Impact of ambient fine particulate matter carbon measurement methods on observed associations with acute cardiorespiratory morbidity

Jay Turner; Washington University in St. Louis Andrea Winquist, Mitchel Klein, and Stefanie Sarnat; Emory University James Schauer; University of Wisconsin - Madison

Photo: Varun Yadav

From: G. Gordon and W. Keifer (1980) <u>The Delicate Balance: An Energy</u> <u>and the Environment Chemistry Module</u>, Harper & Row, New York.

Motivation

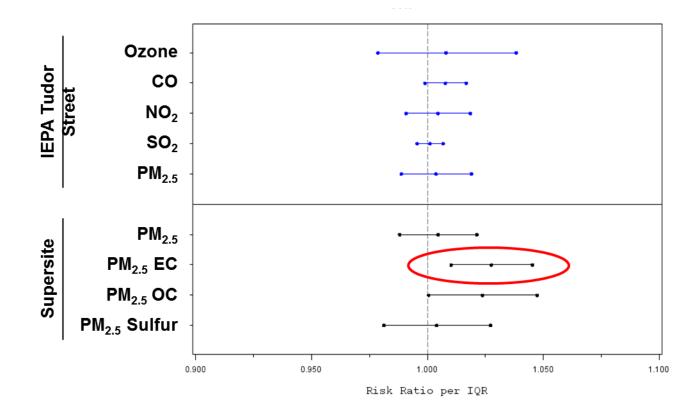
- **First Study*:** PM_{2.5} components and emergency department visits for cardiovascular and respiratory diseases in St. Louis Missouri-Illinois metropolitan area
- St. Louis Midwest Supersite measurements, June 2001 – April 2003
- Time series analysis using daily data for air quality and emergency department visits at 36 of 43 acute care hospitals in the area

* S.E. Sarnat, A. Winquist, J.J. Schauer, J.R. Turner and J.A. Sarnat (2015) *Environ. Health Perspec.*, *123*, 437-444.

Air Quality Parameters

- 24-hour integrated PM_{2.5}
 - Gravimetric mass
 - Major ions (SO₄, NO₃)
 - Carbon (EC, OC by NIOSH / ACE-Asia protocol)
 - Organic Speciation: *n*-alkanes (2), hopanes (2), PAHs (4)
 - Metals and metalloids (Si, K, Ca, Fe, Cu, Zn, Pb)
- Criteria Gases (Illinois EPA East St. Louis station)
 - 8-hr max O₃
 - 1-hr max CO, NO₂, SO₂

Hospital Admissions Type

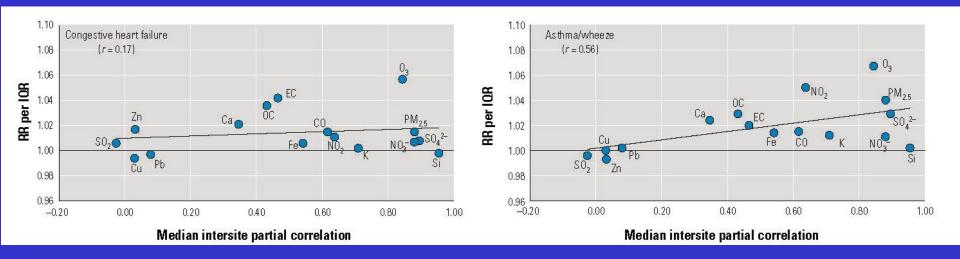

- Cardiovascular Diseases (CVD)
 - Ischemic Heart Disease
 - Dysrhythmia
 - Congestive Heart Failure (CHF)
- Respiratory Diseases (RD)
 - Pneumonia
 - Chronic Obstructive Pulmonary Disease (COPD)
 - Asthma/Wheeze

Asthma & Wheeze

Risk Ratio per Interquartile Range of pollutant concentration... if bar is entirely to the right of this arrow then the association is statistically significant (95% C.L.) Ozone **IEPA Tudor** CO Street NO₂ SO₂ $PM_{2.5}$ $PM_{2.5}$ Supersite PM_{2.5} EC PM_{2.5} OC PM_{2.5} Sulfur 0.900 0.950 1.000 1.050 1.100 Risk Ratio per IQR

Asthma & Wheeze... Ozone

Congestive Heart Failure

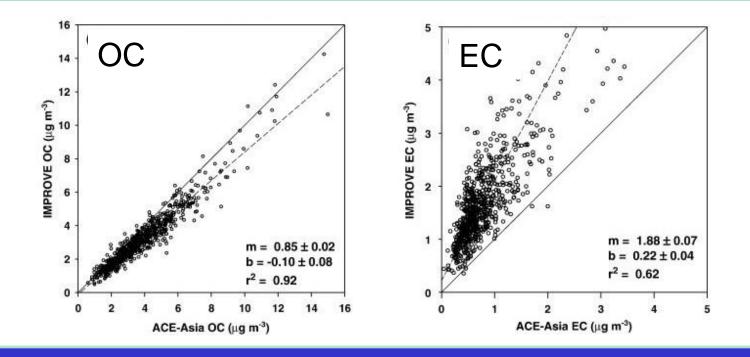

Congestive Heart Failure... Soot (Elemental Carbon)

Key Findings

- Robust associations for:
 - CVD and $17\alpha(H)$, 21β (H)-hopane
 - CHF and Elemental Carbon (EC)
 - RD and O₃
 - Asthma/Wheeze and O₃, NO₂, PM_{2.5}

- Used St. Louis area SLAMS data with Supersite data to assess spatial variability
 - Rate ratios for components with high spatial variability may be biased towards the null

Rate Ratios and Partial Correlation



- Asthma/Wheeze
 - Components with highest RR were also most correlated across sites
- Congestive Heart Failure
 - No relationship between strength of association and spatial correlation

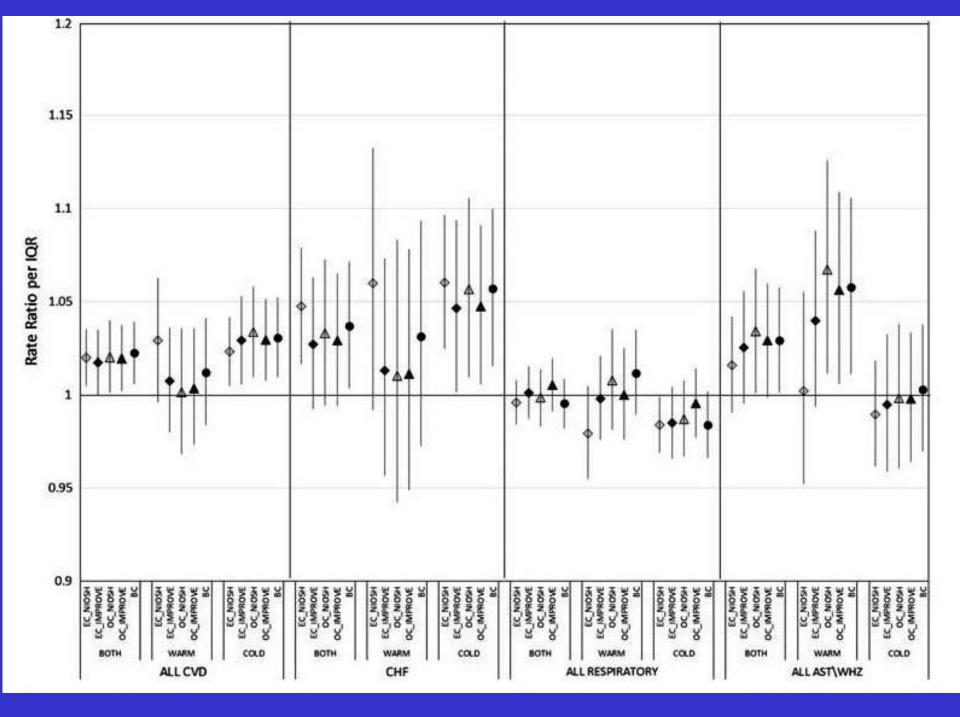
St. Louis – Midwest Supersite PM_{2.5} Carbon Measurements

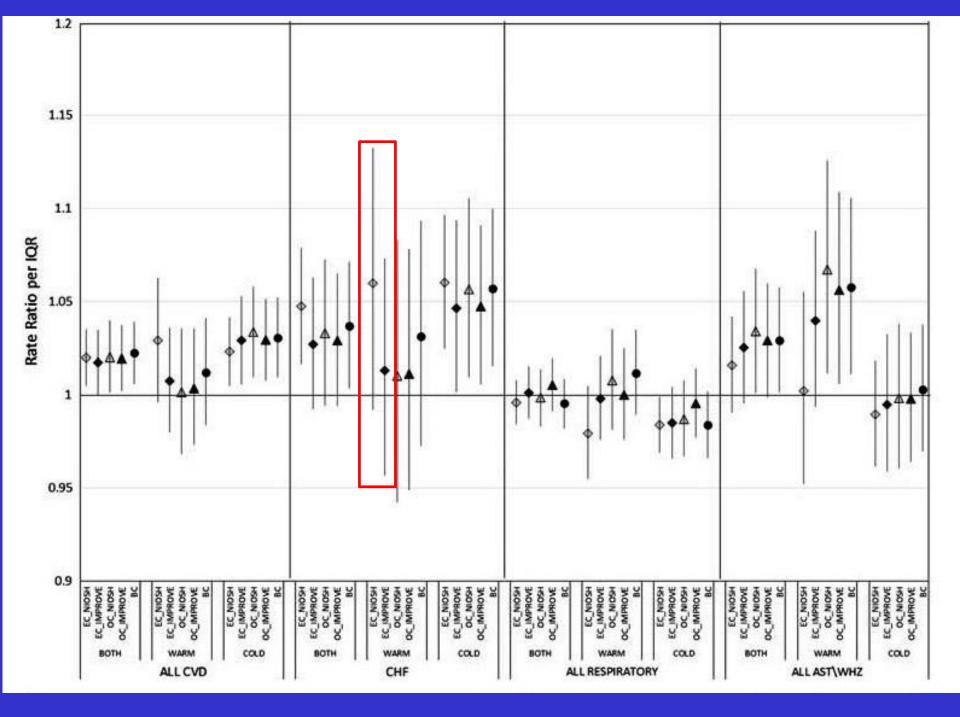
- 5-minute Aethalometer Black Carbon (BC) and UV-absorbing carbon (UV-C)
- Hourly EC and OC (Sunset labs analyzers)
- Daily 24-hour integrated filters (U. Wisconsin sampler)
 - Organics speciation by extraction-GCMS (1-in-6 day)
 - Organics speciation by thermal desorption-GCMS (remaining days)
 - EC/OC using NIOSH analysis protocol
 - EC/OC using IMPROVE analysis protocol

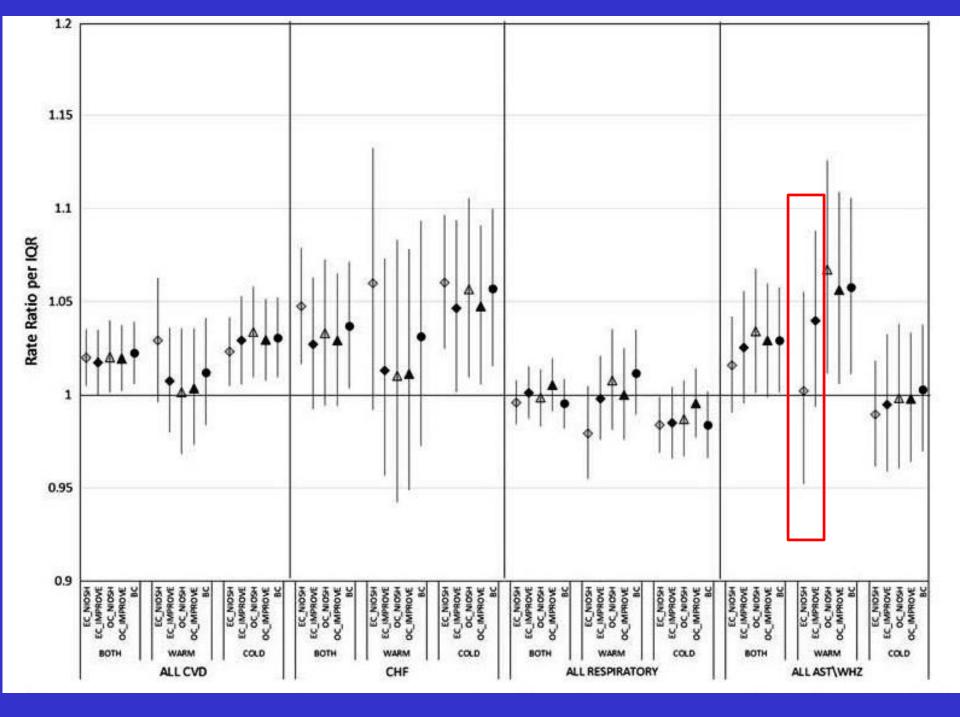
OC and EC by Method

Objective of Second Study*

- Examine associations between PM components and emergency department visits
- Focus on comparison of results using EC and OC from the NIOSH and IMPROVE analysis methods


i.e. does the carbon analysis method matter?


* A. Winquist, J.J. Schauer, J.R. Turner M. Klein and S.E. Sarnat (2015) J. Exposure Sci. Environ. Epi., 25, 215-221.


Pearson Correlation Coefficients

Method	EC-N	EC-I	OC-N	OC-I	BC
EC NIOSH (EC-N)	1.00				
EC IMPROVE (EC-I)	0.78	1.00			
OC NIOSH (OC-N)	0.64	0.81	1.00		
OC IMPROVE (OC-I)	0.63	0.78	0.95	1.00	
Aethalometer BC	0.77	0.85	0.81	0.80	1.00

In St. Louis, BC may be an indicator of both EC and OC, and not EC only

Key Findings & Summary

- Associations generally concordant when using EC and OC measures from NIOSH and IMPROVE
 - Confidence intervals for the rate ratios overlap
- Some evidence of differences between methods
 - Associations between CHF and EC stronger for NIOSH than for IMPROVE (warm season)
 - Associations between Asthma/Wheeze and EC stronger for IMPROVE than for NIOSH (warm season)
 - Differences in associations could be because of chance, or may arise from differences in the composition of the PM assigned as EC and OC

Acknowledgements

- Air Quality Measurements
 - USEPA Supersites Program, USEPA Region VII
 - Desert Research Institute (Judy Chow, John Watson)
 - Harvard School of Public Health (Petros Koutrakis)
 - Remainder of St. Louis Midwest Supersite team
 - Illinois EPA and Missouri DNR
- Health Studies
 - Electric Power Research Institute, USEPA