays is very helpful in distingushing between extreme statistical outliers (real 

physical outliers) and intermediate statistical outliers. It is suggested that outlier tests be supplemented 

with exploratory graphical displays such as Q-Q plots and box plots (Johnson and Wichern 2002; 

Hoaglin, Moseteller and Tukey 1983). ProUCL has several of these graphical methods which can be used 

to identify multiple outliers potentially present in a data set. Graphical displays provide additional insight 

into a data set that cannot be revealed by tests statistics (e.g., Rosner test, Dixon test, S-W test). Graphical 

displays help identify observations that are much larger or smaller than the bulk (majority) of the data. 

The statistical tests alone cannot determine whether a statistical outlier should be investigated further. 

Based upon historical and current site and regional information, graphical displays, and outlier test 

results, the project team and the decision makers should decide about the proper disposition of outliers to 

include or not to include them in the computation of the various decision making statistics such as UCL95 

and UTL95-95. Performing statistical analyses twice on the same data set, once using the full data set 

with outliers and once using the data set without high/extreme outliers coming from the far tails, helps the 

project team in determining the proper disposition of those outliers. Several examples illustrating these 

issues have been discussed in this technical guidance document (e.g., Chapters 2 through 5). 

 

Some Notes 

 

Note 1: In practice, extreme outliers represent: 1) low probability observations possibly coming from the 

extreme far tails of the distribution of the main population under consideration, with low to negligible 

probability, or 2) observations coming from population(s) different from the main dominant population of 

interest. On a normal exploratory Q-Q plot, observations well-separated (sticking out, significantly higher 

than the majority of the data) from the majority of observations represent extreme physical outliers; and 

the presence of a few high outlying observations distorts the normality of a data set. That is, many data 

sets follow a normal distribution after the removal of identified outliers.  

 

Note 2 (about Normality): Rosner and Dixon outlier tests require normality of a data set without the 

suspected outliers. Literature about these outlier tests is somewhat confusing and users tend to believe that 

the original data (with outliers) should follow a normal distribution.  A data set with outliers very seldom 

follow a normal distribution as the presence of outliers tends to destroy the normality of a data set.  
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Note 3: Methods incorporated in ProUCL can be used on any data set with or without NDs, and with or 

without the outliers. In the past, some practitioners have mis-stated that ProUCL software is restricted and 

can be used only on data sets without outliers. Just like any other software, it is not a requirement to 

exclude outliers before using any of the statistical methods incorporated in ProUCL. However, it is the 

intent of the developers of the ProUCL software to inform the users on how the inclusion of a few low 

probability outliers can yield distorted UCL95; UPLs, UTLs, as well as other statistics. The outlying 

observations should be investigated separately to determine the reasons for their occurrences (e.g., errors 

or contaminated locations). It is suggested that statistics are computed with and without the outliers 

followed by evaluation of the potential impact of outliers on the decision making processes. 

7.2 Outliers and Normality 

The presence of outliers in a data set destroys the normality of the data set (Wilks 1963; Barnett and 

Lewis 1994; Singh and Nocerino 1995). It is highly likely that a data set which contains outliers will not 

follow a normal distribution unless the outliers are present in clusters.  The classical outlier tests, Dixon 

and Rosner tests, assume that the data set without the suspected outliers follow a normal distribution; that 

is for both Rosner and Dixon tests, the data set representing the main body of the data obtained after 

removing the outliers, and not the original data set with outliers needs to follow a normal distribution. 

There appears to be some confusion among some practitioners (Helsel and Gilroy 2012) who mistakenly 

assume that one can perform Dixon and Rosner tests only when the data set, including outliers, follows a 

normal distribution, which is only rarely true. 

  

As noted earlier, a lognormal model tends to accommodate outliers (Singh, Singh, and Engelhardt 1997), 

and a data set with outliers can follow a lognormal distribution. This does not imply that the outlier 

potentially representing the impacted location does not exist!  Those impacted locations may need further 

investigations. Outlier tests should be performed on raw data, as the cleanup decision needs to be made 

based upon concentration values in the raw scale and not in the log-scale or some other transformed scale 

(e.g., cube root). Outliers are not known in advance. ProUCL has normal Q-Q plots which can be used to 

get an idea about the number of outliers or mixture populations potentially present in a data set. This can 

help a user to determine the suspected number of outliers needed to perform the Rosner test. Since the 

Dixon and Rosner tests may not identify all potential outliers present in a data set, the data set obtained, 

even without the identified outliers, may not follow a normal distribution. Over the last 25 years, several 

modern iterative robust outlier identification methods have been developed (Rousseeuw and Leroy 1987; 

Singh and Nocerino 1995) which are beyond the scope of ProUCL. Some of those methods are available 

in the Scout 2008 version 1.0 software (EPA 2009d). 

7.3 Outlier Tests for Data Sets without Nondetect Observations 

A couple of classical outlier tests discussed in the environmental literature (EPA 2006b, and Gilbert 1987) 

and included in ProUCL software are described as follows. It is noted that these classical tests suffer from 

masking effects and may fail to identify potential outliers present in a data set. This is especially true 

when multiple outliers or multiple populations (e.g., various AOCs of a site) may be present in a data set. 

Such scenarios can be revealed by using exploratory graphical displays including Q-Q and box plots. 

7.3.1 Dixon’s Test 

Dixon’s Extreme Value test (1953) can be used to test for statistical outliers when the sample size is less 

than or equal to 25. Initially, this test was derived for manual computations. This test is described here for 

historical reasons. It is noted that Dixon’s test considers both extreme values that are much smaller than 
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the rest of the data (Case 1) and extreme values that are much larger than the rest of the data (Case 2). 

This test assumes that the data without the suspected outlier are normally distributed; therefore, one may 

want to perform a test for normality on the data without the suspected outlier. However, since the Dixon 

test may not identify all potential outliers present in a data set, the data set obtained after excluding the 

identified outliers may still not follow a normal distribution. This does not imply that the identified 

extreme value does not represent an outlier. 

7.3.1.1  Directions for the Dixon’s Test 

Steps described below are provided for interested users, as ProUCL performs all of the operations 

described as follows:  

 

STEP 1: Let X(1), X(2), . . . , X(n) represent the data ordered from smallest to largest. Check that the data 

without the suspect outlier are normally distributed. If normality fails, then apply a different outlier 

identification method such as a robust outlier identification procedure. Avoid the use of a data 

transformation, such as a log-transformation, to achieve normality so that the data meet the criteria to 

use the Dixon test. All cleanup and remediation decisions are made based upon the data set in raw scale. 

Therefore, outliers, perhaps representing isolated contaminated locations, should be identified in the 

original scale. As mentioned before, the use of a log-transformation tends to hide and accommodate 

outliers (instead of identifying them).  

 

STEP 2: X(1) is a potential outlier (Case 1): Compute the test statistic, C, where 
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STEP 3: If C exceeds the critical value for the specified significance level α, then X(1) is an outlier and 

should be further investigated.  

 

STEP 4: X(n) is a potential outlier (Case 2): Compute the test statistic, C, where  
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STEP 5: If C exceeds the critical value for the specified significance level α, then X(n) is an outlier and 

should be further investigated.  
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7.3.2 Rosner’s Test 

An outlier test developed by Rosner (1975, 1983) can be used to identify up to 10 outliers in data sets of 

sizes ≥ 25. The details of the test can be found in Gilbert (1987). Like the Dixon test, the critical values 

associated with the Rosner test are computed using the normal distribution of the data set without the k 

(≤10) suspected outliers. The assumption here is that the data set without the suspected outliers follows a 

normal distribution, as a data set with outliers tends not to follow a normal distribution. A graphical 

display, such as a Q-Q plot, can be used to identify suspected outliers needed to perform the Rosner test. 

Like the Dixon test, the Rosner test also suffers from masking.   

7.3.2.1  Directions for the Rosner’s Test 

To apply Rosner’s test, first determine an upper limit, r0, on the number of outliers (r0 ≤ 10), then order 

the r0 extreme values from most extreme to least extreme. Rosner’s test statistic is computed using the 

sample mean and sample sd. 

 

STEP 1: Let X1, X2, . . . , Xn represent the ordered data points. By inspection, identify the maximum 

number of possible outliers, r0. Check that the data are normally distributed (without outliers). 

A data set with outliers seldom passes the normality test.   

 

STEP 2: Compute the sample mean, x , and the sample sd, s, for all the data. Label these values 
)0(x  and 

)0(s , respectively. Determine the value that is farthest from 
)0(x  and label this observation 

)0(y . Delete )0(y  from the data and compute the sample mean, labeled 
)1(x , and the sample sd, 

labeled 
)1(s . Then determine the observation farthest from 

)1(x  and label this observation )1(y . 

Delete  
)1(y  and compute 

)2(x  and 
)2(s . Continue this process until r0 extreme values have been 

eliminated. After carrying out the above process, we have: 
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)(ix .  

 

 The above formulae for 
)(ix  and 

)(is  assume that the data have been re-numbered after each 

 outlying observation is deleted.  

STEP 3: To test if there are “r” outliers in the data, compute: 
)1(

)1()1( ||


 


r

rr

r
s

xy
R  and compare rR  to 

the critical value rλ  in the tables from any statistical literature. If rR ≥ rλ , conclude that there 

are r outliers.   

 

First, test if there are r0 outliers (compare 10rR  to 10rλ ). If not, then test if there are r0 - 1 

outliers (compare 20rR  to 20rλ ). If not, then test if there are r0 - 2 outliers, and continue, until 

either it is determined that there are a certain number of outliers or that there are no outliers.  
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7.4 Outlier Tests for Data Sets with Nondetect Observations 

In environmental studies, identification of detected high outliers, coming from the right tail of the data 

distribution and potentially representing impacted locations, is important as locations represented by those 

extreme high values may require further investigation. Therefore, for the purpose of the identification of 

high outliers, one may replace the NDs by their respective DLs, DL/2, or may just ignore them (especially 

when elevated DLs are associated with NDs and/or when the number of detected values is large) from any 

of the outlier test (e.g., Rosner test) computations, including the graphical displays such as Q-Q plots.  

Both of these procedures, ignoring NDs or replacing them by DL/2, for identification of outliers are 

available in ProUCL for data sets containing NDs. Like uncensored full data sets, outlier tests on data sets 

with NDs should be supplemented with graphical displays. ProUCL can be used to generate Q-Q plots 

and box plots for data sets with ND observations.  

 

Notes: Outlier identification procedures represent exploratory tools and are used for pre-processing of a 

data set to identify outliers or multiple populations that may be present in a data set. Except for the 

identification of high outlying observations, the outlier identification statistics, computed with NDs or 

without NDs, are not used in any of the estimation and decision making process. Therefore, for the 

purpose of the identification of high outliers, it should not matter how the ND observations are treated. To 

compute test statistics (e.g., Gehan test) and decision statistics (e.g., UCL95, UTL95-95), one should 

follow the procedures as described in Chapters 4 through 6.  

 

Example 7-1. Consider a lead data set of size 10 collected from a Superfund site. The site data set 

appears to have some outliers.  Since the data set is of small size, only the Dixon test can be used to 

identify outliers. The normal Q-Q plot of the lead data is shown in Figure 7-1 below. Figure 7-1 

immediately suggests that the data set has some outliers. The Dixon test cannot directly identify all 

outliers present in a data set, only robust methods can identify multiple outliers. Multiple outliers may be 

identified one at a time iteratively by using the Dixon test on data sets after removing outliers identified in 

previous iterations. However, due to masking, the iterative process based upon the Dixon test may or may 

not be able to identify multiple outliers.  

 

 

Figure 7-1. Normal Q-Q Plot Identifying Outliers 
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Table 7-1. Dixon Outlier Test Results for Site Lead Data Set 

 

 

 

Example 7-2. Consider She's (1997) pyrene data set of size n=56 with 11 NDs.  The Rosner test results 

on data without the 11 NDs are summarized in Table 7-2, and the normal Q-Q plot without NDs is shown 

in Figure 7-2 below. 

 

 
Figure 7-2. Normal Q-Q Plot of Pyrene Data Set Excluding NDs 
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Table 7-2. Rosner Test Results on Pyrene Data Set Excluding NDs 

 

   
 

Example 7-3. Consider the aluminum data set of size 28 collected from a Superfund site. The normal Q-

Q plot is shown in Figure 7-3 below.  Figure 7-3 suggests that there are 4 outliers (at least the 

observation=30,000) present in the data set. The Rosner test results are shown in Table 7-3. Due to 

masking, the Rosner test could not even identify the outlying observation of 30,000. 

 

 
Figure 7-3. Normal Q-Q Plot of Aluminum Concentrations 
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Table 7-3. Rosner Test Results on Pyrene Data Set Excluding NDs 

 

 
 

As mentioned earlier, there are robust outlier identification methods which can be used to identify 

multiple outliers/multiple populations present in a data set. Several of those methods are incorporated in 

Scout 2008 (EPA 2009d). A couple of formal (with test statistics) robust graphs based upon the PROP 

influence function and MCD method (Singh and Nocerino 1995) are shown in Figures 7-4 and 7-5. The 

details of these methods are beyond the scope of ProUCL. The two graphs suggest that there are several 

outliers present including the elevated value of 30,000.  All observations exceeding the horizontal lines 

displayed at critical values of the Largest Mahalanobis Distance (MD) (Wilks 1963; Barnett and Lewis 

1994) represent outliers. 
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Figure 7-4. Robust Index Plot of MDs Based Upon the PROP Influence Function 

 

 
Figure 7-5. Robust Index Plot of MDs Based upon the MCD Method 
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CHAPTER 8 
 

Determining Minimum Sample Sizes for User Specified Decision 
Parameters and Power Assessment 

 
This chapter describes mathematical formulae used to determine data quality objectives (DQOs)-based 

minimum sample sizes required by estimation, and hypothesis testing approaches used to address 

statistical issues for environmental projects (EPA 2006a, 2006b).  The sample size determination 

formulae for estimation of the unknown population parameters (e.g., mean, percentiles) depend upon the 

pre-specified values of the decision parameters: CC, (1-α), and the allowable error margin, Δ, between the 

estimate and the unknown true population parameter. For example, if the environmental problem requires 

the calculation of the minimum number of samples required to estimate the true unknown population 

mean, Δ would represent the maximum allowable difference between the estimate of the sample mean 

and the unknown population mean.  Similarly, for hypotheses testing approaches, sample size 

determination formulae depend upon the pre-specified values of the decision parameters chosen while 

defining and describing the DQOs associated with an environmental project. The decision parameters 

associated with hypotheses testing approaches include the Type I false positive error rate, α; and the Type 

II false negative error rate, β=1-power; and the allowable width, Δ, of the gray region. For values of the 

parameter of interest (e.g., mean, proportion) lying in the gray region, the consequences of committing the 

two types of errors described in Chapter 6 are not significant from both the human health and the cost 

effectiveness points of view.  

 

Even though the same symbol, Δ, has been used to denote the allowable error margin in an estimate (e.g., 

of mean) and the width of the gray region associated with the various hypothesis testing approaches, there 

are differences in the meanings of the error margin and width of the gray region. A brief description of 

these terminology is provided in this chapter. The user is advised to consult the already existing EPA 

guidance documents (EPA 2006a, 2006b; MARSSIM 2000) for the detailed description of the terms with 

interpretation used in this chapter. Both parametric (assuming normality) and nonparametric (distribution 

free) DQOs-based sample size determination formulae as described in EPA guidance documents 

(MARSSIM 2000; EPA 2002c, 2006a, 2006b, and 2009) are available in the ProUCL software.  These 

formulae yield minimum sample sizes needed to perform statistical methods meeting pre-specified DQOs. 

The Stats/ Sample Sizes module of ProUCL has the minimum sample size determination methods for 

most of the parametric and nonparametric one-sided and two-sided hypotheses testing approaches 

available in ProUCL.   

 

ProUCL includes the DQOs-based parametric minimum sample size formula to estimate the population 

mean, assuming that the sample mean follows a normal distribution or assuming that the criteria is met 

due to the CLT].  ProUCL outputs a non-negative integer as the minimum sample size. This minimum 

sample size is calculated by rounding the value, obtained by using a sample size formula, upward. For all 

sample size determination formulae incorporated in ProUCL, it is implicitly assumed that samples (e.g., 

soil, groundwater, sediment samples) are randomly collected from the same statistical population (e.g., 

AOC or MW), and therefore the sampled data (e.g., analytical results) represent independently and 

identically distributed (i.i.d) observations from a single statistical population. During the development of 

the Stats/Sample Sizes module of ProUCL, emphasis was given to assure that the module is user friendly 

with a straight forward unambiguous mechanism (e.g., graphics user interface [GUIs]) to input desired 
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decision parameters (e.g., α, β error rates, width, Δ of the gray region) needed to compute the minimum 

sample size for a selected statistical application.  

 

Most of the sample size formulae available in the literature and incorporated in ProUCL) require an 

estimate (e.g., preliminary from other sites and pilot studies or based upon actual collected data) of the 

population variability. In practice, the population variance, 2 , is unknown, and is estimated by the 

sample variance, 
2s . During the planning stage, an estimate of the population variance is usually 

computed using: 1) historical information when available, 2) data collected from a pilot study when 

possible, or 3) information from a similar site. If historical, similar site or pilot data are not available, the 

minimum sample size can be computed for a range of values of the variance, and an appropriate and 

practical sample size from both a defensible decision making and budget point of view is selected. 

 

New in ProUCL 5.0 and included in ProUCL 5.1: The Sample Size module in ProUCL 5.0 can be used at 

two different stages of a project. As mentioned above, most of the sample size formulae require some 

estimate of the population standard deviation (variability). Depending upon the project stage, a standard 

deviation: 1) represents a preliminary estimate of the population (e.g., study area) variability needed to 

compute the minimum sample size during the planning stage; or 2) represents the sample standard 

deviation computed using the data collected without considering the DQOs process, which is used to 

assess the power of the test based upon the collected data.  During the power assessment stage, if the 

computed sample size is larger than the size of the already collected data set, it can be inferred that the 

size of the collected data set is not large enough to achieve the desired power. The formulae to compute 

the sample sizes during the planning stage and after performing a statistical test are the same except that 

the estimates of standard deviations are computed/estimated differently.  

  

These two stages are briefly described as follows: 

 

Planning stage before collecting data: Sample size formulae are commonly used during the planning stage 

of a project to determine the minimum sample sizes needed to address project objectives (estimation, 

hypothesis testing) with specified values of the decision parameters (e.g., Type I and II errors, width of 

gray region). During the planning stage, since the data are not collected a priori, a preliminary rough 

estimate of the population standard deviation, to be expected in sampled data, is obtained from other 

similar sites, pilot studies, or expert opinions. An estimate of the expected standard deviation along with 

the specified values of the other decision parameters are used to compute the minimum sample sizes 

needed to address the project objectives during the sampling planning stage. The project team is expected 

to collect the number of samples thus obtained. The detailed discussion of the sample size determination 

approaches during the planning stage can be found in EPA 2006a and MARSSIM 2000.  

 

Power assessment stage after performing a statistical method: Often, in practice, environmental 

samples/data sets are collected without taking the DQOs process into consideration. Under this scenario, 

the project team performs statistical tests on the already collected data set. However, once a statistical test 

(e.g., WMW test) has been performed, the project team can assess the power associated with the test in 

retrospect. That is for specified DQOs and decision errors (Type I error and power of the test =1-Type II 

error) and using the sample standard deviation computed based upon the already collected data, the 

minimum sample size needed to perform the test for specified values of the decision parameters is 

computed.  

 

 If the computed sample size obtained using the sample variance is less than the size of the already 

collected data set used to perform the test, it may be determined that the power of the test has 

been achieved. However, if the sample size of the collected data is less than the minimum sample 
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size computed in retrospect, the user may want to collect additional samples to assure that the test 

achieves the desired power.  

 

 It should be pointed out that there could be differences in the sample sizes computed in the two 

different stages due to the differences in the values of the estimated variability. Specifically, the 

preliminary estimate of the variance computed using information from similar sites could be 

significantly different from the variance computed using the available data already collected from 

the study area under investigation which will yield different values of the sample size. 

 

Sample size determination methods in ProUCL can be used for both stages. The only difference will be in 

the input value of the standard deviation/variance.  It is the users’ responsibility to input a correct value 

for the standard deviation during the two stages. 

 

8.1 Sample Size Determination to Estimate the Population Mean 
 

In exposure and risk assessment studies, a UCL95 of the population mean is used to estimate the EPC 

term. Listed below are several variations of methods available in the literature to compute the minimum 

sample size, n, needed to estimate the population mean with specified confidence coefficient (CC), (1 - 

α), and allowable/tolerable error margin (allowable absolute difference between the estimate and the 

parameter), Δ in an estimate of the mean.  

8.1.1 Sample Size Formula to Estimate Mean without Considering Type II (β) Error Rate 

The sample size can be computed using the following normal distribution based equation (when 

population variance is known), 

 

    
2 2 2

1 ( / 2) /n z    ,              (8-1) 

 

or by using the following approximate standard normal distribution based equation (when population 

variance is not known), 

  

    
2 2 2

1 ( / 2) /n s z                (8-2) 

 

or, alternatively, by using the t- distribution based equation (when population variance is not known): 

 

    
2 2 2

( 1),(1 /2) /nn s t                 (8-3) 

 

Here Δ represents the allowable error margin (±) in the mean estimate. The computed sample size assures 

that the sample mean will be within ± Δ units of the true population mean with probability (1-α). 

 

Throughout this chapter, zν represents that value from a standard normal distribution (SND) for which the 

proportion of the distribution to the left of this value (zν) is ν; and t(n-1), ν represents that value from a t-

distribution with (n-1) degrees of freedom for which the proportion of the distribution to the left of this 

value is ν. 
 

Note: The sample size formulae described above are for estimating the population mean (and not for the 

median) and are based upon the underlying assumption that the distribution of the sample mean follows a 
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normal distribution (which can be assumed due to the CLT). ProUCL does not compute minimum sample 

sizes required to estimate the population median. While estimating the mean, the symbol Δ represents the 

allowable error margin (+/-) in the mean estimate. For example for Δ = 10, the sample size is computed to 

assure that the error in the estimate will be within  10 units of the true unknown population mean with 

specified CC of (1-α). 

 

For estimation of the mean, the most commonly used formula to compute the sample size, n, is given by 

(8-2) above; however, under normal theory, the use of t-distribution based formula (8-3) is more 

appropriate to compute n. It is noted that the difference between the sample sizes obtained using (8-2) or 

(8-3) is not significant. They usually differ by only 2 to 3 samples (Blackwood 1991; Singh, Singh, and 

Engelhardt 1999). It is a common practice to address this difference by using the following adjusted 

formula (Kupper and Hafner 1989; Bain and Engelhardt 1991) to compute the minimum sample size 

needed to estimate the mean for specified CC, (1 - α), and margin of error, Δ. 

 

   
2 2 2 2

1 ( /2) 1 ( /2)/ / 2n s z z                  (8-4) 

 

To be able to use a normal (instead of t-critical value) distribution based critical value, as used in (8-4), a 

similar adjustment factor is used in other sample size formulae described in the following sections (e.g., 

two-sample t-test, WRS test). This adjustment is also used in various sample size formulae described in 

EPA guidance documents (MARSSIM 2000; EPA 2002c, 2006a, 2006b). ProUCL uses equation (8-4) to 

compute sample sizes needed to estimate the population mean for specified values of CC, (1- α), and error 

margin, Δ.  An example illustrating the sample size determination to estimate the mean is given as 

follows. 

 

Example 8-1. Sample Size for estimation of the mean (CC = 0.95, s = 25, error margin, Δ = 10) 

 

 

8.1.2 Sample Size Formula to Estimate Mean with Consideration to Both Type I (α) and Type 

II (β) Error Rates 

This scenario corresponds to the single-sample hypothesis testing approach. For specified decision error 

rates, α and β, and width, Δ, of the gray region, ProUCL can be used to compute the minimum sample 

size based upon the assumption of normality.  ProUCL also has nonparametric minimum sample size 

determination formulae to perform Sign and WSR tests. The nonparametric Sign test and WSR test are 

used to perform single sample hypothesis tests for the population location parameter (mean or median). 

 

A brief description of the standard terminology used in the sample size calculations associated with 

hypothesis testing approaches is described first as follows.  
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 α = False Rejection Rate (Type I Decision Error), i.e., the probability of rejecting 

       the null hypothesis when in fact the null hypothesis is true 

 

 β = False Acceptance Rate (Type II Decision Error), i.e., the probability of not 

        rejecting the null hypothesis when in fact the null hypothesis is false 

 

 z1-α = a value from a standard normal distribution for which the proportion of the 

        distribution to the left of this value is 1 – α  

 

 z1-β = a value from a standard normal distribution for which the proportion of the 

        distribution to the left of this value is 1 – β  

 

 Δ = width of the gray region (specified by the user); in a gray region, decisions are “too close to 

 call”, a gray region is that area where the consequences of making a decision error (Type I or 

 Type II) are relatively minor.  

 

The user is advised to note the difference between the gray region (associated with hypothesis testing 

approaches) and error margin (associated with estimation approaches).  

 

Example illustrating the above terminology: Let the null and alternative hypotheses be: H0: µ ≤ Cs, and 

HA: µ > Cs. The width, Δ, of the gray region for this one sided alternative hypothesis is Δ = µ1 - Cs, where 

Cs is the cleanup standard specified in the null hypothesis, and µ1 (>Cs) represents an alternative value 

belonging to the parameter value set determined by the alternative hypothesis. Note that the gray region 

lies to the right (e.g., see Figure 8-1) of the cleanup standard, Cs, and for all values of µ in the interval, 

(Cs, µ1], with length of the interval = width of gray region= Δ = µ1 - Cs. The consequences of making an 

incorrect decision (e.g., accepting the null hypothesis when in fact it is false) will be minor. 

8.2 Sample Sizes for Single-Sample Tests 

8.2.1 Sample Size for Single-Sample t-test (Assuming Normality) 

This section describes formulae to determine the minimum number of samples, n, needed to conduct a 

single-sample t-test, for 1-sided as well as two-sided alternatives, with pre-specified decision error rates 

and width of the gray region. This hypothesis test is used when the objective is to determine whether the 

mean concentration of an AOC exceeds an action level (AL); or to verify the attainment of a cleanup 

standard, Cs (EPA 1989a). In the following, s represents an estimate (e.g., an initial guess, historical 

estimate, or based upon expert knowledge) of the population sd, σ. 

 

Three cases/forms of hypothesis testing as incorporated in ProUCL are described as follows:  
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8.2.1.1  Case I (Right-Sided Alternative Hypothesis, Form 1) 

  H0: site mean, µ ≤ AL or a Cs vs. HA: site mean, µ > AL or a Cs 

 

Gray Region: Range of the mean concentrations where the consequences of deciding that the site mean is 

less than the AL when in fact it is greater (that is a dirty site is declared clean) are not significant. The 

upper bound of the gray region, Δ, is defined as the alternative mean concentration level, µ1 (> Cs), where 

the human health and environmental consequences of concluding that the site is clean (when in fact it is 

not clean) are relatively significant.  The false acceptance error rate, β, is associated with this upper bound 

(µ1) of the gray region: Δ=µ1- Cs. These are illustrated in Figure 8-1 below (EPA 2006a). A similar 

explanation of the gray region applies to other single-sample Form 1 right-sided alternative hypotheses 

tests (e.g., Sign test, WSR test) considered later in this chapter.  

 

 
 

Figure 8-1. Gray Region for Right-Sided (Form 1) Alternative Hypothesis Tests (EPA 2006a) 

8.2.1.2  Case II (Left-Sided Alternative Hypothesis, Form 2) 

  H0: site mean, µ ≥ AL or Cs vs. HA: site mean, µ <AL or Cs 

 

Gray Region: Range of true mean concentrations where the consequences of deciding that the site mean is 

greater than or equal to the cleanup standard or action level, AL, when in fact it is smaller (that is a clean 

site is declared dirty) are not considered significant.  The lower bound of the gray region is defined as the 

alternative mean concentration, µ1 (< Cs), where the consequences of concluding that the site is dirty 
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(when in fact it is not dirty) would be costly requiring unnecessary cleaning of a site.  The false 

acceptance rate, β, is associated with that lower bound (µ1) of the gray region, Δ= Cs - µ1. These are 

illustrated in Figure 8-2. 

 

A similar explanation of the gray region applies to other single-sample left-sided (left-tailed) alternative 

hypotheses tests including the Sign test and WSR test.  

 

 
 

Figure 8-2. Gray Region for Left-Sided (Form 2) Alternative Hypothesis Tests (EPA 2006a) 

 

The minimum sample size, n, needed to perform the single-sample one-sided t-test (both Forms 1 and 2 

described above) is given by  

 

     
2 2

2
1

1 1
2

zs
n z z 

 


 

 
   

 
            (8-5) 

8.2.1.3  Case III (Two-Sided Alternative Hypothesis) 

 H0: site mean, µ = Cs; vs. HA: site mean, µ ≠ Cs 

 

The minimum sample size for specified performance (decision) parameters is given by: 
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           (8-6) 

Δ = width of the gray region, Δ= abs (Cs - µ1), abs represents the absolute value operation.  

 

In this case, the gray region represents a two-sided region symmetrically placed around the mean 

concentration level equal to Cs, or AL; consequences of committing the two types of errors in this gray 

region would be minor (not significant). A similar explanation of the gray region applies to other single-

sample two-sided (two-tailed) alternative hypotheses tests such as the Sign test and WSR test.  

 

In equations (8-5) and (8-6), the computation of the estimated variance, s2
 depends upon the project stage. 

Specifically,  

  

 s2 = a preliminary estimate of the population variance (e.g., estimated from similar sites, pilot 

 studies, expert  opinions) which is used  during the planning stage; or 

 

 s2 = actual sample variance of the collected data to be used when assessing the power of the test 

 in retrospect based upon collected data. 

 

Note:  ProUCL outputs the estimated variance based upon the collected data on single sample t-test output 

sheet; ProUCL 5.1 sample size GUI draws users’ attention to input an appropriate estimate of variance, 

the user should input an appropriate value depending upon the project stage/data availability. 

  

The following example: “Sample Sizes for Single-sample t-Test” discussed in Guidance on Systematic 

Planning Using the Data Quality Objective Process (EPA 2006a, page 49) is used here to illustrate the 

sample size determination for a single-sample t-test.  For specified values of the decision parameters, the 

minimum number of samples is given by n ≥ 8.04. For a one-sided alternative hypothesis, ProUCL 

computes the minimum sample size to be 9 (rounding up), and a sample size of 11 is computed for a two-

sided alternative hypothesis. 

 

Example 8-2. Sample Size for Single-sample t-Test Sample Sizes (α = 0.05, β = 0.2, s = 10.41, Δ = 10) 

 

 

8.2.2 Single Sample Proportion Test 

This section describes formulae used to determine the minimum number of samples, n, needed to 

compare an upper percentile or proportion, P, with a specified proportion, P0 (e.g., proportion of 
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exceedances, proportion of defective items/drums, proportion of observations above the specified AL), 

for user selected decision parameters. The details are given in EPA guidance document (2006a). Sample 

size formulae for three forms of the hypotheses testing approach are described as follows. 

8.2.2.1  Case I (Right-Sided Alternative Hypothesis, Form 1) 

H0: population proportion ≤ specified value (P0) vs. HA: population proportion > specified value (P0) 

 

Gray Region: Range of true proportions where the consequences of deciding that the site proportion, P, is 

less than the specified proportion, P0, when in fact it is greater (that is a dirty site is declared clean) are not 

significant. The upper bound of the gray region, Δ, is defined as the alternative proportion, P1 (> P0), 

where the human health and environmental consequences of concluding that the site is clean (when in fact 

it is not clean) are relatively significant.  The false acceptance error rate, β, is associated with this upper 

bound (P1) of the gray region (Δ=P1- P0). 

8.2.2.2  Case II (Left-Sided Alternative Hypothesis, Form 2) 

H0: population proportion ≥ specified value (P0) vs. HA: population proportion < specified value (P0) 

 

Gray Region: Range of true proportions where the consequences of deciding that the site proportion, P, is 

greater than or equal to the specified proportion, P0, when in fact it is smaller (a clean site is declared 

dirty) are not considered significant.  The lower bound of the gray region is defined as the alternative 

proportion, P1 (< P0), where the consequences of concluding that the site is dirty (when in fact it is not 

dirty) would be costly requiring unnecessary cleaning of a clean site.  The false acceptance rate, β, is 

associated with that lower bound (P1) of the gray region (Δ= P0 - P1). 

 

The minimum sample size, n, for the single-sample proportion test (for both cases I and II) is given by  
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           (8-7) 

8.2.2.3  Case III (Two-Sided Alternative Hypothesis) 

H0: population proportion = specified value (P0) vs. HA: population proportion ≠ specified value (P0) 

 

The following procedure is used to determine the minimum sample size needed to conduct a two-sided 

proportion test.  

  a = 
   

2

1 /2 0 0 1 1 1

1 0

1 1z P P z P P

P P

  
   
 
 
 

 for right-sided alternative; 

  when P1 = P0 + Δ; and 

 

  b = 
   

2

1 /2 0 0 1 1 1

1 0

1 1z P P z P P

P P

  
   
 
 
 

 for left-sided alternative; 
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  when P1 = P0 – Δ 

 

 P0 = specified proportion 

 P1 = outer bound of the gray region. 

 Δ = width of the gray region = |P0 - P1|=abs (P0 - P1) 

 

The sample size, n, for two-sided proportion test (Case III) is given by  

 

    max( , )n a b               (8-8) 

 

An example illustrating the single-sample proportion test is considered next. This example: “Sample 

Sizes for Single-sample Proportion Test” is also discussed in EPA 2006a (page 59). For this example, for 

the specified decision parameters, the number of samples is given by n ≥ 365. However, ProUCL 

computes the sample size to be 419 for the right-sided alternative hypothesis, 368 for the left-sided 

alternative hypothesis, and 528 for the two-sided alternative hypothesis. 

 

Example 8-3. Output for Single-Sample proportion test sample size (α = 0.05, β = 0.2, P0 = 0.2, Δ = 0.05) 

 

 
 

Notes: The correct use of the Sample Size module, to determine the minimum sample size needed to 

perform a proportion test, requires that the users have some familiarity with the single-sample hypothesis 

test for proportions. Specifically the user should input feasible values for the specified proportion, P0, and 

width, Δ, of the gray region. The following example shows the output screen when unfeasible values are 

selected for these parameters.  

 

Example 8-4. Output - Single-sample Proportion Test Sample Sizes (α = 0.05, β = 0.2, P0 = 0.7, Δ = 0.8) 
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8.2.3 Nonparametric Single-sample Sign Test (does not require normality) 

The purpose of the single-sample nonparametric Sign test is to test a hypothesis involving the true 

location parameter (mean or median) of a population against an AL or Cs without assuming normality of 

the underlying population. The details of sample size determinations for nonparametric tests can be found 

in Conover (1999).  

8.2.3.1  Case I (Right-Sided Alternative Hypothesis) 

H0: population location parameter ≤ specified value, Cs vs. HA: population location parameter > 

specified value, Cs 

 

A description of the gray region associated with the right-sided Sign test is given in Section 8.2.1.1.   

8.2.3.2  Case II (Left-Sided Alternative Hypothesis) 

H0: population location parameter ≥ specified value, Cs vs. HA: population location parameter  

< specified value, Cs 

 

A description of the gray region associated with this left-sided Sign test is given in Section 8.2.1.2.   

 

The minimum sample size, n, for the single-sample one-sided (both left-sided and right-sided) Sign test is 

given by the following equation: 
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, where           (8-9) 

 

      Sign P
sd

 
  

 
          (8-10) 

 Δ = width of the gray region 

 sd = an estimate of the population (e.g., reference area, AOC, survey unit) standard deviation 

 

Some guidance on the selection of an estimate of the population sd, σ, is given in Section 8.1.1 above. 

  

Φ(x) = Cumulative probability distribution representing the probability that a standard normal variate, Z, 

takes on a value ≤ x. 

8.2.3.3  Case III (Two-Sided Alternative Hypothesis) 

H0: population location parameter = specified value, Cs  vs. HA: population location parameter ≠ 

specified value, Cs 

 

A description of the gray region associated with the two-sided Sign test can be found in Section 8.1.2.3.   

 

The minimum sample size, n, for a two-sided Sign test is given by the following equation: 
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In the following example, ProUCL computes the sample size to be 35 for a single-sided alternative 

hypothesis and 43 for a two-sided alternative hypothesis for default values of the decision parameters. 

 

Note: Like the parametric t-test, the computation of the standard deviation (sd) depends upon the project 

stage. Specifically,  

  

 sd2 (used to compute P in equation (8-10)) = a preliminary estimate of the population variance 

 (e.g., estimated from similar sites, pilot studies, expert opinion) which is used during the 

 planning stage; and 

 

 sd2 (used to compute P) = sample variance computed using the actual collected data to be used 

 when assessing the power of the test in retrospect based upon the collected data. 

 

ProUCL outputs the sample variance based upon the collected data on the Sign test output sheet; and 

ProUCL 5.1 sample size GUI draws user's attention to input an appropriate estimate, sd2, the user should 

input an appropriate value depending upon the project stage/data availability. 

 

Example 8-5. Output for Single-sample Sign Test Sample Sizes (α = 0.05, β = 0.1, sd = 3, Δ = 2) 

 

8.2.4 Nonparametric Single Sample Wilcoxon Sign Rank (WSR) Test  

The purpose of the single WSR test is similar to that of the Sign test described above. This test is used to 

compare the true location parameter (mean or median) of a population against an AL or Cs without 

assuming normality of the underlying population. The details of this test can be found in Conover (1999) 

and EPA (2006a). 

8.2.4.1  Case I (Right-Sided Alternative Hypothesis) 

H0: population location parameter ≤ specified value, Cs vs. HA: population location parameter > 

specified value,  Cs 

 

A description of the gray region associated with this right-sided test is given in Section 8.1.2.1.   
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8.2.4.2  Case II (Left-Sided Alternative Hypothesis) 

H0: population location parameter ≥ specified value, Cs  vs. HA: population location parameter < 

specified value,  Cs 

 

A description of the gray region associated with this left-sided (left-tailed) test is given in Section 8.1.2.2.   

 

The minimum sample size, n, needed to perform the single-sample one-sided (both left-sided and right-

sided) WSR test is given as follows. 
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2

sd z z z
n

    

 
  
 
 

         (8-11) 

Where: 

 

 sd2 = a preliminary estimate of the population variance which is used during the planning stage; 

 and 

 sd2 = actual sample variance computed using the collected data to be used when assessing the 

 power of the test in retrospect based upon collected data 

 

Note: ProUCL 5.0 sample size GUI draws user's attention to input an appropriate estimate, sd2; the user 

should input an appropriate value depending upon the project stage/data availability. 

8.2.4.3  Case III (Two-Sided Alternative Hypothesis) 

H0: population location parameter = specified value, Cs; vs. HA: population location parameter ≠  

specified value, Cs 

 

A description of the gray region associated with the two-sided WSR test is given in Section 8.1.2.3. 

 

The sample size, n, needed to perform the single-sample two-sided WSR test is given by:  
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        (8-12) 

Where: 

  

 sd2 = a preliminary estimate of the population variance (e.g., estimated from similar sites) which 

 is used  during the planning stage; and 

 

 sd2 = sample variance computed using actual collected data to be used to assess the power of the 

 test in retrospect. 

 

Note: ProUCL 5.0 sample size GUI draws user's attention to input an appropriate estimate, sd2, the user 

should input an appropriate value depending upon the project stage/data availability. 
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The following example: “Sample Sizes for Single-sample Wilcoxon Signed Rank Test” is discussed in 

the EPA 2006a (page 65). ProUCL computes the sample size to be 10 for a one-sided alternative 

hypothesis, and 14 for a two-sided alternative hypothesis. 

 

Example 8-6. Output for Single-sample WSR Test Sample Sizes (α = 0.1, β = 0.2, sd = 130, Δ = 100) 

 

 

8.3 Sample Sizes for Two-Sample Tests for Independent Sample 

This section describes minimum sample size determination formulae needed to compute sample sizes 

(same number of samples (n=m) from two populations) to compare the location parameters of two 

populations (e.g., reference area vs. survey unit, two AOC, two MW) for specified values of the decision 

parameters. ProUCL computes sample sizes for one-sided as well as two-sided alternative hypotheses. 

The sample size formulae described in this section assume that samples are collected following the simple 

random or systematic random sampling (e.g., EPA 2006a) approaches. It is also assumed that samples are 

collected randomly from two independently distributed populations (e.g., two different uncorrelated 

AOCs); and samples (analytical results) collected from each of population represent independently and 

identically distributed observations from their respective populations. 

8.3.1 Parametric Two-sample t-test (Assuming Normality) 

The details of the two-sample t-test can be found in Chapter 6 of this ProUCL Technical Guide.  

8.3.1.1  Case I (Right-Sided Alternative Hypothesis) 

H0: site mean, µ1 ≤ background mean, μ2 vs. HA: site mean, µ1 > background mean, μ2 

 

Gray Region: Range of true concentrations where the consequences of deciding the site mean is less than 

or equal to the background mean (when in fact it is greater), that is, a dirty site is declared clean, are 

relatively minor. The upper bound of the gray region is defined as the alternative site mean concentration 

level, µ1 (> μ2), where the human health, and environmental consequences of concluding that the site is 

clean (or comparable to background) are relatively significant.  The false acceptance rate, β, is associated 

with the upper bound of the gray region, Δ. 
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8.3.1.2 Case II (Left-Sided Alternative Hypothesis) 

H0: site mean, µ1 ≥ background mean, μ2 vs. HA: site mean, µ1 < background mean, μ2 

 

Gray Region: Range of true mean values where consequences of deciding the site mean is greater than or 

equal to the background mean (when in fact it is smaller); that is, a clean site is declared a dirty site, are 

considered relatively minor.  The lower bound, µ1 (< μ2) of the gray region, is defined as the 

concentration where consequences of concluding that the site is dirty would be too costly, potentially 

requiring unnecessary cleanup.  The false acceptance rate is associated with the lower bound of the gray 

region. 

 

The minimum sample sizes (equal sample sizes for both populations) for the two-sample one-sided t-test 

(both cases I and II described above) are given by:  
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         (8-13) 

 

The decision parameters used in equations (8-13) and (8-14) have been defined earlier in Section 8.1.1.2.  

 

 Δ = width (e.g., difference between two means) of the gray region 

 

Sp = a preliminary estimate of the common population standard deviation, σ, of the two 

populations (discussed in Chapter 6). Some guidance on the selection of an estimate of the 

population sd, σ, is given above in Section 8.1.2. 

 

 Sp = pooled standard deviation computed using the actual collected data to be used when  

 assessing the power of the test in retrospect. 

8.3.1.3  Case III (Two-Sided Alternative Hypothesis) 

H0: site mean, µ1 = background mean, μ2 vs. HA: site mean, µ1 ≠ background mean, μ2 

 

The minimum sample sizes for specified decision parameters are given by: 
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         (8-14) 

 

The following example: “Sample Sizes for Two-sample t Test” is discussed in the EPA 2006a guidance 

document (page 68). According to this example, for the specified decision parameters, the minimum 

number of samples from each population comes out to be m = n ≥ 4.94.  ProUCL computes minimum 

sample sizes for the two populations to be 5 (rounding up) for the single sided alternative hypotheses and 

7 for the two-sided alternative hypothesis. 

 

Note: Sp represents the pooled estimate of the populations under comparison. During the planning stage, 

the user inputs a preliminary estimate of variance while computing the minimum sample sizes; and while 

assessing the power associated with the t-test, the user inputs the pooled standard deviation, Sp, computed 

using the actual collected data.  
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 Sp = a preliminary estimate of the common population standard deviation (e.g., estimated from 

 similar sites, pilot studies, expert opinion) which is used during the planning stage; and 

 

 Sp = pooled standard deviation computed using the collected data to be used when assessing the 

 power of the test in retrospect. 

 

ProUCL outputs the pooled standard deviation, Sp, based upon the collected data on the two sample t-test 

output sheet; ProUCL 5.1 sample size GUI draws user's attention to input an appropriate estimate of the 

standard deviation, the user should input an appropriate value depending upon the project stage/data 

availability. 

 

Example 8-7. Output for two-sample t-test sample sizes (α = 0.05, β = 0.2, sp = 1.467, Δ = 2.5) 

 

 

8.3.2 Wilcoxon-Mann-Whitney (WMW) Test (Nonparametric Test) 

The details of the two-sample nonparametric WMW can be found in Chapter 6; this test is also known as 

the two-sample WRS test. 

8.3.2.1  Case I (Right-Sided Alternative Hypothesis) 

H0: site median ≤ background median vs.  HA: site median > background median 

 

The gray region for the WMW Right-Sided alternative hypothesis is similar to that of the two-sample t- 

test described in Section 8.1.3.1.  

8.3.2.2  Case II (Left-Sided Alternative Hypothesis) 

H0: site median ≥ background median vs. HA: site median < background median 

 

The gray region for the WMW left-sided alternative hypothesis is similar to that of two-sample t-test 

described in Section 8.1.3.2. 

 

The sample sizes n and m, for one-sided two-sample WMW tests are given by  
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         (8-15) 

 Here: 

 

 sd2 =a preliminary estimate of the common variance, σ2 (obtained from similar sites, expert 

 opinions), of the two populations and to be used during the planning stage; and 

  

 sd2 = pooled variance computed using the collected data to be used when assessing the  power 

 of the test in retrospect. 

 

Note: ProUCL outputs the pooled variance based upon the collected data; ProUCL 5.1 sample size GUI 

draws user's attention to input an appropriate estimate of sd2. The user should input an appropriate value 

depending upon the project stage/data availability. 

8.3.2.3  Case III (Two-Sided Alternative Hypothesis) 

H0: site median = background median vs. HA: site median ≠ background median 

 

The sample sizes (equal number of samples from the two populations) for the two-sided alternative 

hypothesis for specified decision parameters are given by: 
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Here: 

 

 sd2 =a preliminary estimate of the common variance, σ2 (obtained from similar sites, expert 

 opinions), of the two populations and to be used during the planning stage; and 

  

 sd2 = pooled variance computed using the collected data to be used when assessing the power 

 of the test in retrospect. 

 

Note: ProUCL 5.1 sample size GUI draws user's attention to input an appropriate estimate of sd2. The 

user should input an appropriate value depending upon the project stage/data availability. 

 

In the following example, ProUCL computes (default option) the sample size to be 46 for the single-sided 

alternative hypothesis and 56 for the two-sided alternative hypothesis when the user selects the default 

values of the decision parameters. 
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Example 8-8. Output for Two-sample WMW Test Sample Sizes (α = 0.05, β = 0.1, s = 3, Δ = 2) 

 

 
  

8.3.3 Sample Size forWMW Test Suggested by Noether(1987)  

For the two-sample WRS test (WMW test), the MARSSIM guidance document (EPA 2000) uses the 

following combined sample size formula suggested by Noether (1987). The combined sample size, 

N=(m+n) equation for the one-sided alternative hypothesis defined in Case I (Section 8.3.2.1) and Case II 

(Section 8.3.2.2) above is given as follows:  
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 Δ = Width of the gray region 

 sd = an estimate of the common standard deviation of the two populations.  

 P = Φ(x) = Cumulative probability distribution representing the probability that a 

        standard normal variate, Z, takes on a value ≤ x. 

 

Some guidance on the selection of an estimate of the population standard deviation, σ, is given in Section 

1.1.1. More details can be found in EPA 2006a.  The combined sample size, N=(n+m) for the two-sided 

alternative hypothesis (Case III, Section 8.3.2.3) is given as follows: 
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Note: In practice the sample sizes obtained using equations described in Sections 8.3.2.1 through 8.3.2.3 

are slightly higher than those obtained using Noether's equations described in this Section, 8.3.3. This 

could be the reason that the MARSSIM guidance document suggests increasing the sample size obtained 

using Noether equations by 20%; ProUCL does not increase the calculated sample size by 20%. 
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Example: An example illustrating these sample size calculations is discussed as follows. In the following 

example, ProUCL computes the sample size to be 46 for the single sided alternative hypothesis and 56 for 

the two sided alternative hypothesis when the user selects the default values of the decision parameters. 

 

Using Noether’s formula (as used in MARSSIM document), the combined sample size, N= m + n 

(assuming m = n) is 87 for the single sided alternative hypothesis, and 107 for the two sided alternative 

hypothesis. 

 

Output for two sample WMW Test sample sizes (α = 0.05, β = 0.1, s = 3, Δ = 2) 

 

 

8.4 Acceptance Sampling for Discrete Objects 

ProUCL can be used to determine the minimum number of discrete items that should be sampled, from a 

lot consisting of n discrete items, to accept or reject the lot (drums containing hazardous waste) based 

upon the number of defective items (e.g., mean contamination above an action level, not satisfying a 

characteristic of interest) found in the sampled items. This acceptance sampling approach is specifically 

useful when the sampling is destructive, that is an item needs to be destroyed (e.g., drums need to be 

sectioned) to determine if the item is defective or not.  The number of items that need to be sampled is 

determined for the allowable number of defective items, d= 0, 1, 2, …, n.  The sample size determination 

is not straight forward as it involves the use of the beta and hypergeometric distributions. Several 

researchers (Scheffe and Tukey 1944; Laga and Likes 1975; Hahn and Meeker 1991) have developed 

statistical methods and algorithms to compute the minimum number of discrete objects that should be 

sampled to meet specified (desirable) decision parameters. These methods are based upon nonparametric 

tolerance limits. That is, computing a sample size so that the associated UTL will not exceed the 

acceptance threshold of the characteristic of interest. The details of the terminology and algorithms used 

for acceptance sampling of lots (e.g., a batch of drums containing hazardous waste) can be found in the 

RCRA guidance document (EPA 2002c). 

 

In acceptance sampling, sample sizes based upon the specified values of decision parameters can be 

computed using the exact beta distribution (Laga and Likes 1975) or the approximate chi-square 

distribution (Scheffe and Tukey 1944). Exact as well as approximate algorithms have been incorporated 
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in ProUCL 4.1 and higher versions of ProUCL. It is noted that the approximate and exact results are often 

in complete agreement for most values of the decision parameters. A brief description now follows. 

8.4.1 Acceptance Sampling Based upon Chi-square Distribution 

The sample size, n, for acceptance sampling using the approximate chi-square distribution is given by: 
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         (8-17) 

Where: 

 

 m = number of non-conforming defective items (always ≥ 1, m = 1 implies ‘0’ exceedance rule) 

 p = 1 – proportion 

 proportion = pre-specified proportion of non-conforming items 

 α = 1 – confidence coefficient, and 

 
2

,2m  = the cumulative percentage point of a chi-square distribution with 2m df; the area to the 

left of 
2

,2m  is α. 

8.4.2 Acceptance Sampling Based upon Binomial/Beta Distribution 

Let x be a random variable with arbitrary continuous probability density function f(x). Let x1 <x2 < … < 

xn be an ordered sample size n from this distribution. 

 

For a pre-assigned proportion, p, and confidence coefficient, (1–α), let the following probability statement 

given by equation (8-10) be true. 
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The statement given by (8-18) implies that the interval  1,r n sx x  
 contains at least a proportion, p, of 

the distribution with the probability, (1 – α). The interval,  1,r n sx x  
, whose endpoints are the rth 

smallest and sth largest observations in a sample size of n, is a nonparametric 100p% tolerance interval 

with a confidence coefficient of (1 – α), and xr and xn+1-s are the lower and upper tolerance limits 

respectively. 
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   has the following beta probability density function: 
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 Where m = r + s and B (p, q) denotes the well known beta function. 
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The probability P (z ≥ p) can be expressed in terms of binomial distribution as follows:  
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          (8-20) 

 

For given values of m, p and α, the minimum sample size, n, for acceptance sampling is obtained by 

solving the inequality: 
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           (8-22) 

 

 Where: 

  

  m = number of non-conforming items (always greater than 1) 

 p = 1 – proportion 

 proportion = pre-specified proportion of non-conforming items; and 

 α = 1 – confidence coefficient. 

 

An example output generated by ProUCL is given as follows. 

 

Example 8-9. Output Screen for Sample Sizes for Acceptance Sampling (default options) 
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CHAPTER 9 

 

Oneway Analysis of Variance Module 

Both parametric and nonparametric Oneway Analysis of Variance (ANOVA) methods are available in 

ProUCL 5.0 under the Statistical Tests module. A brief description of Oneway ANOVA is described in 

this chapter.  

9.1 Oneway Analysis of Variance (ANOVA) 

In addition to the two-sample hypothesis tests, ProUCL software has Oneway ANOVA to compare the 

location (mean, median) parameters of more than two populations (groups, treatments, monitoring wells). 

Both classical and nonparametric ANOVA are available in ProUCL. Classical Oneway ANOVA assumes 

the normality of all data sets collected from the various populations under comparison; classical ANOVA 

also assumes the homoscedasticity of the populations that are being compared. Homoscedasticity means 

that the variances (spread) of the populations under comparisons are comparable.  Classical Oneway 

ANOVA represents a generalization of the two-sample t-test (Chapter 6). ProUCL has GOF tests to 

evaluate the normality of the data sets but a formal F-test to compare the variances of more than two 

populations has not been incorporated in ProUCL. The users may want to use graphical displays such as 

side-by-side box plots to compare the spreads present in data sets collected from the populations that are 

being compared.  A nonparametric Oneway ANOVA test: Kruskal-Wallis (K-W) test is also available in 

ProUCL. The K-W test represents a generalization of the two-sample WMW test described in Chapter 6. 

The K-W test does not require the normality of the data sets collected from the various 

populations/groups.  However, for each group, the distribution of the characteristic of interest should be 

continuous and those distributions should have comparable shapes and variabilities. 

9.1.1 General Oneway ANOVA Terminology 

Statistical terminology used in Oneway ANOVA is described as follows: 

 

  g:  number of groups, populations, treatments under comparison 

  i:   an index used for the ith group, i = 1, 2, …, g 

ni:  number of observations in the ith group 

  j:   an index used for the jth observation in a group;  for the ith, j = 1, 2, …, ni 

  xij:  the jth observation of the response variable in the ith group 

  n:  total number of observations=
1 2 gn n n    

  ,

1

in

j i

j

x


  = sum of all observations in the ith group 

  
ix  = mean of the observations collected from the ith group 

  x  = mean of all, nt (the observations) 

μi = true (unknown) mean of the ith group 
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In Oneway ANOVA, the null hypothesis, H0, is stated as: the g groups under comparison have equal 

means (medians) and that any differences in the sample means/medians are due to chance. The alternative 

hypothesis, HA is stated as: the means/medians of the g groups are not equal.  

 

The decision to reject or accept the null hypothesis is based upon a test statistic computed using the 

available data collected from the g groups.  

9.2 Classical Oneway ANOVA Model 

The ANOVA model is represented by a regression model in which the predictor variables are the 

treatment or group variables. The Oneway ANOVA model is given as follows: 

 

, ,i j i i jx e            (9-1)  

 

Where μi is the population mean (or median) of the ith group, and errors, ei,j, are assumed to be 

independently and normally distributed with mean = 0 and with a constant variance, σ2. All observations 

in a given group have the same expectation (mean) and all observations have the same variance regardless 

of the group. The details of Oneway ANOVA can be found in most statistical books including the text by 

Kunter et al. (2004). 

 

The null and the alternative hypotheses for Oneway ANOVA are given as follows:  

 

0 1 2:

:

i g

A

H

H At least one of the means is not equal to others

       

       (or medians)     
 

 

Based upon the available data collected from the g groups, the following statistics are computed. ProUCL 

summarizes these results in an ANOVA Table. 

 

 Sum of Squares Between Groups is given by: 
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             (9-2) 

 

 Sum of Squares Within Groups is given by: 
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          (9-3) 

 

 Total Sum of Squares is given by: 
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          (9-4) 

   

 Between Groups Degrees of Freedom (df): g-1 

 

 Within Groups df: n-g 
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 Total df: n-1 

 

 Mean Squares Between Groups is given by: 
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     (9-5) 

 

 Mean Squares Within Groups: 
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 Scale estimate is given by: 

 

                                  Within GroupsS MS        (9-7) 

 

 R2 is given by: 

 

                             
2 1

 Within Groups

Total

SS
R

SS
         (9-8) 

 

 Decision statistic, F, is given by: 
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 Statistic      (9-9) 

 

Under the null hypothesis, the F-statistic given in equation (9-9) follows the F(g-1), (n-g) distribution with  

(g-1) and (n-g) degrees of freedom, provided the data sets collected from the g groups follow normal 

distributions. ProUCL software computes p-values using the F distribution, F(g-1), (n-g).  

 

Conclusion: The null hypothesis is rejected for all levels of significance, α ≥ p-value. 

9.3 Nonparametric Oneway ANOVA (Kruskal-Wallis Test) 

Nonparametric Oneway ANOVA or the K-W test (Kruskal and Wallis 1952, Hollander and Wolfe 1999) 

represents a generalization of the two-sample WMW, test which is used to compare the equality of 

medians of two groups. Like the WMW test, analysis for the K-W test is also conducted on ranked data, 

therefore, the distributions of the g groups under comparisons do not have to follow a known statistical 

distribution (e.g., normal).  However, distributions of the g groups should be continuous with comparable 

shapes and variabilities.  Also the g groups should represent independently distributed populations. 
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The null and alternative hypotheses are defined in terms of medians, mi of the g groups:  

 

              
0 1 2:

:

i g

A

H m m m m

H At least one of the medians is not equal to others

    

      g      
    (9-10) 

 

While performing the K-W test, all n observations in the g groups are arranged in ascending order with 

the smallest observation receiving the smallest rank and the largest observation getting the highest rank. 

All tied observations receive the average rank of those tied observations. 

 

K-W Test on Data Sets with NDs: It should be noted that the K-W test may be used on data sets with NDs 

provided all NDs are below the largest detected value.  All NDs are considered as tied observations 

irrespective of reporting limits (RLs) and receive the same rank. However, the performance of the K-W 

test on data sets with NDs is not well studied; therefore, it is suggested that the conclusion derived using 

the K-W test statistics be supplemented with graphical displays such as side-by-side box plots. Side-by-

side box plots can also be used as an exploratory tool to compare the variabilities of the g populations 

based upon the g data sets collected from those populations.  

 

The K-W ANOVA table displays the following information and statistics:  

 

 Mean Rank of the ith Group, 
iR : Average of the ranks (in the combined data set of size, n) of the 

ni observations in the ith group.  

 

 Overall Mean Rank, R : Average of the ranks of all n observations.  

 

 Z-value of each group are computed using the following equation (Standardized Z): 
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      (9-11) 

 

   n = total number of observations = 
1 2 gn n n    

   ni = observation in the ith group 

   g = number of groups 

 

Zi given by (9-11) represents standardized normal deviates. The Zi can be used to determine the 

significance of the difference between the average rank of the ith group and the overall average rank, R, of 

the combined data set of sized n.  

 

 Kruskal-Wallis H-Statistic (without ties) is given by: 
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                (9-12) 
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 K-W H-Statistic adjusted for ties is given by: 
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        (9-13) 

 Where 
it  = number of tied values in ith group 

 

For large values of n, the H-statistic given above follows an approximate chi-square distribution with (g-

1) degrees of freedom. P-values associated with the H-statistic given by (9-12) and (9-13) are computed 

by using a chi-square distribution with (g-1) degrees of freedom. The p-values based upon a chi-square 

approximation test are fairly accurate when the number of observations, n, is large such as ≥ 30.  

 

Conclusion: The null hypothesis is rejected in favor of the alternative hypothesis for all levels of 

significance, α ≥ p-value. 

 

Example 9-1.  Consider Fisher's famous Iris data set (Fisher 1936) with 3 iris species. The classical 

Oneway ANOVA results comparing petal widths of 3 iris species are summarized as follows. 
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Example 9-2 (Iris Data).  The K-W Oneway ANOVA results comparing petal widths of 3 iris species are 

summarized as follows. 
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CHAPTER 10 

 

Ordinary Least Squares Regression and Trend Analysis 

Trend tests and ordinary least squares (OLS) regression methods are used to determine trends (e.g., 

decreasing, increasing) in time series data sets. Typically, OLS regression is used to determine linear 

relationships between a dependent response variable and one or more predictor (independent) variables 

(Draper and Smith 1998); however statistical inference on the slope of the OLS line can also be used to 

determine trends in the time series data used to estimate an OLS line. A couple of nonparametric 

statistical tests, the Mann-Kendall (M-K) test and the Theil-Sen (T-S) test to perform trend analysis have 

also been incorporated in ProUCL 5.0/ProUCL 5.1.  Methods to perform trend analysis and OLS 

Regression with graphical displays are available under the Statistical Tests module of ProUCL 5.1.  In 

environmental monitoring studies, OLS regression and trend tests can be used on time series data sets to 

determine potential trends in constituents' concentrations over a defined period of time.  Specifically, the 

OLS regression with time or a simple index variable as the predictor variable can be used to determine a 

potential increasing or decreasing trend in mean concentrations of an analyte over a period of time. A 

significant positive (negative) slope of the regression line obtained using the time series data set with 

predictor variable as a time variable suggests an upward (downward) trend.  A brief description of the 

classical OLS regression as function of the time variable, T (t), is described as follows.  It should however 

be noted that the OLS regression and associated graphical displays can be used to determine a linear 

relation for any pair of dependent variable, Y, and independent variable, X. The independent variable 

does not have to be a time variable. 

10.1 Ordinary Least Squares Regression 

The linear regression model for a response variable, Y and a predictor (independent) variable, t is given as 

follows: 

 

                                     
0 1

0 1

;

[ ]

Y b b t e

E Y b b t mean response at t

  

       
                 (10-1) 

 

In (10-1), variable e is a random variable representing random measurement error in the response 

variable, Y (concentrations). The error variable, e, is assumed to follow a normal distribution, N (0, σ2), 

with mean 0 and unknown variance, σ2. Let (ti, yi); i: =1, 2,….n represent the paired data set of size n, 

where yi is the measured response when the predictor variable, t =ti.  It is noted that multiple observations 

may be collected at one or more values of the prediction variable, t.  Using the regression model (10-1) on 

this data set, we have: 
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E y b b t mean response when t t

  

   

 

    
    (10-2) 
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For each fixed value, ti of the predictor variable, t, the random error,
ie  is normally distributed with 

N(0,σ2). Random errors, ei, are independently distributed. Without the random error, e, all points will lie 

exactly on the population regression line estimated by the OLS line. The OLS estimates of the intercept, 

b0 and slope, b1 are obtained by minimizing the residual sum of squares.  The details of deriving the OLS 

estimates, 
0 1
ˆ ˆ and b b  of the intercept and slope can be found in Draper and Smith (1998).  

 

The OLS regression method can be used to determine increasing or decreasing trends in the response 

variable Y (e.g., constituent concentrations in a MW) over a time period (e.g., quarters during a 5 year 

time period). A positive statistically significant slope estimate suggests an upward trend and a statistically 

significant negative slope estimate suggests a downward or decreasing trend in the mean constituent 

concentrations.  The significance of the slope estimate is determined based upon the normal assumption 

of the distribution of error terms, 
ie , and therefore, of responses, yi, i:=1,2,...,n 

 

ProUCL computes OLS estimates of parameters b0 and b1; performs inference about the slope and 

intercept estimates, and outputs the regression ANOVA table including the coefficient of determination, 

R2, and estimate of the error variance, σ2. Note that R2 represents the square of the Pearson correlation 

coefficient between the dependent response variable, y, and the independent predictor variable, t.  

ProUCL also computes confidence intervals and prediction intervals around the OLS regression line; and 

can be used to generate scatter plots of n pairs, (t, y), displaying the OLS regression line, confidence 

interval for mean responses, and prediction interval band for individual observations (e.g., future 

observations).  

 

General OLS terminology and sum of squares computed using the collected data are described as follows: 
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   (10-3) 

 

The OLS estimates of slope and intercept are given as follows: 
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      (10-4) 

The estimated OLS regression line is given by:
0 1
ˆ ˆŷ b b t  and error estimates also called residuals are 

given by ˆ ˆ ;  1,2,....,i i ie y y i n   . It should be noted that for each i, ˆ
iy represents the mean response at 

value, ti of the predictor variable, t, for i:=1,2,…,n. 

 

The residual sum of squares is given by: 
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         (10-5) 
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Estimate of the error variance, σ2, and variances of the OLS estimates, 
0 1
ˆ ˆ  b and b   are given as follows: 
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                                              (10-6) 

 

Estimates of the variances of the OLS estimates 
0 1
ˆ ˆ  b and b  are obtained by replacing σ2 by its estimate, 

mean sum of squares error (MSE), given in (10-6).  Standard errors (SEs) of the OLS estimates: 

0 1
ˆ ˆ  b and b  are their respective standard deviations. ProUCL tests the significance of slope and intercept 

of the regression line given by (10-1). Details for testing the significance of the slope are given as follows. 

It should be noted that the parametric OLS regression line given by (10-4) estimates the change in the 

mean concentration over time. 

 

Testing Significance of the Slope, b1: Under normality and independence of random errors, ei, in 

responses, yi, the test statistic given by (10-7) follows a Student’s t-distribution with (n-2) degrees of 

freedom. One can perform any of the 3 hypothesis forms including: 1) H0: 1 0b   vs. the alternative 

hypothesis, H1: 1 0b  ; 2) H0: 1 0b   vs. the alternative, H1: 1 0b  ; and 3) or H0: 1 0b   vs. the 

alternative,  H1: 1 0b  . Under the null hypothesis, the test statistic is obtained by dividing the regression 

estimate by its SE: 

 

                   
1 1
ˆ ˆ/ ( )t b SE b                                      (10-7) 

 

Under normality of the responses, yi (and the random errors, ei), the test statistic given in (10-7) follows a 

Student’s t-distribution with (n-2) degrees of freedom (df). A similar process is used to perform inference 

about the intercept, b0 of the regression line. The test statistic associated with the OLS estimate of the 

intercept, 0b̂  also follows a Student’s t-distribution with (n-2) degrees of freedom. 

 

P-values: ProUCL computes and outputs t-distribution based p-values associated with the two-sided 

alternative hypothesis, H1: 1 0b  . The p-values are displayed on the output sheet as well as on the 

regression graph generated by ProUCL. 

 
Note: ProUCL displays residuals including standardized residuals on the OLS output sheet. Those 

residuals can be imported (copying and pasting) in an excel data file to assess the normality of those OLS 

residuals. The parametric trend evaluations based upon the OLS slope (significance, confidence interval) 

are valid provided the OLS residuals are normally distributed.  Therefore, it is suggested that the user 

assesses the normality of OLS residuals before drawing trend conclusions using a parametric test based 

upon the OLS slope estimate. When the assumptions are not met, one can use graphical displays and 

nonparametric trend tests, M-K and T-S tests, to determine potential trends in time series data set. 
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10.1.1 Regression ANOVA Table 

 

The following statistics are displayed on the regression ANOVA table. 

 

Sum of Squares Regression (SSR): SSR represents that part of the variation in the response variable, Y, 

which is explained by the regression model, and is given by: 

 

                                                    SSR =  
2
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ˆ
n
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y y


                                  (10-8) 

 

Sum of Squares Error (SSE): SSE represents that part of the variation in the response variable, Y, which 

is attributed to random measurement errors, and is given by: 

 

    SSE =  
2
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ˆ
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i i

i

y y


  

 

Sum of Squares Total (SST): SST is the total variation present in the response variable, Y and is equal to 

the sum of SSR and SSE. 
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                                (10-9) 

 

Regression Degrees of Freedom (df): 1 (1 predictor variable) 

 

Error df: n-2; and Total df: n-1 

 

Mean Sum of Squares (MS) Regression (MSR): is given by SSR divided by the regression df which is 

equal to 1 in the present scenario with only one predictor variable. 

 

     MSR SSR  

 

Mean Sum of Squares Error (MSE): is given by SSE divided by the error degrees of freedom 

 

     
2

SSE
MSE

n



 

 

MSE represents an unbiased estimate of the error variance, 
2 . In regression terminology, σ is called the 

scale parameter, and MSE  is called the scale estimate. 

 

F-statistic: is computed as the ratio of MSR to MSE, and follows an F distribution with 1 and (n-2) 

degrees of freedom (df).  
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MSR

F
MSE

             (10-10) 

 

P-value: The overall p-value associated with the regression model is computed using the F1,(n-2)  

distribution of the test- statistic given by equation (10-10). 

 

R2: represents the variation explained in the response variable, Y, by the regression model, and is given 

by:   

 

                                                    
2 1

SSE
R

SST
                            (10-11) 

 

Adjusted R square (Adjusted R2): The adjusted R2 is considered a better measure of the variation 

explained in the response variable, Y, and is given by: 
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10.1.2 Confidence Interval and Prediction Interval around the Regression Line 

ProUCL also computes confidence and prediction intervals around the regression line and displays these 

intervals along with the regression line on the scatter plot of the paired data used in the OLS regression. 

ProUCL generates, when selected, a summary table displaying these intervals and residuals. 

 

Confidence Interval (LCL, UCL): represents a band within which the estimated mean responses, ˆ
iy , are 

expected to fall with specified confidence coefficient, (1-α). Upper and lower confidence limits (LCL and 

UCL) are computed for each mean response estimate, ˆ
iy , observed at value, ti, of the predictor variable, t. 

These confidence limits are given by: 

 

          (1 / 2),( 2))
ˆ ˆ(i n iy t sd y       (10-12) 

 

Where the estimated standard deviation, ˆ( )isd y , of the mean response, ˆ
iy , is given by:   
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A confidence band can be generated by computing the confidence limits given by (10-12) for each value, 

ti of the predictor variable, t; i:=1,2,…n. 

 

Prediction Limits (LPL, UPL): represents a band within which a predicted response (and not the mean 

response),
0ŷ , for a specified new value, t0 ,of the predictor variable, t, is expected to fall. Since the 

variances of the individual predicted responses are higher than the variances of the mean responses, a 

prediction band around the OLS line is wider than the confidence band. The LPL and UPL comprising the 

prediction band are given by: 
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ˆ ˆˆ ˆ ˆ( );ny t sd y with y b b x                             (10-13) 

 

Where the estimated standard deviation, 
0

ˆ( )sd y , of a new response, 
0ŷ  ,(or the individual response for 

existing observations) is given by: 
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Like the confidence band, a prediction band around the OLS line can be generated by computing the 

prediction limits given by (10-13) for each value, ti , of the predictor variable, t, and also other values of t 

(within the experiment range) for which the response, y, was not observed. 

 

Notes: Unlike M-K and T-S trend tests, multiple observations may be collected at one or more values of 

the predictor variable. Specifically, OLS can be performed on data sets with multiple measurements 

collected at one or more values of the predictor variable (e.g., sampling time variable, t).  

 

Example 10-1. Consider the time series data set for sulfate as described in RCRA Guidance (EPA 2009). 

The OLS graph with relevant test statistics is shown in Figure 10-1 below. The positive slope estimate, 

33.12, is significant with a p-value of 0 suggesting that there is an upward trend in sulfate concentrations. 

 

 
Figure 10-1. OLS Regression of Sulfate as a Function of Time 
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10.2 Trend Analysis 

Time Series Data Set: When the predictor variable, t, represents a time variable (or an index variable), the 

data set (ti, yi); i:=1,2,….n is called a time series data set, provided values of the variable, t, satisfy: 

1 2 3,...... nt t t t   .  

 

The Trend Analysis module of ProUCL includes two trend tests, the M-K) test and the T-S test. The 

trend tests in ProUCL are performed on time series data sets. Both M-K and T-S tests in ProUCL can 

handle missing values. Like all other methods, these tests can be performed by a group variable - 

performing the selected trend test for each group in the data set. A detailed description of these tests is 

described in the following sections. 

 

Notes: The two trend tests are meant to identify trends in time series data (data collected over a certain 

period of time such as daily, monthly, quarterly, etc) with distinct values of the time variable (time of 

sampling events); that is only one measurement is reported (collected) at each sampling event time. If 

multiple measurements are collected at a sampling event, the user may want to use the average (or 

median, mode, minimum or maximum) of those measurements resulting in a time series with one 

measurement per sampling time event. When multiple observations are present for a sampling event, 

ProUCL computes the average of those observations. Trend tests in ProUCL software assume that the 

user has entered data in chronological order. If the data are not entered properly in chronological order, 

the graphical trend displays may be meaningless. T-S tests takes sampling events into consideration; 

however, those sampling events do not have to be performed at regular intervals. When sampling events 

are not provided, the user can assign numeric values in chronological order for sampled observations.  At 

present ProUCL does not does not read dates (years, quarters etc.). If dates are provided, the user needs to 

assign numeric values in chronological order.  
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Handling Nondetects: The trend module in ProUCL 5.1 does not recognize a nondetect column consisting 

of zeros and ones. For data sets consisting of nondetects with varying DLs, one can replace all NDs with 

half of the lowest DL (DL/2) or by replacing all NDs by a single value lower than the lowest DL. When 

multiple DLs are present in a data set, the use of substitution methods should be avoided. Replacing NDs 

by their respective DLs or by their DL/2 values is like performing trend test on DLs or on DL/2s, 

especially when the percentage of NDs present in the data set is high.  

10.2.1 Mann–Kendall Test  

The M-K trend test is a nonparametric test which is used on a time series data set, (ti, yi); i:=1,2,….n  as 

described earlier. As a nonparametric procedure, the M-K test does not require the underlying data to 

follow a specific distribution. The M-K test can be used to determine increasing or decreasing trends in 

measurement values of the response variable, y, observed during a certain time period.  If an increasing 

trend in measurements exists, then the measurement taken first from any randomly selected pair of 

measurements should, on average, have a lower response (concentration) than the measurement collected 

at a later point.  

 

The M-K statistic, S, is computed by examining all possible distinct pairs of measurements in the time 

series data set and scoring each pair as follows. It should be noted that for a measurement data set of size, 

n, there are n(n-1)/2 distinct pairs, (yj, yi) with j>i, which are being compared. 

 

 If an earlier measurement, yi, is less in magnitude than a later measurement, yj, then that pair is 

assigned a score of 1;  

 

 If an earlier measurement value is greater in magnitude than a later value, the pair is assigned a 

score of –1; and 

 

 Pairs with identical (yi = yj) measurements values are assigned a score of 0. 

 

The M-K test statistic, S, equals the sum of scores assigned to all pairs. The following conclusions are 

derived based upon the values of the M-K statistic, S. 

 

 A positive value of S implies that a majority of the differences between earlier and later 

measurements are positive suggesting the presence of a potential upward and increasing trend 

over time. 

 

 A negative value for S implies that a majority of the differences between earlier and later 

measurements are negative suggesting the presence of a potential downward/decreasing trend.  

 

 A value of S close to zero indicates a roughly equal number of positive and negative scores 

assigned to all possible distinct pairs, (yj, yi) with j>i, suggesting that the data do not exhibit any 

evidence of an increasing or decreasing trend.  

 

When no trend is present in time series measurements, positive differences in randomly selected pairs of 

measurements should balance negative differences. In other words, the expected value of the test statistic 

S, E[S], should be close to ‘0’ when the measurement data set does not exhibit any evidence of a trend.  

To account for randomness and inherent variability in measurements, the statistical significance of the M-

K test statistic is determined. The larger the absolute value of S, the stronger the evidence for a real 

increasing or decreasing trend. The M-K test in ProUCL can be used to test the following hypotheses:  
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Null Hypothesis, H0: Data set does not exhibit sufficient evidence of any trends (stationary 

measurements) vs.  

 

 HA: Data set exhibits an upward trend (not necessarily linear); or 

 HA: Data set exhibits a downward trend(not necessarily linear); or 

 HA: Data set exhibits a trend (two-sided alternative - (not necessarily linear)). 

 

Under the null hypothesis of no trend, it is expected that the mean value of S =0; that is E[S] =0. 

 

Notes: The M-K test in ProUCL can be used for testing a two-sided alternative, HA, stated above. For a 

two-sided alternative hypothesis, the p-values (exact as well as approximate) reported by ProUCL need to 

be doubled. 

10.2.1.1 Large Sample Approximation for M-K Test 

When the sample size n is large, the exact critical values for the statistic S are not readily available. 

However, as a sum of identically-distributed random quantities, the distribution of S tends to 

approximately follow a normal distribution by the CLT. The exact p-values for the M-K test are available 

for sample sizes up to 22 and have been incorporated in ProUCL. For samples of sizes larger than 22, a 

normal approximation to S is used. In this case, a standardized S-statistic, denoted by Z is computed by 

using the expected mean value and sd of the test statistic, S.  

 

The sd of S, sd(S) is computed using the following equation: 
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    (10-14) 

 

Where n is the sample size, g represents the number of groups of ties (if any) in the data set, and tj is the 

number of tied observations in the jth group of ties. If no ties or NDs are present, the equation reduces to 

the simpler form: 
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The standardized S statistic denoted by Z for an increasing (or decreasing) trend is given as follows: 
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                        (10-16) 

 

Like the S statistic, the sign of Z determines the direction of a potential trend in the data set. A positive 

value of Z suggests an upward (increasing) trend and a negative value of Z suggests a downward or 

decreasing trend. The statistical significance of a trend is determined by comparing Z with the critical 
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value, zα, of the standard normal distribution; where zα represents that value such that the area to the right 

of zα under the standard normal curve is α.  

10.2.1.2 Step-by-Step Procedure to perform the Mann-Kendall Test 

The M-K test does not require the availability of an event or a time variable. However, if graphical trend 

displays (e.g., T-S line) are desired, the user should provide the values for a time variable. When a time or 

an event variable is not provided, ProUCL generates an index variable and displays the time-series graph 

using the index variable.   

 

Step 1. Order the measurement data: y1, y2, …., yn by sampling event or time of collection. If the 

numerical values of data collection times (event variable) are not known, the user should enter data values 

according to the order they were collected. Next, compute all possible differences between pairs of 

measurements, (yj – yi) for j > i. For each pair, compute the sign of the difference, defined by: 
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      (10-17) 

 

Step 2. Compute the M-K test statistic, S, given by the following equation: 
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        (10-18) 

 

In the above equation the summation starts with a comparison of the very first sampling event against 

each of the subsequent measurements. Then the second event is compared with each of the samples taken 

after it (i.e., the third, fourth, and so on). Following this pattern is probably the most convenient way to 

ensure that all distinct pairs have been considered in computing S. For a sample of size n, there will be 

n(n-1)/2 distinct pairs, (i, j) with j>i. 

 

Step 3. For n<23, the tabulated critical levels, αcp (tabulated p-values) given in Hollander and Wolfe 

(1999), have been incorporated in ProUCL. If S > 0 and α > αcp, conclude there is statistically significant 

evidence of an increasing trend at the α significance level. If S < 0 and α> αcp, conclude there is 

statistically significant evidence of a decreasing trend. If α ≤ αcp, conclude that data do not exhibit 

sufficient evidence of any significant trend at the α level of significance. 

 

Specifically, the M-K test in ProUCL tests for one-sided alternative hypothesis as follows: 

 

H0: no trend vs. HA: upward trend 

or 

H0: no trend vs. HA: downward trend 

 

ProUCL computes tabulated p-values (for sample sizes <23) based upon the sign of the M-K statistic, S, 

as follows: 
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If S>0, the tabulated p-value (αcp) is computed for H0: no trend, vs. HA: upward trend 

If S<0, the tabulated p-value (αcp) is computed for H0: no trend vs. HA: downward trend 

 

If the p-value is larger than the specified α (e.g., 0.05), the null hypothesis of no trend is not rejected. 

 

Step 4. For n > 22, large sample normal approximation is used for S, and a standardized S is computed. 

Under the null hypothesis of no trend, E(S) =0, and the sd is computed using equations (10-14) or (10-15). 

When ties are present, sd(S) is computed by adjusting for ties as given in (10-14).  Standardized S, 

denoted by Z is computed using equation (10-16).  

 

Step 5. For a given significance level (α), the critical value zα is determined from the standard normal 

distribution. 

 

If Z >0, a critical value and p-value are computed for H0: no trend, vs. HA: upward trend.   

If Z<0, a critical value and p-value are computed for H0: no trend vs. HA: downward trend  

 

If the p-value is larger than the specified α (e.g., 0.05), the null hypothesis of no trend is not rejected. 

 

Specifically, compare Z against this critical value, zα. If Z>0 and Z > zα, conclude there is a statistically 

significant evidence of an increasing trend at an α-level of significance. If Z<0 and Z < –zα, conclude 

there is statistically significant evidence of a decreasing trend. If neither exists, conclude that the data do 

not exhibit sufficient evidence of any significant trend. For large samples, ProUCL computes the p-value 

associated with Z. 

 
Notes: As mentioned, the M-K test in ProUCL can be used for testing a two-sided alternative, HA stated 

above. For a two-sided alternative hypothesis, p-values (both exact and approximate) reported by ProUCL 

need to be doubled. 

 

Example 10-2. Consider a nitrate concentration data set collected over a period of time. The objective is 

to determine if there is a downward trend in nitrate concentrations. No sampling time event values were 

provided. The M-K test has been used to establish a potential trend in nitrate concentrations. However, if 

the user also wants to see a trend graph, ProUCL generates an index variable and displays the trend graph 

along with OLS line and the T-S nonparametric line (based upon the index variable) as shown in Figure 

10-2 below. Figure 10-2 displays all the statistics of interest. The M-K trend statistics are summarized as 

follows. 
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Figure 10-2. Trend Graph with M-K Test Results and OLS Line and Nonparametric Theil-Sen Line 
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10.2.2 Theil - Sen Line Test  

The details of T-S test can be found in Hollander and Wolfe (1999). The T-S test represents a 

nonparametric version of the parametric OLS regression analysis and requires the values of the time 

variable at which the response measurements were collected. The T-S procedure does not require 

normally distributed trend residuals and responses as required by the OLS regression procedure. It is also 

not critical that the residuals be homoscedastic (having equal variance over time).  For large samples, 

even a relatively mild to modest slope of the T-S trend line can be statistically significantly different from 

zero. It is best to first identify whether or not a significant trend (slope) exists, and then determine how 

steeply the concentration levels are increasing (or decreasing) over time for a significant trend.  

 

New in ProUCL 5.1: This latest ProUCL 5.1 version computes yhat values and residuals based upon the 

Theil-Sen nonparametric regression line. ProUCL outputs the slope and intercept of the T-S trend line, 

which can be used to compute residuals associated with the T-S regression line. 

 

Unlike the M-K test, actual concentration values are used in the computation of the slope estimate 

associated with the T-S trend test. The test is based upon the idea that if a simple slope estimate is 

computed for every pair (n(n-1)/2 pairs in all) of distinct measurements in the sample (known as the set of 

pairwise slopes), the average of this set of n(n-1)/2 slopes would approximate the true unknown slope. 

Since the T-S test is a nonparametric test, instead of taking an arithmetic average of the pairwise slopes, 

the median slope value is used as an estimate of the unknown population slope. By taking the median 

pairwise slope instead of the mean, extreme pairwise slopes - perhaps due to one or more outliers or other 

errors - are ignored and have little or negligible impact on the final slope estimator. 

 

The T-S trend line is also nonparametric because the median pairwise slope is combined with the median 

concentration value and the median of the time values to construct the final trend line. Therefore, the T-S 

line estimates the change in median concentration over time and not the mean as in linear OLS regression; 

the parametric OLS regression line described in Section 10.1 estimates the change in the mean 

concentration over time (when the dependent variable represents the time variable). 

 

Averaging of Multiple Measurements at Sampling Events: In practice, when multiple observations are 

collected/reported at one or more sampling events (times), one or more pairwise slopes may become 

infinite, resulting in a failure to compute the T-S test statistic. In such cases, the user may want to pre-

process the data before using the T-S test. Specifically, to assure that only one measurement is available 

at each sampling event, the user pre-processes the time series data by computing average, median, mode, 

minimum, or maximum of the multiple observations collected at those sampling events. The T-S test in 

ProUCL 5.1 provides the option of averaging multiple measurements collected at the various sampling 

events. This option also computes M-K test and OLS regression statistics using the averages of multiple 

measurements collected at the various sampling event. 

 

Note: The OLS regression and M-K test can be performed on data sets with multiple measurements taken 

at the various sampling time events. However, often it is desirable to use the averages (or median) of 

measurements taken at the various sampling events to determine potential trends present in a time-series 

data set.  
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10.2.2.1 Step-by-Step Procedure to Compute Theil-Sen Slope 

Step 1. Order the data set by sampling event or time of collection of those measurements. Let y1, y2, …, yn 

represent ordered measurement values. Consider all possible distinct pairs of measurements, (yi, yj) for j > 

i. For each pair, compute the simple pairwise slope estimate given by: 

 

 j i

ij

y y
m for j i

j i


 


   

 

For a time-series data set of size n, there are N=n(n–1)/2 such pairwise slope estimates, mij. If a given 

observation is a ND, one may use half of the DL or the RL as its estimated concentration. Alternatively, 

depending upon the distribution of detected values (also called the censored data set), the users may want 

to use imputed estimates of ND values obtained using the GROS or LROS method.  

 

Step 2. Order the N pairwise slope estimates, mij from the smallest to the largest and re-label them as 

m(1), m(2),…, m(N). Determine the T-S estimate of slope, Q, as the median value of this set of N ordered 

slopes. Computation of the median slope depends on whether N is even or odd. The median slope is 

computed using the following algorithm: 
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          (10-19) 

 

Step 3. Arrange the n measurements in ascending order from smallest to the largest value: y(1), y(2),…, 

y(n). Determine the median measurement using the following algorithm: 
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    (10-20) 

Similarly, compute the median time, t of the n ordered sampling times: t1, t2, to tn by using the same 

median computation algorithm as used in (10-19) and (10-20).  

 

Step 4. Compute the T-S trend line using the following equation: 

 

      y y Q t t y Qt Qt       

10.2.2.2 Large Sample Inference for Theil – Sen Test Based upon Normal Approximation 

As described in Step 2 above, order the N pairwise slope estimates, mij in ascending order from smallest 

to the largest: m(1), m(2),…, m(N). Compute S given in (10-18) and its sd given below: 
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    (10-21) 

 

ProUCL can be used to test the following hypotheses: 

 

H0: Data set does not exhibit sufficient evidence of any trends (stationary measurements) vs.  

 

I. HA: Data set exhibits a trend (two-sided alternative) 

II. HA: Data set exhibits an upward trend; or 

III. HA: Data set exhibits a downward trend. 

 

Case I. Testing for the null hypothesis, H0:  Time series data set does not exhibit any trend, vs. the two-

sided alternative hypothesis, HA: Data Set exhibits a trend. 

 

 Compute the critical value, Cα using the following equation:  

 

   
2

( )C Z sd S   

 

 Compute M1 and M2 as:  
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N C
M  

  
 

;       and 2
2

N C
M  

  
 

 

 

 Obtain the 
1

thM   largest and 
2

thM  largest slopes,  
1( )Mm  and  

2( )Mm , from the set consisting of 

all n(n-1)/2 slopes. Then the probability of the T-S slope, Q, lying between these two slopes is 

given by the statement: 

 

      
1 2( ) ( ) 1M MP m Q m      

  

 On ProUCL output,  
1( )Mm  is labeled as LCL and  

2( )Mm  is labeled as UCL. 

 

 Conclusion: If 0 belongs to the interval, 
1 2( ) ( )( , )M Mm m , conclude that T-S test slope is 

insignificant; that is, conclude that there is no significant trend present in the time series data set. 

 

Cases II and III: Test for an upward (downward) trend with Null hypothesis, H0:  Time series data set does 

not exhibit any trend, vs. the alternative hypothesis, HA: data set exhibits an upward (downward) trend. 

 

 For specified level of significance, α, compute the following: 

 

     * ( )C Z sd S   
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 Obtain the 
1

thM   largest and 
2

thM  largest slopes,  
1( )Mm  and  

2( )Mm from the set consisting of 

all n(n-1)/2 slopes. 

 

 Conclusion: 

 If  
1( ) 0Mm  , then the data set exhibits a significant upward trend. 

 If  
2( ) 0Mm  , then the data set exhibits a significant downward trend. 

 

Example 10-3. Time series data (time event, concentration) were collected from several groundwater 

MWs on a Superfund site. The objective is to determine potential trends present in concentration data 

collected quarterly from those wells over a period of time. Some missing sampling events (quarters) are 

also present. ProUCL handles the missing values, computes trend test statistics and generates a time series 

graph along with the OLS and T-S lines.  

 

 
Figure 10-3. Time Series Plot and OLS and Theil-Sen Results with Missing Values  

 

The Excel output sheet, generated by ProUCL and showing all relevant results, is shown as follows: 
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Notes:  As with other statistical tests (e.g., Shapiro-Wilk and Lilliefors GOF tests for normality), it is very 

likely, that based upon a given data set, the three trend tests described here will lead to different trend 

conclusions. It is important that the user verifies the underlying assumptions required by these tests (e.g., 

normality of OLS residuals).  A parametric OLS slope test is preferred when the underlying assumptions 

are met. Conclusions derived using nonparametric tests supplemented with graphical displays are 

preferred when OLS residuals are not normally distributed. These tests can also yield different results 

when the data set consists of missing values and/or there are gaps in the time series data set. It should be 

pointed out that an OLS line (therefore slope) can become significant even by the inclusion of an extreme 

value (e.g., collected after skipping of several intermediate sampling events) extending the domain of the 

sampling events time interval. For example, a perfect OLS line can be generated using two points at two 

extreme ends resulting in a significant slope; whereas nonparametric trend tests are not as influenced by 

such irregularities in the data collection and sampling events. In such circumstances, the user should draw 

a conclusion based upon the site CSM, expert and historical site knowledge and expert opinions.  

10.3 Multiple Time Series Plots 

The Time Series Plot option of the Trend Analysis module can generate time series plots for multiple 

groups/wells comparing concentration levels of those groups over a period of time. Time series plots are 

also useful for comparing concentrations of a MW during multiple periods (every 2 years, 5 years, ...) 

collected quarterly, semi-annually. This option can also handle missing sampling events. However, the 

number of observations in each group should be the same, sharing the same time event variable (if 

provided). An example time series plot comparing concentrations of three MWs during the same period of 

time is shown as follows. 

 

Figure 10-4. Time Series Plot Comparing Concentrations of Multiple Wells over a Period of Time 
 

This option is specifically useful when the user wants to compare the concentrations of multiple groups 

(wells) and the exact sampling event dates are not available (data only option). The user may just want to 

graphically compare the time-series data collected from multiple groups/wells during several quarters 

(every year, every 5 years, …). Each group (e.g., well) defined by a group variable must have the same 

number of observations and should share the same sampling event values (when available).  That is the 
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number of sampling events and values (e.g., quarter ID, year ID, etc.) for each group (well) must be the 

same for this option to work. However, the exact sampling dates (not needed to use this option) in the 

various quarters (years) do not have to be the same as long as the values of the sampling quarters 

(1,3,5,6,7,9, etc.) used in generating the time-series plots for the various groups (wells) match. Using the 

geological and hydrological information, this kind of comparison may help the project team in identifying 

non-compliance wells (e.g., with upward trends in constituent concentrations) and associated reasons. 
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CHAPTER 11 
 

Background Incremental Sample Simulator (BISS) 
 Simulating BISS Data from a Large Discrete Background Data  

 
The Background Incremental Sample Simulator (BISS) module was incorporated in ProUCL5.0 at the 

request of the Office of Superfund Remediation and Technology Innovation (OSRTI).  However, this 

module is currently under further investigation and research, and therefore it is not available for general 

public use. This module may be released in a future version of the ProUCL software, along with strict 

conditions and guidance for how it is applied. The main text for this chapter is not included in this 

document for the release to general public. Only a brief placeholder write-up is provided here. It is 

assumed that the user is familiar with the incremental sampling methodology (ISM) ITRC (2012) 

document and terminologies associated with the ISM approach. Those terminologies (e.g., sample 

support, decision unit [DU], replicated etc.) are not described in this chapters. 

 

The following scenario describes the site or project conditions under which the BISS module could be 

useful:  Suppose there is a long history of soil sample collection at a site. In addition to having a large 

amount of site data, a robust background data set (at least 30 samples from verified background 

locations), has also been collected. Comparison of background data to on-site data has been, and will 

continue to be, an important part of this project’s decision-making strategy. All historical data is from 

discrete samples, including the background data. There is now a desire to switch to incremental sampling 

for the site. However, guidance for incremental sampling makes it clear that it is inappropriate to compare 

discrete sample results to incremental sample results. That includes comparing a site’s incremental results 

directly to discrete background results.  

 

One option is to recollect all background data in the form of incremental samples from background 

decision units (DUs) that are designed to match site DUs in geology, area, depth, target soil particle size, 

number of increments, increment sample support. If project decision-making uses a BTV strategy to 

compare site DU results one at a time against background, then an appropriate number (the default is no 

less than 10) of background DU incremental samples would need to be collected to determine the BTV 

for the population of background DUs. However, if the existing discrete background data show 

background concentrations to be low (in comparison to site concentrations) and fairly consistent relative 

standard deviation, RSD <1, there is a second option described as follows.  

 

When a robust discrete background data set that meets the above conditions already exists, the following 

is an alternative to automatically recollecting ALL background data as incremental samples. 

 

Step 1. Identify 3 background DUs and collect at least 1 incremental sample from each for a minimum of 

3 background incremental samples. 

 

Step 2. Enter the discrete background data set (n  30) and the 3 background incremental samples into 

the BISS module (the BISS module will not run unless both data sets are entered).  

 

 The BISS module will generate a specified (default is 7) simulated incremental samples from the 

discrete data set.  
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 The module will then run a t-test to compare the simulated background incremental data set (e.g., 

with n = 7) to the actual background incremental data set (n  3).  

 

o If the t-test finds no difference between the 2 data sets, the BISS module will combine 

the 2 data sets and determine the statistical distribution, mean, standard deviation, 

potential UCLs and potential BTVs for the combined data set. Only this information will 

be supplied to the general user. The individual values of the simulated incremental 

samples will not be provided. 

 

o If the t-test finds a difference between the actual and simulated data sets, the BISS 

module will not combine the data sets nor provide a BTV. 

 

o In both cases, the BISS module will report summary statistics for the actual and 

simulated data sets.  

 

Step 3. If the BISS module reported out statistical analyses from the combined data set, select the BTV to 

use with site DU incremental sample results. Document the procedure used to generate the BTV in project 

reports. If the BISS module reported that the simulated and actual data sets were different, the historical 

discrete data set cannot be used to simulate incremental results. Additional background DU incremental 

samples will need to be collected to obtain a background DU incremental data set with the number of 

results appropriate for the intended use of the background data set. 

 

The objective of the BISS module is to take advantage of the information provided by the existing 

background discrete samples.  The availability of a large discrete data set collected from the background 

areas with geological formations and conditions comparable to the site DU(s) of interest is a requirement 

for successful application of this module. There are fundamental differences between incremental and 

discrete samples. For example, the sample support (defined in ITRC [2012]) of discrete and incremental 

samples are very different. Sample support has a profound effect on sample results so samples with 

different sample supports should not be compared directly, or compared with great caution.  

 

Since incremental sampling is a relatively new approach, the performance of the BISS module requires 

further investigation. If you would like to try this strategy for your project, or if you have questions, 

contact Deana Crumbling, crumbling.deana@epa.gov. 

 

 

 

 

mailto:crumbling.deana@epa.gov
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APPENDIX A 
 

Simulated Critical Values for Gamma GOF Tests, the Anderson-
Darling Test and the Kolmogorov-Smirnov Test & 

Summary Tables of Suggestions and Recommendations for 
UCL95s   

 

Updated Critical Values of Gamma GOF Test Statistics (New in ProUCL 5.0) 
 

For values of the gamma distribution shape parameter, k ≤ 0.2, critical values of the two gamma empirical 

distribution tests (EDF) GOF tests: Anderson-Darling (A-D) and Kolmogorov Smirnov (K-S) tests 

incorporated in ProUCL 4.1 and earlier versions have been updated in ProUCL 5.0. Critical values 

incorporated in earlier versions of ProUCL were simulated using the gamma deviate generation algorithm 

(Whittaker 1974) available at the time and with the source code provided in the book Numerical Recipes 

in C, the Art of Scientific Computing (Press et al. 1990). It is noted that the gamma deviate generation 

algorithm available at the time was not very efficient, especially for smaller values of the shape 

parameter, k  ≤ 0.1. For small values of the shape parameter, k, significant discrepancies were found in the 

critical values of the two gamma GOF test statistics obtained using the two gamma deviate generation 

algorithms: Whitaker (1974) and Marsaglia and Tsang (2000).  

 

Even though, discrepancies were identified in critical values of the two GOF tests for value of k ≤ 0.1, for 

comparison purposes, critical values of the two tests have also been re-generated for k=0.2. For values of 

k ≤ 0.2, critical values for the two gammas EDF GOF tests have been re-generated and tables of critical 

values of the two gamma GOF tests have been updated in this Appendix A.  Specifically, for values of the 

shape parameter, k (e.g., k ≤ 0.2), critical values of the two gamma GOF tests have been generated using 

the more efficient gamma deviate generation algorithm as described in Marsaglia and Tsang (2000) and 

Best (1983). Detailed description about the implementation of Marsaglia and Tsang's algorithm to 

generate gamma deviates can be found in Kroese, Taimre, and Botev (2011).  It is noted that for values of 

k > 0.1, the simulated critical values obtained using Marsaglia and Tsang's algorithm (2000) are in 

general agreement with the critical values of the two GOF test statistics incorporated in ProUCL 4.1 for 

the various values of the sample size considered. Therefore, those critical values for values of k > 0.2 

have not been updated in tables as summarized in this Appendix A. The developers double checked the 

critical values of the two GOF tests by using MatLab to generate gamma deviates. Critical values 

obtained using MatLab code are in general agreement with the newly simulated critical values 

incorporated in critical value tables summarized in this appendix.  

 

Simulation Experiments  
 

The simulation experiments performed are briefly described here. The experiments were carried out for 

various values of the sample size, n = 5(25)1, 30(50)5, 60(100)10, 200(500)100, and 1000. Here the 

notation n=5(25)1 means that n takes values starting at 5 all the way up to 25 at increments of 1 each; 

n=30(50)5 means that n takes values starting at 30 all the way up to 50 at increments of 5 each, and so on.  

Random deviates of sample size n were generated from a gamma, (k, θ), population. The considered 

values of the shape parameter, k, are: 0.025, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, and 50.0. These 

values of k cover a wide range of values of skewness, 2/√k. The distributions of the Kolmogorov-Smirnov 

(K-S) test statistic, D, and the Anderson-Darling (A-D) test statistic, A2, do not depend upon the scale 
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parameter, θ, therefore, the scale parameter, θ, has been set equal to 1 in all of the simulation experiments.  

A typical simulation experiment can be described in the following four steps.  

 

Step 1. Generate a random sample of the specified size, n, from a gamma, G (k, 1), distribution. For 

values of k>0.2, the algorithm as outlined in Whittaker (1974) was used to generate the gamma 

deviates; and for values of k ≤ 0.2, Marsaglia and Tsang's algorithm (2000) has been used to 

generate gamma deviates. 

 

Step 2. For each generated sample, compute the MLEs of k and θ (Choi and Wette 1969), and the K-S 

and the A-D test statistics (Anderson and Darling, 1954; D’Agostino and Stephens 1986; 

Schneider and Clickner 1976) using the incomplete gamma function (details can be found in 

Chapter 2 of this document). 

 

Step 3. Repeat Steps 1 and 2, a large number (iterations) of times. For values of k>0.2, 20,000 iterations 

were used to compute critical values. However, since generation of gamma deviates are quite 

unstable for smaller values of k (≤0.1), 500,000 iterations have been used to obtain the newly 

generated critical values of the two test statistics based upon Marsaglia and Tsang's algorithm. 

 

Step 4. Arrange the resulting test statistics in ascending order. Compute the 90%, 95%, and 99% 

percentiles of the K-S test statistic and the A-D test statistic.  

 

The resulting raw 10%, 5%, and 1% critical values for the two tests are summarized in Tables 1 through 6 

as follows. The critical values as summarized in Tables 1-6 are in agreement (up to 3 significant digits) 

with all available exact or asymptotic critical values (note that critical values of the two GOF tests are not 

available for values of k<1). It is also noted that the critical values for the K-S test statistic are more stable 

than those for the A-D test statistic. It is hoped that the availability of the critical values for the GOF tests 

for the gamma distribution will result in the frequent use of more practical and appropriate gamma 

distributions in environmental and other applications. 

 

Note on computation of the gamma distribution based decision statistics and critical values: While 

computing the various decision statistics (e.g., UCL and BTVs), ProUCL uses biased corrected estimates, 

kstar, 
*k̂ , and theta star, 

*̂  (described in Section 2.3.3) of the shape, k, and scale,  , parameters of the 

gamma distribution.  It is noted that the critical values for the two gamma GOF tests reported in the 

literature (D’Agostino and Stephens 1986; Schneider and Clickner 1976; Schneider 1978) were computed 

using the MLE estimates, k̂  and ̂ , of the two gamma parameters, k and . Therefore, the critical values 

of A-D and K-S tests incorporated in ProUCL have also been computed using the MLE estimates: khat, 

k̂ , and theta hat, ̂ , of the two gamma parameters, k and .  
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 Table A-1. Critical Values for A-D Test Statistic for Significance Level = 0.10 
 

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

            5 0.919726 0.802558 0.715363 0.655580 0.612 0.599 0.594 0.591 0.589 0.589 0.588 

6 0.923855 0.819622 0.735533 0.670716 0.625 0.61 0.603 0.599 0.599 0.598 0.598 

7 0.924777 0.829767 0.746369 0.684718 0.635 0.618 0.609 0.607 0.606 0.604 0.605 

8 0.928382 0.834365 0.758146 0.694671 0.641 0.624 0.616 0.612 0.61 0.609 0.608 

9 0.928959 0.840361 0.765446 0.701756 0.648 0.629 0.62 0.614 0.613 0.613 0.612 

10 0.930055 0.847992 0.771909 0.707396 0.652 0.632 0.623 0.618 0.616 0.615 0.614 

15 0.934218 0.864609 0.792009 0.727067 0.663 0.642 0.63 0.624 0.622 0.621 0.621 

16 0.934888 0.866151 0.795984 0.727392 0.665 0.642 0.632 0.626 0.624 0.622 0.621 

17 0.935586 0.866978 0.796929 0.729339 0.666 0.644 0.632 0.626 0.623 0.623 0.622 

18 0.936246 0.869658 0.799900 0.731904 0.668 0.643 0.634 0.626 0.623 0.624 0.623 

19 0.937456 0.870368 0.800417 0.732093 0.67 0.645 0.633 0.626 0.625 0.624 0.624 

20 0.937518 0.871858 0.801716 0.733548 0.669 0.645 0.633 0.627 0.626 0.624 0.624 

21 0.937751 0.874119 0.803861 0.735995 0.671 0.646 0.634 0.628 0.626 0.626 0.624 

22 0.938503 0.874483 0.804803 0.736736 0.67 0.646 0.636 0.628 0.627 0.625 0.625 

23 0.938587 0.875008 0.805412 0.737239 0.671 0.645 0.635 0.629 0.627 0.625 0.625 

24 0.939277 0.875990 0.806629 0.738236 0.672 0.647 0.635 0.628 0.627 0.626 0.625 

25 0.940150 0.876204 0.807918 0.738591 0.673 0.648 0.636 0.629 0.627 0.626 0.625 

30 0.941743 0.882689 0.811964 0.741572 0.674 0.65 0.637 0.629 0.628 0.627 0.626 

35 0.943737 0.885557 0.814862 0.743736 0.676 0.65 0.638 0.631 0.629 0.628 0.627 

40 0.945107 0.885878 0.817072 0.747438 0.677 0.651 0.637 0.631 0.629 0.628 0.628 

45 0.947909 0.887142 0.817778 0.748890 0.677 0.651 0.639 0.632 0.63 0.628 0.629 

50 0.947922 0.887286 0.818568 0.749399 0.677 0.652 0.64 0.632 0.63 0.629 0.629 

60 0.948128 0.890153 0.820774 0.749930 0.679 0.652 0.64 0.632 0.631 0.629 0.629 

70 0.948223 0.891061 0.822280 0.750605 0.679 0.653 0.641 0.633 0.63 0.63 0.63 

80 0.949613 0.891764 0.823067 0.751452 0.68 0.654 0.641 0.633 0.631 0.63 0.629 

90 0.951013 0.892197 0.823429 0.752461 0.68 0.654 0.642 0.634 0.631 0.629 0.63 

100 0.951781 0.892833 0.824216 0.752765 0.681 0.654 0.642 0.633 0.631 0.63 0.63 

200 0.952429 0.893123 0.826133 0.753696 0.682 0.654 0.642 0.634 0.631 0.631 0.63 

300 0.953464 0.893406 0.826715 0.754433 0.682 0.655 0.641 0.634 0.633 0.631 0.63 

400 0.955133 0.898383 0.827845 0.755130 0.683 0.655 0.641 0.635 0.633 0.631 0.631 

500 0.956040 0.898554 0.827995 0.755946 0.683 0.655 0.643 0.635 0.632 0.631 0.631 

1000 0.957279 0.898937 0.828584 0.757750 0.684 0.655 0.643 0.635 0.632 0.631 0.63 
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  Table A-2. Critical Values for K-S Test Statistic for Significance Level = 0.10 
 

n\k 0.025 0.050 0.10 0.2 0.50 1.0 2.0 5.0 10.0 20.0 50.0 

            
5 0.382954 0.377607 0.370075 0.358618 0.346 0.339 0.336 0.334 0.333 0.333 0.333 

6 0.359913 0.352996 0.343783 0.332729 0.319 0.313 0.31 0.307 0.307 0.307 0.307 

7 0.336053 0.329477 0.321855 0.312905 0.301 0.294 0.29 0.288 0.288 0.287 0.287 

8 0.315927 0.312018 0.305500 0.295750 0.284 0.278 0.274 0.272 0.271 0.271 0.271 

9 0.300867 0.296565 0.290030 0.280550 0.27 0.264 0.26 0.258 0.257 0.257 0.257 

10 0.286755 0.283476 0.276246 0.268807 0.257 0.251 0.248 0.246 0.245 0.245 0.245 

15 0.238755 0.237248 0.231259 0.223045 0.214 0.209 0.206 0.204 0.204 0.203 0.203 

16 0.232063 0.228963 0.224049 0.216626 0.208 0.203 0.2 0.198 0.198 0.197 0.197 

17 0.225072 0.222829 0.218089 0.211438 0.202 0.197 0.194 0.193 0.192 0.192 0.192 

18 0.218863 0.216723 0.212018 0.205572 0.197 0.192 0.189 0.188 0.187 0.187 0.187 

19 0.213757 0.211493 0.206688 0.201002 0.192 0.187 0.184 0.183 0.182 0.182 0.182 

20 0.209044 0.205869 0.202242 0.196004 0.187 0.183 0.18 0.179 0.178 0.178 0.178 

21 0.204615 0.201904 0.197476 0.191444 0.183 0.179 0.176 0.175 0.174 0.174 0.174 

22 0.199688 0.197629 0.193503 0.187686 0.179 0.175 0.172 0.171 0.17 0.17 0.17 

23 0.195776 0.193173 0.188985 0.182952 0.175 0.171 0.169 0.167 0.167 0.166 0.166 

24 0.192131 0.189663 0.185566 0.179881 0.172 0.168 0.165 0.164 0.163 0.163 0.163 

25 0.188048 0.185450 0.181905 0.176186 0.169 0.165 0.162 0.161 0.16 0.16 0.16 

30 0.172990 0.169910 0.166986 0.161481 0.155 0.151 0.149 0.147 0.147 0.147 0.147 

35 0.160170 0.158322 0.155010 0.150173 0.144 0.14 0.138 0.137 0.136 0.136 0.136 

40 0.150448 0.148475 0.145216 0.140819 0.135 0.132 0.13 0.128 0.128 0.128 0.128 

45 0.142187 0.140171 0.137475 0.133398 0.127 0.124 0.122 0.121 0.121 0.121 0.121 

50 0.135132 0.133619 0.130496 0.126836 0.121 0.118 0.116 0.115 0.115 0.115 0.115 

60 0.123535 0.122107 0.119488 0.116212 0.111 0.108 0.107 0.106 0.105 0.105 0.105 

70 0.114659 0.113414 0.110949 0.107529 0.103 0.1 0.099 0.098 0.098 0.097 0.097 

80 0.107576 0.106191 0.104090 0.100923 0.096 0.094 0.093 0.092 0.092 0.091 0.091 

90 0.101373 0.100267 0.097963 0.095191 0.091 0.089 0.088 0.087 0.086 0.086 0.086 

100 0.096533 0.095061 0.093359 0.090566 0.086 0.084 0.083 0.082 0.082 0.082 0.082 

200 0.068958 0.067898 0.066258 0.064542 0.062 0.06 0.059 0.059 0.058 0.058 0.058 

300 0.056122 0.055572 0.054295 0.052716 0.05 0.049 0.048 0.048 0.048 0.048 0.048 

400 0.048635 0.048048 0.047103 0.045745 0.044 0.043 0.042 0.042 0.042 0.041 0.041 

500 0.043530 0.042949 0.042053 0.040913 0.039 0.038 0.038 0.037 0.037 0.037 0.037 

1000 0.030869 0.030621 0.029802 0.028999 0.028 0.027 0.027 0.026 0.026 0.026 0.026 
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    Table A-3. Critical Values for A-D Test Statistic for Significance Level = 0.05 
  

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

            
5 1.151052 0.993916 0.867326 0.775584 0.711 0.691 0.684 0.681 0.679 0.679 0.678 

6 1.163733 1.015175 0.892648 0.801734 0.736 0.715 0.704 0.698 0.698 0.697 0.697 

7 1.164504 1.027713 0.910212 0.822761 0.752 0.728 0.715 0.71 0.708 0.707 0.708 

8 1.164753 1.033965 0.926242 0.835780 0.762 0.736 0.724 0.719 0.715 0.716 0.715 

9 1.165715 1.039023 0.936047 0.847305 0.771 0.743 0.73 0.723 0.722 0.721 0.721 

10 1.165767 1.051305 0.945231 0.855135 0.777 0.748 0.736 0.729 0.725 0.725 0.724 

15 1.166499 1.072701 0.971851 0.883252 0.793 0.763 0.747 0.739 0.737 0.735 0.734 

16 1.166685 1.072764 0.976822 0.883572 0.796 0.763 0.75 0.741 0.739 0.737 0.735 

17 1.168544 1.074729 0.979261 0.885946 0.798 0.766 0.749 0.742 0.739 0.738 0.737 

18 1.168987 1.076805 0.982322 0.889231 0.8 0.767 0.753 0.743 0.739 0.739 0.738 

19 1.169801 1.078026 0.983408 0.891016 0.803 0.769 0.752 0.742 0.741 0.74 0.74 

20 1.169916 1.080724 0.985352 0.892498 0.803 0.768 0.752 0.745 0.742 0.741 0.739 

21 1.170231 1.082101 0.988749 0.895978 0.805 0.77 0.754 0.745 0.743 0.743 0.741 

22 1.170651 1.083139 0.989794 0.896739 0.804 0.771 0.756 0.746 0.744 0.74 0.743 

23 1.170815 1.084161 0.990147 0.897642 0.805 0.769 0.755 0.747 0.744 0.742 0.741 

24 1.171897 1.085896 0.991640 0.898680 0.806 0.772 0.755 0.746 0.744 0.742 0.742 

25 1.173062 1.086184 0.991848 0.899874 0.807 0.773 0.756 0.747 0.745 0.743 0.742 

30 1.174361 1.095072 1.000576 0.903940 0.809 0.775 0.758 0.746 0.745 0.744 0.744 

35 1.174900 1.095964 1.000838 0.907253 0.812 0.776 0.76 0.75 0.748 0.747 0.745 

40 1.177053 1.097870 1.004925 0.909633 0.813 0.779 0.759 0.751 0.748 0.747 0.746 

45 1.178564 1.099630 1.006416 0.911353 0.813 0.777 0.761 0.753 0.748 0.748 0.747 

50 1.178640 1.100960 1.007896 0.912084 0.814 0.78 0.763 0.754 0.75 0.748 0.748 

60 1.179045 1.103255 1.009514 0.914286 0.816 0.779 0.763 0.753 0.751 0.749 0.748 

70 1.179960 1.105666 1.013808 0.914724 0.817 0.78 0.763 0.754 0.751 0.749 0.749 

80 1.180934 1.106509 1.014011 0.914808 0.819 0.782 0.763 0.754 0.75 0.751 0.748 

90 1.183445 1.106661 1.015090 0.915898 0.818 0.783 0.765 0.755 0.752 0.75 0.751 

100 1.183507 1.107269 1.015433 0.917512 0.818 0.783 0.765 0.754 0.752 0.75 0.75 

200 1.184370 1.108491 1.018998 0.920264 0.821 0.784 0.766 0.756 0.751 0.751 0.75 

300 1.186474 1.112771 1.019934 0.920502 0.822 0.784 0.766 0.757 0.755 0.751 0.752 

400 1.186711 1.113282 1.020022 0.920551 0.823 0.785 0.766 0.757 0.754 0.751 0.752 

500 1.186903 1.114064 1.020267 0.921806 0.822 0.785 0.767 0.756 0.753 0.752 0.752 

1000 1.188089 1.114697 1.020335 0.923848 0.824 0.785 0.768 0.757 0.753 0.752 0.75 
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Table A-4. Critical Values for K-S Test Statistic for Significance Level = 0.05  
 

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

            
5 0.425015 0.416319 0.405292 0.388127 0.372 0.364 0.36 0.358 0.358 0.357 0.357 

6 0.393430 0.384459 0.374897 0.364208 0.349 0.341 0.336 0.333 0.332 0.332 0.332 

7 0.367179 0.361553 0.353471 0.342709 0.327 0.32 0.315 0.313 0.312 0.311 0.311 

8 0.348874 0.342809 0.335397 0.323081 0.309 0.301 0.297 0.295 0.294 0.294 0.293 

9 0.331231 0.325179 0.317725 0.308264 0.294 0.287 0.282 0.28 0.279 0.279 0.279 

10 0.315236 0.311210 0.303682 0.294373 0.281 0.274 0.27 0.267 0.267 0.266 0.266 

15 0.262979 0.260524 0.253994 0.245069 0.234 0.228 0.224 0.222 0.222 0.221 0.221 

16 0.255659 0.251621 0.246493 0.238415 0.227 0.221 0.218 0.216 0.215 0.215 0.214 

17 0.247795 0.244721 0.240192 0.231881 0.221 0.215 0.212 0.21 0.209 0.209 0.208 

18 0.240719 0.237832 0.233566 0.226194 0.215 0.209 0.206 0.204 0.203 0.203 0.203 

19 0.235887 0.232558 0.227223 0.220341 0.21 0.204 0.201 0.199 0.199 0.198 0.198 

20 0.229517 0.227125 0.222103 0.214992 0.205 0.199 0.196 0.194 0.194 0.193 0.193 

21 0.224925 0.221654 0.217434 0.209979 0.2 0.195 0.192 0.19 0.189 0.189 0.189 

22 0.219973 0.217725 0.212415 0.205945 0.196 0.191 0.188 0.186 0.185 0.185 0.185 

23 0.215140 0.212869 0.207622 0.201004 0.192 0.187 0.184 0.182 0.182 0.181 0.181 

24 0.211022 0.208355 0.203870 0.197443 0.188 0.183 0.18 0.178 0.178 0.178 0.177 

25 0.207233 0.204154 0.200009 0.193701 0.184 0.18 0.177 0.175 0.175 0.174 0.174 

30 0.187026 0.187026 0.183312 0.177521 0.169 0.165 0.162 0.16 0.16 0.16 0.16 

35 0.176132 0.174396 0.170208 0.165130 0.157 0.153 0.151 0.149 0.149 0.148 0.148 

40 0.165449 0.163501 0.159727 0.154749 0.148 0.144 0.141 0.14 0.139 0.139 0.139 

45 0.156286 0.154614 0.151477 0.146553 0.139 0.136 0.133 0.132 0.132 0.132 0.131 

50 0.148646 0.146991 0.143731 0.139040 0.132 0.129 0.127 0.126 0.125 0.125 0.125 

60 0.135915 0.134711 0.131391 0.127762 0.121 0.118 0.116 0.115 0.115 0.114 0.114 

70 0.126014 0.124810 0.122186 0.118044 0.113 0.11 0.108 0.107 0.106 0.106 0.106 

80 0.118350 0.116873 0.114417 0.111066 0.105 0.103 0.101 0.1 0.1 0.099 0.099 

90 0.111619 0.110232 0.107708 0.104276 0.1 0.097 0.095 0.094 0.094 0.094 0.094 

100 0.106157 0.104696 0.102748 0.099320 0.095 0.092 0.091 0.09 0.089 0.089 0.089 

200 0.070489 0.074659 0.072990 0.070805 0.067 0.065 0.064 0.064 0.064 0.064 0.063 

300 0.061746 0.061067 0.059533 0.057851 0.055 0.054 0.053 0.052 0.052 0.052 0.052 

400 0.053335 0.052747 0.051917 0.050257 0.048 0.047 0.046 0.045 0.045 0.045 0.045 

500 0.047696 0.047419 0.046238 0.044893 0.043 0.042 0.041 0.041 0.04 0.04 0.04 

1000 0.034028 0.033719 0.032830 0.031659 0.03 0.03 0.029 0.029 0.029 0.029 0.029 
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Table A-5. Critical Values for A-D Test Statistic for Significance Level = 0.01 
  

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

            5 1.749166 1.518258 1.258545 1.068746 0.945 0.905 0.89 0.883 0.882 0.879 0.879 

6 1.751877 1.543508 1.305996 1.123216 0.99 0.946 0.928 0.918 0.916 0.911 0.912 

7 1.752404 1.556906 1.332339 1.162744 1.019 0.979 0.951 0.944 0.938 0.935 0.938 

8 1.752700 1.561426 1.358108 1.187751 1.044 0.99 0.97 0.961 0.955 0.956 0.953 

9 1.758051 1.567347 1.372050 1.210845 1.058 1.007 0.984 0.967 0.968 0.969 0.967 

10 1.759366 1.575002 1.384541 1.218849 1.071 1.018 0.994 0.981 0.977 0.975 0.973 

15 1.762174 1.593432 1.418705 1.263841 1.1 1.048 1.018 1.002 0.999 0.997 0.999 

16 1.763292 1.596448 1.422813 1.273189 1.112 1.047 1.019 1.007 1.004 1 0.999 

17 1.763403 1.599618 1.425118 1.273734 1.11 1.053 1.023 1.008 1.004 1.003 1 

18 1.763822 1.599735 1.435826 1.274053 1.116 1.054 1.027 1.015 1.006 1.005 1.003 

19 1.764890 1.603396 1.441772 1.278280 1.115 1.059 1.026 1.013 1.01 1.006 1.008 

20 1.765012 1.604198 1.443435 1.279990 1.118 1.056 1.031 1.016 1.012 1.005 1.009 

21 1.765021 1.604737 1.446116 1.281092 1.126 1.057 1.031 1.017 1.013 1.013 1.008 

22 1.765611 1.605233 1.448791 1.284002 1.119 1.062 1.036 1.023 1.014 1.011 1.013 

23 1.765703 1.609641 1.449964 1.288792 1.125 1.059 1.034 1.017 1.02 1.012 1.013 

24 1.766530 1.609644 1.451442 1.289696 1.126 1.065 1.035 1.02 1.015 1.012 1.013 

25 1.766655 1.609908 1.451659 1.290311 1.127 1.064 1.038 1.021 1.017 1.014 1.013 

30 1.771265 1.617605 1.462230 1.295794 1.133 1.072 1.044 1.023 1.023 1.019 1.018 

35 1.772614 1.620179 1.465890 1.296988 1.136 1.072 1.045 1.027 1.025 1.021 1.018 

40 1.772920 1.622877 1.468763 1.304213 1.138 1.076 1.046 1.03 1.027 1.023 1.022 

45 1.774318 1.624156 1.469148 1.308833 1.141 1.074 1.048 1.036 1.03 1.026 1.024 

50 1.775401 1.630356 1.471192 1.311004 1.142 1.079 1.053 1.034 1.029 1.028 1.025 

60 1.777021 1.630972 1.474981 1.312242 1.144 1.079 1.054 1.032 1.032 1.029 1.03 

70 1.780583 1.634413 1.477148 1.313856 1.145 1.079 1.055 1.038 1.031 1.031 1.028 

80 1.782174 1.636678 1.481082 1.315184 1.15 1.085 1.055 1.036 1.033 1.032 1.029 

90 1.786462 1.637946 1.483922 1.316508 1.149 1.086 1.056 1.038 1.034 1.031 1.033 

100 1.788600 1.639307 1.484231 1.318003 1.149 1.085 1.054 1.042 1.035 1.033 1.032 

200 1.789565 1.640278 1.486139 1.318714 1.156 1.089 1.059 1.041 1.031 1.032 1.033 

300 1.791785 1.640656 1.489654 1.322935 1.154 1.09 1.058 1.043 1.038 1.033 1.031 

400 1.796178 1.641470 1.491079 1.323876 1.158 1.093 1.057 1.043 1.039 1.035 1.034 

500 1.799037 1.642244 1.491158 1.328415 1.155 1.089 1.057 1.047 1.04 1.034 1.034 

1000 1.810595 1.642639 1.492652 1.328852 1.157 1.092 1.06 1.043 1.035 1.036 1.031 
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  Table A-6. Critical Values for K-S Test Statistic for Significance Level = 0.01 
 

n\k 0.025 0.050 0.10 0.2 0.50 1.0 2.0 5.0 10.0 20.0 50.0 

            5 0.495311 0.482274 0.467859 0.449435 0.431 0.421 0.414 0.41 0.41 0.408 0.408 

6 0.464286 0.454103 0.441814 0.423777 0.402 0.391 0.385 0.382 0.381 0.38 0.38 

7 0.437809 0.426463 0.411589 0.398890 0.38 0.369 0.362 0.36 0.358 0.357 0.357 

8 0.412467 0.404538 0.392838 0.379962 0.36 0.349 0.344 0.34 0.339 0.339 0.338 

9 0.390183 0.383671 0.375103 0.361937 0.343 0.333 0.327 0.323 0.323 0.322 0.322 

10 0.373002 0.368362 0.358647 0.348328 0.328 0.318 0.312 0.309 0.308 0.308 0.307 

15 0.310445 0.307559 0.300791 0.289751 0.274 0.266 0.261 0.258 0.257 0.257 0.256 

16 0.302682 0.298348 0.290148 0.280643 0.266 0.258 0.253 0.251 0.25 0.249 0.249 

17 0.294519 0.289320 0.283394 0.274722 0.259 0.251 0.246 0.244 0.243 0.242 0.242 

18 0.285220 0.280990 0.276126 0.265561 0.252 0.245 0.24 0.237 0.236 0.236 0.236 

19 0.277810 0.275460 0.269173 0.260992 0.246 0.238 0.234 0.232 0.231 0.23 0.23 

20 0.271994 0.268927 0.261936 0.253878 0.24 0.233 0.228 0.226 0.225 0.225 0.225 

21 0.266096 0.262728 0.256686 0.247915 0.235 0.228 0.223 0.221 0.22 0.22 0.219 

22 0.260430 0.256537 0.251727 0.242711 0.23 0.223 0.219 0.216 0.216 0.215 0.215 

23 0.254210 0.252405 0.245607 0.236271 0.225 0.218 0.215 0.212 0.211 0.211 0.21 

24 0.249574 0.246722 0.240947 0.233143 0.221 0.214 0.21 0.208 0.207 0.207 0.206 

25 0.246298 0.242298 0.236164 0.228867 0.216 0.21 0.206 0.204 0.203 0.203 0.203 

30 0.220685 0.222267 0.217254 0.209442 0.199 0.193 0.189 0.187 0.186 0.186 0.185 

35 0.208407 0.206958 0.202296 0.194716 0.185 0.179 0.176 0.174 0.173 0.173 0.172 

40 0.196230 0.193613 0.188617 0.182935 0.173 0.168 0.165 0.163 0.162 0.162 0.162 

45 0.185995 0.183011 0.179728 0.173141 0.164 0.158 0.156 0.154 0.154 0.153 0.153 

50 0.176191 0.173662 0.170513 0.163792 0.156 0.151 0.148 0.146 0.146 0.146 0.145 

60 0.161519 0.158802 0.155658 0.150458 0.143 0.138 0.136 0.134 0.134 0.133 0.133 

70 0.149283 0.148241 0.144542 0.139590 0.132 0.128 0.126 0.124 0.124 0.124 0.124 

80 0.139831 0.138103 0.135441 0.131479 0.124 0.12 0.118 0.117 0.116 0.116 0.116 

90 0.132254 0.130746 0.127231 0.123253 0.117 0.114 0.111 0.11 0.11 0.109 0.11 

100 0.126224 0.123308 0.121414 0.117441 0.111 0.108 0.106 0.105 0.104 0.104 0.104 

200 0.085150 0.088338 0.086339 0.083391 0.079 0.077 0.075 0.074 0.074 0.074 0.074 

300 0.073232 0.072401 0.071096 0.068521 0.065 0.063 0.062 0.061 0.061 0.061 0.06 

400 0.063283 0.062708 0.061239 0.059235 0.056 0.054 0.053 0.053 0.053 0.053 0.053 

500 0.056181 0.056147 0.054822 0.053042 0.05 0.049 0.048 0.047 0.047 0.047 0.047 

1000 0.040020 0.039807 0.038938 0.036987 0.036 0.035 0.034 0.034 0.033 0.033 0.033 
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         Table A-7. Skewness as a Function of σ (or its MLE, sy = σ̂ ), sd of log(X) 

 

Standard Deviation of 

Logged Data 

                 Skewness 

σ < 0.5 Symmetric to mild skewness 

0.5 ≤ σ < 1.0 Mild skewness to moderate skewness 

1.0 ≤ σ < 1.5 Moderate skewness to high skewness 

1.5 ≤ σ < 2.0 High skewness  

2.0 ≤ σ < 3.0 
Very high skewness (moderate probability of 

outliers and/or multiple populations) 

σ ≥ 3.0 
Extremely high skewness (high probability of 

outliers and/or multiple populations) 

 
Table A-8. Summary Table for the Computation of a 95% UCL of the Unknown Mean, μ1, 

of a Gamma Distribution 

 

 
*k̂ (Skewness 

Bias Adjusted) 
Sample Size, n Suggestion 

*k̂  > 1.0 n>=50 

Approximate gamma 95% UCL (Gamma KM or  

GROS) 

 

*k̂  > 1.0 n<50 
Adjusted gamma 95% UCL (Gamma KM or GROS)  

 

*k̂  ≤ 1.0 n < 15 
95% UCL based upon bootstrap-t 

or Hall’s bootstrap method* 

*k̂  ≤1.0 n ≥ 15, n<50 

Adjusted gamma 95% UCL (Gamma KM) if 

available, otherwise use approximate gamma 95% 

UCL(Gamma KM) 

 
*k̂  ≤1.0 n ≥ 50 Approximate gamma 95% UCL (Gamma KM) 

 

*In case the bootstrap-t or Hall’s bootstrap methods yield erratic, inflated, and unstable UCL values, the 

UCL of the mean should be computed using an adjusted gamma UCL. 
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Table A-9. Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ1, 

of a Lognormal Population 

 

σ̂  Sample Size, n Suggestions 

σ̂  < 0.5 For all n Student’s t, modified-t, or H-UCL 

0.5 ≤ σ̂  < 1.0 For all n H-UCL 

1.0 ≤ σ̂  < 1.5 
n < 25 95% Chebyshev (Mean, Sd) UCL 

n ≥ 25 H-UCL 

 

1.5 ≤ σ̂  < 2.0 

n < 20 97.5% or 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 95% Chebyshev (Mean, Sd) UCL 

n ≥ 50 H-UCL 

 

2.0 ≤ σ̂  < 2.5 

 

n < 20 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 ≤ n < 70 95% Chebyshev (Mean, Sd) UCL 

n ≥ 70 H-UCL 

2.5 ≤ σ̂  < 3.0 

n < 30 99% Chebyshev (Mean, Sd) 

30 ≤ n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 ≤ n < 100 95% Chebyshev (Mean, Sd) UCL 

n ≥ 100 H-UCL 

 

3.0 ≤ σ̂ ≤ 3.5** 

 

n < 15 Bootstrap-t or Hall’s bootstrap method* 

15 ≤ n < 50 99% Chebyshev(Mean, Sd) 

50 ≤ n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 ≤ n < 150 95% Chebyshev (Mean, Sd) UCL 

n ≥ 150 H-UCL 

σ̂  > 3.5** For all n Use nonparametric methods* 

*In the case that Hall’s bootstrap or bootstrap-t methods yield an erratic unrealistically large UCL value, 

UCL of the mean may be computed based upon the Chebyshev inequality: Chebyshev (Mean, Sd) UCL 

 

** For highly skewed data sets with σ̂  exceeding 3.0, 3.5, it is suggested that the user pre-process the 

data. It is very likely that the data include outliers and/or come from multiple populations. The population 

partitioning methods may be used to identify mixture populations present in the data set.  
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Table A-10. Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ1, 

Based upon a Skewed Data Set (with all Positive Values) without a Discernible 

Distribution, Where σ̂  is the sd of Log-transformed Data 
 

σ̂  Sample Size, n Suggestions 

σ̂  < 0.5 For all n 
Student’s t, modified-t, or H-UCL 

Adjusted CLT UCL, BCA Bootstrap UCL 

0.5 ≤ σ̂  < 1.0 For all n 95% Chebyshev (Mean, Sd) UCL 

1.0 ≤ σ̂  < 1.5 For all n 95% Chebyshev (Mean, Sd) UCL 

1.5 ≤ σ̂  < 2.0 
n < 20 97.5% Chebyshev (Mean, Sd) UCL 

20 ≤ n  95% Chebyshev (Mean, Sd) UCL 

2.0 ≤ σ̂  < 2.5 

 

n < 15 Hall’s bootstrap method 

15 ≤  n < 20 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 ≤ n  95% Chebyshev (Mean, Sd) UCL 

2.5 ≤ σ̂  < 3.0 

n < 15 Hall’s bootstrap method 

15 ≤ n < 30 99% Chebyshev (Mean, Sd) 

30 ≤ n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 ≤ n  95% Chebyshev (Mean, Sd) UCL 

 

3.0 ≤ σ̂ ≤ 3.5** 

 

n < 15 Hall’s bootstrap method* 

15 ≤ n < 50 99% Chebyshev(Mean, Sd) UCL 

50 ≤ n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 ≤ n  95% Chebyshev (Mean, Sd) UCL 

σ̂  > 3.5** For all n 99% Chebyshev (Mean, Sd) UCL 

*If Hall’s bootstrap method yields an erratic and unstable UCL value (e.g., happens when outliers are 

present), a UCL of the population mean may be computed based upon the 99% Chebyshev (Mean, Sd) 

method.  

 

** For highly skewed data sets with σ̂  exceeding 3.0 to 3.5, it is suggested that the user pre-process the 

data. Data sets with such high skewness are complex and it is very likely that the data include outliers 

and/or come from multiple populations. The population partitioning methods may be used to identify 

mixture populations present in the data set.  

 

Notes: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most 

appropriate 95% UCL. These suggestions are based upon the results of the simulation studies summarized 

in Singh, Singh, and Iaci (2002).  For additional insight, the user may want to consult a statistician. 
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 APPENDIX B 
 

Large Sample Size Requirements to use the Central Limit 
Theorem on Skewed Data Sets to Compute an Upper Confidence 

Limit of the Population Mean 
 

As mentioned earlier, the main objective of the ProUCL software funded by the USEPA is to compute 

accurate and defensible decision statistics to help the decision makers in making reliable decisions which 

are cost-effective, and protective of human health and the environment. ProUCL software is based upon 

the philosophy that rigorous statistical methods can be used to compute the correct estimates of the 

population parameters (e.g., site mean, background percentiles) and decision making statistics including 

the upper confidence limit (UCL) of the population mean, the upper tolerance limit (UTL), and the upper 

prediction limit (UPL) to help decision makers and project teams in making decisions. The use and 

applicability of a statistical method (e.g., Student's t-UCL, CLT-UCL, adjusted gamma-UCL, Chebyshev 

UCL, bootstrap-t UCL) depend upon data size, data skewness, and data distribution. ProUCL computes 

decision statistics using several parametric and nonparametric methods covering a wide-range of data 

variability, skewness, and sample size. A couple of UCL computation methods described in the statistical 

text books (e.g., Hogg and Craig, 1995) based upon the Student's t-statistic and the Central Limit 

Theorem (CLT) alone cannot address all scenarios and situations commonly occurring in the various 

environmental studies.  

 

Moreover, the properties of the CLT and Student's t-statistic are unknown when NDs with varying DLs 

are present in a data set - a common occurrence in data sets originating from environmental applications. 

The use of a parametric lognormal distribution on a lognormally distributed data set tends to yield 

unstable impractically large UCLs values, especially when the standard deviation (sd) of the log-

transformed data is greater than 1.0 and the data set is of small size such as less than 30-50 (Hardin and 

Gilbert 1993; Singh, Singh, and Engelhardt, 1997). Many environmental data sets can be modeled by a 

gamma as well as a lognormal distribution. Generally, the use of a gamma distribution on gamma 

distributed data sets yields UCL values of practical merit (Singh, Singh, and Iaci 2002). Therefore, the use 

of gamma distribution-based decision statistics such as UCLs, upper prediction limits (UPLs), and UTLs 

should not be dismissed just because it is easier to use a lognormal model. The advantages of computing 

the gamma distribution-based decision statistics have been discussed in Chapters 2 through 5 of this 

technical guidance document. 

 

Since many environmental decisions are made based upon a 95% UCL (UCL95) of the population mean, 

it is important to compute UCLs and other decision making statistics of practical merit.  In an effort to 

compute correct and appropriate UCLs of the population mean and other decision making statistics, in 

addition to computing the Student's t statistic and the CLT based decision statistics (e.g., UCLs, UPLs), 

significant effort has been made to incorporate rigorous statistical methods based UCLs in ProUCL 

software covering a wide-range of data skewness and sample sizes (Singh, Singh, and Engelhardt 1997; 

Singh, Singh, and Iaci 2002). It is anticipated that the availability of the statistical limits in the ProUCL 

covering a wide range of environmental data sets will help decision makers in making more informative 

and defensible decisions at Superfund and RCRA sites. 

 

It is noted that even for skewed data sets, practitioners tend to use the CLT or Student's t-statistic based 

UCLs of the mean for samples of sizes 25-30 (large sample rule-of-thumb to use CLT). However, this 

rule-of-thumb does not apply to moderately skewed to highly skewed data sets, specifically when σ (sd of 
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the log-transformed data) starts exceeding 1. It should be noted that the large sample requirement depends 

upon the skewness of the data distribution under consideration. The large sample requirement for the 

sample mean to follow an approximate normal distribution increases with skewness. It is noted that for 

skewed data sets, even samples of size greater 100 may not be large enough for the sample mean to 

follow an approximate normal distribution (Figures B-1 through B-7 below) and the UCLs based upon the 

CLT and Student's t statistics fail to provide the desired 95% coverage of the population mean for samples 

of sizes as large as 100 as can be seen in Figures B-1 through B-7. 

 

Noting that the Student's t-UCL and the CLT-UCL fail to provide the specified coverage of the 

population mean of skewed distributions, several researchers, including Chen (1995), Johnson (1978), 

Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton (1993), proposed adjustments for data 

skewness in the Student's t statistic and the CLT. They suggested the use of a modified-t-statistic and 

skewness adjusted CLT for positively skewed distributions (for details see Chapter 2 of this Technical 

Guide). From statistical theory, the CLT yields UCL results slightly smaller than the Student's t-UCL and 

the adjusted CLT, and the Student's t-statistic yield UCLs smaller than the modified t-UCLs (details in 

Chapter 2 of this document). Therefore, only the modified t-UCL has been incorporated in the simulation 

results described in the following. Specifically, if a UCL95 based upon the modified t-statistic fails to 

provide the specified coverage to the population mean, then the other three UCL methods, Student's t-

UCL, CLT-UCL, and the adjusted CLT-UCL, will also fail to provide the specified coverage of the 

population mean. The simulation graphs summarized in this appendix suggest that the skewness adjusted 

UCLs such as the Johnson’s modified-t UCL (and therefore Student's t-UCL and CLT-UCL) do not 

provide the specified coverage to the population mean even for mildly to moderately skewed (σ in [0.5, 

1.0]) data sets. The coverage of the population mean provided by these UCLs becomes worse (much 

smaller than the specified coverage) for highly skewed data sets.  

 

The graphical displays, shown in Figures B-1 through B-7, cover mildly, moderately, and highly skewed 

data sets. Specifically, Figures B-1 through B-7 compare the UCL95 of the mean based upon parametric 

and nonparametric bootstrap methods and also UCLs computed using the modified-t UCL for mildly 

skewed (G(5,50), LN(5,0.05)); moderately skewed (G(2,50), LN(5,1)); and highly skewed (G(0.5, 50), 

G(1,50), and LN(5,1.5)) data distributions. From the simulation results presented in Figures B-1 through 

B-7, it is noted that for skewed distributions, as expected the UCLs based on the modified t-statistic (and 

therefore UCLs based upon the CLT and the Student's t-statistic) fail to provide the desired 95% coverage 

of the population mean of gamma distributions: G(0.5,50), G(1,50), G(2,50); and of lognormal 

distributions: LN(5,0.5), LN(5,1), LN(5,1.5) for samples of sizes as large as 100; and the large sample 

size requirement increases as the skewness increases.  

 

The use of the CLT -UCL and Student's t-UCL underestimate the population mean/ EPC for most skewed 

data sets.  
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    Figure B-1. Graphs of Coverage Probabilities by 95% UCLs of the mean of G (k=0.50, ϴ=50) 
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Figure B-3. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=2.00, ϴ=50) 

 
Figure B-2. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=1.00, ϴ=50) 
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Figure B-5. Graphs of Coverage Probabilities by UCLs of Mean of LN(µ=5, σ=0.5) 

 
Figure B4. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=5.00, ϴ=50) 
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Figure B-7. Graphs of Coverage Probabilities by UCLs of Mean of LN(µ=5, σ=1.5) 

 

 
Figure B-6. Graphs of Coverage Probabilities by UCLs of Mean of LN(µ=5, σ=1.0)
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