Analytical method for mandestrobin (S-2200) and its products DX-CA-S-2200, 2-COOH-S-2200, 5-COOH-S-2200, 2-CONH2-S-2200, and 5-CONH2-S-2200 in soil

Reports: ECM: EPA MRID No.: 49068570 (pages 255-273). Bitter, J. (p. 264). 2012.

DETERMINATION OF S-2200 AND METABOLITES IN SOIL, METHOD RM-48S-3. Valent Analytical Report No.: VP-37959. Report prepared, sponsored and submitted by Valent U.S.A. Corporation, Dublin, California; 19 pages. Method dated October 11, 2012; final approval issued

November 5, 2012 (pp. 255, 264).

ILV: EPA MRID No. 49068638. Pernell, M. 2013. S-2200: Independent Laboratory Validation of Valent Method RM-48S-3, Determination of S-2200 and Metabolites in Soil. Critical Path Services, LLC (CPS). CPS Study No.: 13-CPS-002. Report prepared by Critical Path Services, LLC, Garnet

Valley, Pennsylvania, sponsored and submitted by Valent U.S.A. Corporation, Walnut Creek, California; 138 pages. Final report issued

February 15, 2013.

PC Code: 036603

MRID: MRIDs 49068570 (pages 255-273) & 49068638

PMRA: PMRA #s 2377958 & 2377849

Guideline: 850.6100

GLP: <u>ECM</u>: Data Confidentiality, Good Laboratory Practice (GLP), Quality

Assurance, and Authenticity Certification statements were not provided. A

signature page was included (p. 264).

<u>ILV</u>: The study was conducted in compliance with USEPA GLP standards (p. 3). Signed and dated No Claim of Confidentiality, GLP, and Quality Assurance statements were provided (pp. 2-3, 5). An Authenticity

Certification statement was not provided.

Reviewer: Richard Shamblen **Signature:**

U.S. EPA **Date:** February 20, 2015

Kim Davis
PMRA
Signature:2181
Date: March 30, 2015

Study Classification

This analytical method is classified as **Acceptable** (USEPA)/ **Acceptable** (PMRA). The registrant failed to establish that the soil matrix used in the ILV (loamy sand soil) was either an equivalent, or more difficult, analytical sample condition as that used in the ECM (uncharacterized soil). The determinations of the LOQ and LOD were not based on scientifically acceptable procedures. The soil used in the ECM was not characterized.

<u>Page citations refer to the page numbers located in the bottom center of MRID 49068638</u> (ILV, since this report contains the ECM), unless noted otherwise.

Executive Summary

This analytical method, Valent Method RM-48S-3, is designed for the quantitative determination of mandestrobin and its products DX-CA-S-2200, 2-COOH-S-2200, 5-COOH-S-2200, 2-CONH2-S-2200, and 5-CONH2-S-2200 in soil using HPLC/MS/MS. The method is quantitative for mandestrobin and its products at the stated LOQ of 0.02 mg/kg. The LOQ is less than the lowest toxicological level of concern in soil (NOAEC = 560 g ai/ ha; equivalent to 0.44 mg ai/ kg). The independent laboratory validated the method after two trials. No major modifications were made by the independent laboratory. The registrant failed to establish that the soil matrix used in the ILV (loamy sand soil) was either an equivalent, or more difficult, analytical sample condition as that used in the ECM (uncharacterized soil).

Table 1. Analytical Method Summary

Table 1. All	iaiyucai Meni	ou Summai	. y					
Analyte(s) by Pesticide	MRI Environmental Chemistry Method	Independent	EPA Review	Matrix	Method Date (dd/mm/yyyy)	Registrant	Analysis	Limit of Quantitation (LOQ)
Mandestrobin (S-2200)								
DX-CA-S- 2200	49068570	400 50 520		G. T	Dated 11/10/2012,			
2-COOH-S- 2200								0.00
5-COOH-S- 2200	(pp. 255-273)	49068638		Soil	final approval 05/11/2012	Valent	HPLC/MS/MS	0.02 mg/kg
2-CONH2-S- 2200								
5-CONH2-S- 2200								

See attachment 1 for the chemical names and structures of the analytes.

I. Principle of the Method

Samples (2.5 g) of soil were extracted twice with 25 mL of acetone:0.05M HCl (80:20, v:v) by shaking (reciprocating shaker, speed not specified) for 1 hour (Appendix 5, p. 117). Soil and extract were separated by centrifugation (ca. 2,000 rpm, 5 minutes). Extracts were decanted into a separatory funnel, treated with 5% sodium chloride solution (50 mL), then partitioned twice with methylene chloride (2 x 50 mL). Organic phases were combined, taken to dryness (rotary evaporation, \leq 40°C), and the resulting residues reconstituted in 0.05% formic acid in methanol:0.05% formic acid in HPLC water (1:1, v:v; 20 mL).

Samples were analyzed for mandestrobin (S-2200) and its products DX-CA-S-2200, 2-COOH-S-2200, 5-COOH-S-2200, 2-CONH2-S-2200, and 5-CONH2-S-2200 by HPLC (Agilent Eclipse XDB-C18, 4.6 mm x 150 mm, 5 μ m column, 20 \pm 1°C) using a mobile phase of (A) aqueous 0.05% formic acid and (B) 0.05% formic acid in methanol [percent A:B at 0.0-2.0 min. 50:50, 8.0-20.0

min. 10:90, 22.5-30.0 min. 50:50] with MS/MS-ESI (electrospray ionization, positive ion mode) detection and multiple reaction monitoring (MRM; Appendix 5, pp. 118-119). Injection volume was 10 μ L. Mandestrobin and its products were identified and quantified using one ion transition. Ion transitions monitored were as follows: m/z 314 \rightarrow 192 for mandestrobin, m/z 224 \rightarrow 146 for DX-CA-S-2200, m/z 344 \rightarrow 192 for 2-COOH-S-2200 and 5-COOH-S-2200, and m/z 343 \rightarrow 192 for 2-CONH2-S-2200 and 5-CONH2-S-2200. A confirmatory method was not reported.

The ILV performed the method as written, with minor instrument parameter modifications (pp. 14, 18-19; Tables 13-14, pp. 38-39; Appendix 5, pp. 117-119).

LOQs and LODs for all analytes were the same in the ECM and ILV at 0.02 mg/kg and 0.01 mg/kg, respectively (p. 17; Appendix 5, p. 121).

II. Recovery Findings

ECM (MRID 49068570, pages 255-273): Mean recoveries and relative standard deviations (RSDs) were within guideline requirements (mean 70-120%; RSD \leq 20%) for analysis of mandestrobin (S-2200) and its products DX-CA-S-2200, 2-COOH-S-2200, 5-COOH-S-2200, 2-CONH2-S-2200, and 5-CONH2-S-2200 in soil (uncharacterized) at fortification levels of 0.02 mg/kg (LOQ) and 0.2 mg/kg (10x LOQ, DER Attachment 2). Analytes were identified and quantified using a single ion transition; a confirmatory method was not used.

ILV (MRID 49068638): Mean recoveries and relative standard deviations (RSDs) were within guideline requirements (mean 70-120%; RSD ≤20%) for analysis of mandestrobin and its products in loamy sand soil at fortification levels of 0.02 mg/kg (LOQ) and 0.2 mg/kg (10x LOQ; Tables 7-12, pp. 32-37). Analytes were identified and quantified using a single ion transition. The method was validated for all analytes at both fortification levels after two trials, with minor instrument parameter modifications (pp. 14, 18-19, 23; Tables 13-14, pp. 38-39; Appendix 5, pp. 117-119). The soil was fully characterized and screened for interferences prior to use (pp. 17, 20; Appendix 6, p. 132). The loamy sand soil was obtained from Georgia and supplied by Valent (V-37953-UTC 0-30cm; p. 16; Appendix 6, p. 132). Valent did not specify if the loamy sand soil was either an equivalent, or more difficult, analytical sample condition as that used in the ECM (uncharacterized soil).

Table 2. Initial Validation Method Recoveries for Mandestrobin and Its Products in Soil¹

Analyte	Fortification Level (mg/kg)	Number of Tests	Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)	
Mandestrobin	0.02 (LOQ)	5	89.5-93.3	92.0	1.5	1.6	
(S-2200)	0.2	5	86.6-96.3	91.5	3.7	4.1	
DX-CA-S-2200	0.02 (LOQ)	5	90.7-99.7	94.0	3.7	3.9	
DA-CA-3-2200	0.2	5	96.0-105.4	101.1	4.1	4.1	
2-COOH-S-2200	0.02 (LOQ)	5	77.5-97.4	89.7	8.6	9.6	
2-COOH-3-2200	0.2	5	92.9-101.1	97.1	3.5	3.6	
5-COOH-S-2200	0.02 (LOQ)	5	71.3-93.3	78.2	9.8	12.5	
3-COOH-3-2200	0.2	5	90.5-100.6	96.8	4.1	4.2	
2-CONH2-S-2200	0.02 (LOQ)	5	87.6-96.0	91.1	3.1	3.4	
2-CONH2-3-2200	0.2	5	91.4-99.0	95.0	3.2	3.4	
5-CONH2-S-2200	0.02 (LOQ)	5	74.1-87.9	82.2	7.1	8.6	
J-CONFIZ-3-2200	0.2	5	94.6-98.7	97.6	1.8	1.8	

Data (% Recovery) were obtained from Appendix 5, pp. 126-131; means, standard deviations, and relative standard deviations per fortification level were reviewer-calculated (DER Attachment 2). It could not be determined whether or not the recovery results were corrected for any residues in the matrix control samples.

Table 3. Independent Validation Method Recoveries for Mandestrobin and Its Products in Loamy Sand Soil¹

Analyte	Fortification Level (mg/kg)		Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)		
Mandestrobin	0.02 (LOQ)	5	101-113	107	4.74	4.43		
(S-2200)	0.2	5	99.0-103	101	1.79	1.77		
DX-CA-S-2200	0.02 (LOQ)	5	98.5-108	104	4.04	3.88		
DA-CA-3-2200	0.2	5	98.5-103	101	1.80	1.78		
2-COOH-S-2200	0.02 (LOQ)	5	105-117	111	5.77	5.20		
2-COOH-3-2200	0.2	5	99.5-105	102	2.07	2.03		
5-COOH-S-2200	0.02 (LOQ)	5	103-113	108	3.54	3.28		
3-COOH-3-2200	0.2	5	101-105	103	1.48	1.44		
2-CONH2-S-2200	0.02 (LOQ)	5	103-115	110	5.68	5.16		
2-CONH2-3-2200	0.2	5	100-105	102	1.82	1.78		
5-CONH2-S-2200	0.02 (LOQ)	5	104-116	111	5.89	5.31		
3-CONFIZ-3-2200	0.2	5	101-105	103	1.52	1.48		

Data were obtained from Tables 7-12, pp. 32-37. Although not specified, residue data sheets and example calculations indicate recovery results were uncorrected (Appendix 1, pp. 97-102; Appendix 2, p. 103).

III. Method Characteristics

In the ECM and ILV, the LOQ and LOD for all analytes were 0.02 mg/kg and 0.01 mg/kg, respectively (p. 17; Appendix 5, p. 121). The ECM defined the LOQ as the concentration of the analyte successfully tested ("validated"; Appendix 5, p. 121). The LOD was estimated by dividing the lowest calibration standard concentration by the effective matrix concentration in the sample extracts.

¹ The soil matrix was uncharacterized.

¹ Control Soil No.: GS-13-3-1 was fully characterized (Appendix 6, p. 132).

Table 4. Method Characteristics¹

	Mandestrobin	DX-CA-S- 2200	2-COOH-S- 2200	5-COOH-S- 2200	2-CONH2-S- 2200	5-CONH2-S- 2200							
Limit of Quantitation (LOQ)		0.02 mg/kg											
Limit of Detection (LOD)	0.01 mg/kg^2												
Linearity (calibration curve		$r^2 = 0.9997$	$r^2 = 0.9986$										
r ² and concentration range) ³													
Repeatable	Yes												
Reproducible	Yes												
Specific ⁴	Yes												

Data were obtained from pp. 17, 23; Tables 7-12, pp. 32-37; Appendix 1, pp. 97-102; and DER Attachment 2 (r²).

IV. Method Deficiencies and Reviewer's Comments

- 1. The soil ECM, with performance data, was submitted as part of a terrestrial field dissipation study submission (MRID 49068570), with only pages 255-273 of the document pertaining to the ECM.
- 2. The registrant failed to establish that the soil matrix used in the ILV was either an equivalent, or more difficult, analytical sample condition as that used in the ECM. The ILV was performed using loamy sand soil obtained from Georgia and supplied by Valent (V-37953-UTC 0-30cm); matrix characterization was provided (p. 16; Appendix 6, p. 132). The soil used in the ECM validation performed by Valent was not characterized (Appendix 5, pp. 113-131).

For a given sample matrix, the registrant should select the most difficult analytical sample condition (*e.g.*, high organic content versus low organic content in a soil matrix) for use in the ILV to demonstrate how well the method performs.

3. The determination of the LOQ and LOD were not based on scientifically acceptable procedures. In the ECM and ILV, the LOQ and LOD for all analytes were 0.02 mg/kg and 0.01 mg/kg, respectively (p. 17; Appendix 5, p. 121). The ECM defined the LOQ as the concentration of the analyte successfully tested ("validated"; Appendix 5, p. 121). The LOD was estimated by dividing the lowest calibration standard concentration by the effective matrix concentration in the sample extracts.

Detection limits should not be based on the arbitrarily selected lowest concentration in the spiked samples. Additionally, the lowest toxicological level of concern in soil was not

¹ The ILV was performed using a loamy sand soil supplied by Valent (p. 16; Appendix 6, p. 132). Valent did not specify if the loamy sand soil was either an equivalent, or more difficult, analytical sample condition as that used in the ECM (uncharacterized soil).

² LOD was estimated based on lowest calibration standard and effective matrix concentration in sample extracts (Appendix 5, p. 121).

³ Reviewer-calculated r² values (linear regression) for the provided ILV calibration standards (Appendix 1, pp. 97-102; DER Attachment 2). The ILV reported r values (quadratic, 1/x weighting) of 0.9994-0.9999 (Figures 1-6, pp. 41-46). The ECM did not provide calibration curves.

⁴ A confirmation method was not used; however, OCSPP 850.6100 guidelines specify that a confirmatory procedure is not typically necessary where GC/MS and LC/MS methods are used as the primary method(s) to generate study data.

reported. An LOQ above toxicological levels of concern results in an unacceptable method classification.

- 4. A confirmatory method was not used. However, OCSPP 850.6100 guidelines specify that a confirmatory procedure is not typically necessary where GC/MS and LC/MS methods are used as the primary method(s) to generate study data.
- 5. For the ECM, it could not be determined whether or not reported recovery values were corrected for reagent blanks, matrix blanks, or other recoveries. The method calculations specify correcting recovery results for any residues detected in the matrix control samples (Appendix 5, p. 121). The example calculation for 2-CONH2-S-2200 show no residues were detected in the matrix control sample. However, results for the matrix control samples were not presented with the performance data (Appendix 5, pp. 126-131), and raw data were not provided.
- 6. For the ECM, the purities of the analytes (mandestrobin, DX-CA-S-2200, 2-COOH-S-2200, 5-COOH-S-2200, 2-CONH2-S-2200, and 5-CONH2-S-2200) used for the fortifications were not reported.
- 7. For the ECM, standard curves, chromatograms of reagent blank samples, and chromatograms of samples fortified at the LOQ were not provided.
- 8. It was reported for the ILV that extraction and analysis time for one set of thirteen samples (one reagent blank, two matrix control samples, and ten fortified samples) required approximately 2.6 days; *ca.* 8 hours for extraction, plus *ca.* 12.5 hours for analysis (p. 23).

Conclusion:

The results of the method validation study demonstrated that the HPLC/MS/MS analytical method can be performed successfully on soil samples for mandestrobin and its transformation products, DX-CA-S-2200, 2-COOH-S-2200, 5-COOH-S-2200, 2-CONH2-S-2200, and 5-CONH2-S-2200, down to a level of 0.02 mg/kg with a limit of detection at 0.01 mg/kg. This method was assessed to be acceptable as a post registration monitoring method.

V. References

- U.S. Environmental Protection Agency. 2012. Ecological Effects Test Guidelines, OCSPP 850.6100, Environmental Chemistry Methods and Associated Independent Laboratory Validation. Office of Chemical Safety and Pollution Prevention, Washington, DC. EPA 712-C-001.
- 40 CFR Part 136. Appendix B. Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11, pp. 317-319.

Attachment 1: Chemical Names and Structures

Mandestrobin (S-2200)

IUPAC Name: (RS)-2-methoxy-N-methyl-2- $[\alpha$ -(2,5-xylyloxy)-o-tolyl]acetamide

CAS Name: $2-[(2,5-Dimethylphenoxy)methyl]-\alpha-methoxy-$ *N*-

methylbenzeneacetamide

CAS Number: 173662-97-0

SMILES String: Cc1ccc(c(c1)OCc2cccc2C(C(=O)NC)OC)C

DX-CA-S-2200

IUPAC Name: (RS)-2-(N-methylcarbamoyl-methoxymethyl)benzoic acid

CAS Name: Not reported CAS Number: Not reported

SMILES String: CNC(=O)C(c1ccccc1C(=O)O)OC

2-COOH-S-2200

IUPAC Name: (*RS*)-2-{2-[1-methoxy-1-(*N*-methylcarbamoyl)methyl]benzyloxy}-4-

methylbenzoic acid

CAS Name: Not reported CAS Number: Not reported

SMILES String: Cc1ccc(c(c1)OCc2cccc2C(C(=O)NC)OC)C(=O)O

5-COOH-S-2200

IUPAC Name: (RS)-3-{2-[1-methoxy-1-(N-methylcarbamoyl)methyl]benzyloxy}-4-

methylbenzoic acid

CAS Name: Not reported Not reported Not reported

SMILES String: Cc1ccc(cc1OCc2cccc2C(C(=O)NC)OC)C(=O)O

2-CONH2-S-2200 (2-amide-S-2200)

IUPAC Name: 2-({2-[1-Methoxy-2-(methylamino)-2-oxoethyl]benzyl}oxy)-4-

methylbenzamide

CAS Name: Not reported CAS Number: Not reported

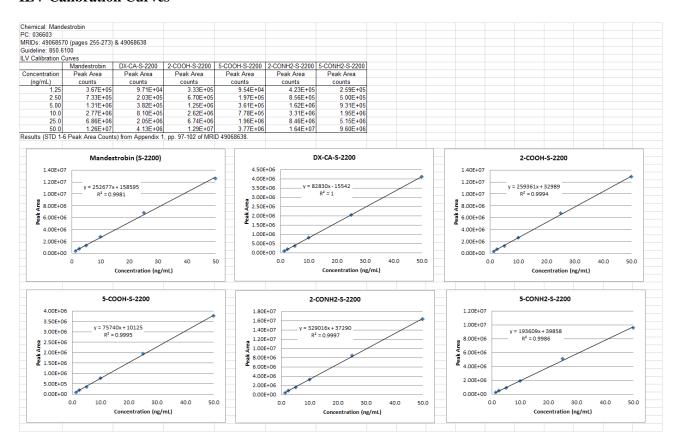
SMILES String: Cc1ccc(c(c1)OCc2cccc2C(C(=O)NC)OC)C(=O)N

5-CONH2-S-2200 (5-amide-S-2200)

IUPAC Name: 3-({2-[1-Methoxy-2-(methylamino)-2-oxoethyl]benzyl}oxy)-4-

methylbenzamide

CAS Name: Not reported CAS Number: Not reported


SMILES String: Cc1ccc(cc1OCc2cccc2C(C(=O)NC)OC)C(=O)N

Attachment 2:

ECM Validation for Determination of Mandestrobin (S-2200) and its Products in Soil

Chemical: M	andestrobi	n																				
PC: 036603																						
MRIDs: 4906	8570 (pag	es 255-2	73) & 49	9068638																		
Guideline: 85																						
ECM Validat	ion for Det	erminatio	on of Ma	ndestrol	bin (S-22	00) and	its Prod	lucts in Soi	l (uncha	racterize	ed)											
Mandestrobin (S-2200)						DX-CA-S-2200							2-COOH-S-2200									
Fortified	Recovery	Mean	SD ¹	RSD ²				Recovery	Mean	SD ¹	RSD ²				Recovery	Mean	SD1	RSD ²				
(mg a.i./kg)	(%)	(%)	(%)	(%)	Max	Min	n =	(%)	(%)	(%)	(%)	Max	Min	n =	(%)	(%)	(%)	(%)	Max	Min	n =	
0.02	92.7							99.7							93.4							
LOQ	93.3							95.1							97.4							
	89.5							90.7							77.5							
	92.4							90.8							84.0							
	92.1	92.0	1.5	1.6	93.3	89.5	5	93.6	94.0	3.7	3.9	99.7	90.7	5	96.3	89.7	8.6	9.6	97.4	77.5	5	
0.2								100.2							98.1							
	93.2							105.4							101.1							
	96.3							105.2							99.5							
	92.3							96.0							92.9		_				_	
	86.6	91.5			96.3	86.6	5	98.6	101.1	4.1	4.1		96.0	5	94.1	97.1	3.5		101.1	92.9	5	
				OH-S-22	200						NH2-S-2	200			5-CONH2-S-2200							
Fortified	Recovery		SD1	RSD ²				Recovery	Mean	SD1	RSD ²				Recovery		SD1	RSD ²				
(mg a.i./kg)	(%)	(%)	(%)	(%)	Max	Min	n =	(%)	(%)	(%)	(%)	Max	Min	n =	(%)	(%)	(%)	(%)	Max	Min	n =	
0.02								90.5							87.5							
LOQ	93.3							96.0							87.9							
	71.3							87.6							74.1							
	71.6							90.1							74.8							
	71.7		9.8	12.5	93.3	71.3	5	91.3	91.1	3.1	3.4	96.0	87.6	5	86.8		7.1	8.6	87.9	74.1	5	
0.2								96.7							94.6							
	96.1							95.8							98.7							
	96.7		-					99.0							97.2							
	100.6 100.3		4.1	4.2	100.0	90.5	5	91.9 91.4	95.0	3.2	3.4	99.0	91.4	5	98.7 98.7	97.6	- 40	1.8	98.7	94.6	-	
Danulta /0/ D												99.0	91.4	5	98.7	97.6	1.8	1.8	98.7	94.6	5	
Results (% F												n /n 263	2) Daw	data aba	ate were re	at accid	- d t - d	to resin o	udajala za		aluaa if	any, were corrected
Means and s														uata She	eets were r	iot brovia	eu to de	terrnine	wriich re	covery v	aiues, it	arry, were corrected
Any discrepa												JEV(AT:	MZJ.									
1 SD = Star									tery due	to round	aing.											
2 RSD = Re								tillou.														
2 NOD - RE	native Staff	uaru De	viduon, (arcuidle	u as (SL	milean)	A 100.															

ILV Calibration Curves

Mandestrobin (PC 036603) MRIDs 49068570 (pages 255-273, ECM)/ 49068638 (ILV)

Test Material: Mandestrobin

MRID: 49068570 (pages 255-273)

DETERMINATION OF S-2200 AND METABOLITES IN SOIL. Title:

METHOD RM-48S-3

MRID: 49068638

S-2200: Independent Laboratory Validation of Valent Method RM-48S-Title:

3. Determination of S-2200 and Metabolites in Soil

EPA PC Code: 036603

OCSPP Guideline: 850.6100

For CDM Smith

Lymme Dinai

Lisa Muto **Signature: Primary Reviewer:** Lynne Binari

Date: 9/5/14

Secondary Reviewer: Lisa Muto **Signature:**

Date: 9/5/14

QC/QA Manager: Joan Gaidos Signature:

Date: 9/5/14