2016 National Ambient Air Monitoring Conference

OCCUPANT OF THE PARTY OF THE PA

Verifying Zero Air Sources in an Ambient Air Gaseous Monitoring Network

Yousaf Hameed, MPA
Air Quality Monitoring Supervisor
Clark County
Department of Air Quality (DAQ)

Introduction

Quality Data: proper instrument operation:

Calibration

- Good quality zero air is important
- Lower level measurements and upscale regression

Clean/reliable zero air is a must

How do we verify zero air sources?

Zero Air Systems

Two Primary Options:
Cylinders and Zero Air Generators (**ZAG**)

Cylinders

- Vendor Certification Available (NIST Traceable)
- Independent and Alternate Source
- Finite Amount
- Moisture Issues
- Purity Levels

Zero Air Generators (ZAG)

Continuous Supply (and flowrate)
Clean and Reliable

Break Through

- High Pollutant Level Inputs Scrubbing Efficiency
- Effected (not clean) Output
- Teledyne API Paper

EPA Efforts

EPA Requirements
Rules and guidance are sparse

SEPA United States
Environmental Protection
Agency

Quality Assurance Handbook for Air Pollution Measurement Systems

Volume II

Ambient Air Quality Monitoring Program

State and local initiatives

QA Workgroup is developing guidance

Developing a Local Procedure

Technical Challenges

Iterative Process

Some Issues (along the way):

- Measuring below Lower Detectable Limit (LDL)
- Response time / stability
- Flow rate and pressure
- Reliability and repeatability

Procedural Approach

First Iteration

NIST traceable zero air cylinder

- Sequenced with a series of scrubbers (for cleaning and drying)
- System was a standard

Procedural Approach (contd.)

Standard response compared against field ZAG

Note: Instrument's front panel used for readout

- Obtain Difference: Diff = Std_z ZAG_z
- Within tolerances? Yes, then good.

Instrument	Units	Allowable Tolerance
Ozone	ppb	± 1
Carbon Monoxide	ppm	± 0.1
Nitric Oxides	ppb	± 1
Sulfur Dioxide	ppb	±1

Procedural Approach (updated)

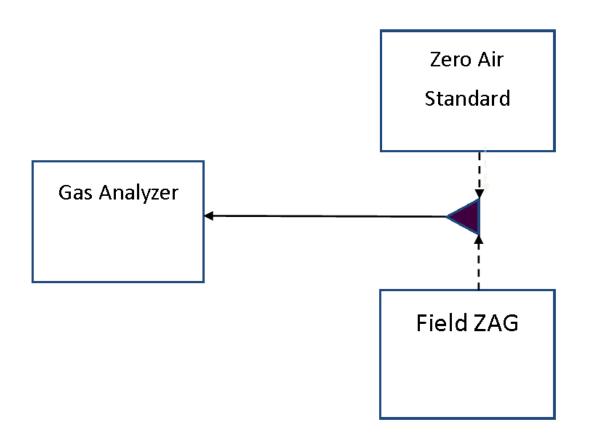
Difficulties with existing procedure

Time for an update

Certified ZAG

Solved problems:

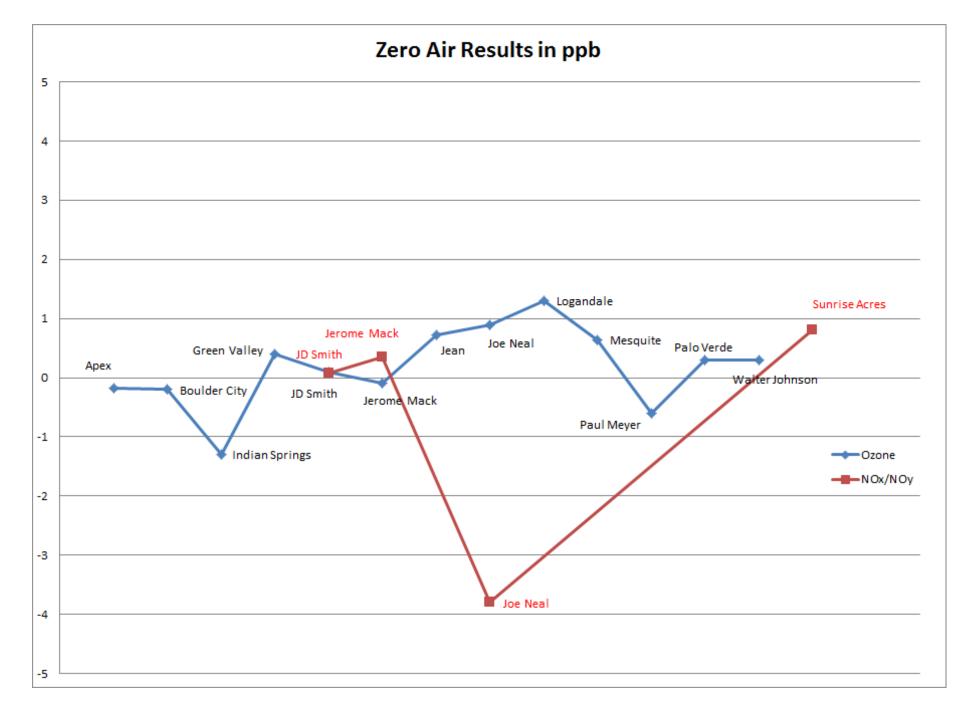
 Instrument stability, moisture, pressure, and flow issues.


Methods (Zero Air Verification)

- 1. Zero air from standard to measurement instrument
- Analyzer zero coefficient is adjusted
- Zero air from field ZAG to measurement instrument.Test reading is taken
- 4. If within tolerance, then test passes

 Note: Difference measurement between the standard and field ZAG is not needed

Diagram



Information About Data

- Annual testing of all the field ZAGs
 More often in some cases
- Test for each parameter being measured
- 2015 testing Sampling of data (next slide)

Results

Improvements

- Results have improved over the years
- Improvements in procedure are notable
- Testing is now more stable
 Instrument response time has decreased
- Greater control: moisture, pressure, flow

Summary

Revised and improved testing design

- Better testing results
- Data quality

Agency (State, Local, EPA) Efforts

- Standardization and more consistent results
- National scale
- Data comparability

Quality Management

Continuous improvement – more work?

Acknowledgements

US EPA:

Dennis Mikel, Matthew Plate, and Mike Papp

San Diego APCD:

David Sodeman, David Roque

Clark County:

Stephen Deyo, Kristopher Simonian, Mickey Turner, Piotr

Nowinski

References

Teledyne API – Engineering Report (ENG-016): M701H Zero Air Characterization Report (October 29, 2008).

U.S. Government Publishing Office; Electronic Code of Federal Regulations: Title 40, Part 53: Table B-1 to Subpart of Part 53— Performance Limit specifications for Automated Methods. See http://www.ecfr.gov/cgi-bin/text-idx?SID=69e22778299ed5e4eedf739c689b568f&mc=true&node=pt40.6.53&rgn=div5 (accessed May 5, 2016).

United States Environmental Protection Agency; Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program. See http://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/QA-Handbook-Vol-II.pdf (accessed May 5, 2016).

Any Questions?

Contact: Yousaf Hameed, MPA

Air Quality Monitoring Supervisor

Clark County

Department of Air Quality

Direct: (702) 455-1664

Email: <u>Hameed@ClarkCountyNV.gov</u>

