Analytical method for DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in water

Reports:	ECM 1: EPA MRID No. 49599604. Hill, S.J., A.M. Pentz and J.J. Stry. 2003. Analytical Method for the Determination of DPX-MP062 [75% DPX-
	KN128 (Indoxacarb) and 25% IN-KN12/J and Metabolites IN-MS//5, IN-
	J1555, IN-IMP819, IN-JU875, and IN-KG455 in Ground, Surface, and Drinking Waters Using L C/MS/MS, DuPont Study No. 9, DuPont 0605 and
	Drinking waters Using LC/MS/MS. DuPont Study No.s: DuPont-9605 and DuPont 0605, Devision No. 1, Depart grant and by E.L. du Port de Nemeure
	DuPont-9605, Revision No. 1. Report prepared by E.I. du Pont de Nemours
	da Namours and Company, Wilmington, Delayara (p. 4): 78 pages. Final
	report with Povicion No. 1 issued March 2, 2002, Original report outhored
	by S. L. Hill and J. L. Struciogued May 2, 2002. Original report authored
	ECM 2: EDA MDID No. 40500605 Stry, LL 2014 Applytical Mathed for
	the Determination of DDY MD062 [75% DDY KN128 (Indovacarb) and
	25% IN_KN127] and Metabolites IN_MS775 IN_IT333 IN_MP810 IN_
	IU873 and IN-KG433 in Ground Surface and Drinking Waters Using
	I C/MS/MS DuPont Study No · DuPont-9605 Supplement No 1 Report
	prepared by E L du Pont de Nemours and Company Newark Delaware
	sponsored and submitted by E L du Pont de Nemours and Company
	Wilmington, Delaware (p. 4): 42 pages. Final report with Supplement No. 1
	issued September 15, 2014. Final report with Revision No. 1 authored by
	S.J. Hill, A.M. Pentz and J.J. Stry. issued March 3, 2003. Original report
	authored by S.J. Hill and J.J. Stry issued May 2, 2002.
	ILV: EPA MRID No. 49599606. Moi, J.G.J. 2003. Independent Laboratory
	Validation of DuPont-9605, Revision 1 "Analytical Method for the
	Determination of DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25%
	IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873,
	and IN-KG433 In Ground, Surface, and Drinking Waters Using
	LC/MS/MS". DuPont Study Project ID: DuPont-12182. TNO Project No.:
	010.53090. TNO Study Code: 5033/02. Report prepared by TNO Nutrition
	and Food Research, Zeist, The Netherlands; sponsored and submitted by E.I.
	du Pont de Nemours and Company, Wilmington, Delaware (p. 3); 77 pages.
	Final report issued May 20, 2003.
Document No.:	MRIDs 49599604 & 49599605 & 49599606
Guideline:	850.6100
Statements:	ECM 1: The study was not conducted with the restriction of compliance with
	USEPA FIFRA (40 CFR, Part 160) or OECD Good Laboratory Practice
	(GLP) standards; however, Standard Operating Procedures were followed (p.
	3 of MRID 49599604). Signed and dated Data Confidentiality, No Data
	confidentiality, GLP, and Certification of Authenticity statements were
	ECM 2: The study was not conducted with the restriction of compliance with
	USEPA FIERA (40 CER Part 160) or OECD GI P standards: however, work
	was done in a GLP facility following Standard Operating Procedures (p. 3 of
	MRID 49599605) Signed and dated Data Confidentiality No Data
	Confidentiality, GLP, and Certification of Authenticity statements were
	provided (pp. 2-4). A Quality Assurance statement was not provided
	provided (pp. 2 1). If Quarty resolution suitement was not provided.

ILV: The study was conducted in compli 3 of MRID 49599606). Signed and dated Confidentiality, GLP and Quality Assura provided (pp. 2-4). Authenticity statemen QA statements.	iance with OECD GLP standards (p. d Data Confidentiality, No Data ance Certification of statements were nts were included with the GLP and					
Classification: This analytical method is classified as A	cceptable (MRIDs 49599604 and					
49599606). Only ECM 1 was validated b	by the ILV, not ECM 2. An updated					
ECM to include the ILV modifications to	ECM to include the ILV modifications to increase the robustness of the					
method should be submitted. Several RS	method should be submitted. Several RSDs were $>20\%$ in the studies. In the					
ILV, linearity was not satisfactory for me	ILV, linearity was not satisfactory for most of the IN-MS775 linear					
regressions. Most of the water matrices w	regressions. Most of the water matrices were not characterized in the ECMs					
and ILV. Reagent blanks were not include	and ILV. Reagent blanks were not included in the ECMs and ILV.					
MRID 49599605 is classified as Unacce	MRID 49599605 is classified as Unacceptable without independent					
laboratory validation.	• •					
PC Code: 067710						
Reviewer: Lewis Ross Brown, III	Signature: Lewis Ross Brown, 111					
Environmental Biologist	Data March 16 2016					

Executive Summary

This analytical method, DuPont Study No. DuPont-9605, Revision No. 1 (ECM 1), is designed for the quantitative determination of DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127] and metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in surface, ground and drinking water at the LOQ (0.050 µg/L) using LC/MS/MS. The LOQ is less than the lowest toxicological level of concern in water for all analytes (3.6 µg/L). In the ECM, all analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS. Quantification of analytes was performed with either total ion count or the quantitative ion transition. DuPont-9605, Supplement No. 1 (ECM 2) supported ECM 1 with quantification and confirmation ion transition data for each analyte with no other modification to the method. The surface (pond and river) water, ground (well) water and drinking (bottled) water matrices were the same between the two ECMs, but were not characterized. In the ILV, only one parent-daughter ion transition was monitored for each analyte. DPX-MP062, IN-JT333 and IN-MP819 were analyzed using LC APCI-LC/MS/MS. IN-MS775, IN-JU873 and IN-KG433 were analyzed using LC ESI-LC/MS/MS. The ILV was performed to validate ECM 1, since ECM 2 was not provided to the ILV due to study timeframes. The ILV validated ECM 1 with the first trial for DPX-MP062, IN-JT333, MP819 and IN-JU873. The ILV validated the method for IN-KG433 in the second trial with the use of freshly prepared solutions and the addition of acetic acid to the acetonitrile solvent to improve stability. The ILV validated the method for IN-MS775 in the third trial with the addition of acetic acid to the acetonitrile component of the LC gradient and the injection of calibration standards in between sample sets to improve the accuracy of the measurements. The ILV water matrices were surface (river) water, ground (well) water and drinking (tap) water, and only the surface water was characterized. The ILV study authors suggested minor modifications to ECM 1 to increase the applicability and success of the method; an updated ECM to include these minor, but essential, modifications should be submitted. Several RSDs were >20% in the studies: ECM 1, IN-MP819 (LOQ, surface water) and DPX-MP062 (10×LOQ, drinking water); ECM 2 (quantitation ion), IN-MS775 and IN-MP819 (LOQ, surface water) and DPX-MP062 (10×LOQ drinking water); and ILV, IN-MS775 (LOQ, surface water). Overall, the method of ECM 1 was shown to be reproducible by the ILV for all analytes/matrices with a few minor modifications, except for IN-MS775 in the surface water matrix. The method of ECM 2 supported the ECM 1 with acceptable confirmation ion data, but was not validated by the ILV.

	MR	ID	-					T insid of
Analyte(s) by Pesticide	Environmental Chemistry Method	Independent Laboratory Validation	EPA Review	Matrix	Method Date (dd/mm/yyyy)	Registrant	Analysis	Quantitation (LOQ)
DPX-MP062 [Indoxacarb (DPX- KN128) & IN-KN127] IN-MS775 IN-JT333 IN-MP819 IN-JU873	49599604	49599606			02/05/2002 Original report 03/03/2003 Rev. 1	E.I. du Pont	LC/MS/MS	
IN-KG433 DPX-MP062 [Indoxacarb (DPX- KN128) & IN-KN127] IN-MS775 IN-JT333 IN-MP819 IN-JU873 IN-KG433	49599605	None		Water ^{1,2}	02/05/2002 Original report 03/03/2003 Rev. 1 15/09/2014 Supp. 1	de Nemours and Company	LC/MS/MS with confirmatory ions monitored	0.050 μg/L (0.05 ppb)

Table 1. Analytical Method Summary

1 In the ECM, Sassafras water (sandy loam; 8% clay; 1.7% organic matter), Drummer water (silt loam; 18% clay; 3.9% organic matter) and Goose River Sediment (clay loam; 29% clay; 3.2% organic matter) were used (p. 13 of MRID 49599604). The sources were only identified as field test sites located in the USA.

2 In the ILV, 88 NJ 01 Nascna water (loam; 28% sand, 47% silt, 25% clay; 2.0% organic matter) and Goose River Sediment (clay loam; 28% sand, 39% silt, 33% clay; 6.0% organic matter) were used (p. 15 of MRID 49599606). The sources were only identified as field test sites located in the USA.

- 3 In the ECMs, all analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS. Water matrices were not characterized (p. 15 of MRID 49599604). Surface waters were obtained from Lums Pond in Bear, Delaware and Brandywine River in Wilmington, Delaware. The ground water was obtained from Kemblesville Well in Kemblesville, Pennsylvania. The drinking water was bottled water purchase from a local grocery store (ACME; Pine Valley Spring, New Ringgold, Pennsylvania). The same water matrices were used for both ECMs.
- 4 In the ILV, DPX-MP062, IN-JT333 and MP819 were analyzed using LC APCI-LC/MS/MS, while IN-MS775, IN-JU873 and IN-KG433 were analyzed using LC ESI-LC/MS/MS. The water matrices were drinking water (tap water, Zeist), ground water (Netherlands, sample 699/04/1593) and surface water (local river/channel, Netherlands, sample 0699/05/0024; p. 12 of MRID 49599606). The surface water was characterized by Alcontrol, The Netherlands (pH 7.9, total organic carbon 36 mg/L; pp. 9, 12). The ground and drinking water were not characterized.

I. Principle of the Method

Samples (40.0 mL \pm 1%) were measured into 50-mL centrifuge tubes and fortified, as necessary (pp. 16-17 of MRID 49599604). The samples were acidified with 40 µL of acetic acid, then extracted with 10.0 mL (\pm 1%) of acetonitrile via shaking vigorously. The percent acetonitrile was adjusted to 20%, if necessary, using water or acetonitrile. The sample was purified using a SPE column (12-cc, 0.5-g Oasis HLB cartridge) which was pre-conditioned with 5 mL of methanol followed by 10 mL of HPLC grade water (do not let the cartridge go to dryness). The sample was loaded and allowed to pass through the column at a flow rate of 2-5 mL/min. The centrifuge tube was rinsed with 10 mL of acetonitrile:water (30:70, v:v), and the rinse was passed through the column just before the sample passed through completely. The column was dried for 5 minutes, then rinsed with 5 mL of hexane which was used to rinse the centrifuge tube. The hexane was passed through the column with vacuum, and the column was dried for 5 minutes. The eluate was discarded. The centrifuge tube was rinsed with 25 mL of acetonitrile and loaded directly onto the column. Vacuum may be applied to start flow, but should be turned off once flow has started. Collect the acetonitrile eluate into a 40-mL glass centrifuge tube. The extract was evaporated to ca. 100 µL using nitrogen in an N-Evap at 35°C. The residue was reconstituted with 1 mL of acetonitrile via vortex for 30 seconds and sonication for 5 minutes. The extract was diluted with 1 mL of water using a pipette. Using a disposable pipette, the extract was transferred into an HPLC vial and analyzed by reversed-phase LC/MS/MS.

The ECM study authors noted that the extracts would be stable for *ca*. 72 hours if stored at 4°C (p. 17 of MRID 49599604). The study authors also noted that, if the extracts were being stored longer than 72 hours at 4°C, 10 μ L of acetic acid should be added to reduce degradation.

Samples were analyzed for DPX-MP062 and all metabolites, except IN-MP819, using an Agilent HP1100 HPLC coupled to Micro-mass Quattro II LC ESI-LC/MS/MS mass spectrometer (pp. 11, 18-21; Appendix 4, pp. 71-78 of MRID 49599604). The reversed-phase HPLC/MS/MS conditions consisted of a C18 Luna Phenomenex column (4.6 x 150 mm, 3- μ m, column temperature 30°C), a mobile phase gradient of (A) 0.01 M aqueous acetic acid and (B) acetonitrile [percent A:B (v:v) at 0.0-0.5 min. 70:30, 4.0 min. 35:65, 12.0-15.0 min. 5:95, 15.1 min. 70:30], and MS/MS detection in positive ion mode with Multiple Reaction Monitoring (MRM). Two or three parent-daughter ion transitions were monitored for each analyte: m/z 528.0 \rightarrow 292.9, m/z 528.0 \rightarrow 217.8 and m/z 528.0 \rightarrow 202.9 for DPX-MP062; m/z 411.9 \rightarrow 208.8 and m/z 411.9 \rightarrow 190.8 for IN-MS775; m/z 470.0 \rightarrow 149.8, m/z 470.0 \rightarrow 266.9 and m/z 470.0 \rightarrow 206.9 for IN-JT333; m/z 458.0 \rightarrow 149.0, m/z 458.0 \rightarrow 294.8 and m/z 458.0 \rightarrow 254.8 for IN-JU873; and m/z 516.0 \rightarrow 220.9 and m/z 516.0 \rightarrow 280.8 for IN-KG433 (all transitions were 10.7, 12.1, 10.8, 9.5 and 8.2 minutes for DPX-MP062, IN-MS775, IN-JT333, IN-JU873 and IN-KG433, respectively. Injection volume was 0.100 mL.

Samples were analyzed for IN-MP819 using an Agilent HP1100 HPLC coupled to Micro-mass Quattro II LC APcI-LC/MS/MS mass spectrometer (pp. 11, 18-21; Appendix 4, pp. 71-78 of MRID 49599604). The reversed-phase HPLC/MS/MS conditions consisted of a C18 Luna Phenomenex column (4.6 x 150 mm, 3- μ m, column temperature 30°C), a mobile phase gradient of (A) 0.01 M aqueous formic acid and (B) acetonitrile [percent A:B (v:v) at 0.0-0.5 min. 50:50, 9.0-12 min. 2:98, 12.5 min. 50:50], and MS/MS detection in positive ion mode with Multiple Reaction Monitoring (MRM). Two parent-daughter ion transitions were monitored for IN-MP819: m/z 238.5 \rightarrow 194.2

and $m/z \ 238.5 \rightarrow 131.2$ (all transitions were ± 0.5 amu; quantitation ion transitions were **bolded**, as noted in study report). Retention time was 10.3 minutes for IN-MP819. Injection volume was 0.100 mL.

For quantification in the ECM with Rev. 1 (ECM 1), DPX-MP062 and IN-MS775 were quantified using total ion count (TIC; pp. 20-21 of MRID 49599604). All other analytes were quantified using the **bolded** ion transitions listed above. The relative ratios of the fragment ions were evaluated for confirmation of identity of the analytes.

The study authors of the ECM with Rev. 1 (ECM 1) and Supplemental ECM (ECM 2) noted the following special precautions when following the method: samples were diluted with acetonitrile due to the tendency of DPX-MP062 and IN-JT333 to adhere to glass surfaces when in water; and the pH must be adjusted to 4 for acceptable recoveries, especially for IN-KG433 and IN-JU873 (p. 24 of MRID 49599604; p. 10 of MRID 49599605). The Supplemental ECM study author also noted surface area of SPE column should be minimized (no reservoirs or adapters).

The purpose of the Supplemental ECM (ECM 2) was to add second ion confirmation ion data for the DPX-MP062 and its metabolites (pp. 9-10). The sample extraction and instrumental analysis were the same as the ECM with Rev. 1 (MRID 49599604). Two ion transitions were monitored for each analyte, a quantitative and confirmatory. Monitored ion transitions in the Supplemental ECM were as follows: m/z 528.0 \rightarrow 217.8 and m/z 528.0 \rightarrow 202.9 for DPX-MP062; m/z 411.9 \rightarrow 208.8 and m/z 411.9 \rightarrow 190.8 for IN-MS775; m/z 470.0 \rightarrow 149.8 and m/z 470.0 \rightarrow 266.9 for IN-JT333; m/z 458.0 \rightarrow 149.0 and m/z 458.0 \rightarrow 204.8 for IN-JU873; m/z 516.0 \rightarrow 220.9 and m/z 516.0 \rightarrow 280.8 for IN-KG433; and m/z 238.5 \rightarrow 194.2 and m/z 238.5 \rightarrow 131.2 for IN-MP819 (all transitions were \pm 0.5 amu; quantitation ion transitions were **bolded**, the confirmation ion transitions were in plain text; pp. 11-12 of MRID 49599605).

In the ILV, DuPont Study No. DuPont-9605, Revision No. 1 (ECM 1) was performed as written, except that the hexane rinse step of the SPE column was not performed, acetic acid was added to diluted stock solutions and extracts of the third validation to prevent degradation or adsorption of analytes, a Shimadzu LC coupled with a PE Sciex API3000 mass spectrometer was used as the analytical instrument, and all analytes but IN-MS775 and IN-MP819 were measured both by LC-APCI-MS/MS and LC-ESI-MS/MS analyses (IN-MS775 and IN-MP819 were only measured by one analysis; pp. 11, 15-17 of MRID 49599606). The instrumental conditions for LC-APCI-MS/MS were generally the same as those of the ECM, but the mobile phase gradient was (A) 0.01 M aqueous formic acid and (B) acetonitrile [percent A:B (v:v) at 0.0-0.5 min. 50:50, 9.0-12 min. 2:98, 12.5-16 min. 50:50]. Also, only one ion transition was monitored for each analyte: m/z 528 \rightarrow 218 for DPX-MP062; m/z 467 \rightarrow 150 for IN-JT333; m/z 458 \rightarrow 255 for IN-JU873; m/z 516 \rightarrow 281 for IN-KG433; and m/z 238 \rightarrow 131 for IN-MP819. The instrumental conditions for LC-ESI-MS/MS were generally the same as those of the ECM, but, in the third attempt, the mobile phase components were altered to (A) 0.01 M aqueous acetic acid and (B) acetonitrile with 10 mM of acetic acid. Also, only one ion transition was monitored for each analyte: m/z 528 \rightarrow 293 for DPX-MP062; $m/z 412 \rightarrow 209$ for IN-MS775; $m/z 470 \rightarrow 267$ for IN-JT333; $m/z 458 \rightarrow 149$ for IN-JU873; and m/z 516 \rightarrow 281 for IN-KG433. The injection volume was increased to 0.200 mL for LC-APCI-MS/MS and LC-ESI-MS/MS analyses. Retention times were not reported and could not be determined from the provided chromatograms (Annex V5033/02 B03, pp. 33-56).

In both the ECMs and ILV, the LOQ for all analytes was reported as 0.05 μ g/L (pp. 8, 23-24 of MRID 49599604; pp. 8, 13 of MRID 49599605; pp. 10, 23 of MRID 49599606). The LOD for all analytes was estimated as 0.02 μ g/L in the ECMs and ILV.

II. Recovery Findings

ECM 1 (MRID 49599604): Mean recoveries and relative standard deviations (RSD) were within guidelines (mean 70-120%; RSD <20%) for analysis of DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127], IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in surface, ground and drinking water at the LOQ (0.05 µg/L) and 10×LOQ (0.50 µg/L), except for LOQ recovery results of IN-MP819 in surface (river) water (21.1% RSD) and the 10×LOQ recovery results of DPX-MP062 in drinking (bottled) water (20.1% RSD; uncorrected recovery results; Table 1, pp. 28-31; DER Attachment 2). Standard deviations were reviewer-calculated for DPX-MP062 and IN-MS775, since only means and RSDs were provided in the study report. For all other analytes, the standard deviations were calculated by the study author of ECM 2, the Supplemental ECM MRID 49599605 (the individual recovery results for the quantification ion of IN-JT333, IN-MP819, IN-JU873 and IN-KG433 were the exact same; Table 1, pp. 28-31 of MRID 49599604; Table 1, pp. 15-18 of MRID 49599605). However, in several instances, all reported statistics were reviewer-calculated based on all five recovery values (n = 5) since the study authors calculated the statistics for the LOQ or 10×LOQ recovery results with the exclusion of one outlier per sample set (n = 4; see Table 2 below for details). DPX-MP062 and IN-MS775 were quantified using total ion count (TIC; pp. 19-21). All other analytes were quantified using the quantitation ion transition only. All analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS. Confirmation of analyte identification was performed by the calculation of the ion ratios (Appendix 3, pp. 65-70). Calculations allowed for recoveries to be corrected when residues were quantified in the controls; however, no residues were quantified in the controls (pp. 21-22; Table 1, pp. 28-31). The water matrices were not characterized (p. 15 of MRID 49599604). Surface waters were obtained from Lums Pond in Bear, Delaware and Brandywine River in Wilmington, Delaware. The ground water was obtained from Kemblesville Well in Kemblesville, Pennsylvania. The drinking water was bottled water purchase from a local grocery store (ACME; Pine Valley Spring, New Ringgold, Pennsylvania).

ECM 2 (MRID 49599605): Mean recoveries and relative standard deviations (RSD) were within guidelines (mean 70-120%; RSD \leq 20%) for analysis of DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127], IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in surface, ground and drinking water at the LOQ (0.05 µg/L) and 10×LOQ (0.50 µg/L), except for LOQ quantitation ion recovery results of IN-MS775 and IN-MP819 in surface (river) water (21.4% and 21.1% RSD, respectively) and the 10×LOQ quantitation ion recovery results of DPX-MP062 in drinking (bottled) water (21.0% RSD; uncorrected recovery results; Tables 1-2, pp. 15-22; DER Attachment 2). In several instances, all reported statistics were reviewer-calculated based on all five recovery values (n = 5) since the study authors calculated the statistics for the LOQ or 10×LOQ recovery results with the exclusion of one outlier per sample set (n = 4; see Table 2 below for details). All analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS (pp. 10-12). Two parent-daughter ion transitions were monitored. The results of both ion transitions were reported for all analytes; the results were generally comparable. Calculations allowed for recoveries to be corrected when residues were quantified in the controls; however, no residues were quantified in the controls (pp. 21-22 of MRID

49599604; Tables 1-2, pp. 15-22 of MRID 49599605). The water matrices were the same as those of MRID 49599604; no new information was provided (based on data matching and source identification).

ILV (MRID 49599606): Mean recoveries and relative standard deviations (RSD) were within guidelines (mean 70-120%; RSD <20%) for analysis of DPX-MP062 [75% DPX-KN128] (indoxacarb) and 25% IN-KN127], IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in surface, ground and drinking water at the LOQ (0.05 μ g/L) and 10×LOQ (0.50 μ g/L), except for LOQ recovery results of IN-MS775 in surface (river) water (30.7% RSD; uncorrected recovery results; pp. 20-21; Annex V5033/02 B07, pp. 64-69; DER Attachment 2). Standard deviations were reviewer-calculated for all analytes, since only means and RSDs were provided in the study report. for LOQ recovery results of IN-MS775 in surface (river) water, all reported statistics were reviewer-calculated based on all five recovery values (n = 5) since the study authors calculated the statistics for the LOQ recovery results with the exclusion of one outlier per sample set (n = 4; seeTable 2 below for details). The reviewer noted that the recovery results for IN-JT333 and IN-MP819 were exactly the same for the LOQ and 10×LOQ sample sets in drinking water (Annex V5033/02 B07, pp. 64-69; see Table 2 below). Only one parent-daughter ion transition was monitored for each analyte; no confirmation method was employed. DPX-MP062 and IN-MS775 were quantified with one ion transition, not TIC. DPX-MP062, IN-JT333 and IN-MP819 were analyzed using LC APCI-LC/MS/MS. IN-MS775, IN-JU873 and IN-KG433 were analyzed using LC ESI-LC/MS/MS. The water matrices were drinking water (tap water, Zeist), ground water (Netherlands, sample 699/04/1593) and surface water (local river/channel, Netherlands, sample 0699/05/0024; p. 12). The surface water was characterized by Alcontrol, The Netherlands (pH 7.9, total organic carbon 36 mg/L; pp. 9, 12). The ground and drinking water were not characterized. The method was validated for DPX-MP062, IN-JT333, IN-JU873 and MP819 with the first trial (p. 25). The method was validated for IN-KG433 in the second trial with the use of freshly prepared solutions and the addition of acetic acid to the acetonitrile solvent to improve stability. The method was validated for IN-MS775 in the third trial with the addition of acetic acid to the acetonitrile component of the LC gradient and the injection of calibration standards in between sample sets to improve the accuracy of the measurements. The ILV was performed to validate ECM 1 (MRID 49599604), since ECM 2 (MRID 49599605) was not provided to the ILV due to study timeframes (p. 1 of MRID 49599604; p. 1 of MRID 49599605; pp. 1, 26 of MRID 49599606).

Table 2. Initial Validation Method Recoveries for DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433, in Water¹

Analyte	Fortification Level (µg/L)	Number of Tests	Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)
ECM v	with Rev. 1 - M	RID 495996	04 (Total Io	n Count or Ou	antitation Ion O	$\frac{1}{nlv}^{2}$
	S	urface (Pon	d) Water (L	ums Pond, DE)	<u> </u>	<i>J</i> ,
DPX-MP062	0.050 (LOQ)	5 ³	79-85	82	2.8	3.4
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5 ³	80-100	92	7.7	8.3
IN MO775	0.050 (LOQ)	5 ³	77-88	82	3.9	4.7
110-1015//5	0.50	5 ³	77-100	90	8.9	9.8
INI 1T2224	0.050 (LOQ)	5	72-85	81	5.4	6.6
IIN-J 1 555	0.50	5	81-102	92	7.8	8.5
INI MD9104	0.050 (LOQ)	5	91-102	98	4.5	4.6
IIN-IMP819	0.50	5	111-119	114	3.5	3.1
IN 1110724	0.050 (LOQ)	5	77-91	83	6.1	7.4
IIN-JU8/5	0.50	5	80-103	92	9.0	9.7
IN VC 4224	0.050 (LOQ)	5	74-87	81	5.1	6.3
IN-K0455	0.50	5	83-101	92	6.7	7.3
	Su	rface (River) Water (Br	andywine Rive	r)	
DPX-MP062	0.050 (LOQ)	5 ³	72-113	92	16.9	18.3
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5 ³	79-108	98	11.7	13.1
IN MO775	0.050 (LOQ)	5 ³	86-103	94	6.6	7.0
IIN-INIS / / 5	0.50	5 ³	78-95	84	6.5	7.8
INI 1T2224	0.050 (LOQ)	5	93-110	101	6.1	6.0
IIN-J I 555	0.50	5	79-107	94	10.8	11.5
INI MD9104	0.050 (LOQ)	5	72-118	92	19.4	21.1
IIN-IMP819	0.50	5	76-104	95	11.5	12.2
IN 1119724	0.050 (LOQ)	5	87-105	96	6.5	6.7
IIN-JU875	0.50	5	80-104	93	8.9	9.6
IN KG4334	0.050 (LOQ)	5	88-121	104	12.1	11.6
IN-K0455	0.50	5	93-132	102	17.0	16.6
	G	round (Well) Water (Ke	mblesville Wel	l)	
DPX-MP062	0.050 (LOQ)	5 ³	83-107	96	9.6	8.9
(indoxacarb) and 25% IN-KN127]	0.50	5 ³	95-105	99	3.9	4.0
	0.050 (LOQ)	5 ³	88-106	95	7.4	7.8
IN-MS//5	0.50	5 ³	86-105	93	7.2	7.8
IN-JT333 ⁴	0.050 (LOQ)	5	91-111	102	7.9	7.7

	1					
	0.50	5	94-107	97	6.3	6.5
IN MD9104	0.050 (LOQ)	5	86-102	96	7.5	7.8
IIN-MIP019	0.50	5	78-105	90	10.9	12.2
IN H 10724	0.050 (LOQ)	5	87-114	101	11.8	11.6
IIN-JU8/3	0.50	5	90-109	97	7.4	7.6
DI KC 4224	0.050 (LOQ)	5	88-107	95	7.2	7.6
IN-KG433*	0.50	5	95-105	99	4.0	4.1
		Drinking	Water (Bot	tled Water)		
DPX-MP062	0.050 (LOQ)	5 ³	103-114	110	4.6	4.5
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5 ³	91-152	114	23.0	20.1
INI M0775	0.050 (LOQ)	5 ³	92-116	102	8.8	8.6
IIN-INIS / / 5	0.50	5 ³	98-122	104	10.0	9.6
DL 172224	0.050 (LOQ)	5	105-109	107	2.2	2.1
IN-J1333*	0.50	5	93-119	103	10.2	9.8
	0.050 (LOQ)	5	88-101	94	6.0	6.4
IN-MP819 ⁺	0.50	5	71-110	90	16.1	17.9
DI 11/0724	0.050 (LOQ)	5	102-120	110	6.5	5.9
IN-JU8/3*	0.50	5 ⁵	97-142	115	16.7	14.5
DI VG 4224	0.050 (LOQ)	5	95-113	106	7.6	7.2
IN-KG433*	0.50	5 ⁵	92-137	112	16.7	14.8
Supp	lemental ECM	- MRID 49	599605 (Qua	ntitation and C	Confirmation Ior	ns) ⁶
	S	urface (Pon	d) Water (L	ums Pond, DE)		
		(Quantitation i	ion		
DPX-MP062	0.050 (LOQ)	5	79-99	86	8.8	10.2
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5	78-101	93	9.7	10.4
INI M0775	0.050 (LOQ)	5	69-91	81	8.4	10.3
IIN-IVIS / / 5	0.50	5	76-102	89	10.5	11.7
	0.050 (LOQ)	5	72-85	81	5.4	6.6
IIN-J I 355	0.50	5	81-102	92	7.8	8.5
IN MD910	0.050 (LOQ)	5	91-102	98	4.5	4.6
111-1411-019	0.50	5	111-119	114	3.5	3.1
IN 111072	0.050 (LOQ)	5	77-91	83	6.1	7.4
IN-JU875	0.50	5	80-103	92	9.0	9.7
	0.050 (LOQ)	5	74-87	81	5.1	6.3
IIN-K0433	0.50	5	83-101	92	6.7	7.3
		(Confirmation	ion		
DPX-MP062	0.050 (LOQ)	5	78-87	81	3.7	4.5
[/5% DPX-KN128 (indoxacarb) and 25% [N-KN127]	0.50	5	82-98	92	6.0	6.5

INI M0775	0.050 (LOQ)	5	67-91	79	9.4	11.9
IN-MS775	0.50	5	71-96	83	9.4	11.3
	0.050 (LOQ)	5	66-90	77	11.4	14.9
IN-J1333	0.50	5	74-108	94	12.9	13.8
DI MD010	0.050 (LOQ)	5	84-113	102	10.7	10.5
IN-MP819	0.50	5	118-130	123	4.5	3.7
INI 111072	0.050 (LOQ)	5	74-89	79	6.3	8.0
IN-JU875	0.50	5	80-104	93	10.4	11.2
	0.050 (LOQ)	5	72-82	78	4.1	5.2
IIN-KG433	0.50	5	83-102	92	7.5	8.1
	Sui	face (River	·) Water (Br	andywine Rive	r)	
		(Quantitation i	ion		
DPX-MP062	0.050 (LOQ)	5	76-102	88	10.2	11.6
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5	87-111	98	9.5	9.7
IN MS775	0.050 (LOQ)	5 ⁵	51-94	76	16.3	21.4
111-1113773	0.50	5	66-96	84	11.4	13.7
IN IT222	0.050 (LOQ)	5	93-110	101	6.1	6.0
IIN-J I 555	0.50	5	79-107	94	10.8	11.5
IN MD910	0.050 (LOQ)	5	72-118	92	19.4	21.1
111-1417-019	0.50	5	76-104	95	11.5	12.2
IN 111972	0.050 (LOQ)	5	87-105	96	6.5	6.7
IN-JU075	0.50	5	80-104	93	8.9	9.6
IN KC422	0.050 (LOQ)	5	88-121	104	12.1	11.6
IIN-K0435	0.50	5	93-132	102	17.0	16.6
		(Confirmation	ion		
DPX-MP062	0.050 (LOQ)	5	83-106	94	10.7	11.4
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5	90-106	98	6.6	6.8
INI M0775	0.050 (LOQ)	5 ⁵	55-96	81	15.5	19.1
IIN-IVIS / / 5	0.50	5	64-89	78	9.0	11.5
INI 17222	0.050 (LOQ)	5	66-107	87	16.0	18.4
IIN-J I 555	0.50	5	81-97	91	6.4	7.1
IN MD910	0.050 (LOQ)	5	66-97	79	11.9	15.2
110-1019	0.50	5	80-101	92	7.9	8.6
INT 11 1072	0.050 (LOQ)	5	73-96	84	8.5	10.1
IIN-JU8/3	0.50	5	86-96	91	4.4	4.9
	0.050 (LOQ)	5	79-101	89	8.3	9.3
IIN-KG433	0.50	5	91-97	93	2.7	2.9
	Gr	ound (Well) Water (Ke	mblesville Well	l)	
		(Quantitation i	ion		

DPX-MP062	0.050 (LOQ)	5	90-104	98	5.5	5.6
(indoxacarb) and 25% IN-KN127]	0.50	5	93-118	101	9.6	9.5
IN MS775	0.050 (LOQ)	5	88-108	96	8.3	8.6
11N-1VIS / / 3	0.50	5	86-108	93	8.8	9.5
IN 1T222	0.050 (LOQ)	5	91-111	102	7.9	7.7
IIN-J I 555	0.50	5	94-107	97	6.3	6.5
IN MD810	0.050 (LOQ)	5	86-102	96	7.5	7.8
111-1111-019	0.50	5	78-105	90	10.9	12.2
IN 111973	0.050 (LOQ)	5	87-114	101	11.8	11.6
IN-JU075	0.50	5	90-109	97	7.4	7.6
	0.050 (LOQ)	5	88-107	95	7.2	7.6
IIN-K0455	0.50	5	95-105	99	4.0	4.1
		(Confirmation	ion		
DPX-MP062	0.050 (LOQ)	5	90-105	96	5.8	6.1
(indoxacarb) and 25% IN-KN127]	0.50	5	97-114	101	7.4	7.3
INI MOZZE	0.050 (LOQ)	5	74-106	89	14.5	16.3
IN-MS775	0.50	5	86-102	93	5.8	6.2
IN-JT333	0.050 (LOQ)	5	94-99	96	2.1	2.2
	0.50	5	91-109	99	6.9	7.0
	0.050 (LOQ)	5	86-107	94	8.2	8.7
IIN-MIP819	0.50	5	80-106	96	13.3	13.9
INI 111972	0.050 (LOQ)	5	87-113	101	11.3	11.2
IN-JU075	0.50	5	93-108	97	6.1	6.3
	0.050 (LOQ)	5	89-113	100	9.4	9.5
IIN-KG433	0.50	5	94-106	98	4.9	5.0
		Drinking	Water (Bot	tled Water)		
		(Quantitation	ion		
DPX-MP062	0.050 (LOQ)	5	109-122	117	5.8	4.9
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5 ⁵	93-157	117	24.5	21.0
IN MO775	0.050 (LOQ)	5	95-114	101	7.4	7.3
111-1415775	0.50	5	100-126	105	11.6	11.1
IN 1T222	0.050 (LOQ)	5	105-109	107	2.2	2.1
IIV-J I 333	0.50	5	93-119	103	10.2	9.8
	0.050 (LOQ)	5	88-101	94	6.0	6.4
1111-1017	0.50	5	71-110	90	16.1	17.9
IN 111972	0.050 (LOQ)	5	102-120	110	6.5	5.9
IIN-JU0/3	0.50	5 ⁵	97-142	115	16.7	14.5
IN-KG433	0.050 (LOQ)	5	95-113	106	7.6	7.2

	0.50	5 ⁵	92-137	112	16.7	14.8				
Confirmation ion										
DPX-MP062	0.050 (LOQ)	5	99-135	117	16.8	14.4				
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	0.50	5 ⁵	98-156	118	23.3	19.8				
IN MS775	0.050 (LOQ)	5	89-108	102	7.6	7.5				
111-1115775	0.50	5	96-117	106	8.0	7.6				
INI 1T222	0.050 (LOQ)	5	80-125	96	17.5	18.3				
IIN-J I 555	0.50	5	87-120	102	12.0	11.8				
IN MD910	0.050 (LOQ)	5	71-92	80	8.0	10.0				
111-1417-019	0.50	5	72-113	92	15.4	16.7				
IN 111872	0.050 (LOQ)	5	106-117	110	4.4	4.0				
IN-JU8/5	0.50	5	97-136	113	14.8	13.1				
IN KG433	0.050 (LOQ)	5	98-125	108	10.8	9.9				
IIN-IXU433	0.50	5	97-130	112	13.4	11.9				

Data (recovery results) were obtained from Table 1, pp. 28-31 of MRID 49599604; Tables 1-2, pp. 15-22 of MRID 49599605. All results were calculated by the study authors, except where noted (see DER Attachment 2; see Footnotes #3 and 5). Reported sample recoveries in the study report were corrected for any residues found in the matrix blanks; however, no residues were detected in the controls (pp. 20-21 of MRID 49599604; Table 1, pp. 28-31 of MRID 49599604; Tables 1-2, pp. 15-22 of MRID 49599605).

- 1 Water matrices were not characterized (p. 15 of MRID 49599604). Surface waters were obtained from Lums Pond in Bear, Delaware and Brandywine River in Wilmington, Delaware. The ground water was obtained from Kemblesville Well in Kemblesville, Pennsylvania. The drinking water was bottled water purchase from a local grocery store (ACME; Pine Valley Spring, New Ringgold, Pennsylvania). The same water matrices were used for both ECMs.
- 2 In the ECM with Rev. 1, two or three parent-daughter ion transitions were monitored for each analyte: m/z 528.0 \rightarrow 292.9, m/z 528.0 \rightarrow 217.8 and m/z 528.0 \rightarrow 202.9 for DPX-MP062; m/z 411.9 \rightarrow 208.8 and m/z 411.9 \rightarrow 190.8 for IN-MS775; m/z 470.0 \rightarrow 149.8, m/z 470.0 \rightarrow 266.9 and m/z 470.0 \rightarrow 206.9 for IN-JT333; m/z 458.0 \rightarrow 149.0, m/z 458.0 \rightarrow 204.8 and m/z 458.0 \rightarrow 254.8 for IN-JU873; m/z 516.0 \rightarrow 220.9 and m/z 516.0 \rightarrow 280.8 for IN-KG433; and m/z 238.5 \rightarrow 194.2 and m/z 238.5 \rightarrow 131.2 for IN-MP819 (all transitions were ±0.5 amu; quantitation ion transitions were **bolded**; pp. 19-21 of MRID 49599604). For quantification in the ECM with Rev. 1, DPX-MP062 and IN-MS775 were quantified using total ion count (TIC;). All other analytes were quantified using the **bolded** ion transitions listed above. All analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS.
- 3 Standard deviations were reviewer-calculated for DPX-MP062 and IN-MS775, since only means and RSDs were provided in the study report for ECM MRID 49599604 (see DER Attachment 2).
- 4 Even though standard deviations were not reported in ECM MRID 49599604, the individual recovery results for the quantification ion of IN-JT333, IN-MP819, IN-JU873 and IN-KG433 were the exact same as those reported in ECM MRID 49599605 (quantitative ion; Table 1, pp. 28-31 of MRID 49599604; Table 1, pp. 15-18 of MRID 49599605). So, the standard deviations which were calculated and reported in ECM MRID 49599605 were reported for ECM MRID 49599604. The individual recovery results for DPX-MP062 and IN-MS775 did not match between ECMs since quantification of these analytes was performed using TIC in MRID 49599604.
- 5 The study authors calculated the statistics for the LOQ or 10×LOQ recovery results with the exclusion of one outlier per sample set. Reported statistics were reviewer-calculated based on all five recovery values (see DER Attachment 2).
- 6 Monitored ion transitions in the Supplemental ECM were as follows: m/z 528.0 \rightarrow 217.8 and m/z 528.0 \rightarrow 202.9 for DPX-MP062; m/z 411.9 \rightarrow 208.8 and m/z 411.9 \rightarrow 190.8 for IN-MS775; m/z 470.0 \rightarrow 149.8 and m/z 470.0 \rightarrow 266.9 for IN-JT333; m/z 458.0 \rightarrow 149.0 and m/z 458.0 \rightarrow 204.8 for IN-JU873; m/z 516.0 \rightarrow 220.9 and m/z 516.0 \rightarrow 280.8 for IN-KG433; and m/z 238.5 \rightarrow 194.2 and m/z 238.5 \rightarrow 131.2 for IN-MP819 (all transitions were ±0.5 amu; quantitation ion transitions were **bolded**, the confirmation ion transitions were in plain text; pp. 10-12 of MRID 49599605). All analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS.

Table 3. Independent Validation Method Recoveries for DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433, in Water^{1,2}

Analyte	Fortification	Number of	Recovery	Mean	Standard	Relative Standard				
		1 ests MDID 405	Kange (%)	Recovery (%)	Deviation (%)	Deviation (%)				
Drinking Water (Tan Water)										
DPX-MP062	0.050 (LOO)	5	100-105	103	2.0	2				
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127] ³	0.50	5	105-108	107	1.4	1				
DI MOZZ 54	0.050 (LOQ)	5	103-115	110	5.3	5				
IN-MS775*	0.50	5	77-82	79	2.6	3				
N. 177222235	0.050 (LOQ)	5	92-107	102	6.0	6				
IN-J1333 ^{3,3}	0.50	5	99-102	100	1.1	1				
DVD (D010 ² 5	0.050 (LOQ)	5	92-107	102	6.0	6				
IN-MP819 ^{3,3}	0.50	5	99-102	100	1.1	1				
DI 11/0724	0.050 (LOQ)	5	69-72	71	1.1	1				
IN-JU8734	0.50	5	78-85	82	2.6	3				
D. U.G. (224	0.050 (LOQ)	5	91-104	98	4.8	5				
IN-KG433⁴	0.50	5	88-98	91	4.0	5				
		(Ground Wa	ter						
DPX-MP062	0.050 (LOQ)	5	100-107	103	2.5	2				
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127] ³	0.50	5	98-105	101	3.0	3				
INI MS7754	0.050 (LOQ)	5	99-109	102	4.0	4				
11N-IVIS / / 5*	0.50	5	76-90	82	5.6	7				
IN 1T2223	0.050 (LOQ)	5	103-117	110	5.2	5				
IIN-J1 555"	0.50	5	101-107	104	2.8	3				
INI MD9103	0.050 (LOQ)	5	86-114	104	10.9	11				
111-1/11/019	0.50	5	85-98	91	5.0	5				
IN 1119724	0.050 (LOQ)	5	84-91	87	2.9	4				
IIN-JU8/3	0.50	5	83-93	88	3.7	4				
INI KC 4224	0.050 (LOQ)	5	99-112	105	4.7	4				
IN-KG455*	0.50	5	81-84	82	1.4	2				
		Surf	ace (River)	Water						
DPX-MP062	0.050 (LOQ)	5	100-111	105	4.0	4				
[75% DPX-KN128 (indoxacarb) and 25% IN-KN127] ³	0.50	5	104-107	106	1.3	1				
INI MS7754	0.050 (LOQ)	56	45-115	96	29.6	30.7				
11N-1VIS / / 5 '	0.50	5	80-85	83	2.2	3				
	0.050 (LOQ)	5	95-117	106	8.9	8				
11N-J I 555°	0.50	5	105-107	105	0.9	1				

Analyte	Fortification Level (µg/L)	Number of Tests	Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)
INI MD9103	0.050 (LOQ)	5	79-115	100	13.3	13
IN-MP819 ³	0.50	5	91-98	93	2.9	3
DI 11/0724	0.050 (LOQ)	5	72-80	76	2.9	4
IIN-JU8/3	0.50	5	79-86	83	3.4	4
IN KC 4224	0.050 (LOQ)	5	97-111	104	5.5	6
IN-K0455	0.50	5	75-85	79	3.7	5

Data (uncorrected recovery results; p. 11) were obtained from pp. 20-21; Annex V5033/02 B07, pp. 64-69 of MRID 49599606. Standard deviations were reviewer-calculated for all analytes, since only means and RSDs were provided in the study report (see DER Attachment 2). Reported fortification levels were nominal values, actual values were *ca*. 0.051-0.053 and 0.51-0.53 μ g/L.

1 The water matrices were drinking water (tap water, Zeist), ground water (Netherlands, sample 699/04/1593) and surface water (local river/channel, Netherlands, sample 0699/05/0024; p. 12). The surface water was characterized by Alcontrol, The Netherlands (pH 7.9, total organic carbon 36 mg/L; pp. 9, 12). The ground and drinking water were not characterized.

2 Only one ion transition was monitored for each analyte: m/z 528 \rightarrow 293 for DPX-MP062; m/z 412 \rightarrow 209 for IN-MS775; m/z 470 \rightarrow 267 for IN-JT333; m/z 458 \rightarrow 149 for IN-JU873; and m/z 516 \rightarrow 281 for IN-KG433 (p. 16).

3 LC-APCI-MS/MS analyses; first trial.

4 LC-ESI-MS/MS analyses; IN-JU873, first trial; IN-KG433, second trial; IN-MS775, third trial.

5 The reviewer noted that the recovery results for IN-JT333 and IN-MP819 were exactly the same for the LOQ and $10 \times LOQ$ sample sets in drinking water.

6 The study authors calculated the statistics for the LOQ recovery results with the exclusion of one outlier per sample set. Reported statistics were reviewer-calculated based on all five recovery values (see DER Attachment 2).

III. Method Characteristics

In both the ECMs and ILV, the LOQ for all analytes was reported as $0.05 \,\mu$ g/L (pp. 8, 23-24; Figure 5, pp. 55-56 of MRID 49599604; pp. 8, 13 of MRID 49599605; pp. 10, 23 of MRID 49599606). In the ECMs and ILV, the LOQ was defined as the lowest fortification level which obtained average recoveries of 70-120% and a RSD <20%. The LOQ also corresponded to the fortification in which analyte peak heights were consistently ca. 10-20 times the signal in the control at the retention time of the analyte for the lowest responding analyte (see Figure 5, pp. 55-56 of MRID 49599604 for examples). The LOD for all analytes was estimated as ca. 0.02 µg/L in the ECMs and ILV. In the ECMs and ILV, the LOD was estimated for each analyte based on signal-to-noise. The LOD was defined as the concentration of the least responsive analyte at which analyte peaks were approximately three times the chromatographic baseline noise observed near the retention time or approximately 1/3 the concentration of the LOQ. In the ECM with Rev. 1, the least responsive analyte was reported as IN-MP062; in the ILV, the least responsive analyte was reported as IN-MP819 (not reported in the Supplemental ECM) The study authors of the ECMs noted that variation in the LOD was observed, and instrument response may fluctuate between routine instrument maintenance. The ILV study author also noted that no differences were observed for the three types of waters.

Table 4. Method Characteristics

		DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	IN-MS775	IN-JT333	IN-MP819	IN-JU873	IN-KG433			
Limit of Quantitatio	n (LOQ)		0.05 μg/L							
Limit of Detection (LOD)			<i>ca</i> . 0.0	02 μg/L					
Linearity	ECM 1 ¹	$r^2 = 0.9995 (Q)$	$r^2 = 0.9971 (Q)$	$r^2 = 0.9984 (Q)$	$r^2 = 0.9967 (Q)$	$r^2 = 0.9991 (Q)$	$r^2 = 0.9988 (Q)$			
(calibration curve r ² and concentration	ECM 2 ¹	$r^2 = 0.9982 (Q)$ $r^2 = 0.9967 (C)$	$r^2 = 0.9972 (Q)$ $r^2 = 0.9974 (C)$	$r^2 = 0.9990 (Q)$ $r^2 = 0.9975 (C)$	$r^2 = 0.9987 (Q)$ $r^2 = 0.9998 (C)$	$r^2 = 0.9966 (Q)$ $r^2 = 0.9966 (C)$	$r^2 = 0.9976 (Q)$ $r^2 = 0.9986 (C)$			
range)				0.50-15. (ECM 1 at	.0 ng/mL nd ECM 2)					
	ILV ²	$r^2 = 0.9999-1.0000$	$r^2 = 0.9926 - 0.9962$	$r^2 = 0.9998 - 1.0000$	$r^2 = 0.9983 - 1.0000$	$r^2 = 0.9986 - 0.9994$	$r^2 = 0.9994 - 0.9996$			
		(Q)	(Q)	(Q)	(Q) 5.0 ng/mI	(Q)	(Q)			
Repeatable	ECM ^{3,4}		ECM with Rev. 1 - N	VIRID 49599604 (To	otal Ion Count or Or	antitation Ion Only	<i>z</i>)			
		Yes at the LOQ and 10×LOQ (n=5) in surface (pond), surface (river) and ground (well) water matrices. No, at 10×LOQ (n=5) drinking (bottled) water matrix (20.1% RSD); Yes at LOQ.	Yes at the LOQ and 10×LOQ (n=5) in surface (pond), surface (river), ground (well) and drinking (bottled) water matrices.		Yes at the LOQ and 10×LOQ (n=5) in surface (pond), ground (well) and drinking (bottled) water matrices. No at the LOQ (n=5) in surface (river) water matrix (21.1% RSD); Yes at 10×LOQ.	Yes at the LOQ and surface (pond), sur (well) and drinkin matr	d 10×LOQ (n=5) in face (river), ground ng (bottled) water tices.			
			Supplemental ECN	A - MRID 49599605	(Quantitation and	Confirmation Ions)	_			
				Quantita	ation Ion	[
		Yes at the LOQ and 10×LOQ (n=5) in surface (pond), surface (river) and ground (well) water matrices. No, at 10×LOO	Yes at the LOQ and 10×LOQ (n=5) in surface (pond), ground (well) and drinking (bottled) water matrices. No at the LOO	Yes at the LOQ and 10×LOQ (n=5) in surface (pond), surface (river), ground (well) and drinking (bottled) water matrices.	Yes at the LOQ and 10×LOQ (n=5) in surface (pond), ground (well) and drinking (bottled) water matrices. No at the LOO	Yes at the LOQ and surface (pond), sur (well) and drinkin matr	d 10×LOQ (n=5) in face (river), ground ng (bottled) water tices.			

		DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	IN-MS775	IN-JT333	IN-MP819	IN-JU873	IN-KG433	
		(n=5) drinking (bottled) water matrix (21.0% RSD); Yes at LOQ	(n=5) in surface (river) water matrix (21.4% RSD); Yes at 10×LOQ.		(n=5) in surface (river) water matrix (21.1 % RSD); Yes at 10×LOQ.			
		i	Confirmation Ion Yes at the LOQ and 10×LOQ (n=5)					
	ILV ^{4,5}		<u>I surruee (pond), surr</u> I	VIRID 49599606 (Qu	uantitation Ion Only	r)		
		Yes at the LOQ and 10×LOQ (n=5) in surface (river), ground (well) and drinking (tap) water matrices.	Yes at the LOQ and 10×LOQ (n=5) in ground (well) and drinking (tap) water matrices. No at the LOQ (n=5) in surface (river) water matrix (30.7% RSD); Yes at 10×LOQ.	MRID 49599606 (Quantitation Ion Only) and in ater Yes at the LOQ and 10×LOQ (n=5) in surface (river), ground (well) and drinking (tap) water matrices Ce trix Yes				
Reproducible		Yes at th	ne LOQ and 10×LOQ	in all water matrices	s, except IN-MS775 i	n surface (river) wate	er matrix.	
Specific	ECM		ECM with Rev. 1 - N	ARID 49599604 (To	otal Ion Count or Qu	antitation Ion Only	7)	
		Yes, negligible residue in control of river and bottled water matrices; no matrix interference in other matrices.	Yes, no matrix interferences were observed. Supplemental ECM - MRID 49599605		Baseline noisy in all chromatograms; peak attenuation was not smooth.	Yes, negligible residue in control of river and bottled water matrices; no matrix interference in other matrices. Confirmation Ions)	Yes, no matrix interferences were observed.	
			Not	shown already subr	nitted in MRID 49590	0604		
			1101	Confirm	nation Ion			

		DPX-MP062 [75% DPX-KN128 (indoxacarb) and 25% IN-KN127]	IN-MS775	IN-JT333	IN-MP819	IN-JU873	IN-KG433
		Yes, negligible residue in control of river, bottled and ground water matrices; no matrix interference in other matrices.	Yes, no matrix interferences were observed.		Baseline noisy in all chromatograms; peak integration was not uniform between chromatograms.	Yes, negligible residue in control of river water matrix; no matrix interference in other matrices.	Yes, no matrix interferences were observed.
	ILV ⁶ MRID 49599606 (Quantitation Ion Only)			r)			
		No confirmation method was performed. ⁷ Analyte peak tailing was observed in most of the chromatograms.					
		Yes, no matrix interferences were quantified.	Matrix interferences were quantified at 0.6- 6% of LOQ.	Matrix interferences were quantified at 6% of LOQ.	Matrix interferences were quantified at 6-12% of LOQ.	Yes, no matrix interferences were quantified.	Matrix interferences were quantified at 1-8% of LOQ.

Data were obtained from pp. 8, 23-24; Table 1, pp. 28-31; Figures 4-5, pp. 43-56; Appendix 2, pp. 60-64 of MRID 49599604; pp. 8, 13; Tables 1-2, pp. 15-22; Figure 1, pp. 23-25; Figure 3, pp. 28-39; Appendix 4, pp. 40-42 of MRID 49599605; pp. 10, 21-23; Annex V5033/02 B03-B04, pp. 33-57; Annex V5033/02 B07, pp. 64-69 of MRID 49599606; DER Attachment 2. ECM 1 = MRID 49599604; ECM 2 = MRID 49599605. Q = quantitative ion; C = confirmatory ion.

- 1 For MRID 49599604, calibration data was provided for the Lums Pond and Brandywine River matrices (Appendix 2, pp. 60-64 of MRID 49599604). The reviewer calculated the standard curves for the Lums Pond matrix using the calibration data (quantitation ion only; see DER Attachment 2). The calibration curves for Brandywine River water matrix which were presented in MRID 49599605 applied to both ECMs (based on data collection dates; Appendix 2, pp. 60-62 of MRID 49599604; Figure 1, pp. 23-25; Appendix 1, pp. 40-42 of MRID 49599605).
- 2 In the ILV, reviewer calculated the standard curves for the drinking, surface and ground water matrices using the calibration data (quantitation ion only; Annex V5033/02 B07, pp. 64-69 of MRID 49599606; see DER Attachment 2).
- 3 In the ECMs, all analytes were analyzed using LC ESI-LC/MS/MS, except IN-MP819 which was analyzed using LC APCI-LC/MS/MS. Water matrices were not characterized (p. 15 of MRID 49599604). Surface waters were obtained from Lums Pond in Bear, Delaware and Brandywine River in Wilmington, Delaware. The ground water was obtained from Kemblesville Well in Kemblesville, Pennsylvania. The drinking water was bottled water purchase from a local grocery store (ACME; Pine Valley Spring, New Ringgold, Pennsylvania). The same water matrices were used for both ECMs.
- 4 The study authors of the ECMs and ILV calculated the statistics for several of the recovery results with the exclusion of one outlier per sample set. The reviewer recalculated these recovery statistics based on all five recovery values (see DER Attachment 2). Many of the recovery statistics which were not within acceptable limits were these reviewer-calculated values.
- 5 In the ILV, DPX-MP062, IN-JT333 and IN-MP819 were analyzed using LC APCI-LC/MS/MS, while IN-MS775, IN-JU873 and IN-KG433 were analyzed using LC ESI-LC/MS/MS. The water matrices were drinking water (tap water, Zeist), ground water (Netherlands, sample 699/04/1593) and surface water (local river/channel, Netherlands, sample 0699/05/0024; p. 12 of MRID 49599606). The surface water was characterized by Alcontrol, The Netherlands (pH 7.9, total organic carbon 36 mg/L; pp. 9, 12). The ground and drinking water were not characterized.

6 Based on tabular data in Annex V5033/02 B04, p. 57 of MRID 49599606 and confirmed with chromatograms presented in Annex V5033/02 B03-B04, pp. 33-56.

7 A confirmatory method is not usually required when LC/MS and GC/MS is the primary method.

Linearity is satisfactory when $r^2 \ge 0.995$.

IV. Method Deficiencies and Reviewer's Comments

- The ILV was performed to validate ECM 1 (MRID 49599604; issued March 3, 2003), since ECM 2 (MRID 49599605; issued September 15, 2014) was not provided to the ILV (issued May 20, 2003) due to study timeframes (p. 1 of MRID 49599604; p. 1 of MRID 49599605; pp. 1, 26 of MRID 49599606). ECM 2 was not listed in the References section of the ILV. DuPont-9605, Supplement No. 1 (ECM 2) supported ECM 1 with quantification and confirmation ion transition data for each analyte with no other modification to the method. No ILV was submitted to validate ECM 2.
- 2. The ILV study author suggested minor modifications to ECM 1 to increase the applicability and success of the method; an updated ECM to include these minor modifications should be submitted since they were necessary for the successful validation of the method (pp. 11, 16, 23, 25 of MRID 49599606). Modifications included 1) measuring all analytes but IN-MS775 and IN-MP819 by APCI and ESI analyses so that the optimum analytical conditions can be selected by the performing laboratory; 2) the omission of the hexane rinse step of the SPE column, since an earlier study found that IN-JT333 partially eluted during this step; 3) for IN-KG433, the use of freshly prepared solutions and the addition of acetic acid to the acetonitrile solvent to improve stability; 4) for IN-MS775, the addition of acetic acid to the acetonitrile component of the LC gradient and the injection of calibration standards in between sample sets to improve the accuracy of the measurements; and 5) the addition of acetic acid to the final extracts for increased stability. Insignificant modifications to the ECM were also listed in the ILV, including substitutions of instrumentation and that DPX-MP062 and IN-MS775 were quantified with one ion transition, not TIC (p. 20 of MRID 49599604; p. 17 of MRID 49599606).
- 3. The estimations of the LOQ and LOD in the ECM were not based on scientifically acceptable procedures as defined in 40 CFR Part 136. In the ECMs and ILV, the LOQ was defined as the lowest fortification level which obtained average recoveries of 70-120% and a RSD <20% (pp. 8, 23-24; Figure 5, pp. 55-56 of MRID 49599604; pp. 8, 13 of MRID 49599605; pp. 10, 23 of MRID 49599606). The LOQ also corresponded to the fortification in which analyte peak heights were consistently ca. 10-20 times the signal in the control at the retention time of the analyte for the lowest responding analyte. In the ECMs and ILV, the LOD was estimated for each analyte based on signal-to-noise. The LOD was defined as the concentration of the least responsive analyte at which analyte peaks were approximately three times the chromatographic baseline noise observed near the retention time or approximately 1/3 the concentration of the LOQ. In the ECM with Rev. 1, the least responsive analyte was reported as IN-MP062; in the ILV, the least responsive analyte was reported as IN-MP819 (not reported in the Supplemental ECM) The study authors of the ECMs noted that variation in the LOD was observed, and instrument response may fluctuate between routine instrument maintenance. The LOQ and LOD were not adequately supported by calculations.

Detection limits should not be based on the arbitrarily selected lowest concentration in the spiked samples. Additionally, the lowest toxicological levels of concern in water were not reported. An LOQ above toxicological level of concern results in an unacceptable method classification.

- 4. Several RSDs were >20% in the studies. In the ECM 1, RSDs were not within guidelines for the LOQ recovery results of IN-MP819 in surface (river) water (21.1% RSD) and the 10×LOQ recovery results of DPX-MP062 in drinking (bottled) water (20.1% RSD; Table 1, pp. 28-31; DER Attachment 2). In the ECM 2, RSDs were not within guidelines for the LOQ quantitation ion recovery results of IN-MS775 and IN-MP819 in surface (river) water (21.4% and 21.1% RSD, respectively) and the 10×LOQ quantitation ion recovery results of DPX-MP062 in drinking (bottled) water (21.0% RSD; Tables 1-2, pp. 15-22; DER Attachment 2). In the ILV, RSDs were not within guidelines for the LOQ recovery results of IN-MS775 in surface (river) water (30.7% RSD; uncorrected recovery results; pp. 20-21; Annex V5033/02 B07, pp. 64-69; DER Attachment 2). OCSPP guidelines recommend that RSDs are ≤20% for each analyte/fortification/matrix.
- 5. Most of the water matrices were not characterized in the ECMs (all water matrices) and ILV (ground and drinking water; p. 15 of MRID 49599604; pp. 9, 12 of MRID 49599606). The sources of the waters were reported. The water matrices were the same as those of MRID 49599604; no new information was provided (based on data matching and source identification).
- 6. In the ILV, linearity was not satisfactory for two of the linear regressions of IN-MS775 ($r^2 = 0.9926$ and 0.9943; see above and DER Attachment 2). Linearity is satisfactory when $r^2 \ge 0.995$.

The reviewer calculated all linear regressions for the ILV from the provided individual calibration data since no linear regression curves or values were reported in the study (Annex V5033/02 B07, pp. 64-69 of MRID 49599606). For the ECM 1, no linear regression curves or values were reported in the study; however, individual calibration data was provided for the Lums Pond and Brandywine River matrices (Appendix 2, pp. 60-64 of MRID 49599604). For ECM 2, linear regression curves and values were reported in the study for the Brandywine River matrix, but for no other matrix (Figure 1, pp. 23-25; Appendix 1, pp. 40-42 of MRID 49599605). The reviewer determined that the calibration curves for Brandywine River water matrix which were presented in MRID 49599605 applied to both ECMs, based on data collection dates being the same. To supply additional calibration information, the reviewer calculated the standard curves for the Lums Pond matrix using the calibration data of ECM 1 (quantitation ion only; see DER Attachment 2).

 ILV representative chromatograms showed peak tailing for most of the analyte peaks (Annex V5033/02 B03, pp. 33-56 of MRID 49599606). Matrix interferences were calculated at 0-12% of the LOQ for all analytes (Annex V5033/02 B04, p. 57). Interferences were <50% of the LOD. Reagent blanks were not included in the ILV.

ECM representative chromatograms from both ECM 1 and ECM 2 showed no or negligible matrix interferences in the control samples for the analytes (Figure 4, pp. 43-55 of MRID 49599604; Figure 3, pp. 28-39 of MRID 49599605). The reviewer noted that chromatograms of IN-MP819 had a noisy baseline which caused minor interference with the peak attenuation and/or difference in the peak integration between chromatograms. Reagent blanks were not included in the ECMs.

- 8. The ILV study author discussed the results for each compound, including failed trials and best results (pp. 21-22 of MRID 49599606). For DPX-MP062 and IN-JT333, suppression effects were observed in ESI analysis and caused low recoveries. Results from the APCI were considered more accurate. For IN-MP819, only APCI analysis results were used due to poor ESI response. For IN-JU873, ESI results were chosen because slight enhancement was observed with APCI results. For IN-KG433, the ESI analysis of the second validation yielded acceptable results after modifications (discussed above), so APCI analysis was not attempted. For IN-MS775, the analyte can only be measured by ESI, so APCI could not be attempted. The third validation with ESI analysis yielded acceptable results after modifications (discussed above).
- 9. The reviewer noted one significant typographical error in the ECM MRID 49599604: IN-JU873 was incorrected listed as IN-JU874 (Table 1, pp. 28-31).
- 10. The ILV study author noted that, with the addition of acetic acid, the final extracts of samples fortified with DPX-MP062, IN-JT333, IN-MP819 and IN-JU873 were shown to be stable for at least 7 days (p. 23 of MRID 49599606).
- 11. The results for several analyses which were presented in the study report were reviewercalculated using all reported values (see Tables 2-3 above for details). OCSPP guidelines recommend a minimum of five spiked replicates to be analyzed at each concentration (*i.e.*, minimally, the LOQ and $10 \times LOQ$) for each analyte.
- 12. It was reported for the ILV that a sample sets consisting of 12 samples could be prepared in an 8-hour workday, where the evaporation of the acetonitrile extract was the most time consuming step (p. 24 of MRID 49599606). One of the two LC/MS/MS analyses was performed unattended overnight, and the second LC/MS/MS analysis was performed the next day.
- 13. Communications between the ILV study author and ECM sponsor were limited to approval of each validation set, discussion of the failure of the trials, and the suggestions of the modifications of the ECM method to improve results (acetic acid addition, etc.; pp. 23-24 of MRID 49599606).

V. References

- U.S. Environmental Protection Agency. 2012. Ecological Effects Test Guidelines, OCSPP 850.6100, Environmental Chemistry Methods and Associated Independent Laboratory Validation. Office of Chemical Safety and Pollution Prevention, Washington, DC. EPA 712-C-001.
- 40 CFR Part 136. Appendix B. Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11, pp. 317-319.

Attachment 1: Chemical Names and Structures

DPX-MP062

```
[75% DPX-KN128 (Indoxacarb) and 25% IN-KN127 (optical isomer of indoxacarb)]
```

Indoxacarb (DPX-KN128)

IUPAC Name:	Methyl (S)-N-[7-chloro-2,3,4a,5-tetrahydro-4a-				
	(methoxycarbonyl)indeno[1,2-e][1,3,4]oxadiazin-2-ylcarbonyl]-4'-				
	(trifluoromethoxy)carbanilate.				
CAS Name:	Methyl (4aS)-7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-				
	(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2-				
	e][1,3,4]oxadiazine-4a(3H)-carboxylate.				
	(S)-methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-				
	(trifluoromethoxy)phenyl]amino]carbonyl]=indeno[1,2-				
	e][1,3,4]oxadiazine-4a(3H)-carboxylate.				
CAS Number:	173584-44-6				
SMILES String:	COC(=O)[C@]12Cc3cc(ccc3C1=NN(CO2)C(=O)N(c4ccc(cc4)OC(F)(F)				
C	F)C(=O)OC)Cl				
	° CH ₃ F				

IN-KN127	
IUPAC Name:	Not reported
CAS Name:	(R)-methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4- (trifluoromethoxy)phenyl]amino]carbonyl]=indeno[1,2- e][1,3,4]oxadiazine-4a(3H)-carboxylate.
CAS Number:	Not reported
SMILES String:	Not found

IN-MS775IUPAC Name:Not reportedCAS Name:Not reportedCAS Number:Not reportedSMILES String:Not found

IN-MP819

IUPAC Name:	Not reported		
CAS Name:	Methyl ester 7-chloro-3,5-dihydro-2-[[[4-(trifluoromethoxy)- phenyl]amino]carbonyl]-indeno[1.2-e][1,3,4]oxadiazine-1(2H)-carboxylic acid.		
CAS Number:	Not reported		
SMILES String:	Not found		
	H ₂ C		

IN-JT333	
IUPAC Name:	Methyl 7-chloro-2-[[4-(trifluoromethoxy)phenyl]carbamoyl]-3,5-
	dihydroindeno[1,2-e][1,3,4]oxadiazine-4a-carboxylate.
CAS Name:	Methyl 7-chloro-2,5-dihydro-2-[[[4-
	(trifluoromethoxy)phenyl]amino)carbonyl]indeno[1,2-
	e][1,3,4]oxadiazine-4a(3H)-carboxylate.
CAS Number:	144171-39-1
SMILES String:	[H]N(c1ccc(cc1)OC(F)(F)F)C(=O)N2COC3(Cc4cc(ccc4C3=N2)Cl)C(=O
)OC
	° CH ₃ F

IN-JU873 IUPAC Name: CAS Name: CAS Number: SMILES String:

Not reported Not reported

4-Allyl-6-amino-7-fluoro-1,4-benzoxazin-3-one.

 $\mathbf{H} \mathbf{F} \mathbf{S} \mathbf{tring} = [\mathbf{H}] \mathbf{N} ([\mathbf{H}]) = 1 = 2 \cdot (z = 1\mathbf{F}) \mathbf{O} (z = 1\mathbf{F}) \mathbf{O$

LES String: [H]N([H])c1cc2c(cc1F)OCC(=O)N2CC=C

IN-KG433

IUPAC Name:	Methyl (1Z,2S)-5-chloro-2-hydroxy-1-[[methoxycarbonyl-[4-			
	(trifluoromethoxy)phenyl]carbamoyl]hydrazono]indane-2-carboxylate.			
CAS Name:	Not reported			
CAS Number:	Not reported			
SMILES String:	[H]N(C(=O)N(c1ccc(cc1)OC(F)(F)F)C(=O)OC)/N=C\2/c3ccc(cc3C[C@] 2(C(=O)OC)O)Cl			

Test Material:	DPX-MP062 (75% Ir	ndoxacarb and	25% IN-KN127)	
MRID:	49599604			
Title:	Analytical Method for the Determination of DPX-MP062 [75% DPX-KN128 (Indoxacarb) and 25% IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in Ground, Surface, and Drinking Waters Using LC/MS/MS			
MRID:	49599605			
Title:	Analytical Method for the Determination of DPX-MP062 [75% DPX-KN128 (Indoxacarb) and 25% IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 in Ground, Surface, and Drinking Waters Using LC/MS/MS			
MRID:	49599606			
Title:	Independent Laboratory Validation of DuPont-9605, Revision 1 "Analytical Method for the Determination of DPX-MP062 [75% DPX- KN128 (indoxacarb) and 25% IN-KN127] and Metabolites IN-MS775, IN-JT333, IN-MP819, IN-JU873, and IN-KG433 In Ground, Surface, and Drinking Waters Using LC/MS/MS"			
EPA PC Code:	067710			
OCSPP Guideline:	850.6100			
For CDM Smith				
Primary Reviewer: Lisa Muto		Signature:	Java Muto	
		Date: 12/1/15	5	
Secondary Reviewer: Kathleen Ferguson		Signature:	Kathlun P. Jergusson	
		Date: 12/1/15	5	
QC/QA Manager: Joan Gaidos		Signature:	Jours	

Date: 12/1/15