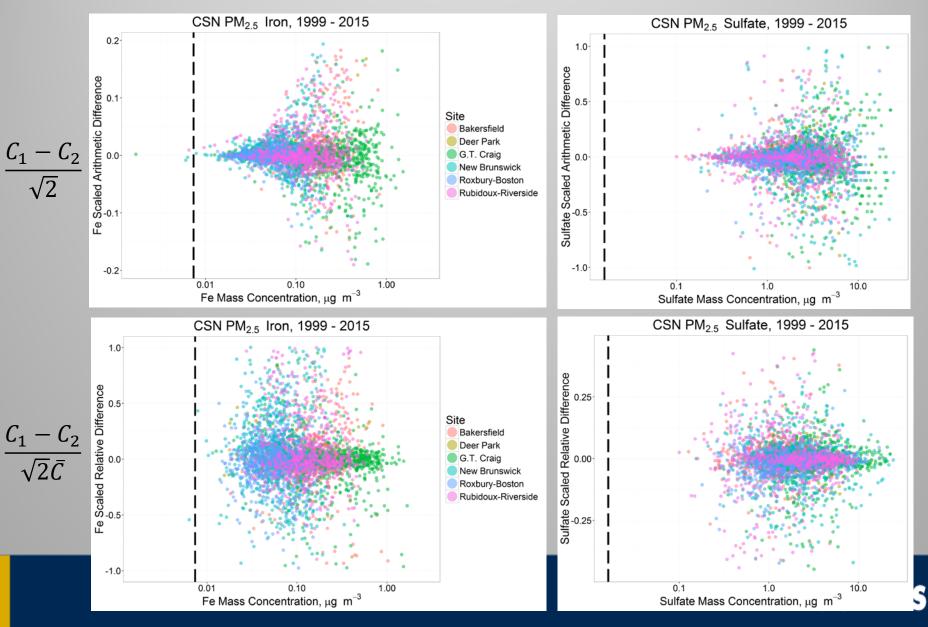
Changes in CSN Uncertainty Calculations and Impacts on Reporting

Nicole Hyslop and Nicholas Spada University of California Davis

National Ambient Air Monitoring Conference St. Louis, MO August 2016

Overview

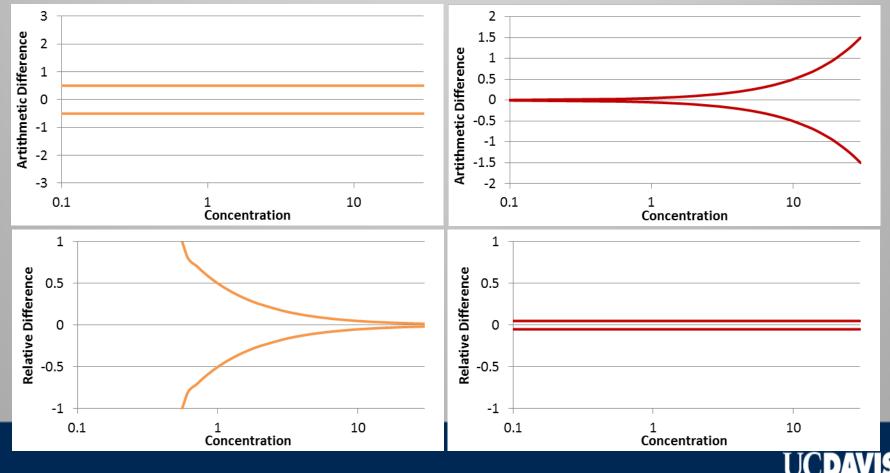
- What sources of uncertainty are included?
- Model for CSN uncertainty estimates
- Using collocated measurements to evaluate uncertainty estimates
 - The shape of uncertainty
- Updated CSN uncertainty estimates
- Differences between old and new uncertainty estimates



Uncertainty Estimates

- No absolute standards for particulate matter measurements exist.
- Uncertainties only account for the repeatability or precision of the measurements
 - they do not account for the accuracy.
- CSN uncertainties estimate one standard deviation of the measurements
- Uncertainties can be based on
 - propagating estimates of sources of uncertainty,
 - empirical observations such as collocated measurements, or
 - a combination of both techniques.

Arithmetic & Proportional Uncertainty Components



New Uncertainty Estimates

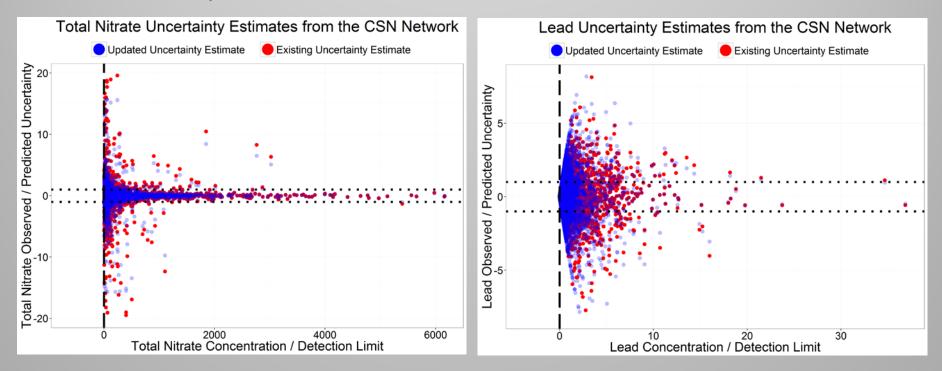
 $Uncertainty = \sqrt{\left(Unc_{Additive}\right)^{2} + \left(Unc_{Multiplicative} * Conc.\right)^{2}},$

Additive Uncertainty Term

Multiplicative Uncertainty Term

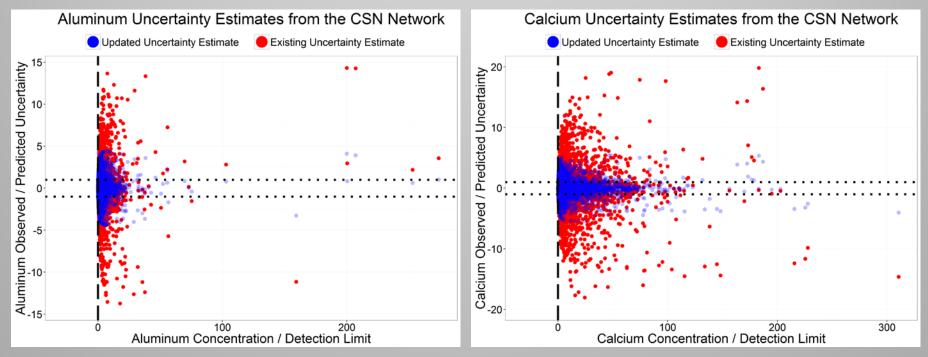
Additive and Multiplicative Uncertainty Estimates

$$Uncertainty = \sqrt{\left(Unc_{Additive}\right)^{2} + \left(Unc_{Multiplicative} * Conc.\right)^{2}},$$


• The form of the equation has stayed the same, the only change is in the source of the additive and multiplicative uncertainty terms.

$$Unc_{Additive} = \frac{MDL}{3} =$$
standard deviation of blanks
 $Unc_{Multiplicative} =$ standard deviation of collocated
measurements

Differences Between Old and New Uncertainty Estimates


For most species, the differences are small

Differences Between Old and New Uncertainty Estimates

• For a few species, the new uncertainties are larger and better reflect the collocated observations

Multiplicative Uncertainty Estimated from Collocated Measurements

$Uncertainty = \sqrt{\left(Unc_{Additive}\right)^{2} + \left(Unc_{Multiplicative} * Conc.\right)^{2}},$ Where $Unc_{Additive} = \frac{MDL}{3} =$ standard deviation of blanks $Unc_{Multiplicative}$ = standard deviation of collocated measurements $= \frac{1}{2} \left(P_{84}(D_i) - P_{16}(D_i) \right) * 100\%,$ where $D_i = \frac{(Conc._{i,Routine} - Conc._{i,Collocated})/\sqrt{2}}{(Conc._{i,Routine} + Conc._{i,Collocated})/2}$ $P_{16}(D_i)$ and $P_{84}(D_i) = 16^{\text{th}}$ and 84^{th} percentiles of the collocated measurement differences

Standard Deviation of Collocated Differences

Precision Estimate 1:

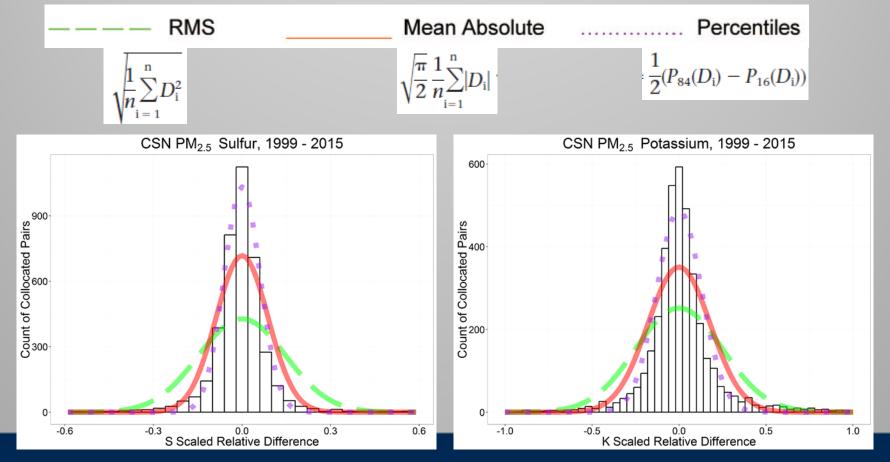
• Root Mean Square (RMS) = $\sqrt{\frac{1}{n}\sum_{i=1}^{n}D_{i}^{2}}$

Estimate 2:


• Mean Absolute = $\sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^{n} |D_i|$ Difference

Estimate 3:

Estimate standard deviation
from percentile range =


 $\frac{1}{2}(P_{84}(D_{i}) - P_{16}(D_{i}))$

 $D_1 = \frac{(C_{i1} - C_{i2})/\sqrt{2}}{\bar{C}_i}$

Collocated Measurements Used to Estimate Multiplicative Uncertainty $D_{1} = \frac{(C_{11} - C_{12})/\sqrt{2}}{\overline{C_{12}}}$

Three different approaches to estimating the standard deviation

Updated Multiplicative Uncertainties

Previously 5% for all parameters

Parameter	CSN Pairs	Updated, %
Organic Carbon	1700	9
Elemental Carbon	1695	13
Ammonium	1736	9
Sulfate	1837	6
Nitrate	1986	9
Sodium Ion	878	17
Potassium Ion	308	11
Sodium	524	16
Magnesium	131	27
Aluminum	359	32
Silicon	1173	23
Phosphorus	2	N/A
Sulfur	2157	6
Chlorine	562	37
Potassium	1481	12

Parameter	CSN Pairs	Updated, %
Calcium	1212	26
Titanium	66	17
Vanadium	14	5
Chromium	17	17
Manganese	167	14
Iron	1799	20
Nickel	31	15
Copper	787	20
Zinc	669	12
Selenium	9	12
Bromine	372	16
Strontium	6	N/A
Barium	2	N/A
Lead	35	9

New CSN Uncertainty Estimates

- are easy to understand and check
- are based on the collocated CSN measurements
- will be reviewed on an annual basis and updated, if necessary
- are easily updated using routine measurements (i.e., no special study required) when operations or instrumentation changes
 - requires approximately 1 year of data from new instrumentation or operating regime
- are based on the same approach used in the IMPROVE network
 - creates consistency between networks, which is important if data from both networks are used together

