Validation of an advanced ceilometer-based boundary layer height detection algorithm Scott M. Mackaro, Ph.D. | Vaisala

I. Ceilometers

120

100

80

20

 Originally designed and used for detection of cloud based height ('ceiling').
 Widely used for detection of boundary layer structures and height.

II. Boundary Layer: Mixed Layer

- - Forced by daytime surface heating
 - Result of eddy mixing
- Full of "backscatterers"
- Moisture
- Aerosols and particles

III. Boundary Layer Detection

Presence of backscatter gradients between mixed layer and layers above.

ero e mean

2.9 XUEHR8@ 3 [30 1400] MB 150 S 12 CC -1 HI 10 MB 200 S 10 CC -1 HI 10

<figure>

IV. Advanced Algorithm Exploration and Validation

- Focus first on mixed layer using:
 Gradient method
 - Results in multiple layers
 TOPROF methods STRAT+
 - Under continuous development
 - Wavelet method
 - Worked well for sharp gradients, marginal during convective rise
 Profile fitting

- Worked well for convective rise, but had some challenges
- Best performance was reached via:
 - Profile fitting + Gradient method applied to average data
- > Validation:
 - Launch 35 radiosondes (Boulder, CO and Helsinki, Finland)
 - Compare observation to algorithm
 Excellent agreement found for all cases.

