Using Analyzer Meta-Data for Automated Troubleshooting

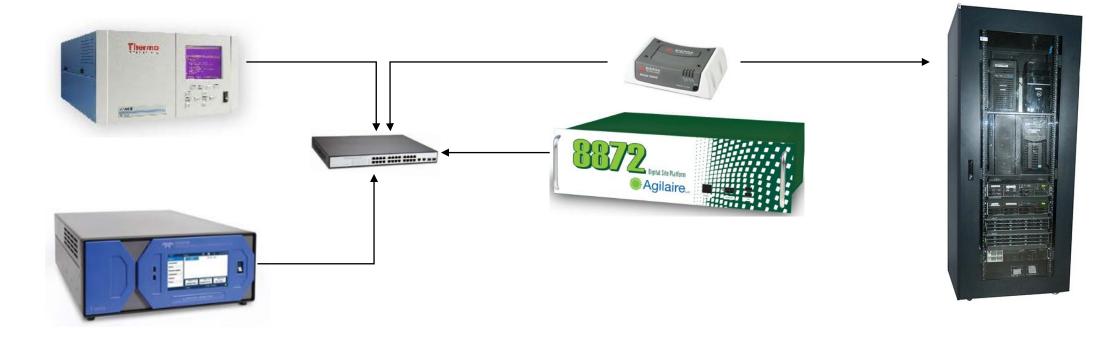
Presenters

Joel Craig – Independent Consultant

Sam Michie – Santa Barbra County APCD

Contributor

Joel Cordes – Santa Barbara County APCD


National Ambient Air Monitoring Conference, August 2016, St Louis

Presentation Outline

- What is meta-data and how is it gathered?
- What does the Santa Barbara County network look like?
- The current state of technology and capabilities of equipment.
- Basic (inherent) benefits to gathering digital metadata.
- How Santa Barbara uses meta-data for automated troubleshooting.
- Common problems, growing pains, and pitfalls.
- Joel Craig Second half of presentation.

What is meta-data? How is it gathered?

- Definition (met·a·da·ta) a set of data that describes and gives information about other data.
- Air Monitoring: Data that gives information regarding the functionality of the instrument, which dictates the quality of the measurement.
 - Flow rates, pressures, temperatures, voltages.
- Master (data logger) sends request to slave (gas analyzer) for a register response (flow rate). Repeats data request based on polling interval.

What does Santa Barbara's network look like?

- Santa Barbara district staff operate 8 monitoring stations.
- Of these 8 stations, 2 are collecting all gas concentration data and meta-data using Modbus RTU over TCP via Ethernet.
- All 8 stations have the majority of the gas analyzers, calibrator, and zero air generator reporting Modbus meta-data.
- Meta-data is collected on both 1 minute and hourly intervals.
- Currently collecting roughly 210 different meta-data parameters from the 8 stations we operate.
- We have experience using gas analyzers manufactured byThermo and TAPI.
- We use a combination of data logger models 8832 and 8872.

Current state of technology

- Fact or Fiction? The majority of the ambient air monitoring community has transitioned to the digital acquisition of data (Modbus)?
- Modbus has been around a long time.
 - Simple and robust serial protocol developed in 1979.
 - Found analyzer manual sections for Modbus back to 2007.
- Gas analyzer (slave) only half the equation.
- Seems to have stuck as the industry standard. Comes nearly pre-configured from several major vendors.
- Personal experience things are still improving today

Basic inherent benefits to modbus data

- Option to gather many parameters.
- Less wires on the back of the rack. Cleaner.
- No voltage calibration, noise immune, no approximation errors.
- Allows for better QC of data and minute resolution on point of failure identification.
- Historical trend of instrument performance.
- Allows for automated troubleshooting of instruments and pre-emptive instrument failure notification.

How we have automated troubleshooting

Rule Information							
Rule Details	Actions						
Rule Name: API Ozone Photo Referenc	Site: Assign Value:						
Description:	Parameter Template: O3_REF Assign Data Grade:						
API ozone analyzers photometer refernce alarm	Apply Null Code: Apply Flag:						
	Clear Null Code: Clear Flag:						
Average Interval: 001h	Apply Qualifier Code:						
Max Lookback Intervals: 24 🚍	Clear Qualifier Code:						
	Add Annotation Text API O3 Analyzer photo ref below 2600 mv Email API O3 Analyzer photo ref below 2600 mv						
	Message:						
	Category: QA Note						
Conditions Triggering Rule							
👝 Add 👩 Delete	ition Details tion Number: 1						
Condition List	Comparison Type						
Condition Logical Operator to Number	Characteristic Flag V Relationship: Contains						
▶ 1 OR	Compare						
2 AND	Site: Parameter Template: O3_REF						
3	Γο						
	-						
, i i i i i i i i i i i i i i i i i i i	Rag Comparison Type						
	Rag: h - High Alarm						

Air Vision ADVP Editor

E-Mail Notification

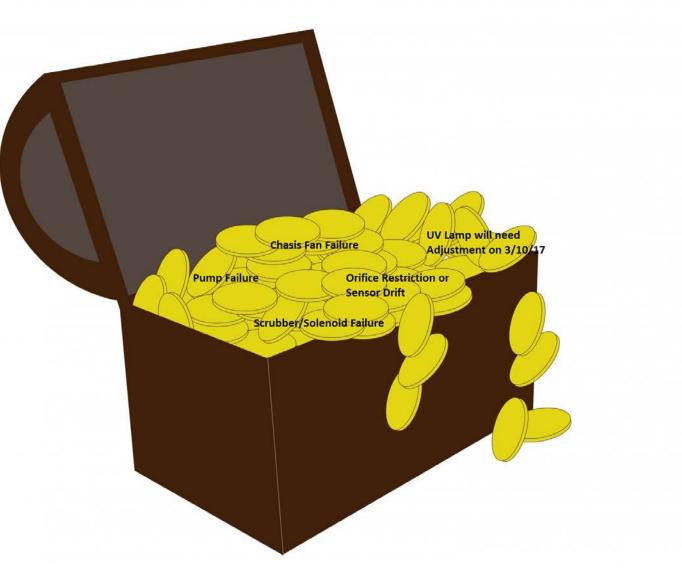
😋 Reply 😰 Reply All 🔤 Forward 🥰 IM

sat 7/16/2016 9:15 AM DAS Mail

API Ozone Sample Flow - API Ozone Sample Flow 7/16/2016 07:00:00 1h

io 🛛 🖉 Samuel H. Michie

Message: API O3 Analyzer sample flow ouside +/- 10% 800 cc/m


Applying Actions on reading: Goleta:O3_SampF:001h at 7/16/2016 07:00:00 with value 628.710559 -> Annotation Added "API O3 Analyzer sample flow ouside +/- 10% 800 cc/m "

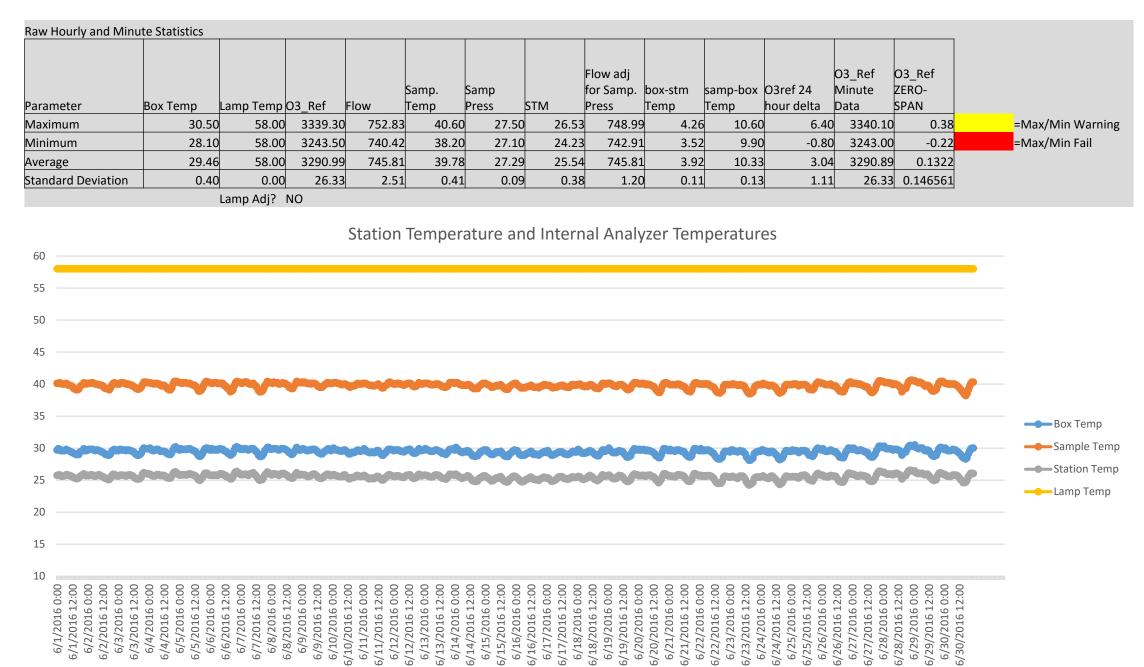
- Parameter outside manufacturer specifications.
- Use high/low flags in data logger and ADVP to identify flag presence.
- ADVP looks at past 24 hours once a day in the morning (lamp, Rcell).
- ADVP looks at every hour (flow).
- Rate of Change (ROC) signifies upcoming failure.

Common problems, growing pains, pitfalls

- 8832 known issues with negative registers, certain parameters report incorrectly from common analyzers.
- Data transmission errors and troubleshooting. One bad apple spoils the bunch.
- Considerable time in configuration of DAS and loggers.
- Start slow, one instrument at a time. Take the time to decide on parameters. Setup templates first. Start with meta data and slowly move towards transitioning AQS parameters.

There's Gold in that Meta-Data

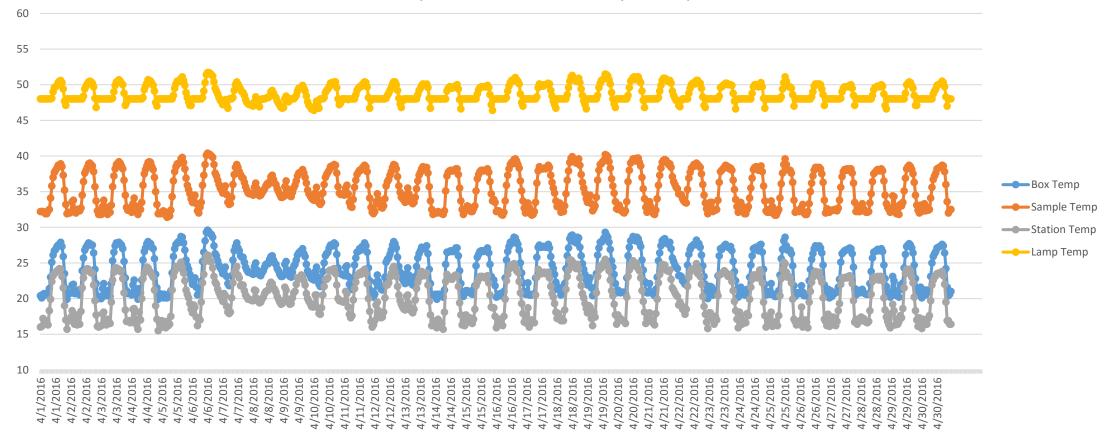
But you have to dig for it...


How I Dig for Gold in Meta-Data

- Develop history of normal meta-data from each analyzer.
- Automated screening using tightened tolerance to identify any data that is not within "normal" based on data history.
- Set up patterns of out-of-tolerance that are associated with specific failures so when that pattern is detected, the likely failure is automatically identified.
- When analyzer failures occurs, use the meta-data from the period of failure to "teach" the workbook how to identify that particular failure mode.

Ways to Find the Gold Nugget-Using the Workbook

- As part of normal monthly data validation process, evaluate monthly meta-dataset.
 - Workbook provides graphs and conditionally formatted cells to quickly ID undetected problems that may require invalidation of data.
 - Workbook provides easy way to ID beginning/end of a problem requiring invalidation.
- When Other Indications Suggest a Failure (auto-cal, etc.), load partial month of meta-dataset and let workbook evaluate for failures.
 - Provides a tool to quickly troubleshoot problems prior to visiting the site.
 - Does not require extensive experience with analyzer operation to troubleshoot.


Example Monthly Data Statistics and Graphs – No Failures

Example Monthly Data Statistics and Graphs – With Failures

Raw Hourly and Minu	te Statistics													
								Flow adj				O3_Ref	O3_Ref	
					Samp.	Samp		for Samp.	box-stm	samp-box	O3ref 24	Minute	ZERO-	
Parameter	Box Temp	Lamp Temp	O3_Ref	Flow	Temp	Press	STM	Press	Temp	Temp	hour delta	Data	SPAN	
Maximum	29.60	51.70	3520.00	868.00	40.40	27.85	26.10	853.80	4.90	12.30	64.00	3520.00	6.20	=Max/Min Warning
Minimum	19.90	46.40	3277.00	827.00	31.40	27.17	/ 15.50	829.86	2.40	10.30	-51.00	3248.00	-16.00	=Max/Min Fail
Average	24.12	48.68	3402.04	842.63	35.41	27.39	20.34	842.61	. 3.78	11.29	3.79	3402.27	-1.39333	
Standard Deviation	2.77	/ 1.13	48.37	7.08	2.57	0.10	2.92	4.54	0.45	0.34	16.34	48.89	4.993992	
	Lamp Adj? NO													

Station Temperature and Internal Analyzer Temperatures

Tabular Summary of Most Recent Monthly Statistics and their Deviation From Historical Averages – No Failures

Most Recent Month Averages												
Parameter	Box Temp	Lamp Temp	O3 Ref	Flow	Samp. Temp	Samp Press	STM	Flow adj for Samp. Press		samp-box Temp		O3_Ref Zero-Span Diff
Maximum	30.50	· · ·		752.83	· ·					•		
Minimum	28.10	58.00	3243.50	740.42	38.20	27.10	24.23	742.91	. 3.52	9.90	3243	-0.22
Average	29.46	58.00	3290.99	745.81	. 39.78	3 27.29	25.54	745.81	. 3.92	10.33	3290.892	0.13
Standard Deviation	0.40	0.00	26.33	2.51	0.41	0.09	0.38	1.20	0.11	0.13	26.33272	0.15
Current Averages Devia	tion from Hi	storical Aver	ages (currer	t-historical)								
								Flow adj				O3_Ref
Parameter	Box Temp	Lamp Temp	O3 Ref	Flow	Samp. Temp	Samp Press	STM	for Samp. Press		samp-box Temp	min. O3 ret	Zero-Span
Maximum	-0.70			12.37	· ·				•	•		-0.16
Minimum	1.76			3.42							N/A	0.03
Average	0.80	0.00	N/A	0.30	0.58	-0.13	0.32	0.30	0.46	-0.22	N/A	0.03
Standard Deviation	-0.42	0.00	-7.74	-1.54	-0.34	-0.05	-0.40	-1.30	-0.05	-0.04	-9.23	-0.04

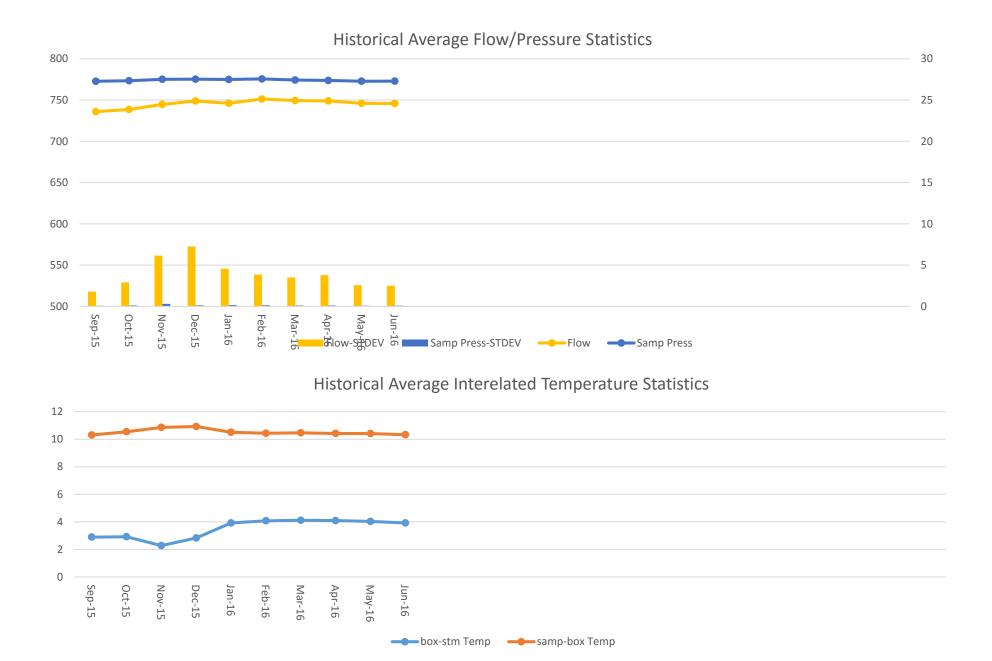
Allowable Deviation from Historical Averages (Set by Operator-HIDDEN SET HERE)

Allowable Min Max for Valid Analyzer Operation (set on Current Monthly Raw Data Tab, HIDEN DO NOT MODIFY HERE)

Projection for O3 Reference Adjustment Date-

Does not appear lamp adjustment was made in current month

Regression correlation coeficent >0.96 so projecting using regression


Regression Correl= 0.996119

Projected Date when O3Ref will be below 2500 and analyzer will go into fault=

Suggest adjustment at least 30 days prior to date O3Ref is projected to go into fault.

03/02/17

Example Graphs of Historical Data Statistics

Example Automated Troubleshooting Screen – With Failures

MIN/MAX EXCEED-FAULT CONDITION ON	MIN/MAX EXCEED-WARNING CONDITION ON	PATTERN RECOGNITION SHOWS POTENTIAL
CURRENT MONTHS DATA	CURRENT MONTHLY DATA	FAILURE/PROBLEM
		STM STDEV higher than normal-POOR STM
		CONTROL, INVESTIGATE SITE TEMP
Lamp Temp exceed Min-FAULT CONDITION	Lamp Temp exceed Min-WARNING	CONTROL
		O3_Ref Z/S Difference-POSSIBLE SCRUBBER
		FAILURE OR SOLENOID LEAK
		-

Example Failure Mode Tests for Meta Data Patterns

	1
Gradual drop in sample flow-POSSIBLE ORIFICE OBSTRUCTION/FLOW SENSOR DRIFT	Drop in current months flow>50 AND drop in last months flow>15
Rapid drop in sample flow-INDICATES GENERAL PNUEMATIC PROBLEM	Any 24 hour drop in flow in current data>50
Apparent pump failure-COMPLETE FAILURE	Any current hour flow reading<50
Apparent pump failure-DIAPHRAM RIP	Current Data 24 hour drop in flow >50 AND corresponding Spress increase >0.2
Apparent restriction to flow-POSSIBLE PLUG IN INLET LINES	Current Data 24 hour increase in (flow*(average spress/actual spress)>50this effectivly looks for a drop in flow with a corresponding decrease in spressure
Box-STM higher than normal-POSSIBLE CHASSIS FAN (OR FAN FILTER) PROBLEM	Current Data Max 24 hour Box-STM>6
Box-STM near zero-POSSIBLE LID OFF CHASSIS	Current Data Min 24 hour Box-STM<1
O3_Ref STDEV higher than normal-LAMP STABILITY PROBLEM, LAMP REPLACEMENT NEEDED	Current Data hourly O3_REF STD DEV>(1.5*max historical monthly O3_REF STD DEV) AND no lamp adjustment detected
STM STDEV higher than normal-POOR STM CONTROL, INVESTIGATE SITE TEMP CONTROL	Current Data STM STDDEV>(1.5*max historical STM STD DEV)
O3_Ref Z/S Difference-POSSIBLE SCRUBBER FAILURE OR SOLENOID LEAK	Any daily autocal where [(O3_REF durring zero)-(O3_REF durring span)]>3mv OR >(2*max historical)

Pros and Cons of Different Approaches

ADVP Type Approach

- Provides on the fly real-time evaluation
- Less effort once set up
- May not provide all the tests
- Software needs to be purchased
- Needs to be utilized with specific data system

Workbook Approach

- Free if you have Excel
- Can be used with any data system
- Able to suggest type of failure
- More Flexible for more tests
- May be able to detect more subtle problems
- More work to maintain
- Only manual, no real-time evaluation

Conclusion and Requests

- Analyzer meta-data currently underutilized.
- Many options for increased use of meta-data, all will improve data quality.
- Seek balance between efforts to evaluate meta-data and benefits.
- To request free ozone meta-data workbook and/or provide failure mode meta-data, contact Joel Craig.

Contact Information

Joel Craig Craigairmonitoring@att.net 805-712-5701 Samuel Michie <u>MichieS@sbcapcd.org</u> 805-961-8827