Reducing Exposure to Airborne Chemical Toxics (REACT): Community-Scale Air Monitoring in Memphis

Chunrong Jia School of Public Health University of Memphis

Jim Holt; Larry Smith Pollution Control Section Shelby County Health Dept

Ngee-Sing Chong Chemistry Dept MTSU

Outline

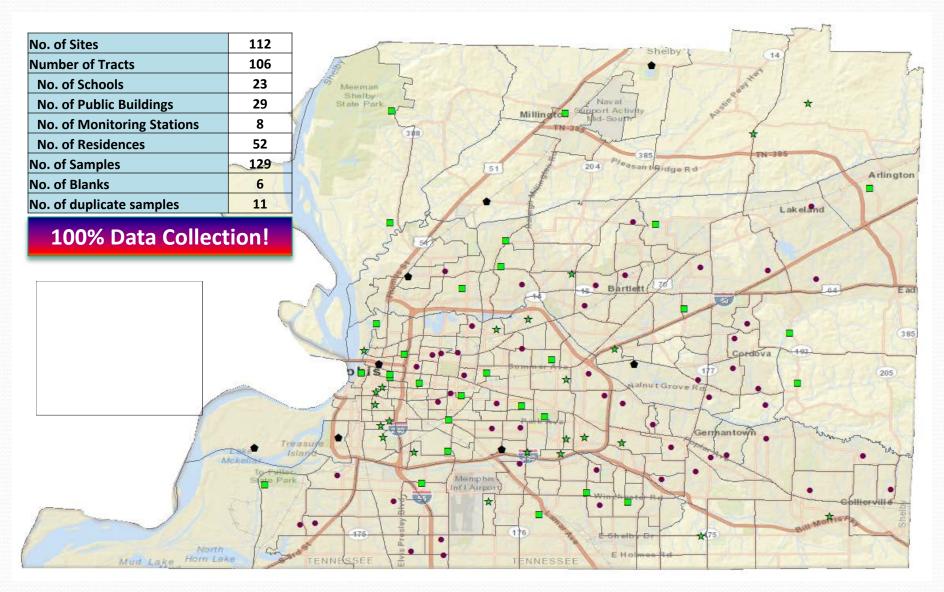
- Project overview
- Project objectives
- Methods
 - Study design
 - Field sampling and laboratory analysis
- Results
- Community engagement
- □ Future work

Overview of the "REACT" Study

REACT: Reducing Exposure to Airborne Chemical Toxics

□ Study team

- Leader: The Shelby County Health Department's Pollution Control Section.
- Collaborators:
 - University of Memphis SPH
 - Middle Tennessee State University
- Timeline
 - > Aug 2011, the proposal was selected
 - > Nov 2013, QAPP approved
 - > 2014, field monitoring of air toxics in Shelby County
 - Mar 2016, project completed


Objectives of the study

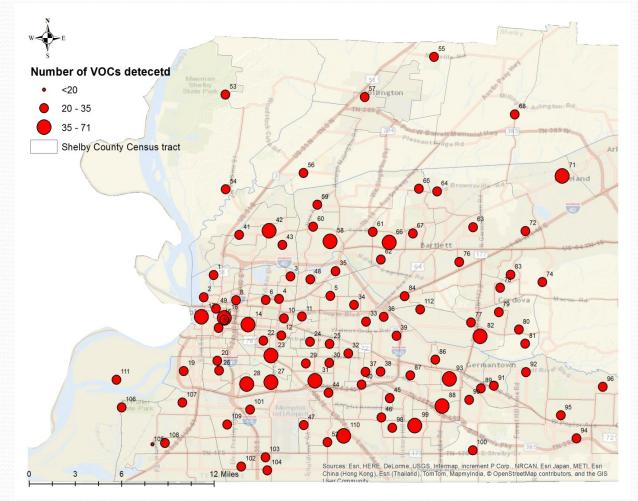
- 1. To measure ambient concentrations of air toxics in the metropolitan Memphis;
- 2. To identify common sources of air toxics;
- 3. To evaluate health risks from exposures to air toxics; and
- 4. To explore if the spatial distribution of air toxics is associated with socioeconomic status and/or ethnicity.

Study design

- Ambient air toxics concentrations were measured at 100 census tracts in Shelby County, TN.
- Monitoring sites in census tracts were selected based upon presence of industries (past and present), proximity to neighborhoods, and accessibility.
- Sampling was conducted in four seasons.
- 24-hour samples were collected in pre-cleaned and preevacuated canisters.
- □ Samples were analyzed for 71 target compounds.
 - They have high toxicity
 - They have been frequently detected in previous studies
 - They are suitable for the canister sampling and GC/MS analysis method.

Sampling sites

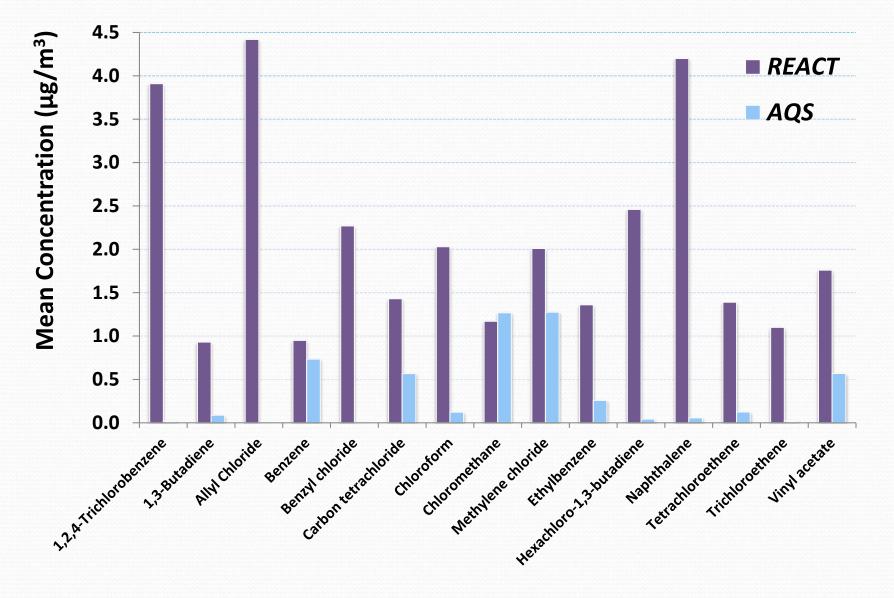
Field sampling, Jan-Dec, 2014



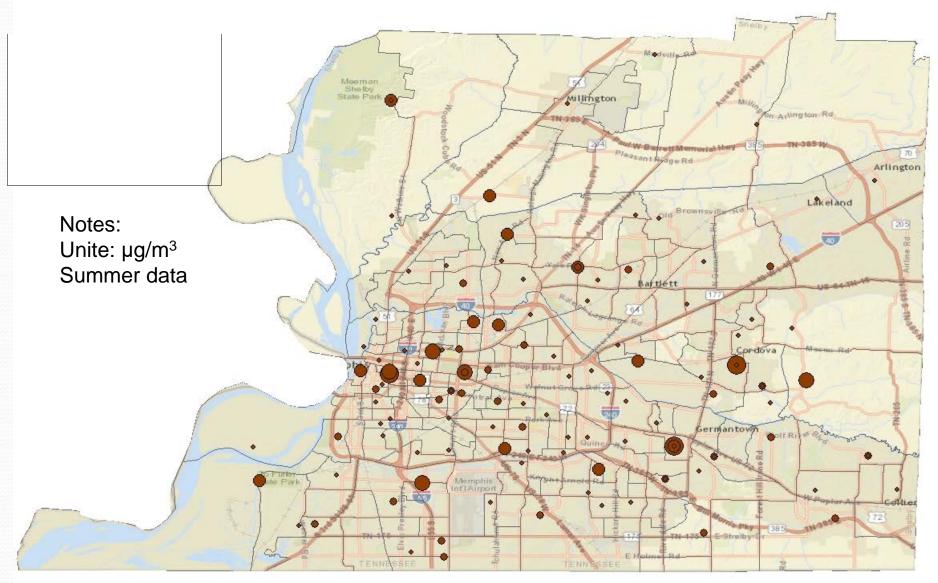
Laboratory analysis

- The analytical methods used for this study is EPA Method TO-15.
- Compounds are concentrated in cryogenic traps and then analyzed on a GC/MS system.
- After analysis, canisters are cleaned and vacuumed for the next use.

Detection frequencies of target VOCs


□ All of the 71 target VOCs were detected.

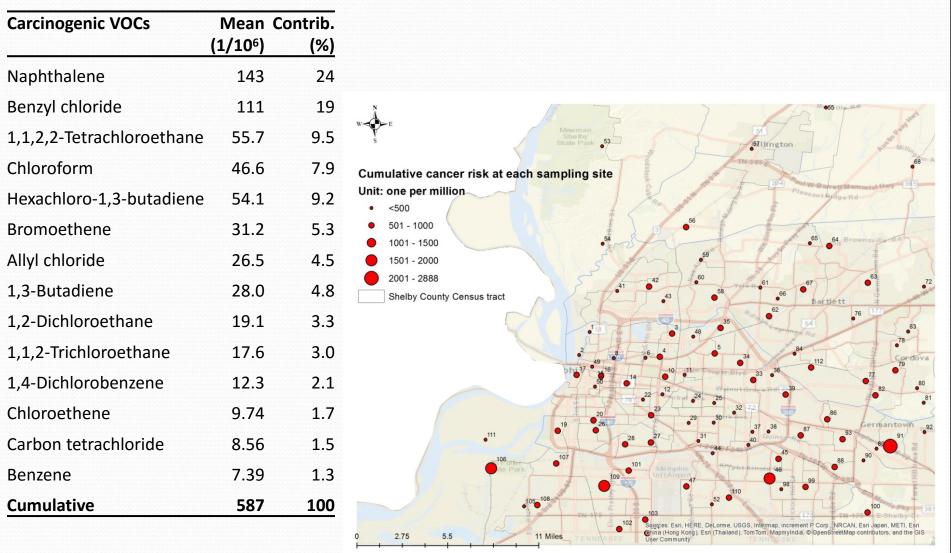
The most frequently detected VOCs in Memphis were acetone, ethanol, Freon 112, and propene


Concentrations of air toxics

VOCs	Mean	SD	Min	Median	Max	RfC	HQ
			(µg/r	n³)			
Allyl chloride	4.42	22.39	0.67	1.54	232	1	4.42
Naphthalene	4.20	1.98	3.03	3.36	12.96	3	1.40
Trichloroethene	1.10	0.06	0.68	1.10	1.26	2	0.55
1,3-Butadiene	0.94	0.22	0.48	0.78	1.70	2	0.47
Bromoethene	0.99	0.06	0.63	0.99	0.99	3	0.33
1,2-Dichloropropane	0.96	0.04	0.60	0.96	0.96	4	0.24
Bromomethane	0.90	0.05	0.55	0.90	0.90	5	0.18
trans-1,3-Dichloropropene	1.00	0.00	0.60	1.00	1.00	20	0.05
Tetrachloroethene	1.20	0.00	0.80	1.20	1.60	40	0.03
Benzene	0.90	0.30	0.60	0.90	2.70	30	0.03
Hexachloro-1,3-butadiene	2.70	1.80	1.80	1.80	14.40	90	0.03
Chloroform	1.96	2.94	0.98	0.98	16.66	98	0.02
1,2,4-Trichlorobenzene	4.00	2.00	4.00	4.00	14.00	200	0.02
Carbon tetrachloride	1.00	0.00	1.00	1.00	3.00	100	0.01
Chloromethane	0.90	0.90	0.90	0.90	8.10	90	0.01
Chloroethene	1.00	0.00	1.00	1.00	2.00	100	0.01

Comparison with national levels

Spatial distribution of TVOC

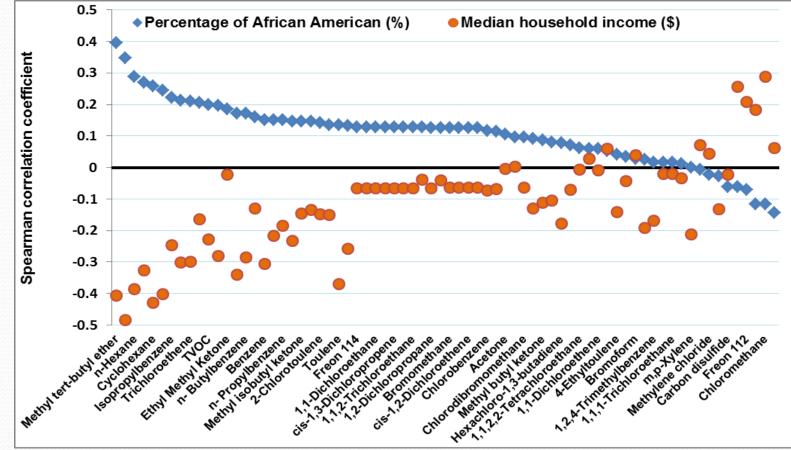


Common sources

VOCs/Factors	F1	F2	F3	F4	F:
Hexachloro-1,3-butadiene	0.96	-0.03	-0.04	0.11	-0.0
1,2,4-Trimethylbenzene	0.95	-0.02	0.05	0.09	-0.02
n- Butylbenzene	0.94	0.04	0.06	-0.03	0.07
Benzyl chloride	0.94	-0.05	0.01	0.06	-0.06
Methyl butyl ketone	0.92	-0.02	0.07	0.08	0.00
Naphthalene	0.84	0.02	0.15	0.06	0.07
Methyl isobutyl ketone	0.72	0.08	0.06	0.11	0.39
2,2,4-Trimethylpentane	0.07	0.80	0.12	-0.15	0.01
1,3,5-Trimethylbenzene	0.06	0.67	0.15	-0.19	0.0
Toulene	0.05	0.77	0.20	-0.05	0.34
Benzene	0.05	0.52	0.23	0.05	0.3
o-Xylene	0.00	0.90	-0.05	0.03	-0.04
<i>m,p</i> -Xylene	-0.04	0.92	-0.02	0.00	-0.0
Ethylbenzene	-0.16	0.86	-0.11	0.11	-0.09
Propene	0.10	0.32	0.55	0.41	0.04
Acetone	0.09	-0.03	0.80	0.21	0.2
Ethyl Methyl Ketone	0.07	0.02	0.83	-0.01	0.23
Vinyl acetate	0.02	0.16	0.77	-0.17	-0.0
Chloromethane	0.23	-0.14	0.08	0.87	-0.03
Freon 112	0.00	-0.13	0.07	0.89	-0.0
Isopropyl alcohol	0.21	-0.02	-0.01	-0.06	0.7
Ethanol	0.07	0.03	0.50	0.01	0.6
<i>n</i> -Hexane	-0.15	0.18	0.24	0.06	0.5
Allyl chloride	0.37	0.13	-0.16	0.44	0.2
Variance explained (%)	26.5	20.6	11.8	7.9	5.
Cumulative 🖾 1 · Emissic	ne fram	raaniadun	thosize.9hrc	COCCOSC.	71.

F2: Vehicle exhaust; F3: Industrial solvent and precursors F4: Ubiquitous rrefrigerants; F5: Gasoline additives

Cancer risks and risk drivers



Target organ specific hazard index

Target organs	Mean	VOCs
Neurological	6.71	1,1,1-trichloroethane, toluene, styrene, n-hexane, methylene chloride, 1,1,2- trichloroethane, m,p-xylene, o-xylene, chloromethane, tetrachloroethene, bromomethane, naphthalene, allyl chloride
Respiratory	1.84	toluene, 1,2,4-trichlorobenzenem,p-xylene, o-xylene, trans-1,3-dichloropropene, bromomethane, 1,2-dichloropropane, naphthalene
Reproductive/ Developmental	1.03	chloroethane, methyl isobutyl ketone, ethylbenzene, isopropylbenzene, 1,2,4- trichlorobenzene, trichloroethene, 1,3-butadiene
Ocular	0.61	methyl tert-butyl ether, m,p-xylene, o-xylene, tetrachloroethene, trichloroethene
Immune	0.58	benzene, trichloroethene
Cardiovascular	0.55	methylene chloride, trichloroethene
Liver and Kidney	0.4	1,1,1-trichloroethane, methyl tert-butyl ether, 1,2-dichloroethane, chlorobenzene, 1,4-dichlorobenzene, methyl methacrylate, methylene chloride, 1,1,2-trichloroethane, 1,2,4-trichlorobenzene, 1,1-dichloroethene, carbon tetrachloride, chloroethene, chloroform, bromoethene
Hematologic	0.03	benzene
Total	11.8	

Environmental justice

- At the census tract level, concentrations of the majority of compounds had positive correlations with percent of the black, and negative correlations with median household income.
- The associations are not statistically significant for most compounds.

Community Engagement

- Established a community-government-academia partnership:
 - Communities: Sierra Club, Shelby County Schools, Engineers' Club of Memphis, Bridges, etc.
 - Government: EPA Region 4 Office, White House Council on Strong Cities Strong Communities, Memphis Police Department, Memphis Fire Department, Shelby County Sherriff's Department

> Universities: UM, MTSU, UTHSC, etc.

Community engagement outputs 1

- Educational resources: Project flyers, fact sheets, and letters of findings.
- Public meetings. We held <u>24</u> public/stakeholders' meetings during the entire project period.
- □ <u>Sierra Club Cable TV Interview.</u>

Community engagement outputs 2

- Classroom connections. We established our "classroom connections" engagement with Shelby County Schools.
- Public connections. We presented our study in a number of local events, including Tiger Blue Goes Green, Earth Day, and Sierra Club Annual Environmental Justice Conference.

Community engagement outputs 3

Presentations in scientific conferences and publications.

Secured grants.

- Harvard Environmental Health Fellowship.
- Next community-scale air toxics monitoring study.

Support future projects.

Harvard EH Fellowship

EPA CitySpace Project

Future work

- Memphis PAHs Study
 - PAHs: Polycyclic aromatic hydrocarbons
 - > Overall objective:
 - Delineate the concentrations and distributions of PAHs in ambient air in Memphis Tri-state Area
 - Identify major sources and apportion the contributions
 - Characterize near-source PAH profiles, and
 - Assess non-carcinogenic and carcinogenic risks.

Naphthalene

Pyrene

Benzo[a]pyrene

Indeno[1,2,3c,d] pyrene

(BAP)

