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Data Quality Objectives for
the Trends Component of the PM  Speciation Network2.5

The Data Quality Objectives (DQO) process is a strategic planning approach used
to prepare for a data collection activity, as described in the document EPA QA/G-4: 
Guidance for the Data Quality Objectives Process (U.S. EPA, 1994).  Its purpose is to
ensure that the type, quantity, and quality of environmental monitoring data will be
sufficient for the data’s intended use.  The process simultaneously ensures that resources
are not wasted collecting unnecessary, duplicative, or overly precise data.  The process
provides a systematic approach for defining the criteria that a data collection design should
satisfy, including when, where, and how many samples to collect and how precise these
samples need to be.

The DQO process consists of seven steps.  These are:  (1) state the problem, (2)
identify the decision, (3) identify the inputs to the decision, (4) define the study
boundaries, (5) develop a decision rule, (6) specify tolerable limits on decision errors, and
(7) optimize the design.  This document presents the results of applying the DQO process
to the collection of the PM  speciation data to be used for measuring national trends.2.5

1.0 The Problem

Revised particulate matter National Ambient Air Quality Standards were
promulgated July 18, 1997 (U.S. EPA, 1997a and 1997b).  These new standards include
requirements for monitoring of the chemical species composing particulate matter with
aerodynamic diameters less than 2.5 microns (PM ).  The regulations require that2.5

approximately 50 sites be established to provide nationally consistent data for the
assessment of trends in the chemical constituents of PM  and that these 50 sites be part of2.5

the National Air Monitoring Stations (NAMS) network.

Generally, the DQO process would be used to determine combinations of the
sampling frequency, the location of the samples, and the tolerable measurement errors
needed to achieve desired levels of errors associated with decisions that will be based on
data collected by the PM  speciation trends sites.  However, most of the monitoring2.5

characteristics have already been established for the trends network as the result of
regulations or recommendations from the PM  Speciation Expert Panel (Koutrakis,2.5

1998) and PM  Speciation Workgroup.  Thus, the issues to be addressed with this DQO2.5

process included (1) estimating the decision errors resulting from the characteristics of the
network, (2) recommending changes to the sampling plan if the resultant decision errors
were unacceptably large, and (3) proscribing required measurement precision.

The following items summarize the monitoring characteristics that had been
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established for the trends network prior to the beginning of the DQO process.

Number of sites:  The PM  speciation trends network is to consist of2.5

approximately 50 sites, as specified in 40 CFR Part 58, Appendix D.  EPA has
proposed 53 sites which are documented in Particulate Matter (PM ) Speciation2.5

Guidance Document (U.S. EPA, 1998).

Location of sites:  According to 40 CFR Part 58, Appendix D, approximately 25
of the sites are to be located in Photochemical Air Monitoring Stations (PAMS)
areas.  The remaining sites are to be selected in coordination among the EPA, the
Regional Offices, and the States and locals.   Twenty-four of the 53 proposed sites
are in PAMS areas.  The rationale for the selection and the resulting locations of
all the sites are documented in Particulate Matter (PM ) Speciation Guidance2.5

Document (U.S. EPA, 1998).

Sampling frequency:  The PM  Speciation Expert Panel and EPA have2.5

determined that the sampling frequency for the trends sites should be once every 3
days which is documented in Summary of the Recommendations of the Expert
Panel on the EPA PM  Speciation Guidance Document (Koutrakis, 1998).2.5

Sampler type:  The sampler will be a multiple filter device that collects 24-hour
integrated samples.

Analytes to be measured and the method of measurement:  The species to be
measured include:
• elements Na through Pb using x-ray fluorescence spectroscopy (XRF),
• major ions (sulfate, nitrate, chloride, ammonium, sodium) using ion

chromatography (IC), and
• total, elemental, and organic carbon using thermal optical analysis (TOA).

2.0 The Decision

The DQO process incorporates input from a planning team consisting of program
staff, technical experts, managers, a quality assurance/quality control advisor, and a
statistician.  This enables data users and relevant technical experts to specify their
particular needs prior to data collection.  The members of the PM  Speciation DQO2.5

planning team, referred to as the decision makers, are listed in Table 1.

These decision makers decided that the primary objective of the trends component
of the PM  speciation network is to detect trends in individual component species on a2.5

site-by-site basis.  Specifically, the decision makers wanted to be able to detect a 3-5%
annual trend (increasing or decreasing) with 3-5 years of data.
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Table 1.  PM  Speciation DQO Planning Team Members2.5

PM  Speciation DQO Decision Makers2.5

Name Address Phone Number Electronic Mail

Mike Poore Air Resources Board (916) 323-4498 mpoore@arb.ca.gov
Alice Westerinen P.O. Box 2815 (916) 324-6191 awesteri@arb.ca.gov

Sacramento, CA 95812

Peter Scheff Environmental and Occupational (312) 996-0800 pscheff@uic.edu
Health Sciences

University of Illinois
School of Public Health
2121 W. Taylor Street, Rm. 422
Chicago, IL 60612-7260

Alan Leston DEP Planning & Stds Div (860) 424-3513 alan.leston@po.state.ct.us
5  Floorth

79 Elm Street
Hartford, CT 06106

Phil Galvin NY State DEC (518) 457-7794 pjgalvin@gw.dec.state.ny.us
50 Wolf Road
Albany, NY 12233-3256

Terence Fitz-Simons USEPA/OAQPS (919) 541-0889 fitzsimons.terence@epa.gov
AQTAG (MD-14)
Research Triangle Park, NC 27711

Jim Homolya USEPA/OAQPS (919) 541-4039 homolya.james@epa.gov
Joann Rice MQAG (MD-14) (919) 541-3372 rice.joann@epa.gov

Research Triangle Park, NC 27711

Contractor for Development of PM  Speciation DQOs2.5

Name Address Phone Number Electronic Mail

Nancy McMillan Battelle (614) 424-5688 mcmillan@battelle.org
505 King Avenue
Columbus, OH 
43201-2693

Primary EPA Contact for Development of PM  Speciation DQOs2.5

Name Address Phone Number Electronic Mail

Shelly Eberly USEPA/OAQPS (919) 541-4128 eberly.shelly@epa.gov
MQAG (MD-14)
Research Triangle Park, NC 27711
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Although the data collected by the PM  speciation network will be invaluable for2.5

a multitude of data analyses, the detection of trends is the primary objective of the NAMS
portion of the PM  speciation network, as stated in 40 CFR Part 58 Appendix D.  The2.5

decision makers and the PM  Speciation Expert Panel (Koutrakis, 1998) concurred about2.5

this being the primary objective and therefore the one on which the DQOs should be
based.  This means that the tolerable decision errors will be based exclusively on trends
analyses, even though other data uses might have larger resultant decision errors.  The
need for accurate trends at the site level is due to the manner in which the trends will be
used.  The decision makers decided that trends are needed to evaluate the long-term
effectiveness of control strategies. Incorrect estimation of trends may lead to incorrect
decisions about the effectiveness of implemented control strategies.  Since control
strategies likely will be developed, applied, and/or evaluated at the Metropolitan Statistical
Area (MSA) level and given that at most one trend site will be within an MSA, the trends
need to be accurate on a site by site basis.  Additionally, the decision makers thought that
regional or national trends would be difficult, if not impossible, to interpret because of the
geographical variability in meteorology, species composition, and control strategies.

Variation in meteorology can mask or attenuate trends that are due to changes in
emissions.  Given the intended use of the trends data, the decision makers decided that
meteorological variation needs to be removed before the trend analysis is performed.  That
is, the trends in which the decision makers wanted to have the specified decision errors are
ones for which the impact due to variation in meteorology has been removed.  The details
for how this adjustment was accomplished are included in the appendix.  Basically, a
seasonal component based on the number of days into a year was added to the statistical
model of the data.

Lastly, the development of the DQOs was done for four analytes, those being
sulfate, nitrate, total carbon, and calcium.  The target analytes of interest for the speciation
trends sites were selected to include those which have been historically measured within
the Interagency Monitoring of Protected Visual Environments (IMPROVE) network.  To
ensure that data from the speciation trends sites could be compared with IMPROVE data
sets, the trends DQO development considered an analysis of the ability to sample and
measure selected analytes which are thought to be major components of aerosols collected
in both networks (sulfate, nitrate, and total carbon) and whose concentrations could be
expected to vary with the implementation and effectiveness of emissions controls.  Sulfate
is a direct indicator of anthropogenic emissions, primarily from fossil-fuel fired combustion
sources and can be effectively measured by most fine particulate sampling systems. 
Sulfate levels are usually the highest in the eastern US.  By contrast, nitrate is an indicator
of secondary atmospheric aerosol formation resulting from nitrogen oxides emissions and
is somewhat difficult to quantitatively sample because of volatilization artifacts which can
occur in many sampling systems.  Nitrate levels are usually the highest in the western US. 
Total carbon in fine aerosol particles is associated with wood combustion and mobile
source emissions and also represents an analyte which has the potential for either positive
or negative sampling artifacts.  Calcium was included since it is an element which is
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generally associated with nonanthropogenic emissions such as windblown soils, mineral
materials, and dusts.  Calcium is usually assumed to occur in particles predominantly
greater than 2.5 microns.  Therefore, fine particulate calcium should be present at low
background levels and represents an aerosol constituent which is not expected to vary
significantly with source emissions controls implementation.

3.0 Inputs to the Decision

Data from the IMPROVE program was used for estimating the variability likely to
be observed in national PM  speciation measurements.  This is because each of the2.5

analytes to be monitored at the 50 NAMS sites is currently being monitored in the
IMPROVE program and the analytical methods used in the IMPROVE program are
similar to those to be used in the national program.  Table 2 provides a matrix of filter
types, target species, and analytical methods to be used in the national program.

Table 2.  PM  Chemical Speciation Filter Medium, Target Species and Methods2.5

Filter Medium Target Species Analytical Technique

PTFE (Teflon®) filter Elements: Al through Pb; and mass EDXRF (IO-3.3) and
Gravimetry

Nylon filter with nitric acid Anions: nitrate and sulfate IC (IMPROVE Method)
denuder

Cations: ammonium, sodium, and IC (IMPROVE Method)
potassium

Pre-fired quartz fiber filter with Total carbon (including organic, TOA (NIOSH 5040)
gaseous organic denuder elemental, carbonate carbon)

EDXRF - Energy Dispersive X-ray Fluorescence

IC - Ion Chromatography

TOA - Thermal Optical Analysis

The national chemical analysis methods for calcium and total carbon differ from
those used in the IMPROVE network.  The IMPROVE network uses proton induced x-
ray emission (PIXE) to analyze the PTFE filter for calcium and thermal optical reflectance
(TOR) to analyze the quartz filter for total carbon.   Due to the lack of long-term data
collected using EDXRF and TOA, it is an assumption of this DQO process that EDXRF
and PIXE have similar percentages of non-detects and levels of precision and similarly that
TOR and TOA have similar percentages of non-detects and levels of precision.  This
assumption is questionable for calcium based on a recent article that indicates that the
detection limit for calcium using XRF may be 5 times that for PIXE, 2.4 ng/m  for XRF3
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versus 0.5 ng/m  for PIXE (Nejedly, 1998).  The recent literature supports the assumption3

regarding the comparability of TOR and TOA (Birch, 1998).

An additional difficulty in using the IMPROVE data for the national trend network
planning is that the IMPROVE sites, by design, are predominantly located in rural areas. 
This will not and should not be true of the NAMS sites.  Anticipated differences in
variability of speciated PM  data between rural and urban sites was factored into2.5

estimates obtained based on the IMPROVE data.  This was accomplished by analyzing the
data from the urban IMPROVE site located in Washington DC (WASH1), the only long-
term urban IMPROVE site.

3.1 Summary of Model for All IMPROVE Sites

The model used to describe the IMPROVE data is documented in the appendix. 
Basically, the model is for log-transformed concentrations and includes a seasonal
component, a linear trend component to indicate the increase or decrease in
concentrations from one year to the next, and a term for auto-correlation to reflect that
data collected close in time are more similar than data collected farther apart in time.  The
estimates for the parameters of this model are shown in Table 3 for sulfate, nitrate,
calcium, and total carbon measurements for the IMPROVE data on a site by site basis. 
Average parameters across all sites are reported as well as the range of values observed.

Table 3.   IMPROVE Data Summary - All Sites

Parameter Mean Range Mean Range Mean Range Mean Range Mean Range

Seasonality (Estimated
(Ratio of Correlation

Summer Peak Coefficient
Concentration to Between 3 day
Winter Trough Apart Log-
Concentration) transformed

Time Trend Concentration
(Percent Reduction (Estimated Error

in Concentration Concentration (Coefficient of
from One Year to the During Winter Variation) 

Next) Trough of 1988,

Auto-correlation

Concentrations)

Baseline

µg/m )3

Sulfate 3.485 0.640- 2.90% -8.0%- 0.224 0.014- 0.995 0.072- 0.719 0.482-
12.716 15.2% 0.404 3.982 1.529

Nitrate 1.979 0.061- 4.30% -10.8%- 0.237 0.079- 0.755 0.024- 1.064 0.502-
18.370 28.7% 0.457 6.752 2.373

Calcium 5.368 0.654- 1.90% -23.1%- 0.328 0.037- 0.013 0.002- 0.936 0.558-
22.528 21.6% 0.681 0.049 1.557

Total 1.934 0.280- 3.70% -5.1%- 0.287 0.013- 1.605 0.200- 0.589 0.375-
Carbon 6.328 18.3% 0.540 11.940 0.915
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Table 3 (continued).   IMPROVE Data Summary - All Sites

Parameter Mean Range Mean Range Mean Range

Concentration Measurement Error 
(µg/m ) (Average coefficient of variation)3

Percentage
Non-Detects

(%)

Sulfate 1.357 0.246-4.932 0.055 0.036-0.124  0.293  0.000-3.343

Nitrate 0.261 0.029-1.321 0.133 0.046-0.502  4.118  0.000-37.021

Calcium 0.026 0.008-0.083 0.089 0.062-0.129  2.078  0.000-13.566

Total Carbon 1.295 0.342-4.119 0.176 0.064-0.421  0.000  0.000-0.000

The first segment of Table 3 presents results from fitting linear models to log-
transformed sulfate, nitrate, calcium, and total carbon concentrations at each of the
approximately 60 IMPROVE sites that have recorded multiple years of data.  Based on
examination of the raw data, seasonal trends were fitted with ½ a sine wave with a peak
around June 30.  Time trends were assumed to be linear in the log-transformed
concentrations.  The correlation between consecutive samples collected at the same site
was assumed to be D.  IMPROVE data is primarily collected on Wednesday and Saturday,
and, thus, this parameter represents the correlation between concentration measurements
either 3 or 4 days apart.  These correlations were adjusted to be appropriate for one in
three day sampling and are presented in Table 3.  Baseline concentrations are  presented
next and can be used in conjunction with the seasonal and time trend parameters to
estimate the concentration for an individual day.  The final columns of the first segment of
Table 3 present the unexplained variation in sulfate, nitrate, calcium, and total carbon after
fitting the model that includes the seasonal, time trend, and auto-correlation adjustment. 
Variation is expressed as a coefficient of variation for the untransformed concentrations.

The second segment of Table 3 presents descriptive statistics on the geometric
mean concentrations, measurement error rates, and non-detect percentages. The
measurement error rates and percentage of non-detects are quantities provided on the
IMPROVE database.  Generally, small non-detect percentages were observed for each of
the species across the network.  This suggests that the ability of laboratories to detect
concentrations of each of the species at levels actually present in rural areas is good. 
Since urban concentrations are anticipated to be higher than rural concentrations, inability
to detect species should not be an issue.  Note that the measurement error is small
compared to the variability remaining after fitting the model.  This can be seen by
comparing the coefficient of variation in the second part of the table (measurement error)
with the coefficient of variation in the first part of the table (variability remaining after
fitting the model).
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3.2 Summary of Model for Washington DC IMPROVE Site

The model used to describe the Washington DC IMPROVE data is identical to
that used for the other IMPROVE sites.  The estimates for the parameters are shown in
Table 4 for sulfate, nitrate, calcium, and total carbon measurements. 

Table 4.  IMPROVE Data Summary — Urban Washington Site

Parameter Concentration) Concentrations) µg/m )

Seasonality Auto-correlation Baseline
(Ratio of (Estimated Concentration

Summer Peak Correlation (Estimated Error
Concentration Coefficient Between 3- Concentration (Coefficient of

to Winter day Apart Log- During Winter variation)
Trough transformed Trough of 1988,

Time Trend
(Percent

Reduction in
Concentration
from One Year

to the Next) 3

Sulfate 2.250 2.90% 0.110 3.405 0.574

Nitrate 0.289 3.80% 0.228 3.389 0.850

Calcium 1.458 1.90% 0.108 0.034 0.572

Total Carbon 0.866 3.30% 0.019 5.387 0.524

Table 4 (continued).  IMPROVE Data Summary — Urban Washington Site

Parameter Variation)

Concentration Percentage Non-detects
(µg/m ) (%)3

Measurement Error
(Average Coefficient of

Sulfate 4.932 0.036 0.000

Nitrate 1.240 0.046 0.000

Calcium 0.039 0.083 0.125

Total Carbon 4.119 0.064 0.000

Baseline concentrations are higher for the Washington DC site than for an average
IMPROVE site (Table 3) as seen by comparing either the baseline concentrations for the
winter trough of 1988 or by comparing the geometric mean concentrations, while the
seasonal effects, auto-correlation, and coefficients of variation seem to be lower.  Time
trends at the Washington site are similar in direction and magnitude to average IMPROVE
sites, and the time trends are statistically significant.  Due to the higher concentrations
observed at the Washington site than at a typical IMPROVE site, measurement error and
percentages of non-detects are lower.  The reduced auto-correlation and error observed at
the Washington site will make it easier to detect time trends in sulfate, nitrate, calcium,
and total carbon than at a typical IMPROVE site.  However, the lower auto-correlation
estimate is of some concern.  Recall that the sampling schedule employed at IMPROVE
sites is Wednesday and Saturday.  Auto-correlation between consecutive samples could be
reduced due to a day of the week effect.  For instance, decreased vehicular traffic on



Page 9 of   

Saturdays as compared to a weekday may be the reason for the reduced auto-correlation. 
A model that incorporates an effect for the day of the week might be more appropriate but
was not considered for this DQO process.

3.2 Incorporation of Meteorological Variability into Model

The effect of meteorological information (today and yesterday’s temperature and
relative humidity) on PM  species concentrations was considered in separate analyses. 2.5

The appendix contains details about this analysis.  Based on the described analysis, it can
be concluded that simple meteorological models only slightly reduce variability and auto-
correlation.  Seasonal effects are significantly reduced from those indicated based on the
non-meteorologically adjusted data, as expected.  

4.0 Study Boundaries

The results from this DQO process are to be limited strictly to the NAMS portion
of the PM  speciation network.2.5

5.0 Decision Rule

The decision makers wanted to be able to detect a 3-5% annual trend with 3-5
years of data on a site-by-site basis after adjusting for seasonality.   Thus, the parameter of
interest is the percent reduction in PM  sulfate, nitrate, calcium, or total carbon2.5

concentration after adjustment for seasonal effects and auto-correlation.  This parameter
should be estimated by regressing log-transformed sulfate, nitrate, calcium, or total carbon
concentration measurement, simultaneously, on a seasonal effect and a linear time trend
while accounting for, at a minimum, first-order auto-correlation in the data points.  It can
be assumed, with a Type I error rate of 0.05, that if the estimated time trend parameter
divided by the standard error associated with that estimate is less than –1.645, then a
reduction in sulfate, nitrate, calcium, or total carbon concentration has occurred.  If the
estimated time trend parameter divided by the standard error associated with that estimate
is greater than 1.645, then an increase in sulfate, nitrate, calcium, or total carbon
concentration has occurred.  The technical details are included in the appendix.

6.0 Tolerable Limits on Decision Errors

Two types of decision errors are possible: 1) false positives, claiming that a trend
is detected when in fact there is no trend and 2) false negatives, claiming that a trend is not
present when in fact there is a trend.  By using a statistical hypothesis test, the chances of
false positives and false negatives can be estimated in advance.  Power curves provide
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information about false positives and false negatives.  Figure 1 provides an example power
curve with interpretation of the power curve annotated on the graph.  This particular
power curve demonstrates the power to detect a reduction in sulfate based on 1 in three
day sampling for five years.  Power to detect an increase in sulfate is equivalent.  (See the
appendix for mathematical definitions of increase and reduction in this setting.)

Curves indicating the statistical power with which a trend of a given size can be
detected were computed for each of the four species concentration, as described in the
appendix.  The curves were computed based on the variability and auto-correlation
observed when additive seasonal and linear time trend models were fitted to the
Washington DC IMPROVE site log-transformed PM  species concentration data. 2.5

Figures presented in the appendix present these power curves under a number of
assumptions on sampling frequency (daily sampling, 1 in 3 days sampling, and 1 in 6 days
sampling), duration of sampling (3 and 5 years), and measurement error (1.0 and 2.0 times
IMPROVE’s Washington DC site’s measurement error rate).

Input from the decision makers indicated that a 3-5% trend per year needs to be
detected with 0.8 power within 3-5 years of initiation of sampling.  Table 5 summarizes
the percent reductions (increases) that can be detected with 0.8 power under a variety of
assumptions about sampling frequency and length of time until detection of a trend.  Based
on this we conclude that with 1 in 3 day sampling for five years, we can detect annual
trends that are greater than 5% or less than -5% for sulfate, calcium and total carbon.  
For nitrate, annual trends must be greater than 6.3% or less than -6.3% in order for us to
detect them.  Daily sampling provides little improvement in the ability to detect trends.  

Analyses documented in the appendix indicate that power is relatively robust to
changes in measurement error, up to 2 times IMPROVE’s rate.  This is because
measurement error is small compared to variability left unexplained by the seasonal and
time trend component model.  Analyses depicting the effect of measurement error if a
better data model were developed are presented in the appendix.  It is anticipated that
measurement error may be more critical for uses of the speciated PM  data other than2.5

trend detection.  Therefore, it is advantageous to strive for levels of measurement error
comparable to those achieved in the IMPROVE program.  Thus, one in three day
sampling for five years with measurement error rates similar to IMPROVE’s is
recommended for trend identification.
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Table 5.  Percent Increase or Reduction Providing Power of 0.80 For Two Sampling Periods and
Three Sampling Frequencies

Species Three Years Five Years Three Years Five Years Three Years Five Years

Daily Sampling One in Three Day Sampling Sampling
One in Six Day

Sulfate 7.5 3.6 8.6 4.1 10.9 5.2

Nitrate 12.2 5.9 13.0 6.3 15.3 7.4

Calcium 7.4 3.5 8.5 4.1 10.9 5.2

Total Carbon 5.5 2.6 7.3 3.4 10.0 4.8

7.0 Optimized Design

The sampling design to be employed is like that stated in Section 1.0, that is, the
sampling frequency will be 1 in 3, the number of sites will be approximately 50 sites with
no more than one site per MSA, the sampler will be filter based, the laboratory analyses to
be used include TOA, IC, and XRF, and the measurement errors rates and percentage of
non-detects should be similar to those seen in the IMPROVE program.  The error rates
and percentage of non-detects are summarized in Table 4.

8.0 Conclusions

Use of the sampling design that includes 53 trends sites, a sampling frequency of 1
in 3, a filter based sampler, laboratory analyses described in Table 2, and measurement
error rates and percentage of non-detects like those shown in Table 4 will achieve the
decision makers’ goal for all species except nitrate.  The design  will allow for the
detection of annual trends greater than 5% (or less than -5%)  within 5 years of collection
of data, with a power of 0.8.  For nitrate, annual trends must exceed 6% (or be less than -
6%) to be detected.  The decision makers decided that the annual trend required for nitrate
was not sufficiently different from their goal to require adjustment to the sampling design.

The decision makers further recommend that the DQOs be reevaluated once data
from the trends network becomes available.  This is needed due to the assumptions that
had to be made in this DQO process because of use of IMPROVE data.
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Figure 1. Illustrative Power Curve for 1 in 3 Day Sampling of Sulfate for 5 Years.  Interpretation of the Power Curve
Annotated
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Appendix
Technical Details

1.0 Notation and Statistical Modeling

Our assumed data model based on preliminary  analysis of the IMPROVE data is:

where Y  is the i  day’s log-transformed species concentration measurement, i
th

is the ½ sine wave seasonal effect, X  is the number of days between January 1, 1988 and the day2,i

on which the i  observation was collected (the time trend) and e  is a first order auto-regressiveth
i

error term with correlation D and variance F .  We assume that this first-order auto-regressive2

model is appropriate for daily data.  This model was fitted separately to data at each IMPROVE
site with multiple years of sampling data.  A summary of the coefficients estimated is provided in
Table 3 of the main text.  The results of the model fit to the Washington DC IMPROVE site are
provided in Table 4 and Figure A-1.  The seasonal effect in the total carbon model is not
significant.  These plots illustrate that a significant amount of variability in the species
concentration data remains unexplained by the model.

Generally, inclusion of a seasonal effect in the species concentration model has been
shown by the IMPROVE data to significantly reduce residual variability.  This allows more
accurate estimation of the other model parameters, specifically the trend parameter.  Additional
work with meteorological parameters (temperature and relative humidity) at a subset of the
IMPROVE sites has shown that use of these parameters, daily and lagged one day, can eliminate
the need for a seasonal effect.  However, there is only a very slight reduction in residual variation
and only very minor changes in auto-correlation when both seasonal and meteorological effects
are considered (only simple models were considered).  Thus, power to detect a trend, which will
be shown subsequently to be a function of how precisely the trend parameter can be estimated,
can be increased by considering a model including a seasonal effect.  Additional gains from
considering meteorology are negligible.

Suppose that 1 in D day sampling is performed rather than daily sampling.  This leads to
data with the same variance, F , but different correlation between consecutive measurements.  In2

particular the correlation between consecutive measurements given 1 in D day sampling is D . D

This relationship is useful for transforming the correlation coefficient estimated via the 
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Figure A-1.  First Order Auto-regressive Model Fit for Washington IMPROVE Data
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IMPROVE data (1 in 3-4 day sampling) to correlation coefficients for alternative sampling
frequencies.

The coefficient of variation (square root of variance divided by mean value) of the original
concentration measurements based on the above model is a function of F .  In particular, This is a2

useful quantity for assessing the residual variability in species concentration data and, in
particular, the contribution of measurement error to that variability.  Suppose that measurement
error, ME , is defined as the sampling and analysis error associated with individualCV

concentration measurements divided by the individual concentration measurements. Based on this
definition, the percent of variability due to measurement error, using a variance components
approach on the log-transformed concentrations, is

Similarly, the residual variability expected if measurement error is changed by a factor of
F, as measured by the coefficient of variation, can be estimated by

Using this relationship, measurement errors larger or smaller than IMPROVE’s can be considered
by transforming CV  into F  using the relationship between these two quantities provided by A-3.F F

2

Suppose that 1 in D day sampling has been performed for Y years.  The model described
can be written multivariately as

where Y is a vector containing the log-transformed species concentration measurements of length
 

X is the (Nx3) design matrix defined by the linear model described, $ is a (3x1) vector containing
the three parameters described in the linear model, and e is a (Nx1) vector of error terms with
covariance structure described by E (NxN).  E is the product of F  and a standard first-order2

F

auto-regressive correlation matrix (NxN) with correlation parameter D .  This multivariate modelD
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description will be useful later to describe how the monitoring assumptions enter into the power
calculations.

2.0 Time Trend Power Calculation

Ultimately, to test for the presence of a time trend in the data we are interested in $ .  We2

interpret $  by calculating R, the reduction in species concentrations from one year to the next,2

and showing that R is a function of $  only:2

For symmetry in our power calculations we also define I, the increase in species concentrations
from one year to the next,

We perform our power calculations considering only R, as I is a function of R,

Therefore, the null hypothesis that R, the reduction (I, the increase) in species concentration per
year, is zero is equivalent to the null hypothesis that $  is zero. The alternative that R is less than2

or greater than zero is equivalent to $  greater than or less than zero.  A 0.1 size hypothesis test2

for the defined null and alternative hypotheses is to reject the null hypothesis if

where B  is the least squares estimate of $  and s  is the estimated standard error of B .  A2 2 $ 2

positive B  is equivalent to an increase in concentration over time and a negative B  is equivalent2 2

to a reduction.  This test is based on the assumption that the least squares estimate of $  is2

normally distributed with mean equal to $ .  This assumption is appropriate asymptotically, and in2

this case the sample size (N) is relatively large.

Power is the probability of rejecting the null hypothesis and is a function of the true
reduction in species concentration:
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Based on this definition and the assumption that B  the least squares estimator of $  is normally2 2

distributed with variance estimated by s  it can be shown that$
2

where M is the normal cumulative distribution function.  (Substituting A-10 into one of the
cumulative functions demonstrates the symmetry between power to detect reductions and
increases.)  Thus, all of the concerns relevant to the power to detect a size R reduction in species
concentration enter into the power calculations via the variability associated with B , the estimate2

of $ .  Clearly, smaller s  values increase power and larger s  values reduce power.  2 $ $
2 2

To quantify s  , recall that B (3x1), the least squares estimate of $ is defined by$
2

Thus, the covariance of B (3x3) is

where the sampling frequency (1 in D day), the sampling duration (Y years), and the measurement
error assumed (F factor) all enter into the calculation of the covariance of B through the
parameters governing E (D and F) and the size of the matrices (i.e., the number of observations,
N=(365/D)*Y).  The quantity relevant to power calculations, s , is the third diagonal element of$

2

the covariance matrix of B.  The impact on power of sampling more frequently (decreasing D) is
less than the impact of sampling longer (increasing Y) because of the trade-off in the effect of D
on sample size (increasing N) and the effect of D on E (increasing correlation).

Using the power function described above, which quantifies power as a function of
percent reduction in species concentration per year, a number of power curves were calculated
and graphed.  The figures provided (Figures A-2, A-3, and A-4) assume coefficient of variation,
auto-correlation, and baseline measurement error equal to the values estimated for the urban
Washington DC site.  The figures vary sampling frequency (1 in 6, 1 in 3, and daily sampling),
duration of sampling (3 and 5 years), and  measurement errors (equal to and 2 times the
Washington site’s).  In order, the figures are for 1 in 6 day sampling, 1 in 3 day sampling, and
daily sampling.  Duration of sampling and measurement error are varied within the figures.  The
left column assumes three years of sampling, the right 5 years.  The first row assumes
measurement error equal to IMPROVE’s, the second twice IMPROVE’s measurement error.
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By inverting the power function, an equation providing the percent reduction (or increase)
necessary to achieve a prescribed power can be calculated.  Table A-1 presents the percent
reduction (or increase) per year which yields a power of 0.8.

Table A-1.  Percent Reduction or Increase (per year) Yielding 0.8 Power

Species Factor 3 Years 5 Years 3 Years 5 Years 3 Years 5 Years

Measureme
nt Error

Daily Sampling 1 in 3 Day Sampling 1 in 6 Day Sampling

Sulfate
1 7.5 3.6 8.6 4.1 10.9 5.2

2 7.5 3.6 8.6 4.1 11.0 5.2

Nitrate
1 12.2 5.9 13.0 6.3 15.3 7.4

2 12.2 5.9 13.1 6.3 1.53 7.4

Calcium
1 7.4 3.5 8.5 4.1 10.9 5.2

2 7.7 3.7 8.8 4.2 11.2 5.4

Total
Carbon

1 5.5 2.6 7.3 3.4 10.0 4.8

2 5.6 2.6 7.4 3.5 10.2 4.9 

3.0 Meteorological Analysis

Meteorological data was obtained from the IMPROVE network.  Through this network
both nephelometer and transmissometer data were made available.  A quick comparison of the
two measures did not reveal any obvious benefits for using one over the other.  Therefore, the
transmissometer data was chosen because of the simplicity of the data structure.  The key
accompanying the data indicated a relative humidity validity code value equal to 0 identifies a
valid measurement.  Only these values were kept.  The key did not indicate which values were
valid for temperature.  A short analysis revealed a need for some validity criterion.  Therefore, any
temperatures exceeding  45EC were set to missing. Daily averages for both the relative humidity
and temperature were calculated. Approximately, 25 sites were used in the final analysis. 

A two stage approach was used to evaluate the effect of adding the meteorological data
into the analysis of the species concentrations.  The first stage involved modeling the species
concentrations as a function of the meteorological parameters.  The following model was used:

where Y  is the i  day’s log-transformed species concentration measurement, T  and RH  are the ii i i
th th

day’s average ambient temperature and average relative humidity, respectively. T  and RH  i-1 i-1
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Figure A-2. Power Curve Comparisons for 1 in 6 Day Sampling  Between 3 and 5 Year Duration, Assuming Washington IMPROVE Data



A-8

Figure A-3. Power Curve Comparisons for 1 in 3 Day Sampling  Between 3 and 5 Year Duration, Assuming Washington IMPROVE Data
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Figure A-4. Power Curve Comparisons for Daily Sampling Between 3 and 5 Year Duration, Assuming Washington IMPROVE Data
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Table A-2.  IMPROVE Data Summary – Meterologically Adjusted Data

Parameter
Seasonality (Ratio of Summer Concentration to Coefficient Between 6 Day (Estimated Concentration
Peak Concentration to Winter Previous Year’s Apart Log-transformed During Winter Trough of Error (Coefficient of

Trough Concentration) Concentration) Concentrations) 1988, mg/m ) Variation)

Time Trend (Ratio of Auto-correlation
One Year’s (Estimated Correlation Baseline Concentration

3

Mean Range Mean Range Mean Range Mean Range Mean Range

Sulfate 1.327 0.797-2.605 2.70% -1.4%-6.5% 0.210 0.069-0.340 NA NA 0.602 0.412-0.790

Nitrate 1.609 0.631-4.508 4.30% -2.8%-8.4% 0.207 0.082-0.303 NA NA 1.038 0.673-2.379

Calcium 1.586 0.714-2.927 4.80% -6.8%-28.6% 0.360 0.121-0.487 NA NA 0.713 0.527-0.957

Total Carbon 1.009 0.658-1.849 3.30% 2.0%-9.9% 0.254 0.062-0.470 NA NA 0.513 0.382-0.693
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are the temperature and relative humidity from the previous day, respectively. T *RH  is thei i

interaction between the relative humidity and temperature for the i  day and ,  is the random errorth
i

associated with the i  observation.  The residual, or unexplained variability from this analysis wasth

then used as the response variable for the time trend analyses mentioned earlier.

The first stage of the modeling yielded ranges of R  between .06 and .5 for sulfate, .04 and2

.3 for nitrate, .24 and .64 for calcium, and .09 and .5 for total carbon.  The results from the
meteorological adjustment of the PM species data are presented in Table A-2.  (Meterological2.5 

data was not available at the Washington IMPROVE site.)  Thus, variability and auto-correlation
indicated in Table A-2 are present in spite of accounting for meteorology.  The seasonal effects
indicated in Table A-2 are significantly reduced from those indicated based on the unadjusted data
( Table 2 of the DQO document ) as expected. Variability and auto-correlation values, however,
are not changed significantly from the values reported when meteorology was not accounted for
(Table 2).  Thus, we conclude power calculations, which depend on variability and auto-
correlation, can be performed without adjusting for meteorology at least as considered in this
simple model (A-16).

4.0 Measurement Error Analysis

The power curves presented in Section 2.0 suggested that the impact of increasing
measurement error was small.  This is because measurement error explains a relatively small
percentage of the residual variability left after fitting the model accounting for seasonal and time
trend effects, e.g., for sulfate in Washington

To explore the impact of measurement error if residual variability could be further reduced by
building a better model to explain species concentrations, perhaps one accounting for  meterology
in a sophisticated manner, further measurement error power calculations were performed.

Once again the focus was turned to the Washington data to better emulate the variability
associated with urban sites.  R  is a measure of the amount of variability that can be explained by2

the model.  In terms of partitioned error, R  can be written as follows:2

R = SSR/(SSE + SSR) = 1 - (SSE/(SSE+SSR)) (A-17)2 

where SSR is the (sum of squared) error explained by the model or true error and SSE is the
residual or (sum of squared) unexplained error.  Inspection of the R  values from the time trend2

and seasonality analysis shows a considerable amount of variability is left unexplained.  The R2

values are .19, .22, .05 and .03 for sulfate, nitrate, calcium and total carbon, (Washington site) 

respectively.  An artificial inflation of R  would represent a smaller residual error.  Assuming a2
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variance components relationship between residual error, F , and measurement error, 2

measurement error makes up only a tiny portion of this unexplained variability.   Thus, artificially
increasing R  would make measurement error a larger portion of the error. Given that: 2

and the relationship between R  and SSE stated above we can back solve to find F  , as a function2 2  

of R .  New power curves (Figure A-5) were created assuming hypothetical model R  values.  An2 2

R  of .7 was considered reasonable for some Ozone models.  We used this R  to create the top2 2

two plots in Figure A-5.  The plot on the left represents while the plot on the right represents a
doubling of this error.  The bottom two plots IMPROVE’s measurement error are for an assumed
R  of .95.  Both sets of plots represent 1 in 3 day sampling over a one year time frame.  Table A-32

presents the percent increase or reduction per year which yields a power of 0.8.  It is clear that
even at an R  of .7 measurement error is such a small portion of the residual error that doubling it2

had little effect.

Table A-3. Percent Increase or Reduction (per year) Yielding 0.8 Power Assuming 1 in 3
Day Sampling for 1 Year While Varying R2

Species Measurement Error Factor R  = .70 R  = .952 2

Sulfate 1 24.8 11.0

2 25.1 12.0

Nitrate 1 36.4 16.9

2 36.8 18.2

Calcium 1 23.0 10.2

2 25.2 15.2

Total Carbon 1 19.7 8.6

2 21.1 11.8


