Results and Lessons Learned from Using Low-Cost PM Sensors to Detect Ambient PM_{2.5} and PM₁₀

Tim Dye, Levi Stanton, Clinton MacDonald, Kevin Smith, Paul Roberts, Ashley Graham, and Max Dillon

Sonoma Technology, Inc. Petaluma, CA

for

National Ambient Air Monitoring Conference St. Louis, MO

August 10, 2016

Outline

- 4 studies
 - PM₁₀ coal dust
 - PM_{2.5} winter PM conditions
 - PM_{10} windblown dust
 - $PM_{2.5}$ wildfire smoke
- Lessons learned

1. Study – Coal Dust (PM₁₀)

- Objective
 - Determine whether sensors can detect and quantify fugitive PM₁₀ from coal piles
 - Identify sensor limitations and technical challenges
- Study
 - 2-month study in warm climate
 - Weather station

Equipment		
Reference Instrument	MetOne BAM-1020 PM ₁₀ Thermo PDR-1500	
Sensors	Dylos AirBeam	

Sponsor: Electric Power Research Institute (EPRI)

1. Results – Coal Dust (PM₁₀)

- 17 events were identified
 - Short in duration (a few minutes)
 - Concentrations were 2-5 times higher than background
- 37 of 1,392 hours (2.7%) were impacted by windblown dust events

Sponsor: Electric Power Research Institute (EPRI)

1. Results – Coal Dust (PM₁₀)

Dylos had good correlation with the BAM for events; weak correlation for all data

2. Study – Winter (PM_{2.5})

- Objective
 - Examine the use of low-cost PM sensors for answering questions about Tribal air quality
 - Conduct intercomparison study and mobile sampling
- Study
 - 8-month study in northern Minnesota (Oct-June)
 - Outdoor exposure

	Equipment
Reference Instrument	FRM – PM _{2.5} (1-in-6 day)
Sensors	AirBeam MicroPEM

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe

2. Results – Winter (PM_{2.5})

- The MicroPEM and AirBeam B are well correlated during most time periods between calibration/zeroing
- The MicroPEM was difficult to zero properly and exhibited significant baseline shifts between calibration/zeroing

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe

2. Results – Winter (PM_{2.5})

Good correlations (R²) between 24-hr sensor measurements on FRM sample days for AirBeam and bias-corrected MicroPEM

	FRM 1	FRM 2	MicroPEM	AirBeam A	AirBeam B
FRM 1	1.00	-	-	-	-
FRM 2	0.93	1.00	-	-	-
MicroPEM	0.01 ^{uc} 0.96 ^{bc}	0.01 ^{uc} 0.89 ^{bc}	1.00	-	-
AirBeam A	NA	NA	NA	NA	-
AirBeam B	0.83	0.85	0.01 ^{uc} 0.95 ^{bc}	NA	1.00

^{uc} Uncorrected MicroPEM PM_{2.5} data

^{bc} Bias-corrected MicroPEM PM_{2.5} is well correlated with the FRMs

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe

3. Study – Windblown Dust (PM₁₀)

- Objective
 - Can low-cost PM sensors detect dust events?
 - How precise are the sensors?
 - Are they reliable?
 - Can they provide sufficient warning time?
- Study
 - 3-month springtime study
 - School in eastern Santa Barbara County

	•		
EO	UD	me	nt

Reference Instrument	MetOne BAM 1020 (FEM for PM ₁₀) GRIMM 11-R (Particle counts) MetOne E-BAM (PM ₁₀)
Sensors	AirBeam (3 units) Alphasense OPC-N2 (3 units)

Sponsor: Santa Barbara County Air Pollution Control District

3. Results – Windblown Dust (PM₁₀)

Alphasense A vs. BAM Hourly PM_{10} measurements $R^2 = 0.81$

Alphasense A vs. Alphasense B Hourly PM_{10} measurements $R^2 = 0.81$ BAM = 1*x + 1.95

Sponsor: Santa Barbara County Air Pollution Control District

3. Results – Windblown Dust (PM₁₀)

Early Detection Alphasense A measures a peak at 21:21, for a lead time of 39 minutes over the FEM instrument.

Note: BAM reported at begin hour but not available until after the hour

Sponsor: Santa Barbara County Air Pollution Control District

4. Study – Wildfire Smoke (PM_{2.5})

• Objective

- Determine whether low-cost PM sensors can detect wildfire smoke
- Explore mobile/stationary monitoring
- Demonstrate real-time communications
- Study
 - PM sensors, quick-mount, real-time communications, website for viewing
 - Preliminary testing in summer 2016
 - Planned for fall 2016

Equipment		
Reference Instrument	None	
Sensors	Alphasense OPC-N2 Spec sensors with Intel Briza system	

Sponsor: U.S. Forest Service

4. Study – Wildfire Smoke (PM_{2.5})

Sponsor: U.S. Forest Service

4. Results – Wildfire Smoke (PM_{2.5})

Sponsor: U.S. Forest Service

4. Results – Wildfire Smoke (PM_{2.5})

PM Concentrations

Following Street Cleaner August 1, 2016 (Petaluma)

Notes: PM from street cleaner Low PM_{2.5}/PM₁₀ ratios (about 12-20%) FS20001 reading lower

4. Results – Wildfire Smoke (PM_{2.5})

PM Concentrations

Drive by Lombardi's (BBQ)

Aug 1, 2016 (Petaluma), 15-second averages

Notes: PM from BBQ smoke High PM_{2.5}/PM₁₀ ratios (about 80 to 95%) FS20001 reading lower

Lessons Learned

- Sensors
 - Rapid changes; versioning issues with firmware
 - Drift, calibration requirements, and "soiling" issues
 - Hardware issues
- Data logging
 - Data acquisition systems don't always handle sensors
 - Time standards
- Communications
 - Critical for high data availability
 - More challenging/costly

Lessons Learned

- Data management
 - More challenging than FEM instrument (60 to 3600 times more data and more uncertainty)
- Cost
 - Projects cost much more than one sensor
 - Operations and data management are more intense

Path Forward

Contact

Tim Dye

Senior Vice President Chief Business Development Officer <u>Tim@sonomatech.com</u> @TimSDye

> www.SonomaTech.com @sonoma_tech

