

Gary Andersen Glandersen@lbl.gov

Compost: The Ultimate in Recycling

- Returns organic nutrients back to the soil for increased plant productivity
- Increases water retention in soil for drought resistance
- Long term sequestration of carbon, our best hope to combat climate change

The Science of Composting

• **Mesophilic Phase 1 (10-400 C)**

- Lasts only a few days
- • Rapid growth of bacteria and fungi
- Breakdown of soluble sugar and starches

•**Thermophilic Phase (>400 C)**

- Mixed population of heat loving organisms
- High heat helps breakdown of proteins, fats, "tough" plant material like cellulose
- High temperature (>55 ^oC) kill weeds and pathogen harmful to humans
- CO₂ given off in large amounts

•**Mesophilic Phase 2 (10-400 C)** "**Curing Phase**"

- Can last several months
- Bacteria, fungi, actinomycetes predominate. Invertebrates active.
- cellulose and lignins. Humic compounds form. Supply of organic material has decreased. Slow breakdown of
- Mineralization of Nitrogen

Microbes break down organic nutrients into plant accessible forms

1. Bacteria:

major decomposers, breakdown many forms of organic material such as proteins, cellulose and lignin

2. Archaea:

Able to withstand high temperatures. Generation of methane and oxidation of ammonia to nitrite

3. Fungi:

Break down tough debris, too dry, too acidic or too low in nitrogen for bacteria to digest

Compost as Soil Amendment

Soil Organic Mater (Compost) as a supplier of nitrogen, phosphorus and sulfur nutrients to plants

How do soil amendments, such as compost, work?

Multiple, Interdependent Microbes are Responsible for the Action of Compost in Soil

To develop a more predictive understanding of the mechanism of compost amendment on increased beneficial soil activities we must understand the role of the microbes in the process!

Microbes involved in:

Organic matter decomposition Nitrogen Cycle Phosphorus Cycle Sulfur Cycle Carbon Cycle Humus Production and increased CEC

The Nitrogen Cycle

Microbes convert nitrogen to many different forms

Decomposition: Organic Biomass to Ammonia (NH_A) Bacteria, fungi and actinobacteria

(Aerobic) $NO_2^- \rightarrow NO_3^-$ Nitrification: Oxidation of Ammonia to Nitrite $NH_4 \rightarrow NO_2^-$ *Nitrosomonas Nitrobacter*

Nitrobacter winogradskyi

Dentrification: Heterotrophic Nitrate Reduction $NO_3^- \rightarrow NO_2^-$ *Paracoccus denitrificans* $(Anaerobic) \quad NO_2^- \rightarrow NO + N_2O \rightarrow N_2$

Figure 4: Effects of social regulation on microbial organic matter decomposition.

From: Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils

From: C. Kaiser et al. *Nature Communications* 1 December 2015

The Keeling Curve: A daily record of atmospheric $CO₂$

Nicasio Composting Facility for Microbe Characterization

What are the microbes doing in the compost environment?

Experimental procedures

- Hourly monitoring of temperature (center and edges), oxygen and moisture
- Periodic sampling for microbial DNA, carbon/nitrogen, greenhouse gases $(CH₄, N₂O, CO₂)$
- PhyloChip characterization of microbial communities throughout process
- Standard biosolids indicators (Salmonella, Fecal Coliforms, Helminth ova) before and after treatment

 and archaea in a single test •1.1 million DNA probes to detect > 50,000 bacteria

- Hierarchical probes for identification at multiple taxonomic levels
	- •••• •••• •••••• Rapid, repeatable and standardized method with statistical confidence

Comprehensive identification of entire microbial community to monitor changes in environment.

Improving Sanitation in Haiti

- Conventional sewage treatment expensive to build and operate
- Requires high volumes of increasingly scarce and expensive water, chemicals and energy
- Conventional treatment systems often impractical impoverished regions, remote places, disaster areas

Compost from human waste in Haiti

Providing sustainable sanitation solutions

Compost and Soil Nutrient Availability

DNA Everywhere Project

Goal- Develop simplified methods for DNA extraction and train individuals where infrastructure does not currently exist

Fate of fecal bacteria during thermophilic composting of human waste in Haiti

Observed significant reduction in human fecal organisms throughout the process

Cap-Haitien Cap-Haitien

Port au Prince Port au Prince

One time application of compost to grasslands

Prof. Whendee Silver – UC Berkeley

- Spread 1 cm compost on surface of California grasslands
- Identified a significant increase in plant productivity, water retention and carbon storage (2 tonnes/hectare)
- Next 5 years additional 2 tonnes per year in stable, microbial resistant carbon. Model predicts additional 30+ years.
- UNKNOWN: what are the microbial mechanisms for C, N, PO4 cycling, humus production and contaminant degradation?

Nitrogen Conversion and Emission During the Composting Process

From: K. Maeda et al. *Microbial Biotechnology* (2011) 4:700-9

Ongoing and future research at Berkeley Lab

- Increasing Available Feedstock for Compost Production
	- The fate of pharmaceuticals in compost.
	- Optimization of the thermophilic composting process for enhanced pathogen and VOC emission reduction – biosolids, dairy, septic alternative.
- Compost Application for Greenhouse Gas Reduction \Box Microbial mechanisms for long-term soil carbon sequestration. \Box Life cycle analysis for best use of potential feedstocks.
- Healthy Soils Through Compost Amendment

-

- \Box Functional analysis of nitrogen-, carbon-, phosphorus-, sulfurcycle. Diagnostics for healthy soil.
- \Box Microbial mechanism for increased soil water holding capacity.
- \Box How does the starting compost material (food waste, CAFO, biosolid, green bin, etc.) impact long-term plant productivity?