CASTNET 2015 Annual Report

Prepared for:

U.S. Environmental Protection Agency Office of Atmospheric Programs

Prepared by:

1128 NW 39th Drive Gainesville, FL 32605

Contract No.: EP-W-12-019

June 2016

Table of Contents

1.0 Intr	oduction		1-1
2.0 Pro	ect Objectives		2-1
3.0 CAS	TNET Sites Visited	d in 2015	3-1
4.0 Peri	ormance and Audi	t Results	4-1
4.1	Ozone		4-2
4.2	Flow Rate		4-3
4.3	Shelter Temperature		4-3
4.4	Wind Speed		4-7
	4.4.1 Wind Speed St	arting Threshold	4-7
4.5	Wind Direction		4-7
	4.5.1 Wind Direction	n Starting Threshold	4-7
4.6	Temperature and Tw	o-Meter Temperature	4-8
	4.6.1 Temperature S	hield Blower Motors	4-9
4.7	Relative Humidity		4-9
4.8	Solar Radiation		4-12
4.9	Precipitation		4-12
4.10	Data Acquisition Sys	stems (DAS)	4-13
	4.10.1 Analog Tes	st	4-13
	4.10.2 Functional	ity Tests	4-13
5.0 Syst	ems Audit Results		5-1
5.1	Siting Criteria		5-1
5.2	Sample Inlets		5-1
5.3	Infrastructure		5-2
5.4	Site Operators		5-2
5.5	Documentation		5-2
5.6	Site Sensor and FSA	D Identification	5-3
6.0 Sun	mary and Recomm	nendations	6-1
6.1	In Situ Comparisons		6-1
7 0 Dof	won oog		7 1

List of Appendices

Appendix 1. Audit Standards Certifications

List of Tables

Table 2-1.	Performance Audit Challenge and Acceptance Criteria	2-1
Table 3-1.	Site Audits	3-1
Table 3-2.	Site Ozone PE Visits	3-3
Table 4-1.	Performance Audit Results by Variable Tested	4-1
Table 4-2.	Performance Audit Results for Ozone, Shelter Temperature, and Flow Rate	4-4
Table 4-3.	Performance Audit Results for Wind Sensors	4-8
Table 4-4.	Performance Audit Results for Temperature and Relative Humidity	. 4-10
Table 4-5.	Performance Audit Results for Solar Radiation and Precipitation	. 4-13
Table 4-6.	Performance Audit Results for Data Acquisition Systems	. 4-14

List of Acronyms and Abbreviations

% diff percent difference

A/D analog to digital converter

AQS Air Quality System

ARS Air Resource Specialists, Inc.

ASTM American Society for Testing and Materials

BLM Bureau of Land Management

CASTNET Clean Air Status and Trends Network

DAS data acquisition system

DC direct current

deg degree

DVM digital voltmeter

EEMS Environmental, Engineering & Measurement Services, Inc.

EPA U.S. Environmental Protection Agency
ESC Environmental Systems Corporation

FSAD Field Site Audit Database

g-cm gram centimeter

GPS goblal positioning system

k kilo (1000) km kilometer

lpm liters per minute
MLM Multilayer Model
m/s meters per second

mv millivolt

NIST National Institute of Standards and Technology NOAA National Oceanic and Atmospheric Administration

NPS National Park Service

OAQPS Office of Air Quality Planning and Standards

QAPP Quality Assurance Project Plan SOP standard operating procedure

TEI Thermo Environmental Instruments
USNO United States Naval Observatory

V volts

WRR World Radiation Reference

1.0 Introduction

The Clean Air Status and Trends Network (CASTNET) is a national air monitoring program developed under mandate of the 1990 Clean Air Act Amendments. Each site in the network measures acidic gases and particles and other forms of atmospheric pollution using a continuous collection filter aggregated over a one week period. Hourly averages of surface ozone concentrations and selected meteorological variables are also measured.

Site measurements are used to estimate deposition rates of the various pollutants with the objective of determining relationships between emissions, air quality, deposition, and ecological effects. In conjunction with other national monitoring networks, CASTNET data are used to determine the effectiveness of national emissions control programs and to assess temporal trends and spatial deposition patterns in atmospheric pollutants. CASTNET data are also used for long-range transport model evaluations and effects research.

Historically, CASTNET pollutant flux measurements have been reported as the aggregate product of weekly measured concentrations and model-estimated deposition velocities. The Multi-layer Model (MLM) was used to derive deposition velocity estimates from on-site meteorological parameters, land use types, and site characteristics. In 2011, EPA discontinued meteorological measurements at most EPA-sponsored CASTNET sites. Currently, average historical deposition velocities are used to estimate dry deposition fluxes (Bowker et al 2011).

As of 2011, nearly all CASTNET ozone monitors adhere to the requirements of 40 CFR Part 58, and ozone concentration and quality assurance data are submitted to the Air Quality System (AQS) database. Currently 80 sites at 78 distinct locations measure ground-level ozone concentrations.

As of January 2016, the network is comprised of approximately 94 active rural sampling sites across the United States and Canada, cooperatively operated by the Environmental Protection Agency (EPA), the National Park Service (NPS), Environment Canada, Wyoming's Bureau of Land Management (BLM-WY), and several independent partners. AMEC Foster Wheeler is responsible for operating the EPA and Environment Canada sponsored sites, and Air Resource Specialists, Inc. (ARS) is responsible for operating the NPS and Bureau of Land Management (BLM) sponsored sites. All sites collect filter samples for flux estimates.

2.0 Project Objectives

The objectives of this project are to establish an independent and unbiased program of performance and systems audits for all CASTNET sampling sites. Ongoing Quality Assurance (QA) programs are an essential part of any long-term monitoring network.

Performance audits verify that all evaluated parameters are consistent with the accuracy goals as defined in the CASTNET Quality Assurance Project Plan (QAPP). The parameter specific accuracy goals are presented in Table 2-1.

Due to budgetary necessity, the meteorological measurements were recently shifted to operating on an as-funded basis. The meteorological sensors were audited on an as directed basis.

Table 2-1. Performance Audit Challenge and Acceptance Criteria

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Precipitation	Response	10 manual tips	1 DAS count per tip
Precipitation	Accuracy	2 introductions of known amounts of water	$\leq \pm 10.0\%$ of input amount
Relative Humidity	Accuracy	Compared to reference instrument or standard solution	≤±10.0%
Solar Radiation	Accuracy	Compared to WRR traceable standard	\leq ±10.0% of daytime average
Surface Wetness	Response	Distilled water spray mist	Positive response
Surface Wetness	Sensitivity	1% decade resistance	N/A
Temperature	Accuracy	Comparison to 3 NIST measured baths (~ 0° C, ambient, ~ full-scale)	≤± 0.5° C
Delta Temperature	Accuracy	Comparison to temperature sensor at same test point	≤± 0.50° C

Sensor	Parameter	Audit Challenge	Acceptance Criteria		
Wind Direction	Orientation Accuracy	Parallel to alignment rod/crossarm, or sighted to distant point	≤±5° from degrees true		
Wind Direction	Linearity	Eight cardinal points on test fixture	≤±5° mean absolute error		
Wind Direction	Response Threshold	Starting torque tested with torque gauge	< 10 g-cm Climatronics; < 20 g-cm R. M. Young		
Wind Speed	Accuracy	Shaft rotational speed generated and measured with certified synchronous motor	$\leq \pm 0.5$ mps below 5.0 mps input; $\leq \pm 5.0\%$ of input at or above 5.0 mps		
Wind Speed	Starting Threshold	Starting torque tested with torque gauge	< 0.5 g-cm		
Mass Flow Controller	Flow Rate	Comparison with Primary Standard	\leq ± 5.0% of designated rate		
	Slope		$0.9000 \le m \le 1.1000$		
0	Intercept	Linear regression of multi- point test gas concentration as measured with a certified transfer standard	$-5.0 \text{ ppb} \le b \le 5.0 \text{ ppb}$		
Ozone	Correlation Coefficient	transfer standard	$-5.0 \text{ ppb} \le \text{b} \le 5.0 \text{ ppb}$ $0.9950 \le \text{r}$		
	Percent Difference	Comparison with Standard Concentration	$0.9950 \le r$ $\le \pm 10.0\%$ of test gas concentration		
DAS	Accuracy	Comparison with certified standard	$\leq \pm 5.0\%$ of input at or above 5.0 mps < 0.5 g-cm $\leq \pm 5.0\%$ of designated rate $= 0.9000 \leq m \leq 1.1000$ $= -5.0$ ppb $\leq b \leq 5.0$ ppb $= 0.9950 \leq r$		

In addition to the accuracy goals defined in the CASTNET QAPP the ozone monitors fall under the requirements of 40 CFR, Part 58 Appendix A, for quality assurance. To comply with Appendix A, the CASTNET audit program includes annual independent ozone performance evaluations (PE). The EEMS field scientists who conduct ozone PE maintain annual certification from the Office of Air Quality Planning and Standards (OAQPS). Methods and procedures used are compliant with the National Performance Audit Program (NPAP).

Performance audits are conducted using standards that are certified as currently traceable to the National Institute of Standards and Technology (NIST) or another authoritative organization. All standards are certified annually with the exception of ozone standards which are verified as level 2 standards at EPA regional labs at least twice per year.

Site systems audits are intended to provide a qualitative appraisal of the total measurement system. Site planning, organization, and operation are evaluated to ensure that good Quality Assurance/Quality Control (QA/QC) practices are being applied. At a minimum the following audit issues are addressed at each site systems audit:

- Site locations and configurations match those provided in the CASTNET QAPP.
- Meteorological instruments are in good physical and operational condition and are sited to meet EPA ambient monitoring guidelines (EPA-600/4-82-060).
- Sites are accessible, orderly, and if applicable, compliant with OSHA safety standards.
- Sampling lines are free of leaks, kinks, visible contamination, weathering, and moisture.
- Site shelters provide adequate temperature control.
- All ambient air quality instruments are functional, being operated in the appropriate range, and the zero air supply desiccant is unsaturated.
- All instruments are in current calibration.
- Site documentation (maintenance schedules, on-site SOPs, etc.) is current and log book records are complete.
- All maintenance and on-site SOPs are performed on schedule.
- Corrective actions are documented and appropriate for required maintenance/repair activity.
- Site operators demonstrate an adequate knowledge and ability to perform required site activities, including documentation and maintenance activities.

3.0 CASTNET Sites Visited in 2015

This report covers the CASTNET sites audited in 2015. Only those variables that were supported by the CASTNET program were audited. From February through December 2015, EEMS conducted field performance and systems audits at 55 monitoring sites at 53 separate locations. Eight of the sites audited operated a full complement of meteorological sensors. The locations, sponsor agency and dates of the audits along with states and EPA Regions are presented in Table 3-1.

Table 3-1. Site Audits

Site ID	Sponsor Agency	Site Location State and EPA Region		Audit dates
EVE419	NPS/EPA	Everglades NP	FL / R4	2/10/2015
CAD150	EPA	Caddo Valley	AR / R6	2/27/2015
CVL151	EPA	Coffeeville	MS / R4	2/28/2015
CDZ171	EPA	Cadiz	KY / R4	3/13/2015
MCK131	EPA	Mackville	KY / R4	3/15/2015
MCK231	EPA	Mackville (precision site)	KY / R4	3/15/2015
MAC426	NPS	Mammoth Cave NP	KY / R4	3/17/2015
CKT136	EPA	Crockett	KY / R4	3/18/2015
CHE185	EPA	Cherokee Nation	OK / R6	4/6/2015
ALC188	EPA	Alabama-Coushatta	TX / R6	4/8/2015
BBE401	NPS/EPA	Big Bend NP	TX / R6	4/13/2015
PAL190	EPA	Palo Duro	TX / R6	4/17/2015
SEK430	NPS	Sequoia NP - Ash Mountain	CA / R9	4/27/2015
YOS404	NPS	Yosemite NP	CA / R9	4/28/2015
PIN414	NPS	Pinnacles NM	CA / R9	4/29/2015
SAN189	EPA	Santee Sioux	NE / R7	4/30/2015
KIC003	EPA	Kickapoo Tribe	KS / R7	5/4/2015
KNZ184	EPA	Konza Prairie	KZ / R7	5/4/2015
LAV410	NPS	Lassen Volcanic NP	CA / R9	5/26/2015

Site ID	Sponsor Agency	Site Location State an Regi		Audit dates	
OXF122	EPA	Oxford	OH / R5	5/31/2015	
DCP114	EPA	Deer Creek St. Park	OH / R5	6/4/2015	
QAK172	EPA	Quaker City	OH / R5	6/5/2015	
GTH161	EPA	Gothic	CO / R8	7/2/2015	
CNT169	EPA	Centennial	WY / R8	7/24/2015	
GLR468	NPS	Glacier NP	MT / R8	7/28/2015	
ROM206	EPA	Rocky Mountain NP	CO / R8	8/3/2015	
ROM406	NPS	Rocky Mountain NP (NPS)	CO / R8	8/4/2015	
THR422	NPS	Theodore Roosevelt NP	ND / R8	8/4/2015	
PND165	EPA	Pinedale	WY / R8	8/10/2015	
YEL408	NPS	Yellowstone NP	WY / R8	8/13/2015	
BAS601	EPA	Basin	WY / R8	8/14/2015	
SHE604	EPA	Sheridan	WY / R8	8/18/2015	
BUF603	EPA	Buffalo	WY / R8	8/19/2015	
NEC602	EPA	Newcastle	WY / R8	8/20/2015	
WNC429	NPS	Wind Cave NP	SD / 58	8/21/2015	
PRK134	EPA	Perkinstown	WI / R5	9/3/2015	
VIN140	EPA	Vincennes	IN / R5	9/7/2015	
VOY413	NPS	Voyageurs NP	MN / R5	9/8/2015	
STK138	EPA	Stockton	IL/R5	9/11/2015	
BVL130	EPA	Bondville	IL/R5	9/14/2015	
ALH157	EPA	Alhambra	IL / R5	9/16/2015	
WFM105	EPA	Whiteface Mountain	NY / R2	10/1/2015	
NIC001	EPA	Nicks Lake	NY / R2	10/2/2015	
UND002	EPA	Underhill	VT / R1	10/5/2015	
GRS420	NPS	Great Smoky Mountains NP	TN / R4	10/26/2015	

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
LRL117	EPA	Laurel Hill St. Park	PA / R3	11/1/2015
SHN418	NPS/EPA	Shenandoah NP - Big Meadows	VA / R3	11/6/2015
WSP144	EPA	Washington Crossing St. Park	NJ / R2	11/9/2015
VPI120	EPA	Horton Station	VA / R3	11/19/2015
PAR107	EPA/USFS	Parsons	WV / R3	11/21/2015
CDR119	EPA	Cedar Creek St. Park	WV / R3	11/22/2015
BWR139	EPA	Blackwater NWR	MD / R3	11/24/2015
CND125	EPA	Candor	NC / R4	12/1/2015
PED108	EPA	Prince Edward	VA / R3	12/3/2015
BFT142	EPA	Beaufort	NC / R4	12/4/2015

In addition to the sites listed in Table 3-1 that were visited for complete systems and performance audits, the 31 sites listed in Table 3-2 were visited to conduct NPAP Through-The-Probe (TTP) ozone Performance Evaluations (PE).

Table 3-2. Site Ozone PE Visits

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
SUM156	EPA/USFS	Sumatra	FL / R4	2/10/2015
IRL141	EPA/SJRWMD	Indian River Lagoon	FL/R4	2/11/2015
GAS153	EPA	Georgia Station	GA / R4	2/25/2015
SND152	EPA	Sand Mountain AL / R4		3/1/2015
SPD111	EPA	Speedwell	TN / R4	3/19/2015
COW137	EPA/USFS	Coweeta	NC / R4	3/20/2015
ESP127	EPA	Edgar Evins St. Park	TN / R4	3/26/2015
CHA467	NPS/EPA	Chiricahua NM	AZ / R9	4/19/2015
PET427	NPS/EPA	Petrified Forest NP	AZ / R9	4/20/2015
GRC474	NPS/EPA	Grand Canyon NP	AZ / R9	4/21/2015

Site ID	Sponsor Agency	Site Location State and EPA Region		Audit dates
MEV405	NPS/EPA	Mesa Verde NP	CO / R8	4/21/2015
CAN407	NPS/EPA	Canyonlands NP	UT / R8	4/22/2015
JOT403	NPS/EPA	Joshua Tree NM	CA / R9	4/23/2015
GRB411	NPS	Great Basin NP	NV / R9	5/8/2015
ANA115	EPA	Ann Arbor	MI / R5	6/1/2015
DIN431	NPS	Dinosaur NM	UT / R8	6/30/2015
DEN417	NPS/EPA	Denali NP	AK / R10	7/16/2015
UVL124	EPA	Unionville	MI / R5	8/27/2015
HOX148	EPA	Hoxeyville	MI / R5	8/28/2015
SAL133	EPA	Salamonie Reservoir	IN / R5	9/8/2015
HWF187	EPA	Huntington Wildlife Forest	NY / R2	10/3/2015
HOW191	EPA	Howland AmeriFlux	ME/R1	10/6/2015
ASH135	EPA	Ashland	ME / R1	10/7/2015
CTH110	EPA	Connecticut Hill	NY / R2	10/23/2015
KEF112	EPA	Kane Experimental Forest	PA / R3	10/24/2015
MKG113	EPA	M. K. Goddard St. Park	PA / R3	10/25/2015
PSU106	EPA	Penn State University	PA / R3	10/27/2015
ABT147	EPA	Abington	CT / R1	10/28/2015
WST109	EPA	Woodstock	NH/R1	10/29/2015
ARE128	EPA	Arendtsville	PA / R3	11/2/2015
PNF126	EPA	Cranberry	NC / R4	11/4/2015
BEL116	EPA	Beltsville	MD / R3	11/19/2015

4.0 Performance and Audit Results

Table 4.1 summarizes the number of test failures by variable tested. All test results are those recorded from the site's primary logger.

Performance audit results are discussed for each variable in the following sections. Tables are included to summarize the average and maximum error between the audit challenges and site results as recorded by the on-site Data Acquisition System (DAS). Linear regression and percent difference (% diff) calculation results are included where appropriate. Results that are outside the CASTNET QAPP acceptance criteria are shaded in the tables.

The errors presented in the tables in the following sections, are reported as the difference of the measurement recorded by the DAS and the audit standard. Where appropriate, negative values indicate readings that were lower than the standard, and positive values are readings that were above the standard value. The errors appear to be random, and without bias. The results are also arranged by audit date. Viewing the results in this order helps to detect any errors that could have been caused by the degradation or drift of the audit standards during the year. The audit standards are transported and handled with care, and properly maintained to help prevent such occurrences. No known problems with the standards were apparent during the year. All standards were within specifications when re-certified at the end of the year.

Detailed reports of the field site audits, which contain all of the test points for each variable at each site, can be found in the Appendices of each 2015 Quarterly report. The variable specific data forms included in Appendix A of each quarter's report contain the challenge input values, the output of the DAS, additional relevant information pertaining to the variable and equipment, and all available means of identification of the sensors and equipment for each site.

Table 4-1. Performance Audit Results by Variable Tested

Variable Tested	Number of Tests	Number of tests Failed	% Failed
Ozone	79	0	0.0
Flow Rate	55	2	3.6
Shelter Temperature (average)	48	0	0.0
Wind Direction Orientation Average Error	8	1	12.5

Variable Tested	Number of Tests	Number of tests Failed	% Failed
Orientation Maximum Error	8	1	12.5
Wind Direction Linearity Average Error	4	0	0.0
Linearity Maximum Error	4	0	0.0
Wind Direction Starting Torque	4	0	0.0
Wind Speed Low Range Average Error	8	0	0.0
Low Range Maximum Error	8	0	0.0
Wind Speed High Range Average Error	8	0	0.0
High Range Maximum Error	8	0	0.0
Wind Speed Starting Torque	8	1	12.5
Temperature	54	1	1.9
2 Meter Temperature	5	0	0.0
Relative Humidity	7	0	0.0
Solar Radiation	7	0	0.0
Precipitation	7	0	0.0
DAS Analog to Digital	46	0	0.0

4.1 Ozone

Seventy nine ozone analyzers were audited during 2015. Each was challenged with ozone-free air and four up-scale concentrations. The ozone test gas concentrations were generated and measured with a NIST-traceable photometer that was verified as a level 2 standard by USEPA.

None of the analyzers tested failed the annual PE. Results of all ozone audits performed are included in Table 4-2.

All ozone challenges were conducted to comply with the OAQPS Standard Operating Procedures (SOP) which can be found at www.epa.gov/ttn/amtic/. The results of the ozone audits were uploaded to the AQS database at the end of each quarter for those sites for which EEMS is authorized to upload QA data to AQS.

4.2 Flow Rate

The dry deposition filter pack sampling system flow rates at 55 sites were audited. A NIST-traceable dry-piston primary flow rate device was used for the tests. Two sites were outside the acceptance criterion of \pm 5.0%.

4.3 Shelter Temperature

At each site reporting ozone concentrations to AQS, the hourly average shelter temperature must be between 20 and 30 degrees C, or the hourly ozone data may be invalidated. Shelter temperature was audited at 48 of the sites visited. The method consisted of placing the audit standard in close proximity (in situ) to the shelter temperature sensor and recording either instantaneous observations of both sensors, or averages from both sensors. The audit sensors used are either a Resistive Temperature Detector (RTD) or a Thermocouple.

Most of the differences observed were due to the slow response of the site's shelter temperature sensors. Nearly all the site sensors lagged behind the audit sensor during the rapid changes in temperatures observed as the shelter air conditioning or shelter heating cycled on and off. The shelter temperature sensors never reached the minimum or maximum temperature measured with the audit sensor. This is not likely to add a large error to the hourly averaged shelter temperature measurements. However, since the output of the shelter temperature sensors follow a sine wave curve but the actual shelter temperature does not change following a sine wave curve, if the shelter temperature is set near the lower or higher allowable limits (20 to 30 degrees C) the actual hourly averages may be lower or higher than those measured by the site sensors.

The CASTNET QAPP does not make a distinction between shelter temperature and any other temperature sensor regarding accuracy criteria. However the sensors were evaluated using a 2 degree C acceptance criterion. This criterion better follows the EPA OAQPS guidelines.

The results are summarized in Table 4-2. Flow rate and shelter temperature data are reported only for the sites that were visited for complete systems and performance audits. Ozone results are included for all site visits.

Table 4-2. Performance Audit Results for Ozone, Shelter Temperature, and Flow Rate

	Ozone average (% diff)	Ozone maximum (% diff)	Ozone slope	Ozone intercept	Ozone correlation	Shelter temp. average error (C)	Shelter temp. maximum error (C)	STP Flow observed (lpm)	Flow DAS (lpm)	Flow Error (% diff)
EVE419								2.983	3.000	0.57
SUM156	-1.6	-2.4	0.99871	-1.22779	0.99984					
IRL141	-2.8	-3.4	0.98102	-0.5518	0.99999					
GAS153	1.7	3.0	1.01553	-0.00623	0.99997					
CAD150	2.0	2.6	1.01673	0.00908	0.99992	0.42	0.54	1.503	1.500	-0.18
CVL151	-0.7	-1.9	1.00543	-0.58714	1	0.35	0.50	1.516	1.500	-1.07
SND152	-0.5	-1.4	0.99947	-0.18338	0.99999					
CDZ171	0.3	0.7	1.01264	-0.64212	0.99999	0.63	0.68	1.516	1.513	-0.18
MCK131	-2.3	-4.5	0.99746	-0.87322	0.99995	0.18	0.41	1.506	1.503	-0.16
MCK231	-0.7	-2.3	1.0075	-0.57296	0.99996	0.43	0.74	1.481	1.500	1.27
MAC426	-1.0	-1.6	0.99762	-0.33402	1	0.47	0.85	1.485	1.500	0.98
CKT136	-0.8	-2.2	1.00406	-0.50955	0.99998	1.29	1.47	1.504	1.503	-0.07
SPD111	-1.5	-2.3	1.00111	-0.84251	0.99998					
COW137	-0.1	-1.4	1.00572	-0.36743	0.99998					
ESP127	-1.6	-1.9	0.9807	0.19411	0.99999					
CHE185	6.3	8.9	1.03151	1.78712	0.99997	0.23	0.31	1.540	1.537	-0.22
ALC188	-1.8	-2.1	0.98635	-0.30577	1	0.20	0.25	1.510	1.490	-1.34
BBE401	0.8	2.2	1.04142	-1.78269	0.99999	0.22	0.37	3.123	3.010	-3.77
PAL190	-4.1	-4.9	0.96819	-0.40894	0.99999	0.27	0.46	3.047	3.003	-1.44
CHA467	-4.4	-4.5	0.94918	0.51711	0.99998					
PET427	-4.0	-4.5	0.96563	-0.22994	1					
GRC474	-2.3	-3.1	0.9872	-0.56967	1					
MEV405	-5.5	-6.7	0.95454	-0.40855	0.99999					
CAN407	-2.4	-3.9	0.99292	-0.78069	0.99999					
JOT403	-3.8	-4.9	0.96987	-0.30469	0.99995					
SEK430	-2.9	-4.3	0.98087	-0.37078	0.99997	1.64	3.46	3.060	3.000	-2.00
YOS404	-4.5	-5.7	0.96746	-0.53477	0.99999	1.80	3.31	3.000	2.963	-1.24
PIN414	-1.9	-2.9	0.99196	-0.52185	0.99999	0.47	0.61	2.973	2.990	0.56
SAN189	-0.9	-2.3	1.00132	-0.30819	0.99994	0.98	1.12	3.130	2.983	-4.92

USEPA June, 2016

	Ozone average (% diff)	Ozone maximum (% diff)	Ozone slope	Ozone intercept	Ozone correlation	Shelter temp. average error (C)	Shelter temp. maximum error (C)	STP Flow observed (lpm)	Flow DAS (lpm)	Flow Error (% diff)
KIC003								3.160	3.057	-3.38
KNZ184								3.180	3.080	-3.25
GRB411	-5.9	-6.3	0.94442	-0.27184	0.99997					
LAV410	-3.4	-4.0	0.96822	-0.07477	1	1.76	3.18	2.980	3.030	1.65
OXF122	-1.7	-2.8	0.99878	-0.90738	0.99999	0.06	0.16	1.560	1.497	-4.23
ANA115	0.5	1.1	1.01102	-0.1761	0.99998					
DCP114	-0.2	0.9	1.00484	-0.17514	0.99991	0.23	0.50	1.520	1.503	-1.11
QAK172	-0.9	-1.2	0.99478	-0.14261	0.99999	0.14	0.20	1.537	1.490	-3.13
DIN431	-1.0	-1.4	0.99376	-0.11177	1					
GTH161	-3.5	-4.8	0.98457	-0.91907	0.99986	0.30	0.37	3.027	2.990	-1.23
DEN417	-1.1	-1.7	0.98063	0.4124	0.99999					
CNT169	-6.4	-8.3	0.93852	-0.03683	0.99986	0.29	0.33	3.040	3.000	-1.33
GLR468	-4.4	-5.9	0.96744	-0.47147	0.99997	0.52	0.58	2.990	3.000	0.33
ROM206	-2.4	-3.8	0.98937	-0.58729	0.99999	0.24	0.36	3.030	2.997	-1.11
ROM406	-3.9	-5.0	0.9656	-0.10314	0.99999	1.79	3.14	3.027	3.010	-0.55
THR422	-2.4	-4.1	0.94939	1.15039	0.99994	1.29	1.47	3.070	3.000	-2.33
PND165	-1.1	-1.5	0.98497	0.1668	0.99999	0.80	1.52	3.057	3.003	-1.78
YEL408	-3.7	-5.9	0.98473	-0.90442	0.99995	1.29	1.49	3.007	3.020	0.44
BAS601	-2.6	-3.0	0.97563	-0.03096	0.99999	1.42	2.27	3.287	3.217	-2.18
SHE604								3.330	3.170	-5.05
BUF603								3.353	3.323	-0.90
NEC602	-3.9	-5.1	0.9715	-0.47079	1	0.29	0.80	3.244	3.300	1.70
WNC429	-4.7	-6.0	0.96256	-0.47649	0.99996	0.13	0.16	2.993	3.010	0.55
UVL124	0.8	1.3	1.00291	0.2152	0.99998					
HOX148	1.1	1.3	1.00507	0.44431	0.99999					
PRK134	0.3	1.2	0.99199	0.68477	0.99993	0.27	0.73	1.523	1.500	-1.56
VIN140	-1.0	-2.2	0.97984	0.39413	0.99992	0.77	1.24	1.520	1.497	-1.56
SAL133	-0.1	-0.7	0.99968	-0.17228	0.99994					
VOY413	3.4	6.2	0.99793	1.79471	1	0.64	0.93	3.160	3.000	-5.33
STK138	0.6	2.2	0.99668	0.38943	0.99998	0.09	0.11	1.507	1.510	0.22

	Ozone average (% diff)	Ozone maximum (% diff)	Ozone slope	Ozone intercept	Ozone correlation	Shelter temp. average error (C)	Shelter temp. maximum error (C)	STP Flow observed (lpm)	Flow DAS (lpm)	Flow Error (% diff)
BVL130	-1.5	-1.8	0.97902	0.42831	0.99999	0.27	0.56	1.500	1.497	-0.22
ALH157	-1.7	-3.1	0.99259	-0.42179	0.99992	0.45	0.82	1.523	1.500	-1.56
WFM105								3.013	3.020	0.22
NIC001								3.030	3.000	-1.00
HWF187	-2.2	-2.5	0.98118	-0.16523	1					
UND002								3.017	3.020	0.11
HOW191	-4.2	-4.4	0.96286	-0.40667	0.99998					
ASH135	-4.7	-5.1	0.95816	-0.31783	1					
CTH110	-3.5	-3.7	0.97207	-0.54651	0.99998					
KEF112	-2.6	-3.2	0.97256	-0.13647	0.99993					
MKG113	0.1	-1.7	1.00862	-0.36949	0.99994					
GRS420	-2.8	-3.6	0.97926	-0.35728	1	0.28	0.47	3.037	3.007	-1.00
PSU106	0.8	1.6	1.01677	-0.47066	0.99998					
ABT147	-1.1	-1.2	0.99294	-0.37282	0.99999					
WST109	-0.8	-1.8	0.99514	-0.25764	0.99994					
LRL117	-3.5	-4.9	0.99066	-1.30958	0.99994	0.48	0.65	1.597	1.500	-6.44
ARE128	-0.8	-1.7	1.00896	-0.80592	0.99993					
PNF126	1.2	1.7	1.00789	0.19347	0.99999					
SHN418	-4.1	-4.6	0.96564	-0.36003	1	0.57	0.79	1.473	1.500	1.78
WSP144	-2.2	-3.4	0.98867	-0.62015	0.99997	0.68	0.94	1.533	1.500	-2.22
BEL116	-3.2	-4.9	0.98851	-0.90721	0.99998					
VPI120	-1.1	-1.5	0.99265	-0.28599	0.99998	0.29	0.45	1.547	1.500	-3.11
PAR107	-1.6	-2.7	1.00098	-0.89739	0.99999	0.21	0.33	1.547	1.500	-3.11
CDR119	-2.9	-4.4	0.98679	-0.73121	0.99994	0.27	0.41	1.540	1.500	-2.67
BWR139	0.1	-0.8	1.01015	-0.50418	0.99999	0.13	0.34	1.440	1.500	4.00
CND125	-2.9	-3.4	0.97118	-0.05317	0.99999	0.04	0.08	1.530	1.500	-2.00
PED108	-3.4	-5.9	0.98554	-0.67255	0.99983	0.26	0.29	1.577	1.503	-4.88
BFT142	0.0	-1.9	1.01401	-0.63216	0.99998	0.31	0.46	1.527	1.503	-1.55

4.4 Wind Speed

The wind speed sensors at eight sites equipped for meteorological measurements were audited. Wind speed data accuracy results at all sites were found to be well within the acceptance limit. The results of the wind speed performance audits are presented in Table 4-3.

4.4.1 Wind Speed Starting Threshold

The condition of the wind speed bearings was evaluated as part of the performance audits. The data acceptance criterion for wind speed bearing torque is not defined in the QAPP. However, *Appendix 1: CASTNET Field Standard Operating Procedures*, states that the wind speed bearing torque should be ≤ 0.2 g-cm. To establish the wind speed bearing torque criterion for audit purposes the rational described in the QAPP for data quality objectives (DQO) was applied. The QAPP states that field criteria are more stringent than DQO and established to maintain the system within DQO. Typically field criteria are set at approximately one-half the DQO. Therefore, 0.5 g-cm was used for the acceptance limit for audit purposes. This value is within the manufacture's specifications for a properly maintained system. One site was found to be outside the acceptance limit.

4.5 Wind Direction

Two separate tests were performed to evaluate the accuracy of each wind direction sensor:

- A linearity test was performed to evaluate the ability of the sensor to function properly
 and accurately throughout the range from 1 to 360 degrees. This test evaluates the sensor
 independently of orientation and can be performed with the sensor mounted on a test
 fixture.
- An orientation test was used to determine if the sensor was aligned properly when installed to measure wind direction accurately in degrees true. An audit standard compass was used to perform the orientation tests.

Using the average error of the orientation tests for each of the eight sensors tested, one site was outside the acceptance criterion of \pm 5 degrees. The results of the wind direction performance audits are presented in Table 4-3.

4.5.1 Wind Direction Starting Threshold

The condition of the wind direction bearings was evaluated as part of the performance audits. The data acceptance criterion for wind direction bearing torque is not defined in the QAPP. However, *Appendix 1: CASTNET Field Standard Operating Procedures*, states that the wind direction bearing torque should be ≤ 10 g-cm for R. M. Young sensors. The manufacturer states that a properly maintained sensor will be accurate up to a starting threshold of 11 g-cm. To

establish the wind direction bearing torque criterion for audit purposes the rational described in the QAPP for data quality objectives (DQO) was applied. The QAPP states that field criteria are more stringent than DQO and established to maintain the system within DQO. Typically field criteria are set to approximately one-half the DQO. For audit purposes 20 g-cm was used for the acceptance limit for R. M. Young sensors. Climatronics sensors typically have a lower starting torque. For audit purposes a threshold of 10 g-cm was selected for Climatronics sensors. All of the wind direction starting thresholds were within acceptance limits. The test results are provided in Table 4-3.

Table 4-3. Performance Audit Results for Wind Sensors

		W	ind Direc	tion		Wind Speed							
	Orientati	on Error	Lineari	ty Error	Starting	Low Rar	nge Error	High Rai	nge Error	Starting			
Site	Ave (deg)	eg) (deg) (deg) (de		Max (deg)	Torque (g-cm)	Ave (m/s)	Max (m/s)	Ave (% diff)	Max (% diff)	Torque (g-cm)			
BAS601	1.25	2				0.01	-0.05	0.01	0.01	0.00			
BUF603	1.75	4				0.01	-0.05	0.01	-0.02	0.00			
BVL130	6.2	9	1.2	3	18.5	0.05	-0.2	0.00	0.00	0.45			
CHE185	2	3	1	3	20	0.10	-0.3	0.00	0.01	0.60			
NEC602	1.5	3				0.00	-0.01	0.01	0.01	0.00			
PAL190	2	4	1.5	4	9	0.05	-0.2	0.00	0.00	0.20			
PND165	1	2	2	4	7.5	0.05	-0.2	0.00	0.00	0.25			
SHE604	2	3				0.01	-0.05	0.01	0.02	0.00			

^{*} Note: The wind systems acceptance criteria were applied to the average of the results. The data validation section of the CASTNET QAPP states that if any wind direction or wind speed challenge result is outside the acceptance criterion the variable is flagged.

4.6 Temperature and Two-Meter Temperature

The site temperature measurement systems consist of a temperature sensor mounted at approximately 9 meters above ground-level on a tower. A few sites also utilized a second sensor to measure temperature at approximately two meters from the ground (2-meter temperature).

All sites use shields to house the sensors that are either mechanically aspirated with forced air, or naturally aspirated. In all cases the sensors were removed from the sensor shields, and placed in a uniform temperature bath with a precision NIST-traceable RTD, during the audit.

Results of the tests indicate that of the 54 sensors tested, two were outside the acceptance criterion. It should be noted that both sensors were located at sites recently added to the CASTNET and operated by the BLM. Temperature sensors utilized by the BLM are not the same type as those at other CASTNET sites. The BLM temperature sensors are combined relative humidity and temperature sensors and not standalone RTD or encased thermistor temperature sensors. Due to the design of the RH/Temperature sensor, it cannot be submerged in water baths in order to challenge the sensor at different temperature audit levels. For that reason the combination RH/Temperature sensors were audited by placing the sensor in a watertight chamber (RH salt chamber) and then placing the chamber in an ice-water bath, ambient bath, and hot water bath. Therefore the audit results are not directly comparable to audit results of RTD or encased thermistor sensors.

A change to the temperature measurement method at NPS sponsored sites was observed in 2015. The location of the measurement is being moved from approximately 9 meters to approximately 2 meters above ground. Audit data for 2015 are reported as temperature with comments in each site spot report that indicate which sensors have been moved to the new measurement height. It is important to note that the site DAS label for the measurement is still "temperature". The currently measured temperature data are not comparable to data measured at the previous height although the data record at each site makes no distinction regarding the height of the measurement. It is unknown if the change is documented during the data validation and processing procedures. Beginning in 2016 audit data will indicate the height of the measurement at all sites.

Only four 2-meter temperature sensors were tested, and all were within criterion. The average errors for all sensors are presented in Table 4-4.

4.6.1 Temperature Shield Blower Motors

All of the temperature sensor shield blower motors encountered during the site audits conducted during 2015 were found to be functioning. All 2-meter temperature sensor shield blowers were functioning properly.

4.7 Relative Humidity

The relative humidity systems at the sites were tested with a combination of primary standard salt solutions, and a certified transfer standard relative humidity probe. The results of the average and maximum errors throughout the measurement range of approximately 30% to 95% are presented in Table 4-4.

At the seven sites measuring relative humidity audited in 2015, the measurements were made with relative humidity sensors manufactured by Viasala. As in previous years, operation of

humidity sensors with respect to natural or forced-air aspiration can vary between sites. At most EPA sponsored sites humidity sensors are operating in naturally aspirated shields. At most NPS sponsored sites humidity sensors are operating in shields designed to be mechanically aspirated with forced-air blowers.

During audit tests with the primary standard salt solutions, the sensors were removed from the shields and placed in a temperature controlled enclosure. During audit tests with the transfer standard probe, the sensor and transfer were placed in the same ambient conditions. Therefore the audit tests do not account for differences in the operation of the sensors due to the different shield configurations.

The average error of all sensors tested were within the acceptance criterion. The results of the tests are included in Table 4-4.

Table 4-4. Performance Audit Results for Temperature and Relative Humidity

	Temperature	2 Meter	Relative Humidity					
	Ave. Error	Temperature Ave. Error	Range (0 – 100%				
Site	(deg C)	(deg C)	Ave. Error	Max. Error				
ALC188	0.14							
ALH157	0.12							
BAS601	0.79		6.9	14.5				
BBE401	0.05							
BFT142	0.16							
BUF603	0.23		2.0	-2.6				
BVL130	0.17	0.16	5.3	-7.2				
BWR139	0.09							
CAD150	0.03							
CDR119	0.19							
CDZ171	0.27							
CHE185	0.12	0.09						
CKT136	0.38							
CND125	0.16							
CNT169	0.12							

		2 Meter	Relative Humidity					
	Temperature Ave. Error	Temperature Ave. Error	Range (0 – 100%				
Site	(deg C)	(deg C)	Ave. Error	Max. Error				
CVL151	0.13							
DCP114	0.08							
GLR468	0.2							
GRS420	0.15							
GTH161	0.32							
KIC003	0.17							
KNZ184	0.3							
LAV410	0.03							
LRL117	0.21							
MAC426	0.27							
MCK131	0.17							
MCK231	0.21							
NEC602	0.26		1.4	-3.2				
NIC001	0.18							
OXF122	0.17							
PAL190	0.22	0.22	3.4	-7.4				
PAR107	0.05							
PED108	0.1							
PIN414	0.06							
PND165	0.33	0.35	3.1	-5.9				
PRK134	0.22							
QAK172	0.11							
ROM206	0.23							
ROM406	0.29							
SAN189	0.08							
SEK430	0.12							

	Temperature Ave. Error	2 Meter Temperature Ave. Error	Relative Humidity Range 0 – 100%					
Site	(deg C)	(deg C)	Ave. Error	Max. Error				
SHE604	1.54		0.7	0.7				
SHN418	0.14							
STK138	0.2							
THR422	0.15							
UND002	0.35							
VIN140	0.07							
VOY413	0.2							
VPI120	0.03							
WFM105	0.35							
WNC429	0.04							
WSP144	0.22							
YEL408	0.13							
YOS404	0.08							

4.8 Solar Radiation

The ambient conditions encountered during the audit visits were suitable (high enough light levels) for accurate comparisons of solar radiation measurements. A World Radiation Reference (WRR) traceable Eppley PSP radiometer and translator were used as the audit standard system.

Seven sites were tested. All sites had daytime average results that were within the acceptance criterion. The results of the individual tests for each site are included in Table 4-5. The percent difference of the maximum single-hour average solar radiation value observed during each site audit is also reported in Table 4-5 although this criterion is not part of the CASTNET data quality indicators. Those values greater than $\pm 10\%$ are bold.

4.9 Precipitation

The seven sites audited used a tipping bucket rain gauge for the obtaining precipitation measurement data. The audit challenges consisted of entering multiple amounts of a known

volume of water into the tipping bucket funnel at a rate equal to approximately 2 inches of rain per hour. Equivalent amounts of water entered were compared to the amount recorded by the DAS. The results are summarized in Tables 4-5.

Of the three tipping bucket heaters tested, all were found to be functioning properly.

Table 4-5. Performance Audit Results for Solar Radiation and Precipitation

			Solar Rad	iation Error		Precipitation
	Site	Daytime Ave. (% diff)	Std. Max. Value (w/m2)	Site Max. Observed (w/m2)	Max. Value (% diff)	Ave. Error (% diff)
8/14/2015	BAS601	0.61	858	846	-1.4	7.0
8/19/2015	BUF603	1.32	910	922	1.3	5.2
9/14/2015	BVL130	2.58	810	845	4.1	5.0
4/6/2015	CHE185	6.55	524	562	6.8	1.0
8/20/2015	NEC602	9.34	864	778	-11.1	3.6
4/17/2015	PAL190	3.63	985	1029	4.3	3.0
8/10/2015	PND165	1.18	987	999	1.2	3.0

4.10 Data Acquisition Systems (DAS)

All of the NPS sponsored sites visited utilized an ESC logger as the primary and only DAS. All EPA sites visited operated Campbell loggers as their only DAS. The results presented in table 4-6 include the tests performed on the primary logger at each site.

4.10.1 Analog Test

The accuracy of each primary logger was tested on two different channels (if two channels were available to be used) with a NIST-traceable Fluke digital voltmeter. At the EPA sponsored sites the channels above analog channel 8 could not be tested since there were no empty channels available to test. All data loggers were within the acceptance criterion of \pm 0.003 volts.

4.10.2 Functionality Tests

Other performance tests used to evaluate the DAS included the verification of the date and time, and operation of the battery backup system used to save the DAS date, time, and configuration during a power outage. All DAS were set to the correct date and within ± 5 minutes per the acceptance criterion for time.

Table 4-6. Performance Audit Results for Data Acquisition Systems

		A	nalog Test	olts)			
		Low	Channel	High	Channel	Date Correct	Time Error
	Site	Average	Maximum	Average	Maximum	(Y/N)	(minutes)
2/10/2015	EVE419	0.0002	0.0005	0.0001	0.0002	Y	3.57
2/27/2015	CAD150	0.0004	-0.0010			Y	0.05
2/28/2015	CVL151	0.0003	-0.0005			Y	0.00
3/13/2015	CDZ171	0.0003	-0.0005			Y	0.02
3/15/2015	MCK131	0.0003	-0.0005			Y	0.00
3/15/2015	MCK231	0.0003	-0.0005			Y	0.00
3/17/2015	MAC426	0.0003	0.0005			Y	0.42
3/18/2015	CKT136	0.0005	0.0008			Y	0.13
4/8/2015	ALC188	0.0003	0.0006			Y	0.02
4/13/2015	BBE401	0.0002	0.0003			Y	0.28
4/17/2015	PAL190	0.0000	0.0001			Y	0.00
4/27/2015	SEK430	0.0003	-0.0007			Y	0.18
4/28/2015	YOS404	0.0002	-0.0006	0	0	Y	0.07
4/29/2015	PIN414	0.0004	-0.0010			Y	0.47
4/30/2015	SAN189	0.0003	0.0004			Y	0.00
5/4/2015	KIC003	0.0004	0.0010			Y	0.00
5/4/2015	KNZ184	0.0003	-0.0005			Y	0.00
5/31/2015	OXF122	0.0003	-0.0005			Y	0.02
6/4/2015	DCP114	0.0003	-0.0006			Y	0.02
6/5/2015	QAK172	0.0002	-0.0005			Y	0.00
7/2/2015	GTH161	0.0003	0.0005			Y	0.03
7/24/2015	CNT169	0.0003	-0.0005			Y	0.02
7/28/2015	GLR468	0.0003	0.0005			Y	0.00
8/3/2015	ROM206	0.0000	0.0000			Y	0.00
8/4/2015	ROM406	0.0000	0.0000			Y	0.37

		A	nalog Test				
		Low	Channel	High	Channel	Date Correct	Time Error
	Site	Average	Maximum	Average	Maximum	(Y/N)	(minutes)
8/4/2015	THR422	0.0003	-0.0007			Y	0.13
8/10/2015	PND165	0.0000	0.0000			Y	0.00
8/13/2015	YEL408	0.0000	0.0000			Y	0.17
8/14/2015	BAS601					Y	3.17
8/18/2015	SHE604					Y	0.50
8/19/2015	BUF603					Y	2.33
8/20/2015	NEC602					Y	2.58
8/21/2015	WNC429	0.0000	0.0000			Y	0.33
9/3/2015	PRK134	0.0003	0.0004			Y	0.00
9/7/2015	VIN140	0.0003	-0.0006			Y	0.02
9/8/2015	VOY413	0.0000	0.0000			Y	1.72
9/11/2015	STK138	0.0003	-0.0005			Y	0.00
9/14/2015	BVL130	0.0000	0.0000			Y	0.00
9/16/2015	ALH157	0.0003	-0.0005			Y	0.00
10/26/2015	GRS420	0.0000	0.0000			Y	0.05
11/1/2015	LRL117	0.0003	-0.0005	0	0	Y	0.02
11/6/2015	SHN418	0.0001	-0.0001			Y	0.57
11/9/2015	WSP144	0.0000	0.0000			Y	0.02
11/19/2015	VPI120	0.0003	0.0005			Y	0.00
11/21/2015	PAR107	0.0003	-0.0005			Y	0.00
11/22/2015	CDR119	0.0004	-0.0007			Y	0.13
11/24/2015	BWR139	0.0001	0.0001			Y	0.02
12/1/2015	CND125	0.0003	-0.0005			Y	0.28
12/3/2015	PED108	0.0003	0.0004			Y	0.00
12/4/2015	BFT142	0.0003	-0.0006			Y	0.00

5.0 Systems Audit Results

The following sections summarize the site systems audit findings and provide information observed regarding the measurement processes at the sites. Conditions that directly affect data accuracy have been reported in the previous sections. Other conditions that affect data quality and improvements to some measurement systems or procedures are suggested in the following sections.

5.1 Siting Criteria

All of the sites that were visited have undergone changes during the period of site operation which include population growth, road construction, and foresting activities. None of those changes were determined to have a significant impact on the siting criteria that did not exist when the site was initially established.

Some sites that are located in state and national parks are not in open areas, and have trees within the 50 meter criterion established in the QAPP. Given the land use and aesthetic concerns, these sites are acceptable and represent an adequate compromise with regard to siting criteria and the goal of long-term monitoring.

5.2 Sample Inlets

With consideration given to the siting criteria compromises described in the previous section, the sites visited this year have analyzer sample trains that are sited properly and in accordance with the CASTNET QAPP. Ozone sample inlets are between 3 and 15 meters. With the exception of one site (WNC429) Teflon tubing of the proper diameter is used for the ozone inlets. The ozone sample train at WNC429 is primarily glass with an exhaust fan downstream of the ozone sample port. The ozone analyzer at WNC429 (South Dakota) is operated by the State.

All ozone sample inlets are currently being evaluated with respect to obstructions above the inlet. The acceptance criterion requires that there should be no obstructions (including trees) within a 22.5 degree angle (object distance must be at least two times the height) above the ozone inlet. Results of the evaluations will be included in future reports. It is anticipated that the new criteria will replace the evaluation of trees within 20 meters of the sample inlet.

With the exception of WNC429, the ozone zero, span, and precision calibration test gases are introduced at the ozone sample inlet, through all filters and the entire sample train. All sample trains are comprised of only Teflon fittings and materials. Sample inlet particulate filters of 5 micron are present at most sites.

The dry deposition filter packs are designed to sample from 10 meters. Most of the filter pack sample lines are also Teflon. Inline filters are present in the sample trains.

5.3 Infrastructure

Sites continue to be improved by repairing the site shelters which had deteriorated throughout the years of operation. The installation and upgrade of the data loggers and degrading signal cables, was especially helpful. A few of the site shelters are still in need of repair, but overall the condition of the sites has improved again during the past year.

5.4 Site Operators

Generally the site operators are very conscientious and eager to complete the site activities correctly. They are willing to, and have performed sensor replacements and repairs at the sites with support provided by the AMEC and ARS field operations centers. In some cases, where replacements or repairs were made, documentation of the activities was not complete, and did not include serial numbers of the removed and installed equipment.

Many of the CASTNET site operators also perform site operator duties for the National Atmospheric Deposition Program (NADP). Many of the NPS site operators also perform other air, or environmental quality functions within their park. All are a valuable resource for the program. Some of the site operators mentioned that the CASTNET features in the NPS "Monitor" are informative, helpful, and appreciated.

Still many of the site operators have not been formally trained to perform the CASTNET duties by either AMEC or ARS. They had been given instructions by the previous site operators and over the phone instructions from the field operation centers at AMEC and ARS.

5.5 Documentation

There were some documentation problems with the Site Status Report Forms (SSRF) completed by the site operators each week during the regular site visits. Common errors included improper reporting of "initial flow", "final flow", and "leak check" values.

The NPS site operator procedures are well developed and readily accessible at all of the NPS sites visited. There is an electronic interface, "DataView 2", available to view, analyze, and print site data. There are electronic "checklists" for the site operator to complete during the site visits; however, all of the CASTNET filter pack procedures are not included in the "checklists". Flow rates and leak check results are not recorded electronically.

An electronic logbook is included in the interface software. This system permits easy access to site documentation data. Complete calibration reports have been added to the system and accessible through the site computer, however the reports available on-site are not up to date.

5.6 Site Sensor and FSAD Identification

Continued improvement has also been made in the area of documentation of sensors and systems used at the sites. It is important to maintain proper sensor identification for the purposes of site inventory and to properly identify operational sensors for data validation procedures. Many sensors have had new numbers affixed for proper identification.

Where possible the identification numbers assigned (serial numbers and barcodes) are used within the field site audit database for all the sensors encountered during the site audits. The records are used for both the performance and systems audits. If a sensor is not assigned a serial number by the manufacturer, that field is entered as "none". If it is unknown whether an additional client ID number is assigned to a sensor, and a number is not found, the client ID is also entered as "none". If it is typical for a manufacturer and/or client ID number to be assigned to a sensor, and that number is not present, the field is entered as "missing". If either the serial number or the client ID numbers cannot be read, the field is entered as "illegible". An auto-number field is assigned to each sensor in the database in order to make the records unique.

6.0 Summary and Recommendations

The CASTNET Site Audit Program has been successful in evaluating the field operations of the sites. The results of performance and systems audits are recorded and archived in a relational database, the Field Site Audit Database (FSAD). CASTNET site operations are generally acceptable and continue to improve. Some differences between actual site operations and operations described in the QAPP have been identified and described. Procedural differences between EPA and NPS sponsored sites have also been described.

As discussed previously the shelters have received some much needed attention. It was also observed that improvements were made to the shelter temperature control systems. As a requirement in 40 CFR Part 58 for ozone monitoring, shelter temperature is an important variable. Additional improvement could be made to accurately measure and report shelter temperature.

The previous paragraphs and sections included some recommendations for improving the field operations systems. One recommendation for improving the audit program is presented in the following section; this recommendation was also included in the previous annual report.

6.1 In Situ Comparisons

An improvement to the audit procedures designed to evaluate the differences in measurement technique would be to develop an "In Situ" audit measurement system. This would require a suite of sensors that would be collocated with the site sensors. Ideally the audit sensors would address the inconsistent sensor installations observed throughout the network. By deploying a suite of certified NIST traceable sensors installed and operating as recommended by the manufacturer and to EPA guidelines, subtle differences in the operation of the existing CASTNET measurement systems could be evaluated. The "In Situ" sensors would be operated at each site for a 24 hour period and the measurements would be compared to the CASTNET measurements.

7.0 References

Office of Air Quality and Planning Standards AMTIC website, SOP and guidance documents: www.epa.gov/ttn/amtic/

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II - Ambient Air Specific Methods – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV - Meteorological Measurements – EPA.

Clean Air Status and Trends Network (CASTNET) Quality Assurance Project Plan (2003) – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume I: - A Field Guide To Environmental Quality Assurance – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II: Part1 Ambient Air Quality Monitoring Program Quality System Development – EPA.

Sensitivity of the National Oceanic and Atmospheric Administration multilayer model to instrument error and parameterization uncertainty: Journal of Geophysical Research, Vol. 105. No. D5, March 16, 2000.

Wind System Calibration, Recommended Calibration Interval, Procedure, and Test Equipment: November 1999, R. M. Young Company

Bowker, G.E., Schwede, D.B.; Lear, G.G.; Warren-Hicks, W.J., and Finkelstein, P.L., 2011. Quality assurance decisions with air models: a case study of imputation of missing input data using EPA's multi-layer model. Water, Air, and Soil Pollution 222, 391e402.

APPENDIX 1

Audit Standards Certifications

	Date 1/3/2014 Date 1/4/				1/4/2014		Date	1/8/2014	Date 1/7/2015			Date 9/21/2015		
m_1	1/3/2014	1.01247	m_1	1/4/2014	1.00619	m_1	1/8/2014	1.00420	m_1	1/7/2015	1.01820	m_1	9/21/2015	1.01937
m_2	1/2/2014	1.00736	m_2	1/3/2014	1.01247	m_2	1/4/2014	1.00619	m_2	1/8/2014	1.00420	m_2	1/7/2015	1.01820
m_3	1/1/2014	1.00869	m_3	1/2/2014	1.00736	m_3	1/3/2014	1.01247	m_3	1/4/2014	1.00619	m_3	1/8/2014	1.00420
m_4	12/31/2013	1.00353	m_4	1/1/2014	1.00869	m_4	1/2/2014	1.00736	m_4	1/3/2014	1.01247	m_4	1/4/2014	1.00619
m_5	12/30/2013	1.00200	m_5	12/31/2013	1.00353	m_5	1/1/2014	1.00869	m_5	1/2/2014	1.00736	m_5	1/3/2014	1.01247
m_6	12/17/2012	1.00320	m_6	12/30/2013	1.00200	m_6	12/31/2013	1.00353	m_6	1/1/2014	1.00869	m_6	1/2/2014	1.00736
I_1	1/3/2014	-1.24114	I ₁	1/4/2014	-0.04260	I ₁	1/8/2014	0.35220	I ₁	1/7/2015	-0.41020	I_1	9/21/2015	0.02326
I_2	1/2/2014	0.04271	I_2	1/3/2014	-1.24114	I_2	1/4/2014	-0.04260	I_2	1/8/2014	0.35220	I_2	1/7/2015	-0.41020
I_3	1/1/2014	-0.15798	I_3	1/2/2014	0.04271	I_3	1/3/2014	-1.24114	I_3	1/4/2014	-0.04260	I_3	1/8/2014	0.35220
I_4	12/31/2013	-0.21509	I_4	1/1/2014	-0.15798	I_4	1/2/2014	0.04271	I_4	1/3/2014	-1.24114	I_4	1/4/2014	-0.04260
I_5	12/30/2013	-0.60650	I_5	12/31/2013	-0.21509	I_5	1/1/2014	-0.15798	I_5	1/2/2014	0.04271	I_5	1/3/2014	-1.24114
I_6	12/17/2012	0.03150	I_6	12/30/2013	-0.60650	I_6	12/31/2013	-0.21509	I_6	1/1/2014	-0.15798	I_6	1/2/2014	0.04271
Average M	1/3/2014	1.00621	Average M	1/4/2014	1.00671	Average M	1/8/2014	1.00707	Average M	1/7/2015	1.00952	Average M	9/21/2015	1.01130
Avarage I	1/3/2014	-0.35775	Avarage I	1/4/2014	-0.37010	Avarage I	1/8/2014	-0.21032	Avarage I	1/7/2015	-0.24284	Avarage I	9/21/2015	-0.21263
S m (%)	1/3/2014	0.40	S m (%)	1/4/2014	0.37	S m (%)	1/8/2014	0.32	S m (%)	1/7/2015	0.50	S m (%)	9/21/2015	0.63
$S_{I(ppb)}$	1/3/2014	0.5	S _I (ppb)	1/4/2014	0.5	S _I (ppb)	1/8/2014	0.5	S _I (ppb)	1/7/2015	0.5	S _I (ppb)	9/21/2015	0.6
Test s _m	1/3/2014	PASS	Test s _m	1/4/2014	PASS	Test s _m	1/8/2014	PASS	Test s _m	1/7/2015	PASS	Test s _m	9/21/2015	PASS
Test s _I	1/3/2014	PASS	Test s ₁	1/4/2014	PASS	Test s _I	1/8/2014	PASS	Test s _I	1/7/2015	PASS	Test s _I	9/21/2015	PASS
$\sum_{i=1}^{6} m$	i 2			S_m =	$=\frac{100}{m}$	$ \frac{1}{5} \left[\sum_{i=1}^{6} \right] $	(m i)	$\frac{1}{6}$	$\int_{i=1}^{6} m$	$\begin{bmatrix} i \end{bmatrix}^2$			S_m =	$=\frac{100}{m}$
$\sum_{i=1}^{6} I_{i}$					$S_{i} = \sqrt{\frac{1}{5}}$	$\sum_{i=1}^{6}$	$(I_i)^2$	- 1/6	$\sum_{i=1}^{6} I_{i}$					$S_{i} = \sqrt{\frac{1}{5}}$
At EEMS $BKG = 0.0$	New 6-day after replacing detector B At EEMS New 6-day after replacing detector B At EEMS				etector B	EEMS # 01110 At EPA Region 4 BKG = 0.0 COEF = 1.035			EEMS # 01110 At EPA Region 4 1/7/2015 BKG = 0.0 COEF = 1.035			EEMS # At EPA Regio 9/21/2015 BKG = 0.0 COEF = 1.03	n 7	

EEMS# S/N =	Date 01111 0517112175	12/29/2014	EEMS # S/N =	Date 01111 0517112175	12/30/2014	EEMS# S/N =	Date 01111 0517112175	12/31/2014	EEMS # S/N =	Date 01111 0517112175	1/2/2015	EEMS# S/N =	Date 01111 0517112175	1/3/2015	EEMS # S/N =	Date 01111 0517112175	1/7/2015
m ₁	12/29/2014	0.99851	m ₁	12/30/2014	0.99997	m ₁	12/31/2014	0.99332	m ₁	1/2/2015	0.99482	m ₁	1/3/2015	0.99307	m ₁	1/7/2015	1.01540
m_2	12/28/2014	1.00536	m_2	12/29/2014	0.99851	m_2	12/30/2014	0.99997	m ₂	12/31/2014	0.99332	m_2	1/2/2015	0.99482	m_2	1/3/2015	0.99307
m_3	1/8/2014	1.00920	m_3	12/28/2014	1.00536	m_3	12/29/2014	0.99851	m_3	12/30/2014	0.99997	m_3	12/31/2014	0.99332	m_3	1/2/2015	0.99482
m_4	9/30/2013	1.00525	m_4	1/8/2014	1.00920	m_4	12/28/2014	1.00536	m_4	12/29/2014	0.99851	m_4	12/30/2014	0.99997	m_4	12/31/2014	0.99332
m_5	1/2/2013	1.00488	m_5	9/30/2013	1.00525	m_5	1/8/2014	1.00920	m_5	12/28/2014	1.00536	m_5	12/29/2014	0.99851	m_5	12/30/2014	0.99997
m_6	12/31/2012	1.00502	m_6	1/2/2013	1.00488	m ₆	9/30/2013	1.00525	m_6	1/8/2014	1.00920	m_6	12/28/2014	1.00536	m_6	12/29/2014	0.99851
I_1	12/29/2014	0.34334	I ₁	12/30/2014	0.34935	I ₁	12/31/2014	0.52061	I ₁	1/2/2015	0.16499	I_1	1/3/2015	0.13058	I ₁	1/7/2015	-0.09100
I_2	12/28/2014	0.22548	I_2	12/29/2014	0.34334	I_2	12/30/2014	0.34935	I_2	12/31/2014	0.52061	I_2	1/2/2015	0.16499	I_2	1/3/2015	0.13058
I_3	1/8/2014	-0.14250	I_3	12/28/2014	0.22548	I_3	12/29/2014	0.34334	I_3	12/30/2014	0.34935	I_3	12/31/2014	0.52061	I_3	1/2/2015	0.16499
I_4	9/30/2013	0.25684	I_4	1/8/2014	-0.14250	I_4	12/28/2014	0.22548	I_4	12/29/2014	0.34334	I_4	12/30/2014	0.34935	I_4	12/31/2014	0.52061
I_5	1/2/2013	0.21264	I_5	9/30/2013	0.25684	I_5	1/8/2014	-0.14250	I_5	12/28/2014	0.22548	I_5	12/29/2014	0.34334	I_5	12/30/2014	0.34935
I_6	12/31/2012	0.25051	I_6	1/2/2013	0.21264	I_6	9/30/2013	0.25684	I_6	1/8/2014	-0.14250	I_6	12/28/2014	0.22548	I_6	12/29/2014	0.34334
Average M	12/29/2014	1.00470	Average M	12/30/2014	1.00386	Average M	12/31/2014	1.00193	Average M	1/2/2015	1.00019	Average M	1/3/2015	0.99751	Average M	1/7/2015	0.99918
Avarage I	12/29/2014	0.19105	Avarage I	12/30/2014	0.20753	Avarage I	12/31/2014	0.25885	Avarage I	1/2/2015	0.24355	Avarage I	1/3/2015	0.28906	Avarage I	1/7/2015	0.23631
$S_{m(\%)}$	12/29/2014	0.34	S m (%)	12/30/2014	0.39	S m (%)	12/31/2014	0.57	S m (%)	1/2/2015	0.61	S m (%)	1/3/2015	0.48	S m (%)	1/7/2015	0.84
$S_{I\ (ppb)}$	12/29/2014	0.2	S _{I (ppb)}	12/30/2014	0.2	S _{I (ppb)}	12/31/2014	0.2	S _{I (ppb)}	1/2/2015	0.2	S _{I (ppb)}	1/3/2015	0.1	S _{I (ppb)}	1/7/2015	0.2
Test s _m	12/29/2014	PASS	Test s _m	12/30/2014	PASS	Test s _m	12/31/2014	PASS	Test s _m	1/2/2015	PASS	Test s _m	1/3/2015	PASS	Test s _m	1/7/2015	PASS
Test s_I	12/29/2014	PASS	Test s _I	12/30/2014	PASS	Test s _I	12/31/2014	PASS	Test s _I	1/2/2015	PASS	Test s _I	1/3/2015	PASS	Test s _I	1/7/2015	PASS
$\frac{1}{5} \left[\sum_{i=1}^{6} $	(m _i)	$\frac{1}{6}$	$\left(\sum_{i=1}^{6} m\right)$	i 2 3			$S_m =$	$\frac{100}{\overline{m}}\sqrt{\frac{1}{2}}$	$\frac{1}{5} \overline{\left[\sum_{i=1}^{6} \right]}$	$(m_i)^2$	- 1/6	$\sum_{i=1}^{6} m$	<i>i</i>) ²			$S_m = \frac{1}{2}$	$\frac{100}{\overline{m}}\sqrt{\frac{1}{5}}$
$\left[\sum_{i=1}^{6} \right]$	$(I_i)^2$	$-\frac{1}{6}$	$\sum_{i=1}^{6} I_{i}$					$S_{i} = \sqrt{\frac{1}{5}}$	$\left[\sum_{i=1}^{6} $	$(I_i)^2$	$-\frac{1}{6}$	$\sum_{i=1}^{6} I_{i}$	2				$S_{i} = \sqrt{\frac{1}{5}}$

At EEMS new BKG and COEF 12/29/2014

BKG = COEF =

-0.5 1.035 At EEMS new BKG and COEF 12/30/2014

BKG = COEF =

-0.5 1.035

At EEMS new BKG and COEF 12/31/2014

BKG = COEF =

-0.5 1.035 At EEMS new BKG and COEF 1/2/2015

-0.5 1.035

BKG = COEF =

At EEMS new BKG and COEF 1/3/2015

-0.5 1.035 BKG = COEF =

At EPA Region 4 1/7/2015

BKG = COEF = -0.5 1.035

Enter date in ye cell next to "Da S/N Enter new slop yellow highligh	nte". = 0419606 e and intercep	966 et in	Enter date in ye cell next to "Do S/N Enter new slop yellow highligh	ate". = 0419600 e and interce	5966 pt in	Enter date in y cell next to "D: S/N Enter new slop yellow highligi	ate". = 0419606 be and interce	5966	Enter date in yellow highlighted cell next to "Date". S/N = 0419606966 Enter new slope and intercept in yellow highlighted cells Date 3/9/2015				Enter date in yellow highlighted cell next to "Date". S/N = 0419606966 Enter new slope and intercept in yellow highlighted cells			
	Date	3/5/2015		Date	3/7/2015		Date	3/8/2015			Date	3/9/2015		Date	6/25/2015	
m_1	3/5/2015	0.99532	m ₁	3/7/2015	0.99124	m_1	3/8/2015	0.99208	n	n _l	3/9/2015	0.99502	m ₁	6/25/2015	0.99659	
m_2	3/4/2015	0.99277	m_2	3/5/2015	0.99532	m_2	3/7/2015	0.99124	n	n_2	3/8/2015	0.99208	m_2	3/9/2015	0.99502	
m_3	3/3/2015	0.99785	m_3	3/4/2015	0.99277	m_3	3/5/2015	0.99532	n	n_3	3/7/2015	0.99124	m_3	3/8/2015	0.99208	
m_4	1/7/2015	1.02480	m_4	3/3/2015	0.99785	m_4	3/4/2015	0.99277	n	n_4	3/5/2015	0.99532	m_4	3/7/2015	0.99124	
m_5	1/8/2014	1.01870	m_5	1/7/2015	1.02480	m_5	3/3/2015	0.99785	n	n_5	3/4/2015	0.99277	m_5	3/5/2015	0.99532	
m_6	1/4/2014	1.00565	m_6	1/8/2014	1.01870	m_6	1/7/2015	1.02480	n	n ₆	3/3/2015	0.99785	m_6	3/4/2015	0.99277	
I_1	3/5/2015	-0.49499	I_1	3/7/2015	-0.46416	I ₁	3/8/2015	-0.33284	I	[₁	3/9/2015	-0.53651	I ₁	6/25/2015	-0.18324	
I_2	3/4/2015	-0.44505	I_2	3/5/2015	-0.49499	I_2	3/7/2015	-0.46416	I	I_2	3/8/2015	-0.33284	I_2	3/9/2015	-0.53651	
I_3	3/3/2015	-0.29464	I_3	3/4/2015	-0.44505	I_3	3/5/2015	-0.49499	I	[₃	3/7/2015	-0.46416	I_3	3/8/2015	-0.33284	
I_4	1/7/2015	0.57470	I_4	3/3/2015	-0.29464	I_4	3/4/2015	-0.44505	I	I_4	3/5/2015	-0.49499	I_4	3/7/2015	-0.46416	
I_5	1/8/2014	0.40360	I_5	1/7/2015	0.57470	I_5	3/3/2015	-0.29464	I	[₅	3/4/2015	-0.44505	I_5	3/5/2015	-0.49499	
I_6	1/4/2014	0.39663	I_6	1/8/2014	0.40360	I_6	1/7/2015	0.57470	I	[₆	3/3/2015	-0.29464	I_6	3/4/2015	-0.44505	
Average M	3/5/2015	1.00585	Average M	3/7/2015	1.00345	Average M	3/8/2015	0.99901	Avera	age M	3/9/2015	0.99405	Average M	6/25/2015	0.99384	
Avarage I	3/5/2015	0.02337	Avarage I	3/7/2015	-0.12009	Avarage I	3/8/2015	-0.24283	Avar	rage I	3/9/2015	-0.42803	Avarage I	6/25/2015	-0.40946	
S m (%)	3/5/2015	1.31	S m (%)	3/7/2015	1.44	S m (%)	3/8/2015	1.29	S_m	(%)	3/9/2015	0.25	S m (%)	6/25/2015	0.21	
$S_{I\ (ppb)}$	3/5/2015	0.5	S _{I (ppb)}	3/7/2015	0.5	S _{I (ppb)}	3/8/2015	0.4	s_{I}	(ppb)	3/9/2015	0.1	S _{I (ppb)}	6/25/2015	0.1	
Test s_m	3/5/2015	PASS	Test s _m	3/7/2015	PASS	Test s _m	3/8/2015	PASS	Tes	$t s_m$	3/9/2015	PASS	Test s _m	6/25/2015	PASS	
Test s _I	3/5/2015	PASS	Test s _I	3/7/2015	PASS	Test s _I	3/8/2015	PASS	Tes	st s _I	3/9/2015	PASS	Test s _I	6/25/2015	PASS	
$\sum_{i=1}^{6} m$	$\begin{bmatrix} i \end{bmatrix}^2$			S_m	$=\frac{100}{m}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right.$	(m_i)	$rac{1}{6}$	$\left(\sum_{i=1}^{6} $	m	$\begin{bmatrix} i \end{bmatrix}^2$			S_m	$=\frac{100}{m}$	
$\sum_{i=1}^{6} I_{i}$	2				$S_{i} = \sqrt{\frac{1}{5}}$	$\sum_{i=1}^{6} $	$(I_i)^2$	- \frac{1}{6}	$\sum_{i=1}^{6}$	I_i					$S_{i} = \sqrt{\frac{1}{5}}$	
EEMS # At EEMS	01112		EEMS # At EEMS	01112		EEMS # At EEMS	01112		EE At EE!	EMS#	01112		EEMS # At EPA R-7	01112		
offset = span =	-0.2 1.017		offset = span =	-0.2 1.017		offset = span =	-0.2 1.017		offs spa	set = nn =	-0.2 1.017		offset = span =	-0.2 1.017		

EEMS # S/N =	01113 051711216	7		t = 0517112 pe and intercept hted cells Date		Enter new slop yellow highligh		-	Enter new slop yellow highligh			Enter new slop yellow highligh		
m ₁	1/3/2015	0.99747	m ₁	1/7/2015	1.02050	m ₁	4/29/2015	1.02260	m ₁	9/21/2015	1.02307	m ₁	1/0/1900	
m_2	1/2/2015	0.99542	m ₂	12/28/2014	0.99921	m ₂	1/7/2015	1.02050	m ₂	4/29/2015	1.02260	m ₂	9/21/2015	1.02307
m_3	12/31/2014	0.99671	m_3	12/29/2014	0.99984	m_3	12/28/2014	0.99921	m_3	1/7/2015	1.02050	m_3	4/29/2015	1.02260
m_4	12/30/2014	0.99501	m ₄	12/30/2014	0.99501	m ₄	12/29/2014	0.99984	m ₄	12/28/2014	0.99921	m ₄	1/7/2015	1.02050
m_5	12/29/2014	0.99984	m ₅	12/31/2014	0.99671	m ₅	12/30/2014	0.99501	m_5	12/29/2014	0.99984	m ₅	12/28/2014	0.99921
m_6	12/28/2014	0.999206	m ₆	1/2/2015	0.99542	m ₆	12/31/2014	0.99671	m ₆	12/30/2014	0.99501	m ₆	12/29/2014	0.99984
I_1	1/3/2015	-0.18872	I_1	1/7/2015	-0.34620	I ₁	4/29/2015	-0.20400	I ₁	9/21/2015	-0.26399	I ₁	1/0/1900	
I_2	1/2/2015	-0.06509	I_2	12/28/2014	0.33333	I_2	1/7/2015	-0.34620	I_2	4/29/2015	-0.20400	I ₂	9/21/2015	-0.26399
I_3	12/31/2014	-0.05931	I_3	12/29/2014	0.04619	I_3	12/28/2014	0.33333	I_3	1/7/2015	-0.34620	I_3	4/29/2015	-0.20400
I_4	12/30/2014	0.15486	I_4	12/30/2014	0.15486	I_4	12/29/2014	0.04619	I_4	12/28/2014	0.33333	I_4	1/7/2015	-0.34620
I_5	12/29/2014	0.04619	I_5	12/31/2014	-0.05931	I_5	12/30/2014	0.15486	I_5	12/29/2014	0.04619	I_5	12/28/2014	0.33333
I_6	12/28/2014	0.333331	I ₆	1/2/2015	-0.06509	I_6	12/31/2014	-0.05931	I ₆	12/30/2014	0.15486	I ₆	12/29/2014	0.04619
Average II	1/3/2015	0.99728	Average M	1/7/2015	1.00112	Average M	4/29/2015	1.00565	Average M	9/21/2015	1.01004	Average M	1/0/1900	1.01304
Avarage I	1/3/2015	0.03688	Avarage I	1/7/2015	0.01063	Avarage I	4/29/2015	-0.01252	Avarage I	9/21/2015	-0.04664	Avarage I	1/0/1900	-0.08693
$S_{m\ (\%)}$	1/3/2015	0.20	S m (%)	1/7/2015	0.97	S m (%)	4/29/2015	1.24	S m (%)	9/21/2015	1.32	S m (%)	1/0/1900	40.84
$S_{I\ (ppb)}$	1/3/2015	0.2	S _{I (ppb)}	1/7/2015	0.2	S _{I (ppb)}	4/29/2015	0.2	S _{I (ppb)}	9/21/2015	0.3	S _{I (ppb)}	1/0/1900	0.3
Test s _m	1/3/2015	PASS	Test s _m	1/7/2015	PASS	Test s _m	4/29/2015	PASS	Test s _m	9/21/2015	PASS	Test s _m	1/0/1900	FAIL
Test s _I	1/3/2015	PASS	Test s _I	1/7/2015	PASS	Test s _I	4/29/2015	PASS	Test s _I	9/21/2015	PASS	Test s _I	1/0/1900	PASS
	$S_m =$	$=\frac{100}{m}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right.$	$(m_i)^2$	- \frac{1}{6}	$\sum_{i=1}^{6} m$	i) 2]			$S_m =$	$=\frac{100}{\overline{m}}$	$\frac{1}{5} \left[\sum_{i=1}^{6} \right.$	(m_i)	$\frac{1}{6}$
		$S_{i} = \sqrt{\frac{1}{5}}$	$\sum_{i=1}^{6} $	$(I_i)^2$	$-\frac{1}{6}$	$\sum_{i=1}^{6} I_{i}$	$\bigg) \ \ \frac{2}{}$				$S_{I} = \sqrt{\frac{1}{5}}$	$\left[\sum_{i=1}^{6} $	$(I_i)^2$	$-\frac{1}{6}\left(\frac{1}{2}\right)$
EEMS First 6-day At EEMS offset = span =			EEMS # First Verifica At EPA Regio offset = span =	tion		EEMS # Verification At EPA RTP offset = span =	01113 -0.1 1.035		EEMS # Verification At EPA R7 offset = span =	01113 -0.1 1.035		EEMS#	01113	

	Date	1/3/2014		Date	1/4/2014		Date	1/8/2014		Date	1/7/2015		Date	9/21/2015
m_1	1/3/2014	1.01247	m_1	1/4/2014	1.00619	m_1	1/8/2014	1.00420	m_1	1/7/2015	1.01820	m_1	9/21/2015	1.01937
m_2	1/2/2014	1.00736	m_2	1/3/2014	1.01247	m_2	1/4/2014	1.00619	m_2	1/8/2014	1.00420	m_2	1/7/2015	1.01820
m_3	1/1/2014	1.00869	m_3	1/2/2014	1.00736	m_3	1/3/2014	1.01247	m_3	1/4/2014	1.00619	m_3	1/8/2014	1.00420
m_4	12/31/2013	1.00353	m_4	1/1/2014	1.00869	m_4	1/2/2014	1.00736	m_4	1/3/2014	1.01247	m_4	1/4/2014	1.00619
m_5	12/30/2013	1.00200	m_5	12/31/2013	1.00353	m_5	1/1/2014	1.00869	m_5	1/2/2014	1.00736	m_5	1/3/2014	1.01247
m_6	12/17/2012	1.00320	m_6	12/30/2013	1.00200	m_6	12/31/2013	1.00353	m_6	1/1/2014	1.00869	m_6	1/2/2014	1.00736
I_1	1/3/2014	-1.24114	I ₁	1/4/2014	-0.04260	I ₁	1/8/2014	0.35220	I ₁	1/7/2015	-0.41020	I_1	9/21/2015	0.02326
I_2	1/2/2014	0.04271	I_2	1/3/2014	-1.24114	I_2	1/4/2014	-0.04260	I_2	1/8/2014	0.35220	I_2	1/7/2015	-0.41020
I_3	1/1/2014	-0.15798	I_3	1/2/2014	0.04271	I_3	1/3/2014	-1.24114	I_3	1/4/2014	-0.04260	I_3	1/8/2014	0.35220
I_4	12/31/2013	-0.21509	I_4	1/1/2014	-0.15798	I_4	1/2/2014	0.04271	I_4	1/3/2014	-1.24114	I_4	1/4/2014	-0.04260
I_5	12/30/2013	-0.60650	I_5	12/31/2013	-0.21509	I_5	1/1/2014	-0.15798	I_5	1/2/2014	0.04271	I_5	1/3/2014	-1.24114
I_6	12/17/2012	0.03150	I_6	12/30/2013	-0.60650	I_6	12/31/2013	-0.21509	I_6	1/1/2014	-0.15798	I_6	1/2/2014	0.04271
Average M	1/3/2014	1.00621	Average M	1/4/2014	1.00671	Average M	1/8/2014	1.00707	Average M	1/7/2015	1.00952	Average M	9/21/2015	1.01130
Avarage I	1/3/2014	-0.35775	Avarage I	1/4/2014	-0.37010	Avarage I	1/8/2014	-0.21032	Avarage I	1/7/2015	-0.24284	Avarage I	9/21/2015	-0.21263
S m (%)	1/3/2014	0.40	S m (%)	1/4/2014	0.37	S m (%)	1/8/2014	0.32	S m (%)	1/7/2015	0.50	S m (%)	9/21/2015	0.63
$S_{I(ppb)}$	1/3/2014	0.5	S _I (ppb)	1/4/2014	0.5	S _I (ppb)	1/8/2014	0.5	S _I (ppb)	1/7/2015	0.5	S _I (ppb)	9/21/2015	0.6
Test s _m	1/3/2014	PASS	Test s _m	1/4/2014	PASS	Test s _m	1/8/2014	PASS	Test s _m	1/7/2015	PASS	Test s _m	9/21/2015	PASS
Test s _I	1/3/2014	PASS	Test s ₁	1/4/2014	PASS	Test s _I	1/8/2014	PASS	Test s _I	1/7/2015	PASS	Test s _I	9/21/2015	PASS
$\sum_{i=1}^{6} m$	i 2			S_m =	$=\frac{100}{m}$	$ \frac{1}{5} \left[\sum_{i=1}^{6} \right] $	(m i)	$\frac{1}{6}$	$\int_{i=1}^{6} m$	$\begin{bmatrix} i \end{bmatrix}^2$			S_m =	$=\frac{100}{m}$
$S_{i} = \sqrt{\frac{1}{2}}$				$\int_{a}^{6} \left[\sum_{i=1}^{6} (I_{i})^{2} - \frac{1}{6} \left(\sum_{i=1}^{6} I_{i} \right)^{2} \right]$							$S_{i} = \sqrt{\frac{1}{5}}$			
EEMS # New 6-day aft At EEMS BKG = 0.0 COEF = 1.03	ter replacing de	etector B	EEMS # New 6-day aft At EEMS BKG = 0.0 COEF = 1.03:	ter replacing d	etector B	EEMS # At EPA Regio BKG = 0.0 COEF = 1.03:			EEMS # At EPA Regior 1/7/2015 BKG = 0.0 COEF = 1.035		-	EEMS # At EPA Regio 9/21/2015 BKG = 0.0 COEF = 1.03	n 7	

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

> **EPA** Standard

GUEST

Instrument

Agency:

EPA Region 4

EEMS

Contact:

Mike Crowe

Eric Hebert

Make:

NIST

Thermo

Model:

SRP-10

49CPS

S/N:

Level 2

10

49CPS-70008-364

Guest Test Status:

PASS

"as found"

0

Slope

EEMS PLILO

High Oa

SESD Project #: Test #:

15-0158 #1

Guest Known Offset:

 R^2

Intercept

	Averages:	1.0182	-0.4102	0.9999982	487	0	
	Upper Tolerance:	1.0300	3.0000				
	LowerTolerance:	0.9700	-3.0000				
				•	Upper	Lower	
Time					Range	Range	
End	Eile.	Clama	1-44	D ²	1		

Date	Time	Date	Time					Range	Lower Range
Start	Start	End	End	File	Slope	Intercept	R ²	(ppb O ₃)	(ppb O ₃)
01/07/15	4:08 PM	01/07/15	5:57 PM	c0107001.xls	1.0131	-0.4703	0.9999977	482	0.03
01/07/15	5:57 PM	01/07/15	7:48 PM	c0107002.xls	1.0167	-0.4430	0.9999990	483	-0.11
01/07/15	7:48 PM	01/07/15	9:44 PM	c0107003.xls	1.0186	-0.4633	0.9999991	486	0.10
01/07/15	9:44 PM	01/07/15	11:34 PM	c0107004.xls	1.0189	-0.4071	0.9999997	488	-0.04
01/07/15	11:34 PM	01/08/15	1:30 AM	c0107005.xls	1.0196	-0.4802	0.9999980	489	0.10
01/08/15	1:30 AM	01/08/15	3:17 AM	c0107006.xls	1.0204	-0.3861	0.9999980	489	-0.29
01/08/15	3:17 AM	01/08/15	5:14 AM	c0107007.xls	1.0204	-0.2214	0.9999961	489	-0.40

Comments:

Instrument tested as found.

Ozone calibration factors at time of test:

O3 BKG: 0.0 ppb O3 COEF: 1.035

Instrument within tolerance

Verification Expires on:

January 8, 2016

Mike Crowe -

SESD Project #:

Test #:

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

> **EPA** Standard

GUEST

Instrument

Agency:

EPA R4 SESD EEMS

Contact:

Mike Crowe

Eric Hebert

Make:

NIST

Thermo

Model:

SRP

49CPS

S/N:

517112175

10

PASS

#1 "as found"

15-0157

Guest Test Status: Guest Known Offset:

0

Level 2	Slope	Intercept	R ²	High O ₃	Lower O ₃
Averages:	1.0154	-0.0910	0.9999992	496	0
Upper Tolerance:	1.0300	3.0000			
LowerTolerance:	0.9700	-3.0000	ı		

EEMS* OLLL

Date Start	Time Start	Date End	Time End	File	Slope	Intercept	R^2	Upper Range (ppb O ₃)	Lower Range (ppb O ₃)
01/07/15	10:50 AM	01/07/15	11:48 AM	c0107001.xls	1.0139	-0.1230	0.9999995	497	-0.02
01/07/15	11:49 AM	01/07/15	12:52 PM	c0107002.xls	1.0161	-0.0751	0.9999995	496	-0.18
01/07/15	12:52 PM	01/07/15	1:49 PM	c0107003.xls	1.0164	-0.0749	0.9999986	496	-0.34

Comments:

Instrument tested as found.

Ozone calibration factors at time of test:

O3 BKG: -0.5 ppb O3 COEF: 1.035

No Alarms.

Instrument within tolerance.

Verification Expires on:

January 7, 2016

Mike Crowe

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

EPA

GUEST

Standard

Instrument

Agency:

EPA Region 4

EEMS

Contact:

Mike Crowe

Eric Hebert

Make:

NIST

Thermo

Model:

SRP-10

49CPS

S/N:

10

49CPS-0419606966

Guest Test Status: Guest Known Offset: PASS

EEMS!

High O₃ Lower O₃

487

SESD Project #: Test #:

15-0159 #1

"as found"

Level 2	Slope	Intercept	R ²
Averages:	1.0248	0.5747	0.9999923
Upper Tolerance:	1.0300	3.0000	
LowerTolerance:	0.9700	-3.0000	

Date Start	Time Start	Date End	Time End	File	Slope	Intercept	R^2	Upper Range (ppb O ₃)	Lower Range (ppb O ₃)
				TO AND THE PROPERTY OF THE PARTY OF THE PART					
01/07/15	4:08 PM	01/07/15	5:57 PM	c0107001.xls	1.0272	0.3538	0.9999978	482	0.03
01/07/15	5:57 PM	01/07/15	7:48 PM	c0107002.xls	1.0279	0.3801	0.9999987	483	-0.11
01/07/15	7:48 PM	01/07/15	9:44 PM	c0107003.xls	1.0274	0.3748	0.9999988	486	0.10
01/07/15	9:44 PM	01/07/15	11:34 PM	c0107004.xls	1.0241	0.5498	0.9999944	488	-0.04
01/07/15	11:34 PM	01/08/15	1:30 AM	c0107005.xls	1.0235	0.6388	0.9999907	489	0.10
01/08/15	1:30 AM	01/08/15	3:17 AM	c0107006.xls	1.0218	0.7911	0.9999857	489	-0.29
01/08/15	3:17 AM	01/08/15	5:14 AM	c0107007.xls	1.0214	0.9343	0.9999802	489	-0.40

Comments:

Instrument tested as found.

Ozone calibration factors at time of test:

O3 BKG: -0.5 ppb O3 COEF: 1.045

Instrument within tolerance

Verification Expires on:

January 8, 2016

Mike Crowe

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. Athens, GA 30605

EPA

GUEST

Agency:

Standard **EPA Region 4** Instrument

Contact:

Mike Crowe

EEMS

Make:

NIST

Eric Hebert

Model:

SRP

c0107003.xls

Thermo 49CPS

S/N:

10

517112167

Guest Test Status:

PASS

SESD Project #: Test #:

Time

Start

10:50 AM

11:49 AM

12:52 PM

15-0156 #1

"as found"

Date

End

01/07/15

01/07/15

01/07/15

Guest Known Offset:

0

1.0212

Level 2 R^2 Slope Intercept High O₃ Lower O₃ Averages: 1.0205 -0.34620.9999994 496 0 **Upper Tolerance:** 1.0300 3.0000

EEMS# OLLI3

	LowerTolerance:	0.9700	-3.0000				
Time End	File	Slope	Intercept	R ²	Upper Range (ppb O ₃)	Lower Range (ppb O ₃)	
11:48 AM	c0107001.xls	1.0188	-0.3391	0.9999996	497	-0.02	
12:52 PM	c0107002.xls	1.0216	-0.3573	0.9999997	496	-0.18	

Comments:

Date

Start

01/07/15

01/07/15

01/07/15

Instrument tested as found.

Ozone calibration factors at time of test:

1:49 PM

O3 BKG: -0.1 ppb O3 COEF: 1.035

-0.3421

0.9999990

496

-0.34

No Alarms.

Instrument within tolerance.

Verification Expires on:

January 7, 2016

Mike Crowe -

REPORT OF RE-VERIFICATION

U. S. Environmental Protection Agency Office of Research and Development Air Pollution Prevention and Control Division Technical Services Branch 109 T.W. Alexander Drive RTP, NC 27711

Primary Standard

Guest Information

U.S. EPA Scott Moore 4930 Old Page Rd. RTP, NC 27709 (919) 541-5104

04/30/15

Agency: Contact:

Level

EPARTP Scott Moore Make: NIST Model: SRP

S/N: moore.scott@epa.gov NIST Ver.

01

May 08, 2015 2

Agency:

Contact: Make:

Model: S/N: Offset:

Slope

Status:

EE & MS Eric Hebert

Thermo 49c 686

517112167 **PASS**

EEMS # OIII3

Averages: Upper Limit: Lower Limit

1.0226 1.0300 0.9700

3.0000 -3.0000

Intercept

-0.2040

0.99999826 NA NA

 R^2

Date Time Date Time Start Start End End 04/29/15 18:54 04/29/15 21:45 04/29/15 21:45

04/30/15 0:46 21:21 05/01/15 0:00

File c0429001.xls c0429002.xls C0430002.xls

1.0199 1.0226 1.0254

Slope

-0.2951 -0.2165 -0.1003

Intercept

0.99999564 0.99999934 0.99999980

 R^2

Comments: Ozone concentrations were run, on an average at 520, 471, 428, 388, 351, 316, 285, 244, 199, 157, 122, 93, 55 and 22 ppb. Next Re-Verification will be due by 5/1/16.

Scott A. Moore

Scott a. Moore

DATE

May 1, 2015

Calibrating Institute:

EPA Region 7

Date:

25-Jun-15

Operator:

J. Regehr / T. Bui

Start Time:

14:31

Instrument:

SRP-13

Cell Length=89.84

End Time:

15:42

Comment:

Certification of EEMS TEI49cPS SRP Generating Slope Filename:

lename: c0625004.xls

Calibrated Instrument:	EEMS	Calibration		Standard
Owner:	EEMS	Results	Value	Uncertainty
Contact:	Eric Hebert	Slope	0.99403	0.00031
Make:	TEI	Intercept	-0.24830	0.07372
Model:	49c-PS	Covariance		-3.0030E-08
Serial Number:	419606966	Res Std Dev	0.12237	

Calibration Parameters:

Raw Saved; Dark Count On (5)

to

Air Flow Rate:

7.0 I/min

0.0

45.0 %

.Lamp Intensity Range: Number Conc. Points:

7

Points/Concentration:

10

Conditioning:

45.0 % for 5 minutes

Conditionii		45.0 % for 5 r	A DESTRUCTION OF THE PARTY OF T				
Calibration	SR	P-13	EE	MS	EE	MS	
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual	
Dark Count 1							
Dark Count 2							
1							
2	349.4						
3	231.0						
4	102.9						
5							
6							
7	0.0	0.2	-0.3	0.1	-0.25	-0.02	
		11					
				1			

Calibrating Institute:

EPA Region 7

Date:

25-Jun-15

Operator:

J. Regehr / T. Bui

Start Time:

15:42

Instrument:

SRP-13

Cell Length=89.84

End Time:

16:49

Comment:

Certification of EEMS TEI49cPS SRP Generating Slope Filename:

c0625005.xls

Standard

Calibrated Instrument: Owner:

EEMS EEMS Eric Hebert

Results Slope

Calibration

Uncertainty Value 0.99584 -0.27154

0.10157

Contact: Make:

TEI 49c-PS

Intercept Covariance

0.06115 -1.8977E-08

0.00025

Model: **Serial Number:**

419606966

Res Std Dev

Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 I/min

0.0 to

45.0 %

Lamp Intensity Range: Number Conc. Points:

Points/Concentration:

10

Conditioning:

45.0 % for 5 minutes

Collaboration		45.0 % 101 5 1		MO		140
Calibration		P-13		MS		MS
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual
Dark Count 1						
Dark Count 2						
1	462.5					-0.06
2 3	349.8					0.17
4	102.2					-0.06
5 6	49.8					
6	24.2					
7	0.1	0.1	-0.2	0.1	-0.16	-0.04
						ñ
				1		
				l I		
				- 1		
	1	- ×				=
			-			

Calibrating Institute:

EPA Region 7

Date:

25-Jun-15

Operator:

J. Regehr / T. Bui

Start Time:

16:49

Instrument:

SRP-13

Cell Length=89.84

End Time:

17:54

Comment:

Certification of EEMS TEI49cPS SRP Generating Slope Filename:

c0625006.xls

Calibrated Instrument:	EEMS	Calibration		Standard
Owner:	EEMS	Results	Value	Uncertainty
Contact:	Eric Hebert	Slope	0.99726	0.00023
Make:	TEI	Intercept	-0.22502	0.05447
Model:	49c-PS	Covariance		-1.6575E-08
Serial Number:	419606966	Res Std Dev	0.09045	

Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 I/min

0.0

45.0 %

Lamp Intensity Range:

to 7

Points/Concentration:

10

Number Conc. Points:

Conditionin	ng:	45.0 % for 5 r	ninutes				
Calibration	SRI	P-13	EE	MS	EE	MS	
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual	
Dark Count 1	11						
Dark Count 2	7						
1	462.4						
2	349.9					0.09	
3	231.1	0.2					
4	102.3						
5	50.1						
5 6 7	24.1				23.85		
7	0.1	0.2	-0.2	0.1	-0.17	-0.02	
		11					
		= 11					
		=					
				-			
					1		

Calibrating Institute:

EPA Region 7

Date:

25-Jun-15

Operator:

J. Regehr / T. Bui

Start Time:

17:54

Instrument:

SRP-13

Cell Length=89.84

End Time:

19:00

Comment:

Certification of EEMS TEI49cPS SRP Generating Slope Filename:

c0625007.xls

Calibrated Instrument: Owner:

EEMS

Calibration Results Value Standard

Contact: Make:

EEMS Eric Hebert

0.99728 Slope Intercept -0.04014 Uncertainty 0.00014 0.03263

Model:

TEI 49c-PS 419606966

Covariance Res Std Dev -5.0075E-09

Serial Number: Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 I/min

7

45.0 % Points/Concentration:

Lamp Intensity Range: 0.0 to

0.05420

Number Conc. Points: Conditioning:

45.0 % for 5 minutes

10

Condition	mig		43.0 % 101 3 1				
Calibration		SRI	P-13	EE	MS	EE	MS
Data Points		Result	Std. Dev	Result	Std. Dev	Predicted	Residual
Dark Count	t 1	10			11.00		
Dark Count	t 2	6					
	1	462.6	0.3	461.3	0.2	461.30	0.00
	2	349.8	0.3	348.8	0.3	348.80	
	2	230.6					
	4	102.1	0.3	101.7	0.1	101.78	
	5	50.2			0.1	50.06	-0.01
	6	24.3	0.1		0.1	24.17	-0.05
	7	-0.1		-0.1	0.2		
•	-						
					1		
					1		
			A				
				1111			
	- 1		1	1	I	I .	I

Calibrating Institute:

EPA Region 7

Date:

25-Jun-15

Operator:

J. Regehr / T. Bui

Start Time:

19:00

Instrument:

SRP-13

End Time:

20:06

Comment:

Cell Length=89.84 Certification of EEMS TEI49cPS SRP Generating Slope Filename:

c0625008.xls

Calibrated Instrument: Owner:

EEMS Eric Hebert

EEMS

Results Value Slope 0.99853 Intercept -0.13118

Uncertainty 0.00033 0.07934

Standard

Contact: Make: Model:

TEI 49c-PS

Covariance Res Std Dev

Calibration

-4.8749E-08

Serial Number: Calibration Parameters:

419606966 Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 I/min

to

45.0 %

Lamp Intensity Range:

0.0 7

Points/Concentration:

Number Conc. Points: Conditioning:

45.0 % for 5 minutes

10

0.13176

Conditionii	ıy.	45.0 % 101 5 1	Hillutes			
Calibration	SRI	P-13	EE	MS		MS
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual
Dark Count 1						
Dark Count 2	2					
1	461.8	0.7	461.1	0.6	460.99	0.13
2	349.2	0.3	348.5	0.2	348.56	-0.09
3	230.3	0.5	229.8	0.3	229.85	-0.06
4 5	102.0	0.4	101.5	0.1	101.67	-0.17
5	50.1	0.3	50.0	0.1	49.85	0.14
6	24.4			0.1	24.23	-0.09
7	-0.1	0.2	-0.1	0.1	-0.23	0.14
		5		h 1		
					-	
		- 1				
		3	11 11			
					=	
				- 1		
					1	
		E				
	1		I			I

Calibrating Institute:

EPA Region 7

Date:

21-Sep-15

Operator:

J. Regehr / T. Bui

Start Time:

10:52

Instrument:

SRP-13

Cell Length=89.84

End Time:

12:03

Comment:

Certification of EEMS TEI49cPS 70008364 SRP Genera Filename:

c0921004.xls

Calibrated Instrument:	EEMS	Calibration		Standard
Owner:	EEMS	Results	Value	Uncertainty
Contact:	Eric Hebert	Slope	1.01700	0.00033
Make:	TEI	Intercept	-0.06939	0.07872
Model:	49c-PS	Covariance		-3.7649E-08
Serial Number:	70008-364	Res Std Dev	0.13077	

Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 I/min

7

45.0 %

Lamp Intensity Range:

0.0 to

Points/Concentration:

10

Number Conc. Points:

Conditionii	ng:	45.0 % for 5 r	ninutes				
Calibration	SRI	P-13	EE	MS	EE	MS	
Data Points	Result	Std. Dev	Result	Std. Dev	Predicted	Residual	
Dark Count 1	11						
Dark Count 2	10						
1	459.0	0.3	466.6	0.2	466.71	-0.13	
2	347.7			0.2	353.55		
2 3 4 5 6	228.7	10.20.00	The state of the s	0.1	232.48	0.0000000000000000000000000000000000000	**
4	101.0		(0.050,	0.1	102.61	0.05	
5	49.9	50000		3000000	\$5000 feet 145 feet	0.0000000000000000000000000000000000000	
6	Control Control	N/80000	THE TANK THE PARTY OF THE PARTY				
7	0.0	0.4	0.0	0.1	-0.12	0.11	
9/2 AVG	1/15 SLOPE = INT =	1.0193	7 26	EE	CVar MS#	2)	0
	Aug	6 d	ay	m= b=-	1,0113	0 263	:

Calibrating Institute:

EPA Region 7

Date:

21-Sep-15

Operator:

J. Regehr / T. Bui

Start Time:

14:44

Instrument:

SRP-13

Cell Length=89.84

End Time:

15:57

Comment:

Certification of EEMS TEI49cPS 0517112167 SRP Gen Filename:

c0921007.xls

Calibrated Instrument:	EEMS	Calibration		Standard
Owner:	EEMS	Results	Value	Uncertainty
Contact:	Eric Hebert	Slope	1.02246	0.00041
Make:	TEI	Intercept	-0.48395	0.09650
Model:	49c-PS	Covariance		-5.8496E-08
Serial Number:	517112167	Res Std Dev	0.16017	

Calibration Parameters:

Raw Saved; Dark Count On (5)

Air Flow Rate:

7.0 l/min

0.0 to 45.0 %

Lamp Intensity Range: Number Conc. Points:

7

Points/Concentration:

10

Conditioning: 45.0 % for 5 minutes Calibration SRP-13 **EEMS** EEMS **Data Points** Std. Dev Predicted Result Result Std. Dev Residual Dark Count 1 11 Dark Count 2 11 456.7 0.2 466.3 0.3 466.45 -0.16 1 0.03 2 345.5 0.3 352.8 0.2 352.76 3 0.4 232.6 0.2 0.29 227.6 232.27 -0.04 100.8 0.6 102.5 0.2 102.59 0.10 49.8 0.4 50.6 0.1 50.48 24.3 0.2 24.2 0.1 24.38 -0.18 0.1 0.4 -0.40.1 -0.35 -0.04 9/21/15 AVG SLOPE = 1.02307 INT = -0.26399 1.01004

Page 1 of 2

CALIBRATION PROCEDURE 18802/18811 ANEMOMETER DRIVE

DWG: CP18802(C)

REV: C101107 BY: TJT

PAGE: 4 of 4 DATE: 10/11/07

CHK: JC

W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

R. M. Young Company certifies that the equipment listed below was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

MODEL: 18802 / 18811

SERIAL NUMBER:

CA04013

(18802 Comprised of Models 18820A Control Unit & 18830A Motor Assembly) (18811 Comprised of Models 18820A Control Unit & 18831A Motor Assembly)

EEMS # 01253

Nominal Motor RPM	27106D Output Frequency (Hz) - (1)	Calculated Rpm (1)	Indicated Rpm (2)
1	8802 -	☑ cw/c	CW rotation verified
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10200	10200
12,600	2100	12600	12600
15,000	2500	15000	15000
1	8811 -	☑ cw/c	CW rotation verified
30.0	5	30.0	30.0
150.0	25	150.0	150.0
300.0	50	300.0	300.0
450.0	75	450.0	450.0
600.0	100	606.0	(000.D
750.0	125	750.0	750.0
990.0	65	990.0	990.0

Measured frequency output of RM Young Model 27106D standard anemometer attached (1) to motor shaft - 27106D produces 10 pulses per revolution of the anemometer shaft.

(2)Indicated on the Control Unit LCD display.

*	Indicat	29	Out	of t	tole	rance	

☐ New Unit(s	Service / Repair U	nit justments Required	☐ As Found ☐ As Left
Traceable frequency	meter used in calibration	Model: 34405 A	SN: 53020093
Date of inspection Inspection Interval	12-22-14 One Year	Tested B	By RP

Filename: CP18802(C).doc

CALIBRATION PROCEDURE 18802/18811 ANEMOMETER DRIVE

DWG: CP18802(C)

REV: C101107 BY: TJT

PAGE: 4 of 4 DATE: 10/11/07

CHK: JC

W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

R. M. Young Company certifies that the equipment listed below was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

MODEL: 18802 / 18811

SERIAL NUMBER:

(18802 Comprised of Models 18820A Control Unit & 18830A Motor Assembly) (18811 Comprised of Models 18820A Control Unit & 18831A Motor Assembly)

Nominal Motor RPM	27106D Output Frequency (Hz) - (1)	Calculated Rpm (1)	Indicated Rpm (2)
1	8802 -	™ cw/c	CW rotation verified
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10200	10200
12,600	2160	12600	12600
15,000	2500	15000	15000
1	8811 -	⊠ cw/c	CW rotation verified
30.0	5	30.0	30.0
150.0	25	150.0	150.0
300.0	50	300.0	300.0
450.0	75	450.0	450.0
600.0	(00	600.0	600.0
750.0	125	750.0	750.0
990.0	165	990.0	990.0

⁽¹⁾ Measured frequency output of RM Young Model 27106D standard anemometer attached to motor shaft - 27106D produces 10 pulses per revolution of the anemometer shaft.

Indicated on the Control Unit LCD display. (2)Indicates out of tolerance

New Unit(s)	Service / Renair Unit	

As Found As Left

Traceable frequency meter used in calibration Model: 34405 A

No Calibration Adjustments Required

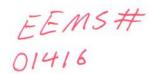
Date of inspection Inspection Interval

Date

1/30/2015 - Calibration and verification of three RTD meters with most recent certification of EEMS RTD

	TMI Data	1/28/2015					RTD		RTD		RTD	
					At	Date	01226	_	01227	_	01228	_
	TMI	E	EMS		EEMS	1/30/2015	EEMS		EEMS		EEMS	
	STD		RTD		F	RTD	van2		SEG		EOH	
cert date=	12/22/2014	0123	0 / 01231		01230	0 / 01231						
			diff	corrected	raw	corrected	raw	corrected	raw	corrected	raw	corrected
	0.028	-0.01	0.038	0.022	0.04	0.07	0.01	0.09	0.02	0.08	-0.14	0.08
	9.985	9.95	0.035	9.987	9.22	9.26	9.18	9.25	9.20	9.23	9.07	9.24
	19.949	19.91	0.039	19.952	19.34	19.38	19.32	19.38	19.39	19.39	19.28	19.39
	29.918	29.88	0.038	29.926	25.53	25.57	25.51	25.56				
	39.870	39.82	0.050	39.871	30.54	30.59	30.52	30.57	30.63	30.59	30.54	30.59
	49.854	49.79	0.064	49.846	39.97	40.00	39.97	40.01	40.08	40.01	40.01	40.00
					51.71	51.74	51.73	51.76	51.85	51.74	51.81	51.74
			RTD 012	30/01231								
		2015 correction:	slope=	0.99950102								
			intercept=	-0.0315584								
			0.9999999									
		1. 1 01 -				slope =	1.001053		1.003428		1.005636	
	Ein	Hebert	1/30/2015			intercept =	-0.07989		-0.064093		-0.21981	
						correlation =	1.0000		1.0000		1.0000]

Date


1/30/2015 - Calibration and verification of three thermocouples and fluke meters with most recent certification of EEMS RTD

	TMI Data	1/28/	2015		
	TMI STD		_	EMS RTD	
cert date=	12/22/2014		0123	0 / 01231	
				diff	corrected
	0.028		-0.01	0.038	0.022
	9.985		9.95	0.035	9.987
	19.949		19.91	0.039	19.952
	29.918		29.88	0.038	29.926
	39.870		39.82	0.050	39.871
	49.854		49.79	0.064	49.846
				RTD 012	30/01231
		2015 cor	rection:	slope=	0.99950102
				intercept=	-0.0315584
				0.9999999	

Ein Hebet 1/30/2015

		Data	411	04044		04040		04040	
At		Date	fluke =			01312		01310	
EEM	S	1/30/2015		EEMS		EEMS		EEMS	
	R	RTD		SEG		AER		EOH	
01	230	/ 01231	thermo =	01236		01237		01238	
raw		corrected		raw	corrected	raw	corrected	raw	corrected
0	.05	0.08		0.2	0.14	0.2	0.15	0.2	0.18
9	.41	9.45		9.5	9.42	9.6	9.51	9.5	9.44
19	.05	19.09		19.2	19.10	19.2	19.07	19.2	19.09
24	.48	24.52		24.6	24.48	24.6	24.45	24.6	24.46
30	.26	30.31		30.4	30.27	30.4	30.22	30.4	30.23
39	.49	39.52		39.7	39.55	39.7	39.48	39.7	39.49
47	.31	47.34		47.5	47.33	47.6	44.30	47.6	47.35
71	.99	72.06		72.3	72.08	72.5	72.14	72.5	72.12
7	The	rmocouple off	set =	-0.1		-0.3		0.6	
PC	ST	CALIBRATION	CHECK						
25	.36	25.40		25.6	25.48	25.7	25.54	25.5	25.36
		slope	e =	1.002238		1.0044366		1.00501	
		interce	ept =	0.06093		0.0443271		0.01441	
		correlat	tion =	1.0000		1.0000		1.0000	

Calibration Certificate

Certificate No. 50

5052575

Environmental Engineering &

Sold to:

Measurement Services, Inc -

Gainesville

Product Serial No.

Definer 220 High Flow

122974

Cal. Date

7-Jan-2015

1128 NW 39th Drive

Gainesville, FL 32605

USA

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician Lilianna Malinowska

Lab. Pressure 760 mmHg Lab. Temperature 22.4 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
504.09 sccm	501.19 sccm	0.58 % %	1.00%	In Tolerance
5011.5 sccm	5000.55 sccm	0.22 % %	1.00%	In Tolerance
30070 sccm	30020.5 sccm	0.16 % %	1.00%	In Tolerance
22.1 °C	22.4 °C	-0.3 °C	±0.8°C	In Tolerance
759 mmHg	760 mmHg	-1.0 mmHg	±3.5mmHg	In Tolerance

Mesa Laboratoires Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	18-Nov-2014	18-Nov-2015
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	24-Jun-2014	24-Jun-2015

EEMS# 01416

m = 0.998682 b = 0.007551 1/7/2015

As Shipped Calibration Data

Certificate No. 5052575
Technician Lilianna Malinowska

Lab. Pressure 750 mmHg **Lab. Temperature** 23.1 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
502.12 sccm	500.66 sccm	0.29 %%	1.00%	In Tolerance
5007.8 sccm	5000.45 sccm	0.15 %%	1.00%	In Tolerance
30372 sccm	30405.5 sccm	-0.11 %%	1.00%	In Tolerance
23.1 °C	23.1 °C		±0.8°C	In Tolerance
750 mmHg	750 mmHg	-	±3.5mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	18-Nov-2014	18-Nov-2015
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	24-Jun-2014	24-Jun-2015

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

David W. Wilson, Chief Metrologist

Calibration Certificate

Certificate No.

5052573

Environmental Engineering &

Sold to: Measurement Services, Inc -

Gainesville

Product Definer 220 High Flow Serial No.

131818

Cal. Date 7-Jan-2015

1128 NW 39th Drive

Gainesville, FL 32605

USA

EEMS # 01417

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician

Lab. Pressure mmHg Lab. Temperature

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
sccm	sccm	%	1.00%	
sccm	sccm	%	1.00%	
sccm	sccm	%	1.00%	
22.1 °C	22.4 °C	-0.3 °C	±0.8°C	In Tolerance
759 mmHg	760 mmHg	-1.0 mmHg	±3.5mmHg	In Tolerance

Mesa Laboratoires Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	24-Jun-2014	24-Jun-2015

m= 1.003157

b = -0.0054

EEM S#

1/7/2015

As Shipped Calibration Data

Certificate No. 5052573
Technician Lilianna Malinowska

Lab. Pressure 750 mmHg Lab. Temperature 23.1 °C

01417

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
502.02 sccm	500.66 sccm	0.27 %%	1.00%	In Tolerance
5008.8 sccm	5000.45 sccm	0.17 %%	1.00%	In Tolerance
30497 sccm	30405.5 sccm	0.30 %%	1.00%	In Tolerance
23.1 °C	23.1 °C	-	±0.8°C	In Tolerance
750 mmHg	750 mmHg	-	±3.5mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	18-Nov-2014	18-Nov-2015
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	24-Jun-2014	24-Jun-2015

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using highpurity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes: As Received Data was not taken due to Device Under Test malfunction.

David W. Wilson, Chief Metrologist

Calibration Certificate

Certificate No.

5052574

Environmental Engineering &

Sold to:

Measurement Services, Inc -

Gainesville

Product

Definer 220 Low Flow

Serial No.

120910

Cal. Date

7-Jan-2015

1128 NW 39th Drive

Gainesville, FL 32605

USA

EEMS# 01415

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician Lilianna Malinowska

Lab. Pressure 759 mmHg Lab. Temperature 22.3 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
30.337 sccm	30.018 sccm	1.06 % %	1.00%	Out of Tolerance
100.88 sccm	100.29 sccm	0.59 % %	1.00%	In Tolerance
506.44 sccm	500.8 sccm	1.13 % %	1.00%	Out of Tolerance
21.1 °C	22.3 °C	-1.2 °C	±0.8°C	Out of Tolerance
759 mmHg	759 mmHg	0.0 mmHg	±3.5mmHa	In Tolerance

Mesa Laboratoires Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-10	105329	17-Oct-2014	17-Oct-2015
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	24-Jun-2014	24-Jun-2015

As Shipped Calibration Data

Certificate No. 5052574 Technician Lilianna Malinowska Lab. Pressure 750 mmHg Lab. Temperature 22.6 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
30.411 sccm	30.386 sccm	0.08 %%	1.00%	In Tolerance
101.87 sccm	101.03 sccm	0.83 %%	1.00%	In Tolerance
501.58 sccm	500.525 sccm	0.21 %%	1.00%	In Tolerance
22.6 °C	22.6 °C	-	±0.8°C	In Tolerance
750 mmHg	750 mmHg	-	±3.5mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-10	105329	17-Oct-2014	17-Oct-2015
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	24-Jun-2014	24-Jun-2015

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

David W. Wilson, Chief Metrologist

THE EPPLEY LABORATORY, INC.

12 Sheffield Avenue, PO Box 419, Newport, Rhode Island USA 02840 Phone: 401.847.1020 Fax: 401.847.1031 Email: info@eppleylab.com

Calibration Certificate

Instrument:

Precision Spectral Pyranometer, Model PSP, Serial Number 34341F3

Procedure:

This pyranometer was compared in Eppley's Integrating Hemisphere according to procedures described in ISO 9847 Section 5.3.1 and Technical Procedure, TP01 of

The Eppley Laboratory, Inc.'s Quality Assurance Manual on Calibrations.

Transfer Standard: Eppley Precision Spectral Pyranometer, Model PSP, Serial Number 21231F3

Results:

Sensitivity:

 $S = 9.33 \mu V / Wm^{-2}$

Uncertainty:

 $U_{95} = \pm 0.91\%$ (95% confidence level, k=2)

Resistance:

700 Ω at 23°C

Date of Test:

January 16, 2015

Traceability:

This calibration is traceable to the World Radiation Reference (WRR) through comparisons with Eppley's AHF standard self-calibrating cavity pyrheliometers which participated in the Eleventh International Pyrheliometric Comparisons (IPC XI) at Davos, Switzerland in September-October 2010. Unless otherwise stated in the remarks section below or on the Sales Order, the results of this calibration are

"AS FOUND / AS LEFT".

Due Date:

Eppley recommends a minimum calibration cycle of five (5) years but encourages

annual calibrations for highest measurement accuracy.

Customer:

EEMS

Gainesville, FL

Signatures:

Eppley SO:

64314

Date of Certificate: January 22, 2015

Remarks:

With Amplifier # 10765 - Gain = 76.56 So That 1 Volt out = 1400 wm^{-2}

The Eppley Laboratory, Inc. 12 Sheffield Ave., P.O. Box 419 Newport, RI 02840-0419

Phone # 401-847-1020 Fed. ID No. 05-0136490

S.O. No. 64314

1/16/2015

Name / Address

Ship To

EEMS

Att: Erik Hebert 1128 NW 39th Drive

Gainesville, FL 32605

EEMS

Att: Eric Hebert 1128 NW 39th Drive

Gainesville, FL 32605

P.O... Verbal Ship Date 1/30/2015 Ship Via UPS Ground Recalibration of Model PSP#34341F3 Reset Amplifier 01245 and 01246 1/16/2015 SET GAIN SO IV = 1400 Wm2 GAIN = V Made in USA

Terms Credit Card

FOB Newport, RI USA

Certificate of Calibration

Customer: EE & MS

1128 NW 39TH DRIVE

GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 40062084/75299

Description:

HYGRO CLIP

Manufacturer: ROTRONIC

Model Number: HYGROCLIP

Serial Number: 40062084/75299

Technician:

STEVE TORRES

On-Site Calibration: Comments:

Calibration Date:

Calibration Due:

1/21/2015 1/21/2016

Procedure:

TMI-M-HYGROTHERMOGRAPHS

Rev: 2/22/2011

Temperature: Humidity:

72 °F

42 % RH

As Found Condition: IN TOLERANCE

Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

TEIB)

JACK SHULER, QUALITY MANAGER

Such Shales

Calibration Standards

Asset Number 9304027

Manufacturer THUNDER SCIENTIFIC Model Number 2500

Date Calibrated 4/12/2014

Cal Due

4/12/2015

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637

ANSI/NCSL Z540-1-1994

Technical Maintenance, Inc.

INSTRUMENT DATA SHEET

Rotronic HygroPalm

Asset Numbers: 01220 & 40062084/75299 Customer: EE & MS

Date Tested:

1/21/2015

EEMS# 01220

				+			
Parameter Tested	Nominal Value	Tolerance	Lower <u>Limit</u>	Upper <u>Limit</u>	As Found	Pass/Fail	As Left
Temperature Accuracy							
Lie Commission Commiss	19.29	±0.2 °C	19.09	19.49	19.1	PASS	AS FOUND
	22.4	±0.2 °C	22.2	22.6	22.3	PASS	AS FOUND
	24.8	±0.2 °C	24.6	25.0	24.7	PASS	AS FOUND
Humidity Accuracy							
	20	±1.5%	18.5	21.5	20.1	PASS	AS FOUND
	50	±1.5%	48.5	51.5	50.5	PASS	AS FOUND
	75	±1.5%	73.5	76.5	75.5	PASS	AS FOUND

Slope = 1.007473

Inter = 0.005495

Certificate of Calibration

Customer: EE & MS

1128 NW 39TH DRIVE

GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01225

Description:

THERMO HYGROMETER

Manufacturer: ROTRONIC

Model Number: HYGROPALM

Serial Number: 40861 002/124431

Technician:

STEVE TORRES

On-Site Calibration: Comments:

EEMS#

Calibration Date:

Calibration Due:

1/21/2015 1/21/2016

Procedure:

TMI-M-HYGROTHERMOGRAPHS

Rev: 2/22/2011

Temperature: Humidity:

72 °F

42 % RH

As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

TCIB)

JACK SHULER, QUALITY MANAGER

Conference Al Bearles

Calibration Standards

Asset Number

Manufacturer

Model Number

Date Calibrated

Cal Due

9304027

THUNDER SCIENTIFIC

2500

4/12/2014

4/12/2015

Technical Maintenance, Inc.

Technical Maintenance, Inc.

Rotronic Model: HYGROPALM

Humidity and Temperature Indicator

INSTRUMENT DATA SHEET

Asset Number: 01225 Customer: EE & MS

Date Tested: 1/21/15

Customer: EE & MS

EE MS

O12 25

Parameter Tested	Nominal Value	Tolerance	Lower <u>Limit</u>	Upper <u>Limit</u>	As Found	Pass/Fail	As Left	Pass/Fai
Temperature Accuracy	60.86 °F	± 0.4 °F	60.46 °F	61.26 °F	61.2 °F	Pass	As Found	Pass
garante estado en estado en entre en entre en entre en entre en entre entre en entre en entre en entre en entre	69.74 °F	± 0.4 °F	69.34 °F	70.14 °F	69.9 °F	Pass	As Found	Pass
	78.82 °F	± 0.4 °F	78.42 °F	79.22 °F	79.1 °F	Pass	As Found	Pass
Humidity Accuracy	33.00 %	± .5%+1.5% of rdg	32.00 %	34.00 %	32.4 %	Pass	As Found	Pass
	50.00 %	± .5%+1.5% of rdg	48.75 %	51.25 %	48.9 %	Pass	As Found	Pass
	70.00 %	± .5%+1.5% of rdg		71.55 %	68.8 %	Pass	As Found	Pass

Certificate of Calibration

Customer: EE & MS

1128 NW 39TH DRIVE GAINESVILLE, FL 32605

FEDEX

Description: DIGITAL MULTIMETER

Manufacturer: FLUKE

Model Number: 187

Serial Number: 86590148

Technician:

JOSH LOPEZ

On-Site Calibration:

Comments:

P.O. Number:

ID Number: 01310

EEMS!

Calibration Date:

1/22/2015

Calibration Due:

1/22/2016

Procedure:

METCAL FLUKE 187

Rev: 8/30/2012

Temperature: Humidity:

68 °F

42 % RH

As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FOR

Jack Shules
JACK SHULER, QUALITY MANAGER

Date Calibrated

4/9/2014

Calibration Standards

Asset Number 7040208 Manufacturer FLUKE Model Number

5520A

4/9/2015

Cal Due

Technical Maintenance, Inc.

ANSI/NCSL Z540-1-1994

Certificate Number A1802560 Issue Date: 01/22/15

Certificate of Calibration

Customer: EE & MS

1128 NW 39TH DRIVE GAINESVILLE, FL 32605

FEDEX

Description: DIGITAL MULTIMETER

Manufacturer: FLUKE

Model Number: 287

Serial Number: 95740135

Technician:

JOSH LOPEZ

On-Site Calibration:

Comments:

P.O. Number:

ID Number: 01311

Calibration Date:

1/22/2015

2Ems=

Calibration Due:

1/22/2016

Procedure:

METCAL FLUKE 287

Rev: 8/30/2012

Temperature: Humidity:

88 °F

42 % RH

As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FOR

Jack Shuler, QUALITY MANAGER

Calibration Standards

Asset Number 7040208 Manufacturer FLUKE Model Number 5520A

4/9/2014

Date Calibrated

Cal Due

4/9/2015

Technical Maintenance, Inc.

Certificate of Calibration

Customer: EE & MS

1128 NW 39TH DRIVE GAINESVILLE, FL 32605

FEDEX

P.O. Number:

ID Number: 01312

EEMS #

Description:

DIGITAL MULTIMETER

Manufacturer: FLUKE

Model Number: 287

Serial Number: 95740243

Technician:

JOSH LOPEZ

On-Site Calibration:

Comments:

Calibration Date:

1/22/2015

Calibration Due:

1/22/2016

Procedure:

METCAL FLUKE 287

Rev: 8/30/2012

Temperature: Humidity:

68 °F

42 % RH

As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE

Limiting Attribute:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

FOR

Jack Shules JACK SHULER, QUALITY MANAGER

Calibration Standards

Asset Number 7040208

Manufacturer

FLUKE

Model Number

5520A

Date Calibrated

4/9/2014

Cal Due 4/9/2015

Technical Maintenance, Inc.

Certificate Number A1808109 Issue Date: 01/28/15

Certificate of Calibration

Page 1 of 2

Customer: EE & MS

1128 NW 39TH DRIVE GAINESVILLE, FL 32605

FEDEX

F.O. Number: 1D Number: 01230 and 0123(

Description:

TEMPERATURE INDICATOR

Manufacturer: EUTECHNICS

Model Number: 4600-1.2.5

Serial Number: 01D102193

Technician:

STEVE TORRES

Comments:

Calibration Date:

Calibration Due:

1/28/2016

Procedure:

NA 17-20ST-132 Rev: 11/1/2011

Temperature: Humidity:

72 °F

1/28/2015

42 % RH

As Found Condition: IN TOLERANCE

Calibration Results: IN TOLERANCE

Limiting Attribute:

On-Site Calibration:

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K=2. A TUR of 4:1 is routinely observed unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025 and ANSI/NCSL Z540-1 by A2LA. ISO/IEC 17025 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. The instrument listed on this certificate has been calibrated to the requirements of ANSI/NCSL Z540-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

FRANK BAHMANN, BRANCH MANAGER

TC18

JACK SHULER, QUALITY MANAGER

Jack Marker

Calibration Standards

Asset Number	Manufacturer	Model Number	Date Calibrated	Cal Due
30946	FLUKE	5616	9/8/2014	2/25/2016
A06118	HART SCIENTIFIC	9103	1/13/2015	5/13/2016
A88072	FLUKE/HART	1502A	12/22/2014	3/17/2015

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637

ANSI/NCSL Z540-1-1994

Rev. 7 10/22/13 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

		INSTRUMENT DATAS	<u>SHEET</u>	
Asset Number:	01230 & 01231	Customer:	EE & MS	
Date Tested:	01/28/15			

Parameter Tested Temperature Accuracy	Nominal Value In °C	Tolerance ±.13 °C	Lower <u>Limit</u>	Upper <u>Limit</u>	As Found	Pass/Fail	As Left
	0.028	0.130	-0.102	0.158	-0.01	PASS	AS FOUND
	9.985	0.130	9.855	10.115	9.95	PASS	AS FOUND
	19.949	0.130	19.819	20.079	19.91	PASS	AS FOUND
	29.918	0.130	29.788	30.048	29.88	PASS	AS FOUND
	39.870	0.130	39.740	40.000	39.82	PASS	AS FOUND
	49.854	0.130	49.724	49.984	49.79	PASS	AS FOUND
			DOMONIO SARCINI	ALCON TOUR PORTS			

Slope = 0.99950102Inter = -0.0315584

Eutechnics 4600 Rev.0 Date: May 2000

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-464-9303

Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

Customer Name:	EE & MS # 01269
Purchase Order #:	
Instrument:	BRUNTON COMPASS
Serial Number:	5064612690
Quantity:	
Calibration Due:	01/2016

John Moga, Quality Contro

January 29, 2015

Measurement Standards:

Measurement Standards

Theodolite Wild T-3 S/N 18801 Calibration 05/08/14 Due 05/08/15 NIST Number 738/229329-83 738/223398

Optical Wedge K&E 71-2020 S/N 5167 Calibration 02/27/14 Due 02/27/19 731/244084-89

Bios NEXUS EEMS # 01420/01410 Certification Project:

Flow Rate Standard: EEMS#

BIOS Definer 220-H

Contact Name:

Project #:

Certification Date:

01416 1/7/2015

Contact Phone #: Contact Address:

Certification #:

5052575

slope = 0.998682 inter = 0.007551

Date:

2/5/2015

Flow rates are corrected to STP of one atmosphere and 25.0 degrees C. were plumbed together in series.

All tests were conducted with dry air. Nexus #1420, Definer 220-H EEMS# 01416

UNADJUSTED:

BIOS Nexus, EEMS # 01420 / 01410

Flow Rate Standard--Definer 220-H

01420 / 01410				
61	• • • • • • • • • • • • • • • • • • • •			
Slope =	0.966641			
Intercept =	0.030779			
Correl =	0.99996			

	Temp	Press
	deg C	mmHg
Definer	20.5	761
NEXUS	20.0	764

Definer 220-H	6103	NEXUS / DC-LITE			
STP SL/M		reading	Diff	% Diff	
Corrected	Flow	SL/m			
X	SL/m	Υ	Y - X	(Y - X)/X	
0.768	0.4	0.766	-0.002	-0.2%	
1.193	0.6	1.188	-0.005	-0.4%	
1.61	0.8	1.59	-0.019	-1.2%	
2.23	0.95	2.19	-0.036	-1.6%	
3.04	1.5	2.96	-0.083	-2.7%	
3.53	1.75	3.45	-0.083	-2.3%	

Average -0.001

environmental, engineering

NEXUS / DC LITE Corrected Values

Diff

-0.007

0.004

0.004

0.008

-0.012

0.004

% Diff

-0.9%

0.3%

0.2%

0.3%

-0.4%

0.1%

(using slope and intercept)

0.760

1.197

1.613 2.234

3.031

3.537

SL/m

& measurement services

Average Error (SL/m) =

-0.038

Error (SI/m)

SL/m: standard liters per minute

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-464-9303

Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

Customer Name:	Environmental Engineering & Measurement Services, Inc.		
Purchase Order #:			
Instrument:	Ushikata Tracon S-25 Compass		
Serial Number:	190037	EEMS #	01265
Quantity:	1		
Calibration Due:	2/2016		

John Noga, Quality Contro

February 19, 2015

Measurement Standards	
Theodolite Wild T-3 S/N 18801 Calibration 02/12/14 Due 02/12/15 NIST Number 738/229329-83 738/223398	
Optical Wedge K&E 71-2020 S/N 5167 Calibration 02/12/14 Due 02/12/19 731/244084-89 731/221617	

Warren-Knight Instrument Company

2045 Bennett Road Philadelphia, PA 19116

Phone: 215-464-9300; Fax: 215-464-9303

Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

Customer Name:	Environmental Engineering & Measurement Services, Inc.		
Purchase Order #:			
Instrument:	Ushikata Tracon S-25 Compass		#
Serial Number:	191832	EEMS	0/272
Quantity:			
Calibration Due:	(2/2016) on lean	to SEG	

John Noga, Quality Control

February 19, 2015

Measurement Standards	
Theodolite Wild T-3 S/N 18801 Calibration 02/12/14 Due 02/12/15 NIST Number 738/229329-83 738/223398	
Optical Wedge K&E 71-2020 S/N 5167 Calibration 02/12/14 Due 02/12/19 731/244084-89 731/221617	

Calibration Certificate

Environmental Engineering &

533691 Sold to: Measurement Services. Inc -

Gainesville

Product Definer 220 Low Flow 143301

1128 NW 39th Drive

Serial No.

Certificate No.

Gainesville, FL 32605

Cal. Date

13-Aug-2015

USA

Sales Date

8-Sep-2015 Calibration interval commences on sale date.

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Calibration Data

Technician Lilianna Malinowska

Lab. Pressure 751 mmHg Lab. Temperature 22.8 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
482.18 ccm	481.51 ccm	0.14 % %	1.00%	In Tolerance
108.17 ccm	108.12 ccm	0.05 % %	1.00%	In Tolerance
33.13 ccm	33.09 ccm	0.12 % %	1.00%	In Tolerance
22.8 °C	22.8 °C	-	±0.8°C	In Tolerance
751 mmHg	751 mmHg	-	±3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML_800_10	103743	8-Apr-2015	7-Apr-2016
Precision Thermometer	305460	9-Sep-2014	9-Sep-2015
Precision Barometer	2981392	29-Jun-2015	28-Jun-2016

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Louis Guido, Quality Engineer