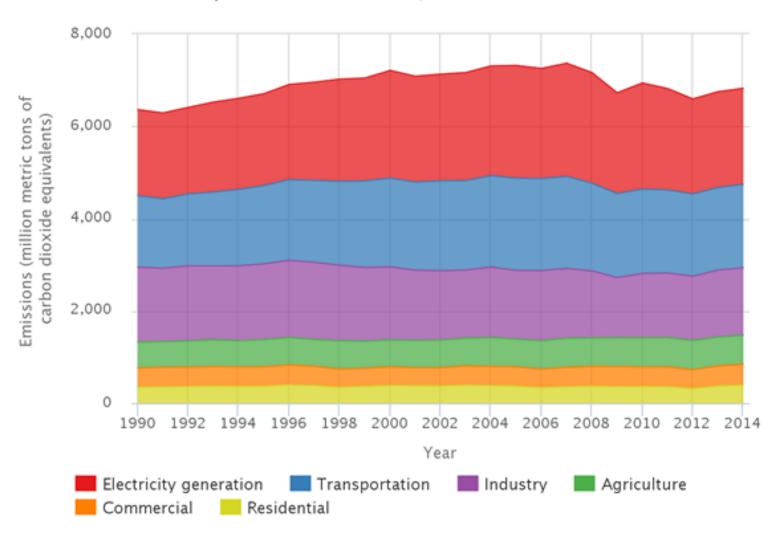
The Travel Efficiency Assessment Method(TEAM): Development and Case Studies

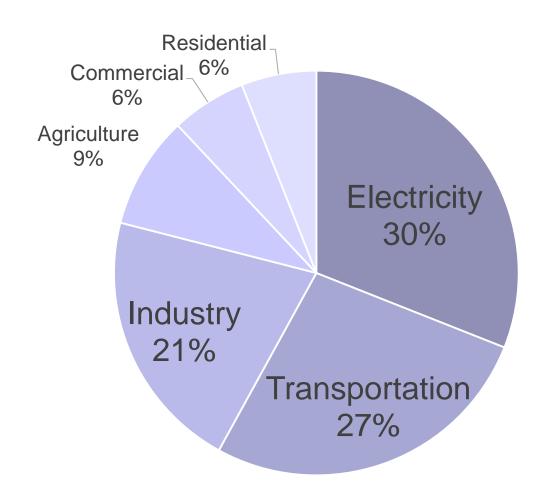

Mobile Sources Technical Review Subcommittee Meeting

Mark Simons, U.S. EPA

Office of Transportation and Air Quality

June 16, 2016

U.S. Greenhouse Gas Emissions by Economic Sector, 1990-2014

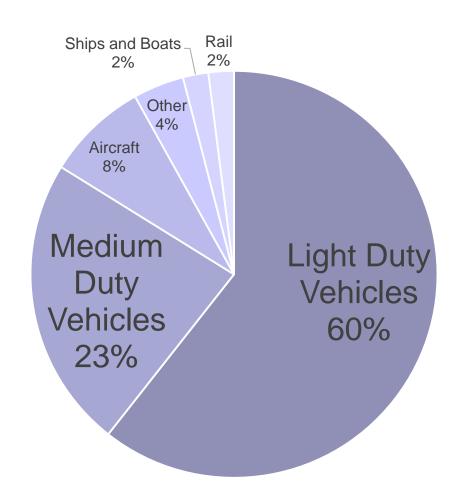


Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014. http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html

×

U.S. GHGs by Economic Sector

After electricity generation, *transportation* is the next largest source of U.S. GHG emissions



Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014 (April 2016)

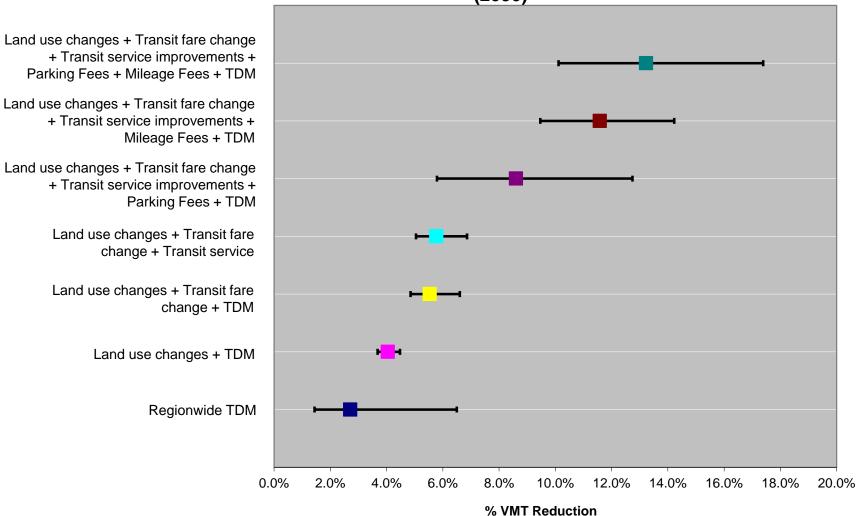
10

U.S. Transportation GHG Emission Sources

Light duty
passenger vehicles
contribute the largest
share of GHG
emissions from
transportation

Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014 (April 2016)

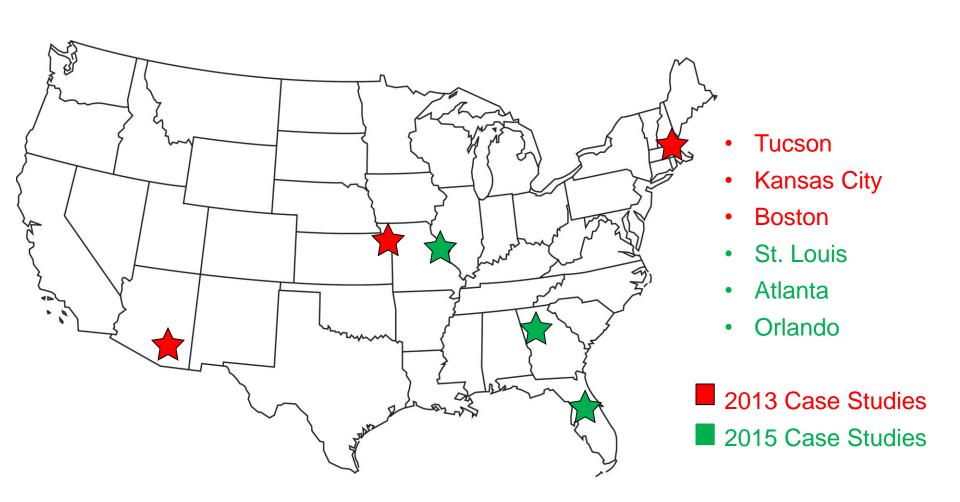
What are Travel Efficiency (TE) Strategies?


Strategies to reduce emissions by affecting travel activity – examples:

- Travel demand management
 - **Telecommuting**
 - Transit Subsidies
 - Carpool and Vanpool Programs
- Changes to public transit
 - Reduced Fares
 - Increased Frequency, Range
- Travel pricing
 - Road Pricing, Parking Pricing
- Changes to land use
 - □ TOD, Mixed Use, Jobs/Housing Balance

TEAM Report Results— National Analysis

Average and Range % LD VMT Reduction Across All Surrogate Regions (2050)



OTAQ's Travel Efficiency Program

- Develop TE assessment tools
 - Evaluate existing tools
 - Travel Efficiency Assessment Method (TEAM)
 - □ Test new and improved approaches
- Assess TE strategies for reducing VMT and emissions
 - Partner with planning agencies
 - □ Identify strategies of interest
 - □ Perform modeling and analyses
- Inform and encourage TEAM use
 - Case studies
 - Outreach

Application of TEAM at the Regional Scale - Case Studies

TEAM Regional Case Studies

2013

- Demonstrate the capabilities of the TEAM approach at the regional scale
- In partnership with State, regional or local planning agencies
- EPA oversight and contracted technical support, local data and strategy specifications
- Analysis based on TEAM User's Guide and MOVES GHG Guidance

2015

- New approaches to land use and pedestrian/bicycle strategies
- Account for Transit VMT and emissions

2015 Results in Overview

			Reductions
Atlanta	 Expand telework and guaranteed ride home Improve transit access times Parking pricing Increase density and mixed use land use 	Employees in 5 county core area of 20+ counties 5 county area 5 county area 5 county area	 12 million VMT/day 2.8 million kg/day GHG 124 kg/day PM2.5 535 kg/day NOx 414 kg/day VOC
St. Louis	 TOD near existing light rail stations Increase residential density and mixed development Complete bicycle and pedestrian network Complete light rail system 	3 county core area Entire 5 county area Entire 5 county area Entire 5 county area	 1.9 million VMT/ day 440,000 kg/day GHG 16 kg/day PM2.5 103 kg/day NOx 80 kg/day VOC
Orlando	 Expand employer programs including transit pass Improve transit access and travel times VMT pricing for entire region Unlimited transit pass for with tuition and university employment 	Sub-population of 3 county area Sub-population of 3 county area 3 county VMT Sub-population of 3 county area	 4.6 million VMT per day 1.1 million kg/day GHG 39 kg/day PM2.5 201 kg/day NOx 117 kg/day VOC

Case Study Findings

- Where comparable, the range of reductions for these strategies and regions are similar to previous EPA studies and other peer reviewed studies and research.
- 2015 land use approaches improved results and reductions consistent with other major studies in the literature
- Transit strategy effectiveness is highly dependent on sufficient supportive land use. Transit doesn't work well everywhere
- When the modeled population or geography represents a subset of the region, the reductions may be large for the subset, but relatively small for the whole region
- Where local data is not readily available, default inputs are sufficient to compare and contrast different scenarios for non-regulatory purpose

Travel Efficiency Resources

 Potential Changes in Emissions Due to Improvements in Travel Efficiency

- Development of Travel Efficiency Assessment
 Method
- National assessment of select TE strategies in urban areas
- Supplemental Report
 - Evaluates other benefits such as improved health, reduced traffic congestion, reduced user operating costs, improved energy security, and reduction in traffic accidents
- Users Guide
 - Guidance for using the TEAM approach for assessing emission reductions from travel efficiency strategies
- MOVES GHG Guidance
 - ☐ Guidance for using MOVES to estimate state and local inventories of on-road GHG emission.

For More Information:

www.epa.gov/otaq/stateresources/ghgtravel.htm

Thank You!

Mark E. Simons

U.S. EPA

Office of Transportation and Air Quality

2000 Traverwood Drive

Ann Arbor, MI 48105

Phone: 734-214-4420

Fax: 734-214-4052

email: simons.mark@epa.gov

Driving Innovation in Clean Transportation

Appendix:

What is the **Travel Efficiency Assessment Method?**

A methodology to assess multi-pollutant emission reductions from TE strategies at the local, state and national level

Traditional Modeling:

Local data and strategies

4-Step Transportation Model

Change in VMT, trips, fleet mix

MOVES Emissions Assessment

Traditional 4-Step transportation models are insensitive to many TE strategies

TEAM:

Local data and strategies

Sketch Model (TRIMMS) Change in VMT, trips, fleet mix

MOVES Emissions Assessment

Sketch models, like the *Trip Reduction Impacts of Mobility Management*Strategies (TRIMMS) model, are a cost-effective way to assess the travel activity effects of TE strategies

15

Atlanta Results

Scenario	Light-Duty VMT	GHGs (CO2 equivalent)	PM2.5	NOx	VOC
Scenario 1: Expanded TDM	-0.69%	-0.68%	-0.68%	-0.67%	-0.66%
Scenario 2: Scenario 1 + Transit Frequency Improvement	-0.86%	-0.86%	-0.86%	-0.85%	-0.83%
Scenario 3: Scenario 2 + Parking Pricing	-2.85%	-2.85%	-2.85%	-2.82%	-2.81%
Scenario 4: Scenario 3 + Land Use					
Neighborhood Approach Multivariate Approach	-8.82% -9.28%	-8.81% -9.27%	-8.81% -9.27%	-8.79% -9.25%	-8.78% -9.24%

St. Louis Results

Scenario	Light- Duty VMT	GHGs (CO2 equivalent)	PM2.5	NOx	VOC
Scenario 1: Regional TOD					
Neighborhood	-0.16%	-0.16%	-0.16%	-0.16%	-0.16%
Multivariate	-0.54%	-0.54%	-0.54%	-0.54%	-0.54%
Scenario 2: Scenario 1 + Workforce - Housing Balance					
Neighborhood	-2.13%	-2.13%	-2.13%	-2.13%	-2.13%
Multivariate	-1.66%	-1.66%	-1.66%	-1.66%	-1.66%
Scenario 3: Scenario 2 + Expanded Bike/Ped Network					
Neighborhood	-2.21%	-2.22%	-2.24%	-2.37%	-2.56%
Multivariate	-1.73%	-1.75%	-1.76%	-1.89%	-2.08%
Scenario 4: Scenario 3 +					
Transit Expansion	-2.54%	-2.56%	-2.57%	-2.70%	-2.90%
Neighborhood	-2.54 % -2.07%	-2.50 % -2.11%	-2.57 % -2.13%	-2.70 % -2.39%	-2.79%
Multivariate	2.01 /0	2. 1170	2.1070	2.00 /0	2.1070

×

Orlando Results

Scenario	Light-Duty VMT	GHGs (CO2 equivalent)	PM2.5	NOx	VOC
Scenario 1: Expanded TDM	-0.65%	-0.65%	-0.65%	-0.65%	-0.65%
Scenario 2: Scenario 1 + Enhanced Transit	-0.92%	-0.92%	-0.92%	-0.92%	-0.92%
Scenario 3: Scenario 2 + Road Pricing	-4.75%	-4.75%	-4.75%	-4.74%	-4.73%
Scenario 4: Scenario 3 + University Transit Pass	-6.08%	-6.08%	-6.07%	-6.06%	-6.05%

Boston Results

Scenario	Light-Duty VMT	GHGs (CO2 equivalent)	PM2.5	NOx	VOC
Scenario 1: Expanded Healthy Modes Program	-2.80%	-2.80%	-2.80%	-2.79%	-2.77%
Scenario 2: Scenario 1 + Land Use	-3.89%	-3.89%	-3.88%	-3.88%	-3.84%
Scenario 3: Scenario 2 + HOV Lanes	-4.07%	-4.06%	-4.06%	-4.05%	-4.02%
Scenario 4: Scenario 3 + Expanded Transit	-4.41%	-4.41%	-4.40%	-4.39%	-4.36%

Kansas City Results

Scenario	Light-Duty VMT	GHGs (CO2 equivalent)	PM2.5	NOx	VOC
Scenario 1: Expanded TDM	-0.93%	-0.93%	-0.93%	-0.92%	-0.92%
Scenario 2: Scenario 1 + Enhanced Transit	-2.35%	-2.35%	-2.35%	-2.35%	-2.34%
Scenario 3: Scenario 2 + Land Use	-2.49%	-2.49%	-2.49%	-2.49%	-2.49%
Scenario 4: Scenario 3 + Pricing	-12.06%	-12.05%	-12.05%	-12.03%	-12.02%

Scenario	Light-Duty VMT	GHGs (CO2 equivalent)	PM2.5	NOx	VOC
Scenario 1: SunTran All Access Pass	-0.99%	-0.97%	-0.94%	-0.86%	-0.77%
Scenario 2: Expanded Employer-based Incentives	-0.43%	-0.43%	-0.42%	-0.40%	-0.44%
Scenario 3: BRT on 2 Corridors	-0.02%	-0.02%	-0.02%	-0.02%	-0.02%
Scenario 4: Parking Pricing in Downtown-University Corridor	-0.26%	-0.25%	-0.25%	-0.24%	-0.26%

Combined with EPA Land Use Scenario (IGT):

Land use changes plus	-1.95%	-1.87%	_1 60%	-1.43%	-0.71%
PAG scenarios 1-4	-1.5570	-1.07 /0	-1.05/0	-1. 1 0/0	-0.7 170

TRIMMS Data

TRIMMS Inputs					
By modes, to the extent available					
Specific Values	Yes/No				
Model Years	Guaranteed Ride Home and Ride Match				
Peak Hour Trips (%)	Telework and Flexible Work Schedules				
Populations (modeled, change)	Accessibility (transit, bike, sidewalks)				
Vehicle Occupancy	Amenities (shopping, other within ¼ mile)				
Mode Shares	Program subsidies				
Trip Lengths	Program marketing/management				
Access Times					
Travel Times					
Parking Costs					
Trip Costs					
Retail density					
Transit station distance					
Vehicle ownership					
Population density					
Parking charges					

MOVES Data

Data Type Description	Data Elements				
Fields without default	Source (Vehicle) Type Population				
values available at the	Vehicle Type VMT				
county scale	Road Type Distribution				
Local data, available	Meteorological Data	Ramp Fraction			
from MOVES defaults	Age Distribution	Fuel Supply/Formulation			
when local data is	Month, Day, Hour VMT	I/M (Inspection and			
unavailable	Fractions	Maintenance) Program			
	Average Speed Distribution	Alternative Vehicle and			
		Fuel Technology (AVFT)			
Modeling decision	Domain/Scale	Geographic Bounds			
elements, typically not	Calculation Type	Vehicle Type			
requiring local data	Time Aggregation	Road Type			
	Calendar Year	Pollutants and Processes			
	Evaluation Month	Strategies			
	Type of Day	Activity			
	Evaluation Hour	Emissions Detail			