Flint Data Summit 2

Analysis of Lead Data Sets David A. Cornwell January 10, 2017

PART OF THE ARCADIS FLINT DISTRUBTION ASSESSMENT TEAM

- 1) EPA Sequential Database—Combined
- 2) MDEQ Sentinel Database
- 3) MDEQ Residential Database
- 4) Not showing Spatial/GIS Data
- 5) Not showing Individual Data Base Analysis
- 6) Not Discussing WQP Data
- 7) Concentrating on Lead Data

1) EPA Sequential Database

- 279 samples across 115 locations
- Pb profile data
- Samples span 1/28/2016 to 11/15/2016
- 2) MDEQ Sentinel Database
- 3) MDEQ Residential Database

- 1) EPA Sequential Database
- 2) MDEQ Sentinel Database
 - 3,988 samples across 840 locations
 - Pb first liter data
 - Samples span 2/16/2016 to 9/27/2016
 - Includes Rounds 1-5 and Extended Rounds 1 5
- 3) MDEQ Residential Database

- 1) EPA Sequential Database
- 2) MDEQ Sentinel Database
- 3) MDEQ Residential Database
 - 24,251 samples across 14,193 locations
 - Selected for locations in common with EPA Sequential or Sentinel databases
 - 4,361 samples across 801 locations in common with those databases
 - Pb first liter data
 - Samples span 9/15/2015 to 9/27/2016

FROM THE 3 DATA SETS WE CREATED A COMMON Pb DATABASE

Pb Analysis – Common Database

The first three databases were combined based on sample location:

- 1) All EPA Sequential database locations were included
- 2) All MDEQ Sentinel database locations were included
- 3) Only includes those MDEQ Residential database locations where **either** EPA Sequential or MDEQ Sentinel data were available
 - This decision was made to target "higher risk" sites
- Result is a common database with 8,596 data across 904 locations.

Common Pb Database

- Analysis of the common database is dependent on the Pb value used for the EPA Sequential sampling
- For consistency with MDEQ Sentinel and Residential data, we used the Pb level in the first EPA sample (125 mL)
- However using the peak Pb level from the EPA Pb profiles will change maximum Pb distribution
- Analysis based on location-specific maximum Pb values

Common Pb Database

The following analysis looks at the maximum Pb level at each <u>location</u> (regardless of database source), distributed by:

- Season
 - Winter (Jan/Feb)
 - Spring (Mar-May)
 - Summer (Jun-Aug)
 - Fall (Sept-Nov)
- All plots are presented using EPA-1S data unless otherwise specified

Seasonal Pb Distribution – Paired Data

- To better understand how Pb changed at specific locations over time, a subset was created from only those sites with Pb samples collected during all four seasons
- Winter: 750 locations \rightarrow 128 locations
- Spring: 820 locations \rightarrow 128 locations
- Summer: 241 locations \rightarrow 128 locations
- Fall: 199 locations \rightarrow 128 locations
- Referred to a Paired Data
- Summer and Fall data distributions were less affected because a smaller proportion of data were removed
- Unpaired data removed from the Winter and Spring subsets tended to be low Pb

Before/After May Flush Data

- Instead of grouping by season, data were grouped by occurrence before or after May Flushing (defined as 5/15/2016)
- Again, significantly more data prior to May Flushing than after
- Comparing these raw data show the distributions before/after the May Flushing are similar

Before/After May Flush – Paired Data

- Again, to better understand how Pb changed at specific locations over time, a subset was created from only those sites with Pb samples collected both prior to and after the May Flush Event
- Before: 876 locations \rightarrow 232 locations
- After: 259 locations \rightarrow 232 locations
- Removing non-paired data significantly changed the percentile distribution for the Before data
- After data distributions was less affected because a smaller proportion of data were removed
- Unpaired data removed from the Before subset tended to be low Pb

Before/After May Flush – Change at Specific Locations

 Paired data distributions don't show what happened at specific locations over time

December 2001

 This shows how each individual house changed

Impact of May Flushing on Pb Levels by Paired Location

Pb Levels by Service Line Type

- Maximum Pb levels were plotted based on service line material:
 - Copper
 - Pb
 - Galvanized
- Service line material is based on privateside of meter

OCCURRENCE OF PEAK LEAD EPA Sequential Data - Profile volume where peak Pb occurs

EPA Sequential Data Evaluated

Sampling Round	Sample Dates	Number of Profiles	Number of Houses
Sequential 1	February 2016	94	94
Sequential 2	May 2016	42	41
Sequential 3	July 2016	47	47
Sequential 4	September 2016	51	51
Sequential 5	November 2016	45	45
Total		279	115

EPA Sequential Data Profile Volume where peak occurred "2nd L" means peak occurred >1,000 but ≤2,000 mL

OCCURRENCE OF ANY HIGH LEAD VALUES (>15 OR >50 μ g/L)

OCCURRENCE OF PEAK LEAD Peak Lead Values

Peak Lead

• Improvement over time by house

HIGH LEVELS COMPARED TO OTHER DATABASES

- Compares peak lead from all samples in all profiles at a given house
- Black bar is from Flint EPA Sequential (115 houses)
- Blue bar is from Cornwell Engineering Group (CEG) national database (17-34 houses)
- Green bar is for 25 houses from Del Toral et al. 2013 (ES&T article)

EPA Sequential (max values at house) versus Del Toral et al. 2013 and CEG National Database Percent of Peak Lead Values >15 or 50 µg/L

In highest value in profiles at a house ■ EPA Rounds, 3, 4, & 5

CEG Nat. database - houses Del Toral et al. 2013 - houses

Location of Profile Peaks Relative to Premise Plumbing

- EPA provided detailed plumbing breakdown of 77 residences, indicating all plumbing pipes, fixtures, etc. from tap to service line
- Premise plumbing was defined as plumbing from tap to meter
 - All locations in database have meters located inside of house
- Cumulative volume inside of house based on calculated volume of plumbing
- Analysis compared volume of premise plumbing to the sample volume where profile peak occurred.

Location of Profile Peaks Relative to Premise Plumbing

CORNWELL

Raw Data vs. Paired Data

- Raw data can mask extent of Pb levels at higher-risk sites
- Paired data tends to clearly show overall changes
- Removing unpaired data changes percentile distributions from earlier periods, increases median and 90th percentile Pb levels

Pb Levels Are Improving Over Time But Still high Peaks

 Pb levels in most locations are decreasing when comparing paired data

SHORT-TERM RECOMMENDATIONS

CORNWELL

Whole-house Flushing

- EPA Sequential Pb profiles show "particulate" lead is likely now in household plumbing
- Whole-house flushing at individual residences could reduce Pb peaks
- Whole house flushing Is like unidirectional flushing of a house---not just running a tap

NEXT STEPS IN CCT AND SOURCE ISSUES

- Several water source changes could be made in the flint system in the next few years
- A plan to address future corrosion control (scope) is due by the City to EPA February 1,2017
- Consent order requires CCT for any new source water

SOURCE CHANGES CURRENTLY ENVISIONED (COULD CHANGE)

Timeline for Flint Water Source Changes:

- Present to ~October 2017 supplied by DWSD
- ~October 2017 to mid- or late-2019 supplied by County water
- Mid- to late-2019 Flint WTP goes on-line
- After Flint WTP is operational there will be still be continual blending of County water into portions of Flint's distribution system

1. IMMEDIATE CCT PLANS

- Current source will be used through ~ October
- Current Orthophosphate requirement = minimum 3.1 mg/L
- Time remaining doesn't justify loop study
- Plan is to refine WQP and perhaps ortho dose
 - Primarily rely on coupon studies
 - Whole house flushing

2. TEMPORARY COUNTY WATER

- County is doing its own CCT
- City will assess their plan
 - Desktop study
 - Coupon study on impacts of changing to County CCT in Flint system
 - Address if County CCT needs to be supplemented prior to entering Flint System
 - Develop switch over plan

3. FLINT TREATMENT PLANT CCT

- Once treated water is available but before plant water entering distribution
 - Conduct pipe loop study of different orthophosphate doses

4. BLENDED WATER

- Takes into account all previous studies:
 - County alone
 - County + Flint distribution
 - Flint WTP
- Builds on that with coupon studies of different water blends with possible supplement to County Water