Validation of an advanced ceilometer-based boundary layer height detection algorithm

VAISALA

I. Ceilometers
> Originally designed and used for detection of cloud based height ('ceiling').
$>$ Widely used for detection of boundary layer structures and height.

II. Boundary Layer: Mixed Layer Characteristics:
$>$ "Well mixed"

- Forced by daytime surface heating
- Result of eddy mixing
> Full of "backscatterers"
- Moisture
- Aerosols and particles
> Presence of backscatter gradients between mixed layer and layers above.

.
III. Boundary Layer Detection

IV. Advanced Algorithm Exploration and Validation
$>$ Focus first on mixed layer using:
> Gradient method
- Results in multiple layers
> TOPROF methods - STRAT+
- Under continuous development
> Wavelet method
- Worked well for sharp gradients, marginal during convective rise

> Profile fitting
- Worked well for convective rise, but had some challenges
> Best performance was reached via:
> Profile fitting + Gradient method applied to average data
> Validation:
> Launch 35 radiosondes (Boulder, CO and Helsinki, Finland)
> Compare observation to algorithm
> Excellent agreement found for all cases.

Example: Boulder Colorado

Example: Helsinki Finland

