Flint, Michigan Sequential water data analysis 10 June 2017

John Canar Chuck Roth Brian Cooper

FIELDS Group U.S. EPA, Region 5, Superfund

Outline

- 1. Residential sequential results (Lead):
 - Round 1 vs. Round 3 (paired homes)
 - Round 1 vs. Round 5 (paired homes)

2. Residential DS (flushed distribution system) results:

- Lead (all homes)
- Total Phosphorus (all homes)
- 3. Residential sequential results (Lead):
 - R1 vs. R3 vs. R4 vs. R5 (all homes)

1a. Residential sequential results (Lead)

Round 1 vs. Round 3 (20 paired homes)

(a measure of how soon things got better)

Statistical notes

Residential sequential results for Rounds 1, 3, and 5 were compared two ways:

- as "paired" data, i.e., assuming the sequential samples are truly paired (dependent) [t-test, Sign, WRS]
- as "independent" data, i.e., assuming that the sequential samples are not paired and tested using two sample tests [ANOVA, KW, Median]

Outcome:

- virtually identical results whether tested as paired or not paired
- paired results shown in slides

Sequential Lead levels by Sampling Event Two-sample Nonparametric paired tests Round 1 minus Round 3

Flint, Michigan

The UNIVARIATE Procedure Variable: Diff_1_3 (R1 - R3)

House_Letter = dt

Moments								
Ν	16	Sum Weights	16					
Mean	-4.33375	Sum Observations	-69.34					
Std Deviation	20.0243651	Variance	400.975198					
Skewness	2.65070055	Kurtosis	8.17938733					
Uncorrected SS	6315.1302	Corrected SS	6014.62798					
Coeff Variation	-462.0563	Std Error Mean	5.00609128					

Basic Statistical Measures							
Location		Variability					
Mean	-4.33375	Std Deviation	20.02437				
Median	-8.84000	Variance	400.97520				
Mode	-9.84000	Range	84.15000				
		Interquartile Range	8.97500				

Tests for Location: Mu0=0									
Test	S	tatistic	p Value						
Student's t	t	-0.8657	Pr > t	0.4003					
Sign	М	-5	$\Pr \ge M $	0.0213					
Signed Rank	S	-38	Pr >= S	0.0492					

Significantly HIGHER total Lead in R3

total Lead (ug/L)

Sequential Lead levels by Sampling Event Two-sample Nonparametric paired tests Round 1 minus Round 3

Flint, Michigan

The UNIVARIATE Procedure Variable: Diff_1_3 (R1 - R3)

House_Letter = ct

Moments								
N	11	Sum Weights	11					
Mean	5.36636364	Sum Observations	<mark>59.0</mark> 3					
Std Deviation	5.51005857	Variance	30.3607455					
Skewness	1.68915974	Kurtosis	2.93678044					
Uncorrected SS	620.3839	Corrected SS	303.607455					
Coeff Variation	102.677697	Std Error Mean	1.66134517					

Basic Statistical Measures								
Location		Variability						
Mean	5.366364	Std Deviation	5.51006					
Median	2.920000	Variance	30.36075					
Mode	-	Range	17.99000					
		Interquartile Range	7.21000					

Tests for Location: Mu0=0									
Test		Statistic	p Val	ue					
Student's t	t	3.230132	Pr > t	0.0090					
Sign	М	5.5	$\Pr \ge M $	0.0010					
Signed Rank	S	33	Pr >= S	0.0010					

Significantly lower total Lead in Seq_3

total Lead (ug/L)

House_Letter	Student's t	Sign test	Signed Rank test	Outcome	
dt	NS	S	S	R1 < R3	
df	S	S	S	R1 < R3	
bs	S	0.0574	S	R1 > R3	
bf	NS	NS	NS	NA	
ct	S	S	S	R1 > R3	
by	NS	S	S	R1 > R3	
bc	NS	NS	NS	NA	
n	S	S	S	R1 < R3	
t	S	S	S	R1 > R3	
am	S	S	S	R1 > R3	
W	S	S	S	R1 > R3	
ak	S	S	S	R1 > R3	
bh	NS	NS	NS	NA	
dj	NS	NS	NS	NA	
dg	NS	NS	NS	NA	
dk	S	NS	S	R1 < R3	
g	S	S	S	R1 < R3	
m	S	S	S	R1 > R3	
cd	S	S	S	R1 < R3	
cf	NS	NS	NS	NA	
lotes:			Outcot	me.	
NS = not statistically significant		400/		1	
S = statistically	significant		40% S1	tatistically	IOW
NA = not apple	icable		30% r	no significa	ant c
#.#### = p-val	ue (used when	slightly above	0.05) 200/	tatistically	

1b. Residential sequential results (Lead)

Round 1 vs. Round 5 (15 paired homes)

(a measure of how things are now compared to the beginning)

Sequential Lead levels by Sampling Event Two-sample Nonparametric paired tests Round 1 minus Round 5

Flint, Michigan

The UNIVARIATE Procedure Variable: Diff_1_5 (R1 - R5)

House_Letter = am

Moments							
Ν	14	Sum Weights	14				
Mean	-0.4264286	Sum Observations	-5.97				
Std Deviation	1.69389223	Variance	2.86927088				
Skewness	0.31153172	Kurtosis	-0.451862				
Uncorrected SS	39.8463	Corrected SS	37.3005214				
Coeff Variation	-397.22766	Std Error Mean	0.45271174				

Basic Statistical Measures							
Location		Variability					
Mean	-0.42643	Std Deviation	1.69389				
Median	-0.72000	Variance	2.86927				
Mode	-	Range	5.56000				
		Interquartile Range	1.28000				

Tests for Location: Mu0=0									
Test	5	Statistic	p Value						
Student's t	t	-0.94194	Pr > t	0.3634					
Sign	М	-3	$\Pr \ge M $	0.1796					
Signed Rank	S	-19.5	Pr >= S	0.2412					

NO sig. differences

total Lead (ug/L)

House_Letter	Student's t	Sign test	Signed Ra	ank test	Outcome
df	NS	NS	NS	5	NA
bs	S	S	S		R1 > R5
bf	S	S	S		R1 > R5
bc	S	0.0574	S		R1 > R5
Z	S	S	S		R1 < R5
a	NS	NS	NS	5	NA
n	S	S	S		R1 > R5
am	NS	NS	NS	5	NA
W	S	S	S		R1 > R5
bh	NS	S	0.056	69	R1 < R5
dk	S	S	S		R1 > R5
at2	S	S	S		R1 > R5
m	S	S	S		R1 > R5
cd	S	S	S		R1 > R5
cf	S	S	S		R1 > R5
Notes:					
NS = not statis	tically significan	t			
S = statistically	significant				
NA = not apple	icable			Outcor	ne:
#.#### = p-val	lue (used when	slightly above	0.05)	67% st	atistically 1
				20% n	o significa
				2070 II	
				13% S	tatistically

Summary residential sequential results (Lead)

Comparing sequential sampling R1-R3 vs. R1-R5:

- the percentage of homes with statistically lower sequential Lead levels increased from 40% to 67%. Hence two thirds of the homes show a statistical decrease in Lead levels.
- the percentage of homes with statistically higher sequential Lead levels decreased from 30% to 13%.
- regardless of sampling event, two thirds of the homes have no sequential Lead levels above 15 ug/L. One third of the homes have one or more sequential Lead levels above 15 ug/L.

Summary residential sequential results (Lead)

Plumbing: no LSLs, but don't know between water main and house Lead/Phosphorus: DS samples don't explain differences

		R1 => R3	R1 => R5	One or more samples >15ug/L			DSPhosphorus (mg/L)			DS Lead (ug/L)		
House_Letter	Disposition	Stat. Signifigance	Stat. Signifigance	R1 > 15ug/L	R3 > 15ug/L R5 > 15ug		R1_P	R3_P	R5_P	R1_Pb	R3_Pb	R5_Pb
	Did Not Improve											
df	One of five final events show significant decrease (dk).	R1 < R3	R1 = R5	Above	Above	Above	0.61	0.96	1.02	1.2	0.97	1.1
dk	DK had one sample (seq #17) >15ug/L in R5. DG was	R1 < R3	R1 > R5	Above	Above	Above	0.54	0.97	1.37	5.25	4	1.8
dg	below 15ug/L except for sequence #1 for both R1	R1 = R3		Above	Above		0.93	1.01		0.5	0.5	
dt	and R3 (>50ug/L).	R1 < R3		Above	Above		1.13	0.92		1.5	2.29	
а			R1 = R5	Above		Above	1.04		0.99	6.27		3.3
	Improved											
bs	All final sequences were significantly lower with all	R1 > R3	R1 > R5	Above	Above	Below	1.38	0.92	1.08	2.1	1.7	1.1
n	samples below 15 ug/L.	R1 < R3	R1 > R5	Above	Above	Below	1.01	1.05	1.02	1.41	2.08	0.54
w		R1 > R3	R1 > R5	Above	Below	Below	1.09	0.96	0.99	2.45	0.5	0.5
ak		R1 > R3		Above	Below		0.98	0.96		0.5	0.5	
by		R1 > R3		Above	Below		1.15	0.15		0.5	0.5	
ct		R1 > R3		Above	Below		1.07	0.99		0.581	12.4	
dj		R1 = R3		Above	Below		1.12	0.97		0.5	0.5	
at			R1 > R5	Above		Below	1.09		1.01	3.18		1.9
	Low and Stayed Low											
am	5 of the 11 tests showed no change or significant decrease. The	R1 > R3	R1 = R5	Below	Below	Below	1.09	1.02	0.84	0.718	0.73	0.77
bc	results suggest random variabilty, as opposed to changes due to	R1 = R3	R1 > R5	Below	Below	Below	0.9	0.89	0.99	0.697	0.5	0.5
bf	conditions in the plumbing (given all of the results were	R1 = R3	R1 > R5	Below	Below	Below	1.27	1.02	1.02	1.69	2.67	1.4
cf	relatively low and stayed low).	R1 = R3	R1 > R5	Below	Below	Below	1.22	1.03	1.19	0.5	0.93	0.61
m		R1 > R3	R1 > R5	Below	Below	Below	1.04	1.02	1.15	1.33	0.89	0.5
g		R1 < R3		Below	Below		1.2	1.01		1.51	1.58	
t		R1 > R3		Below	Below		1.14	1.1		0.5	0.5	
	Mixed											
Z	Z final sequential samples >15ug/L for 4 samples (sample#3-6)		R1 < R5	Below		Above	1.2		1.02	0.5		0.6
cd	CD final sequential samples all >15ug/L	R1 < R3	R1 > R5	Below	Above	Below	1.14	0.94	0.99	0.61	3.13	2.01
bh	BH had one R5 sample >15ug/L (sample #1>25 ug/L)	R1 = R3	R1 < R5	Below	Below	Above	1.36	1.06	1	0.5	0.52	1.1

2. Residential DS (flushed distribution system) results (Lead and Phosphorus)

Lead

ŀ	K 1					
Quantiles (D	Quantiles (Definition 5)					
Quantile	Estimate	Qua				
100% Max	6.27	100%				
99%	6.27	99%				
95%	4.62	95%				
90%	2.50	90%				
75% Q3	1.33	75%				
50% Median	0.52	50%				
25% Q1	0.50	25%				
10%	0.50	10%				
5%	0.50	5%				
1%	0.35	1%				
0% Min	0.35	0% N				
]					

Extreme Observations					
Lowest		Highest			
Value	Obs	Value	Obs		
0.35	69	3.50	59		
0.35	25	4.62	19		
0.50	73	5.25	60		
0.50	72	6.17	5		
0.50	71	6.27	35		

R2		
Quantiles	(Definition 5)	
Quantile	Estimate	
100% Max	31.20	
99%	31.20	
95%	2.90	
90%	1.99	
75% Q3	1.30	
50% Media	n 0.56	
25% Q1	0.50	
10%	0.50	
5%	0.50	
1%	0.50	
0% Min	0.50	

Extreme Observations					
Low	Lowest		est		
Value	Obs	Value Obs			
0.5	104	1.96	81		
0.5	103	1.99	82		
0.5	98	2.16	91		
0.5	97	2.90	105		
0.5	96	31.20	100		

Quantiles (Definition 5)					
Quantile	Estimate				
100% Max	41.000				
99%	41.000				
95%	5.500				
90%	4.900				
75% Q3	3.130				
50% Median	1.585				
25% Q1	0.500				
10%	0.500				
5%	0.500				
1%	0.500				
0% Min	0.500				

R3

Extreme Observations					
Lowest		Highest			
Value	Obs	Value	Obs		
0.5	146	4.90	130		
0.5	140	5.35	109		
0.5	138	5.50	141		
0.5	136	12.40	122		
0.5	134	41.00	121		

Quantiles (Definition 5)		
Quantile	Estimate	
100% Max	11.00	
99%	11.00	
95%	4.50	
90%	3.40	
75% Q3	2.04	
50% Median	1.08	
25% Q1	0.50	
10%	0.50	
5%	0.32	
1%	0.20	
0% Min	0.20	

R4

Extreme Observations					
Lowest		Highest			
Value	Obs	Value	Obs		
0.20	157	3.4	196		
0.26	164	4.4	187		
0.32	193	4.5	173		
0.45	186	7.0	185		
0.50	194	11.0	169		

Quantiles (Definition 5)			
Quantile Estimat			
100% Max	42.000		
99%	8.500		
95%	3.100		
90%	2.480		
75% Q3	1.700		
50% Median	0.915		
25% Q1	0.500		
10%	0.500		
5%	0.500		
1%	0.260		
0% Min	0.250		

R5

Extreme Observations					
Lowest		High	est		
Value	Obs	Value	Obs		
0.25	273	3.80	279		
0.26	274	4.48	254		
0.27	272	4.87	271		
0.38	284	8.50	236		
0.48	283	42.00	261		

Lead

Phosphorus

R1					R2	2		
Quantiles (Definition 5)			Quant	tiles (l	Definitio	n		
Quanti	ile	Estir	nate	Quanti	ile	Estir	Estim	
100% N	lax		1.71	100% N	lax		1	
99%			1.71	99%			1	
95%			1.30	95%			1	
90%			1.22	90%			1	
75% Q	3		1.15	75% Q3			1	
50% M	edian		1.09	50% Median		1		
25% Q	1		0.98	25% Q1		1		
10%			0.90	10%			1	
5%			0.87	5%			0	
1%			0.54	1%		0		
0% Mir	ı		0.54	0% Mir	ı	(
Extreme Observations		Extre	me O	bservati	0			
Lowest Highest		est	Lowest		High	e		
Value	Obs	Value	Obs	Value	Obs	Value	(
0.54	60	1.27	15	0.95	84	1.15		

54

52

13

14

1.30

1.36

1.38

1.71

7

41

28

58

0.61

0.87

0.87

0.88

Quantiles (Definition 5)						
uanti	ile	Estir	Estimate			
00%	lax		1.28			
9%			1.28			
5%			1.20		-	
0%			1.17		-	
5% Q	3		1.14			
0% M	edian		1.11			
5% Q	1		1.04			
0%			1.00			
%			0.99			
%			0.95			
% Min			0.95			
Extre	me Ol	bservati	ons			
Low	est	High	est			
alue	Obs	Value	Obs		١	
0.95	84	1.15	108		Γ	
0.99	81	1.17	77			
1.00	107	1.19	105			
1.00	76	1.20	92			
1.03	99	1.28	93		ſ	

R3		
Quantiles (Definition 5)		
Quantile	Estimate	
100% Max	1.14	
99%	1.14	
95%	1.10	
90%	1.06	
75% Q3	1.04	
50% Median	1.01	
25% Q1	0.96	
10%	0.89	
5%	0.81	
1%	0.15	
0% Min	0.15	
Extreme Observations		

Extreme Observations			
Lowest		Highest	
Value	Obs	Value	Obs
0.15	123	1.06	137
0.73	112	1.08	130
0.81	121	1.10	127
0.87	148	1.10	143
0.89	124	1.14	111

Quantiles (Definition 5)		
Quantile	Estimate	
100% Max	1.200	
99%	1.200	
95%	1.100	
90%	1.070	
75% Q3	1.030	
50% Median	0.985	
25% Q1	0.935	
10%	0.870	
5%	0.840	
1%	0.820	
0% Min	0.820	

R4

Extreme Observations			
Lowest		Highest	
Value	Obs	Value	Obs
0.82	173	1.07	192
0.84	188	1.09	190
0.84	182	1.10	163
0.86	154	1.12	183
0.87	166	1.20	151

Quantiles (Definition 5)		
Quantile	antile Estimate	
100% Max	1.370	
99%	1.370	
95%	1.220	
90%	1.190	
75% Q3	1.100	
50% Median	1.025	
25% Q1	1.010	
10%	0.990	
5%	0.980	
1%	0.840	
0% Min	0.840	

R5

Extreme Observations			
Lowest		Highest	
Value	Obs	Value	Obs
0.84	214	1.19	240
0.88	220	1.20	234
0.98	230	1.22	199
0.99	239	1.25	238
0.99	218	1.37	226

Phosphorus

Summary residential DS (flushed distribution system) results:

Lead has a very low percent of values above 15 ug/L, and small confidence limits. Only three sampling events, DS_2, DS_3, and DS_5, had concentrations above 15 ug/L and that occurred only once for each sampling event. Hence, it appears that elevated levels of Lead in homes is highly unlikely to come from the water main, i.e., much more likely to come from interior plumbing and/or the service line.

Compared to Lead, Phosphorus has a higher percent of values with concentrations less than 1.0 mg/L. (Where 1.0 mg/L is the minimum residual phosphorus concentration requirement set by the State for the City of Flint distribution system samples.) The percent of Phosphorus samples with concentrations less than 1.0 mg/L by sampling event ranges from 6 to 56%.

3. Residential sequential results (Lead)

R1 vs. R3 vs. R4 vs. R5 (all homes)

Proportion of Lead Sequential samples greater than 15 ug/L [by Sequential sampling event] Flint, Michigan

Proportion of Lead Sequential samples greater than 30 ug/L [by Sequential sampling event] Flint, Michigan

