

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

December 19, 2016

MEMORANDUM

SUBJECT:	Statistical Analysis of Human Studies for the Human Studies Review Board : Meeting of January 25-26, 2017
FROM:	Timothy F. McMahon, Ph.D. Risk Assessment and Science Support Branch Antimicrobials Division (7510P)
THRU:	Timothy Leighton, Team Leader The Risk Assessment and Science Support Branch Antimicrobials Division (7510P)
TO:	Steven Weiss, Chief StevelUkur Risk Assessment and Science Support Branch Antimicrobials Division (7510P)

The attached memorandum from Dr. Jonathan Cohen, ICF International, discusses the statistical analysis of four scientific papers that the Agency identified as relevant for determining a point of departure for the chemical methylisothiazolinone. The Agency will present three of the four papers to the Human Studies Review Board (HSRB) for their review and recommendations. Based on EPA's review of the scientific and ethical conduct of one study discussed in the attached memo (Isaksson et al, *Contact Dermatitis*, 70, 238-260, 2014), EPA has chosen not to rely on this study; therefore, EPA will not present the research in the Isaksson article to the HSRB for consideration. EPA is presenting the information in the attached memo to the HSRB for use in its review of the three scientific papers that will be presented (Lundov et al., Yazar et al., Zachariae et al.).

The statistical analyses provided in the published papers were not able to be reproduced in their entirety as discussed in the attachment by Dr. Cohen; therefore, EPA is not relying on the statistical conclusions of the papers. Instead, EPA is proposing to use the results of the repeated open application test (ROAT) portion of the Lundov et al. paper to identify a No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) for an elicitation threshold for methylisothiazolinone, with results of Yazar et al. and Zachariae et al. providing a weight of evidence.

Memora	andum

То:	Diana Hsieh, Tim Leighton, EPA
From:	Jonathan Cohen, ICF
Date:	November 22, 2016
Re:	EPA C140001, WA 3-98. Statistical Reviews of Four Repeat Open Application Test Papers

1. Introduction and Summary

ICF was asked to review the statistical methods used in four studies of contact allergies to methylisothiazolinone (MI) and methylchloroisothiazolinone (MCI), as follows:

Lundov *et al*, 2011. Methylisothiazolinone contact allergy and dose-response relationships. *Contact Dermatitis*, 64, 330-336.

Isaksson *et al,* 2014. Repeat open application test with methylisothiazolinone in individuals sensitive to methylchloroisothiazolinone/ methylisothiazolinone. *Contact Dermatitis,* 70, 238-260.

Yazar *et al*, 2015. Methylisothiazolinone in rinse-off products causes allergic contact dermatitis: a repeated open-application study. *British Journal of Dermatology*, 173, 115-122.

Zachariae *et al*, 2006. An evaluation of dose/unit area and time as key factors influencing the elicitation capacity of methylchloroisothiazolinone/ methylisothiazolinone (MCI/MI) in MCI/MI-allergic patients. *Contact Dermatitis*, 55, 160-166

For each of these four papers, ICF reviewed and attempted to reproduce the statistical analyses. Each section of this memorandum summarizes the statistical review and includes the output of the SAS program used to evaluate the statistical methods. The SAS programs used are provided as attachments.

2. Lundov et al

Eleven MI-allergic individuals were patch tested with 12 different doses of MI without phenooxyethanol and with the same 12 doses of MI with phenooxyethanol. The doses ranged from 0.0105 μ g/cm² MI to 60 μ g/cm² MI. The same test subjects were tested using a repeated

open application test (ROAT) at doses of 0.0105, 0.105, and 0.21 μ g/cm² MI twice daily for 21 days.

- 1. To model the patch test results without and with phenooxyethanol, logistic regression models were fitted. These models are of the form log {P(Response)/P(No Response)} = $\alpha + \beta \log(dose)$, where log denotes the natural logarithm. The logistic regression models appear to have been fitted separately to the dose-response data without and with phenooxyethanol. The comparison of the two curves in their Figure 2 is graphical and does not take into account the fact that the data are likely to be correlated since the same test subjects were tested at multiple doses without or with phenooxyethanol. A preferred statistical comparison would be to use a model with a random subject effect to account for these possible correlations. This model would be of the form: log {P(Response)/P(No Response)} = $\alpha + \beta \log(dose) + \text{Subject}$, where "Subject" is the random subject effect (normally distributed with a mean of zero), and the intercept and/or the slope could be different for the tests without and with phenooxyethanol. This model cannot be fitted without access to the raw data since the detailed results for each subject are not shown.
- 2. A Wilcoxon rank(ed) sum test was used to compare the results of the patch tests without and with phenooxyethanol. The difference was not statistically significant. It is not obvious how this statistical test would have been conducted since it is not clear how to perform such a test to take into account the 12 different doses and also the possible correlations between the measurements on the same subjects. Alternative statistical tests cannot be applied without access to the raw data.
- 3. A better statistical test for comparing the patch tests without and with phenooxyethanol is to use a logistic regression model.of the form log {P(Response)/P(No Response)} = α + δ (phen) + β log(dose) + Subject, where phen = 1 for the tests with phenooxyethanol and phen = 0 for the tests without phenooxyethanol. This model cannot be fitted without access to the raw data since the detailed results for each subject are not shown. If the random subject effect can be ignored, then the fitted model shown in the SAS output (p. 26) gives an estimated value of δ = 0.0841, with a p-value of 0.8375, showing that the difference between the patch tests without and with phenooxyethanol is not statistically significant.
- 4. A Spearman ranked correlation test was used to test for correlations between the threshold doses from the patch tests without and with phenooxyethanol. The correlation was statistically significant (p = 0.002). This statistical test cannot be reproduced without access to the raw data and the threshold doses for each subject. The authors wrongly conclude that the strong ranked correlation implies that there are no differences in the threshold doses. In fact a strong correlation would also be found if the threshold dose without phenooxyethanol is approximately proportional to the threshold dose with phenooxyethanol, or if the differences were approximately constant, even if those threshold doses were not the same. A much better statistical approach would be to use a one-sample Wilcoxon rank sum test of the eleven differences between the thresholds for the same subject, testing if the median difference is zero.

- 5. Table 3 of the paper presents the eliciting doses for the patch tests without and with phenooxyethanol. For example, ED₉₅ is the estimated dose such that the probability of a response is 95%, based on the fitted logistic regression model. The estimates for ED₉₅ are 18 (95% confidence interval 6.3 362 without phenooxyethanol and 15 (5.6 227) with phenooxyethanol. Using SAS software and the data shown in their Table 2 I was unable to reproduce the estimates and confidence intervals. For example, as shown in the SAS output below (p. 23), the SAS estimates for ED₉₅ are 22 (confidence interval 11.4 71.1 without phenooxyethanol and 19 (10.1 59.7) with phenooxyethanol (p. 18). These differences in the ED estimates are surprisingly large. It is not clear from the paper how the logistic regression models were fitted and how the confidence intervals for the eliciting doses were derived. SAS uses Fieller's method to compute Fiducial limits.
- 6. In their Table 4, the authors compare the patch and ROAT test results for the same dose per application and show that the response rates are significantly different (p-value 0.023) at doses of 0.21 and 0.105 µg/cm² but not significantly different (p-value 0.48) at a dose of 0.0105 µg/cm². Using SAS, the results given on pp 5, 6, and 8 for the same McNemar's test give similar but different p-values of 0.016, 0.016, and 0.50 using an exact two-sided test. The McNemar test is for the null hypothesis that the response rates for the two tests are the same. This statistical test is valid for cases where the same subject is given the same treatment so that the treatment results are not independent for the same subject.
- 7. Figures 3 and 4 of the paper comparing the patch and ROAT test logistic regressions are inconsistent because Figure 3 appears to show the patch tests without phenooxyethanol and Figure 4 appears to show the patch tests with phenooxyethanol. Since the ROAT tests used phenooxyethanol, the Figure 3 analyses are not relevant.
- 8. The logistic regression of the ROAT test results has high uncertainty because the logistic regression was only fitted to three dose levels and so numerous curves with different shapes could be fit to the same data. Even if the dose-response model formulation is correct, the estimate parameters have wide confidence intervals. The SAS analysis (p. 11) shows that the estimated slope of log(dose) is 0.73 with a 95% confidence interval 0.097 to 1.366 (p-value 0.024).
- 9. A visual comparison was made between the logistic regression models for the patch and ROAT tests and the authors suggest that the slopes (coefficient of log dose) are similar. A quantitative statistical analysis is preferred. The ideal approach would use a logistic regression including a subject effect to take into account possible correlations between data from the same subject. Without access to the raw data, this comparison cannot be performed. In the SAS program we fitted a model of the form log {P(Response)/P(No Response)} = $\alpha + \beta \log(dose)$, where α and β are allowed to differ between the patch and ROAT tests, but the potential subject effect is ignored. The pvalue for testing that the slopes are the same was 0.1152 (pp. 29-30), suggesting that the slopes are not statistically significantly different.

10. Under the assumption that the slopes are the same for the patch test (with phenooxyethanol) and ROAT tests, the authors derived the conversion formula $ED_{xx}(ROAT) = 0.0362 \times ED_{xx}$ (patch test). The ideal approach would use a logistic regression including a subject effect to take into account possible correlations between data from the same subject. In the SAS program we obtained a similar formula by fitting a logistic regression model and ignoring the potential subject effect. The fitted model was of the form log {P(Response)/P(No Response)} = $\alpha + \delta(ROAT) + \beta \log(dose)$, where ROAT = 1 for the ROAT test and ROAT = 0 for the patch test with phenooxyethanol. In particular this model assumes that the slopes β are the same for the patch and ROAT tests. The estimated values are $\alpha = -0.9172$, $\beta = 1.1996$, and $\delta =$ 4.0120. Using this model, it follows that $ED_{xx}(ROAT) = F \times ED_{xx}$ (patch test), where F = exp $(-\delta/\beta)$ = 0.0353, which is close to the author's estimate of 0.0362. The authors also suggested that the conversion factor F is close to the value 0.0296 obtained from analyses of experiments with nickel and MDBGN. In the SAS program we test whether F = 0.0362 by testing if log(F) = $(-\delta/\beta)$ = log(0.0296). This is the same as testing if D = δ + $\beta \log(0.0296) = 0$. From the fitted model, a 95% confidence interval for D is -0.779 to 1.222, so the hypothesis that F = 0.0362 is not rejected at the 5% level.

In summary, we were unable to reproduce several of the reported statistical analyses in the Lundov et al paper so the analysis of the study is not reliable. It would be best if the raw data could be obtained and analyzed so that potential correlations between data collected on the same subject could be accounted for.

2.1. Statistical analyses

Table of patch by roat			
patch	roat		
Frequency Percent Row Pct Col Pct	N	Y	Total
N	9 81.82 81.82 100.00	2 18.18 18.18 100.00	11 100.00
Y	0 0.00 0.00	0 0.00 0.00	0 0.00
Total	9 81.82	2 18.18	11 100.00

Statistics for Table of patch by roat

McNemar's Test		
Statistic (S)	2.0000	
DF	1	
Asymptotic Pr > S	0.1573	
Exact Pr >= S	0.5000	

Simple Kappa Coefficient		
Карра	0.0000	
ASE	0.0000	
95% Lower Conf Limit	0.0000	
95% Upper Conf Limit	0.0000	

Sample Size = 11

11:36 Tuesday, December 20, 2016 6

dose=0.105

Table of patch by roat			
patch	roat		
Frequency Percent Row Pct Col Pct	Z	Y	Total
N	4	7	11
	36.36	63.64	100.0
	36.36	63.64	0
	100.0	100.0	
	0	0	
Y	0	0	0
	0.00	0.00	0.00
	•	•	
	0.00	0.00	
Total	4	7	11
	36.36	63.64	100.0
			0

Statistics for Table of patch by roat

McNemar's Test		
Statistic (S) 7.0000		
DF	1	
Asymptotic Pr > S	0.0082	
Exact Pr >= S	0.0156	

11:36 Tuesday, December 20, 2016 7

Statistics for Table of patch by roat

dose=0.105

Simple Kappa Coefficient	
Карра	0.0000
ASE	0.0000
95% Lower Conf Limit	0.0000
95% Upper Conf Limit	0.0000

Sample Size = 11

11:36 Tuesday, December 20, 2016 8

dose=0.21	
-----------	--

Table of patch by roat				
patch		roat		
Frequency Percent Row Pct Col Pct	N	Y	Total	
N	4 36.36 36.36 100.0 0	7 63.64 63.64 100.0 0	11 100.00	
Y	0 0.00 0.00	0 0.00 0.00	0 0.00	
Total	4 36.36	7 63.64	11 100.00	

Statistics for Table of patch by roat

McNemar's Test		
Statistic (S) 7.0000		
DF	1	
Asymptotic Pr > S	0.0082	
Exact Pr >= S	0.0156	

11:36 Tuesday, December 20, 2016 9

Statistics for Table of patch by roat

dose=0.21

Simple Kappa Coefficient		
Карра	0.0000	
ASE	0.0000	
95% Lower Conf Limit	0.0000	
95% Upper Conf Limit	0.0000	

Sample Size = 11

11:36 Tuesday, December 20, 2016 10

type=roat

Model Information			
Data Set	WORK.A		
Events Variable	responses		
Trials Variable	n		
Number of Observations	3		
Number of Events	16		
Number of Trials	33		
Name of Distribution	Logistic		
Log Likelihood	-19.81056912		

Number of Observations Read	3
Number of Observations Used	3
Number of Events	16
Number of Trials	33

Algorithm converged.

Type III Analysis of Effects				
	Wald			
Effect	DF Chi-Square Pr > ChiSc			
Ln(dose)	1	5.1097	0.0238	

11:36 Tuesday, December 20, 2016 11

type=roat

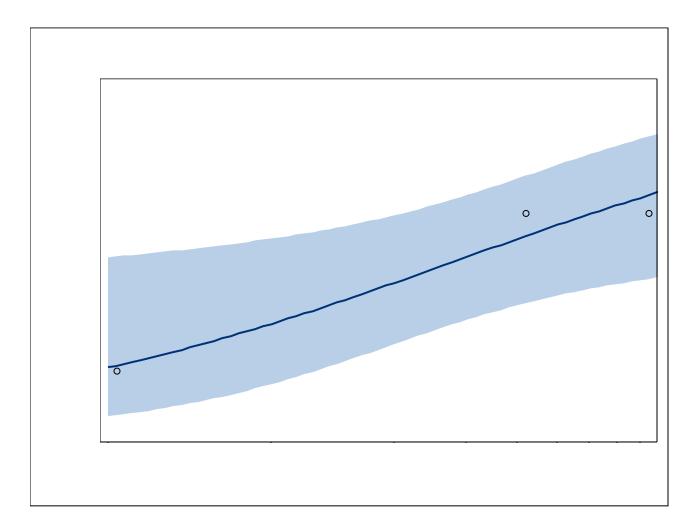
Analysis of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	95% Standard Confidence Error Limits		Chi- Square	Pr > ChiSq	
Intercept	1	1.9305	0.9257	0.1162	3.7448	4.35	0.0370
Ln(dose)	1	0.7318	0.3237	0.0973	1.3663	5.11	0.0238

Probit Model in Terms of Tolerance Distribution				
MU SIGMA				
-2.6380508 1.36650528				

Estimated Covariance Matrix for Tolerance Parameters			
MU SIGMA			
MU	0.274809	-0.009498	
SIGMA	-0.009498	0.365448	

11:36 Tuesday, December 20, 2016 12

type=roat


Probit Analysis on Ln(dose)				
Probability	Ln(dose) 95% Fiducial Limits			
0.05	-6.6616	-33.2852	-4.6275	
0.10	-5.6406	-25.6537	-4.0314	
0.25	-4.1393	-14.5447	-3.0435	
0.50	-2.6381	-4.8108	-0.6805	
0.75	-1.1368	-2.2169	8.8225	
0.90	0.3645	-1.2164	19.9190	
0.95	1.3855	-0.6182	27.5484	

11:36 Tuesday, December 20, 2016 13

type=roat

Probit Analysis on dose				
Probability	dose	95% Fiducial Limits		
0.05	0.00128	3.503E-15	0.00978	
0.10	0.00355	7.2234E-12	0.01775	
0.25	0.01593	4.82306E-7	0.04767	
0.50	0.07150	0.00814	0.50637	
0.75	0.32085	0.10895	6785	
0.90	1.43975	0.29629	447411061	
0.95	3.99699	0.53891	9.20716E11	

11:36 Tuesday, December 20, 2016 15

type=with

Model Information			
Data Set	WORK.A		
Events Variable	responses		
Trials Variable	n		
Number of Observations	12		
Number of Events	62		
Number of Trials	132		
Name of Distribution	Logistic		
Log Likelihood	-37.88198782		

Number of Observations Read	12
Number of Observations Used	12
Number of Events	62
Number of Trials	132

Algorithm converged.

Type III Analysis of Effects				
Effect	Wald			
Effect	DF Chi-Square Pr > ChiS			
Ln(dose)	1	34.1056	<.0001	

E.

11:36 Tuesday, December 20, 2016 16

type=with

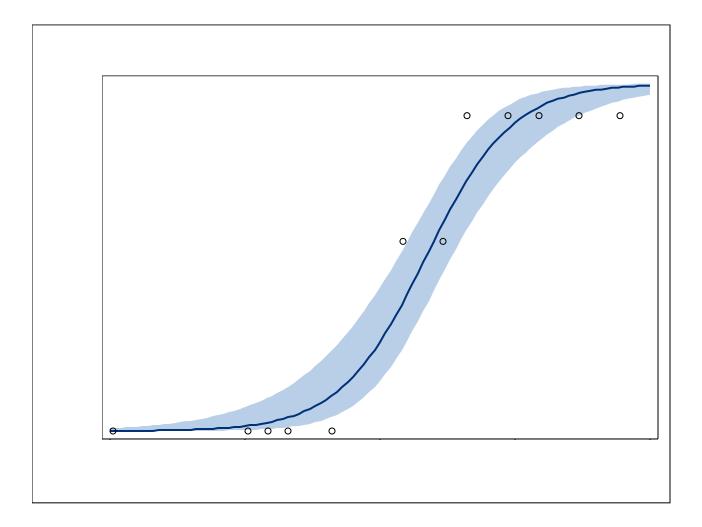
Analysis of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard95% ConfidenceChi-ErrorLimitsSquare				Pr > ChiSq
Intercept	1	-1.0629	0.3640	-1.7764	-0.3494	8.52	0.0035
Ln(dose)	1	1.3599	0.2329	0.9035	1.8163	34.11	<.0001

	el in Terms of Distribution
MU	SIGMA
0.78160315	0.73534068

Estimated Covariance Matrix for Tolerance Parameters					
	MU SIGMA				
MU	0.047086	-0.003135			
SIGMA	-0.003135	0.015854			

11:36 Tuesday, December 20, 2016 17

type=with


Probit Analysis on Ln(dose)					
Probability	Ln(dose)	Ln(dose) 95% Fiducial Limits			
0.05	-1.38356	-2.65910	-0.69459		
0.10	-0.83411	-1.86065	-0.25465		
0.25	-0.02625	-0.72270	0.42820		
0.50	0.78160	0.31128	1.21501		
0.75	1.58946	1.15981	2.18728		
0.90	2.39731	1.86953	3.29834		
0.95	2.94677	2.31732	4.08896		

11:36 Tuesday, December 20, 2016 18

type=with

Probit Analysis on dose					
Probability	y dose 95% Fiducial Limits				
0.05	0.25068	0.07001	0.49928		
0.10	0.43426	0.15557	0.77519		
0.25	0.97409	0.48544	1.53449		
0.50	2.18497	1.36518	3.37032		
0.75	4.90109	3.18931	8.91092		
0.90	10.99358	6.48525	27.06780		
0.95	19.04432	10.14840	59.67777		

11:36 Tuesday, December 20, 2016 20

type=without

Model Information		
Data Set	WORK.A	
Events Variable	responses	
Trials Variable	n	
Number of Observations	12	
Number of Events	61	
Number of Trials	132	
Name of Distribution	Logistic	
Log Likelihood	-39.32244176	

Number of Observations Read	12
Number of Observations Used	12
Number of Events	61
Number of Trials	132

Algorithm converged.

Type III Analysis of Effects					
Effe et	Wald				
Effect	DF	Chi-Square	Pr > ChiSq		
Ln(dose)	1	34.5089	<.0001		

11:36 Tuesday, December 20, 2016 21

type=without

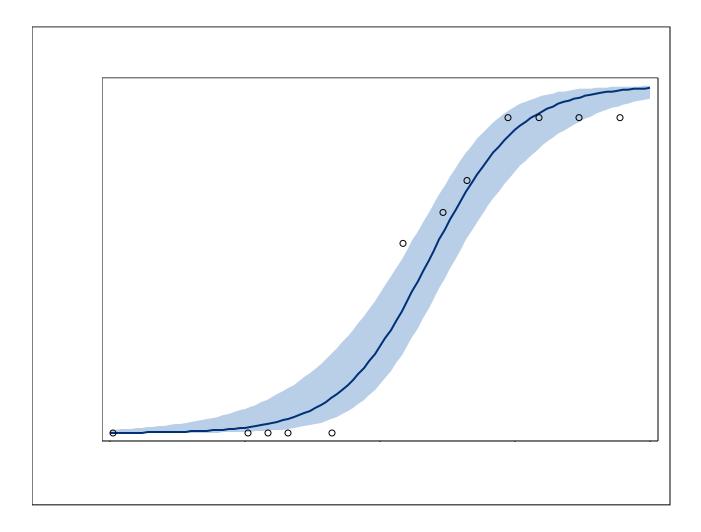
Analysis of Maximum Likelihood Parameter Estimates							
Parameter	ParameterDFEstimateStandard95% ConfidenceChi-EstimateErrorLimitsSquarePr > 0					Pr > ChiSq	
Intercept	1	-1.1007	0.3602	-1.8067	-0.3948	9.34	0.0022
Ln(dose)	1	1.3111	0.2232	0.8737	1.7486	34.51	<.0001

Probit Model in Terms of Tolerance Distribution		
MU	SIGMA	
0.83950969	0.7626936	

Estimated Covariance Matrix for Tolerance Parameters					
	MU SIGMA				
MU	0.048487	-0.002978			
SIGMA -0.002978 0.016857					

11:36 Tuesday, December 20, 2016 22

type=without


Probit Analysis on Ln(dose)					
Probability	bility Ln(dose) 95% Fiducial Limits				
0.05	-1.40620	-2.70739	-0.70136		
0.10	-0.83630	-1.88125	-0.24494		
0.25	0.00161	-0.70390	0.46344		
0.50	0.83951	0.36450	1.28075		
0.75	1.67741	1.23918	2.29181		
0.90	2.51532	1.97211	3.44460		
0.95	3.08521	2.43563	4.26364		

11:36 Tuesday, December 20, 2016 23

type=without

Pr	Probit Analysis on dose				
Probability	dose	dose 95% Fiducial Limits			
0.05	0.24507	0.06671	0.49591		
0.10	0.43331	0.15240	0.78275		
0.25	1.00161	0.49465	1.58953		
0.50	2.31523	1.43980	3.59936		
0.75	5.35170	3.45277	9.89279		
0.90	12.37055	7.18581	31.33068		
0.95	21.87216	11.42296	71.06853		

Model Information			
Data Set	WORK.A		
Events Variable	responses		
Trials Variable	n		
Number of Observations	24		
Number of Events	123		
Number of Trials	264		
Name of Distribution	Logistic		
Log Likelihood	-77.21587102		

Number of Observations Read	24
Number of Observations Used	24
Number of Events	123
Number of Trials	264

Class Level Information				
Name Levels Values				
type 2		with		
without				

Algorithm	
converged.	

Compare patch tests with vs without

The Probit Procedure

Type III Analysis of Effects			
Effect	WaldDFChi-SquarePr > Chi		
Ln(dose)	1	68.6378	<.0001
type	1	0.0420	0.8375

Analysis of Maximum Likelihood Parameter Estimates								
Parameter		D F	Estimate	Standard Error	95% Con Lim		Chi- Square	Pr > ChiSq
Intercept		1	-1.1241	0.3297	-1.7704	-0.4778	11.62	0.0007
Ln(dose)		1	1.3351	0.1611	1.0192	1.6509	68.64	<.0001
type	with	1	0.0841	0.4103	-0.7201	0.8884	0.04	0.8375
type	without	0	0.0000	•	•	•		

Compare patch with vs roat - assume same slope Tests if delta + slope*ln(0.0296) = 0

11:36 Tuesday, December 20, 2016 27

The Probit Procedure

Model Information			
Data Set	WORK.A		
Events Variable	responses		
Trials Variable	n		
Number of Observations	15		
Number of Events	78		
Number of Trials	165		
Name of Distribution	Logistic		
Log Likelihood	-58.84664328		

Number of Observations Read	15
Number of Observations Used	15
Number of Events	78
Number of Trials	165

Class L	Class Level Information				
Name Levels Values					
type 2 roat with					

Algorithm	
converged.	

Compare patch with vs roat - assume same slope Tests if delta + slope*ln(0.0296) = 0

11:36 Tuesday, December 20, 2016 28

The Probit Procedure

Type III Analysis of Effects			
Effect	WaldDFChi-SquarePr > Ch		Pr > ChiSq
Ln(dose)	1	44.2801	<.0001
type	1	26.5649	<.0001

Analysis of Maximum Likelihood Parameter Estimates									
Parameter		D F	Estimate	Standard Error	95% Con Lim		Chi- Square	Pr > ChiSq	
Intercept		1	-0.9172	0.3198	-1.5439	-0.2905	8.23	0.0041	
Ln(dose)		1	1.1996	0.1803	0.8462	1.5529	44.28	<.0001	
type	roat	1	4.0120	0.7784	2.4863	5.5376	26.56	<.0001	
type	with	0	0.0000				•		

	Estimate								
Label	Estimate	Standard Error	z Value	Pr > z	Alpha	Lower	Upper		
deltatest	0.2214	0.5106	0.43	0.6646	0.05	-0.7793	1.2221		

Model Information					
Data Set	WORK.A				
Events Variable	responses				
Trials Variable	n				
Number of Observations	15				
Number of Events	78				
Number of Trials	165				
Name of Distribution	Logistic				
Log Likelihood	-57.69255694				

The FREQ Procedure

Number of Observations Read	15
Number of Observations Used	15
Number of Events	78
Number of Trials	165

Class Level Information							
Name Levels Values							
type	2	roat with					

Algorithm	
converged.	

Type III Analysis of Effects								
EffectDFChi-SquarePr > ChiS								
Ln(dose)	1	27.5122	<.0001					
type	1	9.0563	0.0026					
Ln(dose)*type	1	2.4809	0.1152					

The FREQ Procedure

Analysis of Maximum Likelihood Parameter Estimates									
Parameter		D F	Estimate	Standard Error	95% Confidence Limits		Chi-Square	Pr > ChiSq	
Intercept		1	-1.0629	0.3640	-1.7764	-0.3494	8.52	0.0035	
Ln(dose)		1	1.3599	0.2329	0.9035	1.8163	34.11	<.0001	
type	roat	1	2.9934	0.9947	1.0438	4.9430	9.06	0.0026	
type	with	0	0.0000						
Ln(dose)*type	roat	1	-0.6281	0.3988	-1.4097	0.1535	2.48	0.1152	
Ln(dose)*type	with	0	0.0000	•	•	•			

3. Isaksson et al

Fifteen test subjects were tested with two sets of creams using a repeated open application test (ROAT). One of the creams contained parabens. The other cream contained MI. Each cream was applied (on different arms) twice daily for 2 weeks. Of the 15 subjects, 9 were found to have contact allergy to MI based on a patch test and 6 were found to have contact allergy to MCI/MI based on a patch test. The paper is not clear about whether any of the subjects reacted to the cream containing parabens. According to the paper ""a positive ROAT result is equivalent to dermatitis on skin exposed to MI" and "McNemar's test was used to compare the ROAT outcome between the MI-treated area and the paraben-treated area." For the statistical analyses we assume that there were no reactions to the paraben cream.

 McNemar's test was applied to test if the probability of a reaction on the ROAT using MI is higher than the probability of a reaction on the ROAT using paraben. The proportion of subjects reacting to the ROAT with MI were 8/15 for all subjects, 5/9 for MI-allergic subjects, and 6/9 for MCI/MI-allergic subjects. The one-sided p-values reported in the paper were 0.004, 0.031, and 0.016, respectively. These p-values agree with the results calculated using the SAS program (see pp. 31, 35, and 33). (One-sided p-values are the reported two-sided p-values divided by 2).

For this paper we were able to reproduce the statistical analyses by assuming no reaction to the paraben ROAT.

The FREQ Procedure

3.1. Statistical Results

Table of roatmi by roatparaben							
roatmi	ro	oatparabe	n				
Frequency Percent Row Pct Col Pct	0	1	Total				
0	7 46.67 100.00 46.67	0 0.00 0.00	7 46.67				
1	8 53.33 100.00 53.33	0 0.00 0.00	8 53.33				
Total	15 100.00	0 0.00	15 100.00				

Statistics for Table of roatmi by roatparaben

The FREQ Procedure

Statistics for Table of roatmi by roatparaben

McNemar's Test					
Statistic (S)	8.0000				
DF	1				
Asymptotic Pr > S	0.0047				
Exact Pr >= S	0.0078				

Simple Kappa Coefficient					
Карра	0.0000				
ASE	0.0000				
95% Lower Conf Limit	0.0000				
95% Upper Conf Limit	0.0000				

Sample Size = 15

McNemar tests MCIMI allergic subjects Divide p-values by 2

The FREQ Procedure

Table of roatmi by roatparaben							
roatmi	ro	roatparaben					
Frequency Percent Row Pct Col Pct	0	1	Total				
0	3 33.33 100.00 33.33	0 0.00 0.00	3 33.33				
1	6 66.67 100.00 66.67	0 0.00 0.00	6 66.67				
Total	9 100.00	0 0.00	9 100.00				

Statistics for Table of roatmi by roatparaben

McNemar's Test		
Statistic (S)	6.0000	
DF	1	
Asymptotic Pr > S	0.0143	
Exact Pr >= S	0.0313	

McNemar tests MCIMI allergic subjects Divide p-values by 2

The FREQ Procedure

Statistics for Table of roatmi by roatparaben

Simple Kappa Coefficient		
Карра	0.0000	
ASE	0.0000	
95% Lower Conf Limit	0.0000	
95% Upper Conf Limit	0.0000	

Sample Size = 9

McNemar tests MI allergic subjects Divide p-values by 2

The FREQ Procedure

Table of roatmi by roatparaben			
roatmi	roatparaben		
Frequency Percent Row Pct Col Pct	0	1	Total
0	4	0	4
	44.44	0.00	44.44
	100.00	0.00	
	44.44		
1	5	0	5
	55.56	0.00	55.56
	100.00	0.00	
	55.56	•	
Total	9	0	9
	100.00	0.00	100.00

Statistics for Table of roatmi by roatparaben

McNemar's Test		
Statistic (S)	5.0000	
DF	1	
Asymptotic Pr > S	0.0253	
Exact Pr >= S	0.0625	

4. Yazar et al

Nineteen MI-allergic subjects and nineteen controls without MI-allergy were tested for their reactions to a liquid soap on each of their arms using a ROAT for 21 days. The soap was applied five times a day. 10 of the MI-allergic subjects used 1 liquid soap with 100 ppm MI on one arm and a non-MI soap on the other arm. 9 of the MI-allergic subjects used a liquid soap with 50 ppm MI on one arm and a non-MI soap on the other arm. All 19 controls used a liquid soap with 100 ppm MI on one arm and a non-MI soap on the other arm. The ROAT tests were performed after confirmatory patch testing to ensure that the MI-allergic subjects responded to the MI patch and the controls did not.

- Fisher's exact test was used to test whether the proportions of MI-allergic subjects reacting to 100 ppm MI was the same as the proportion of control subjects reacting to 100 ppm MI. The response rates were 10/10 for the MI-allergic subjects and 0/19 for the control subjects. The reported p-value was 5 x 10⁻⁸, which agrees with the results calculated using the SAS program (p. 44).
- 2. Fisher's exact test was used to test whether the proportions of MI-allergic subjects reacting to 50 ppm MI was the same as the proportion of control subjects reacting to 50 ppm MI. Although the control subjects were not tested using 50 ppm MI, the analysis in the paper must have assumed that the control subjects did not react to 50 ppm MI since they failed to react to 100 ppm MI. On that basis, the response rates were 7/9 for the MI-allergic subjects and 0/19 for the control subjects. The reported p-value was 0.00003, which agrees with the results calculated using the SAS program (p. 44).
- 3. McNemar's test was used to test whether the probability of a reaction to the patch test for the MI-allergic subjects exposed to a dose of 0.48 μ g/cm² in both the patch and ROAT tests is the same as the probability of a reaction to the ROAT test for the same dose. For several of the subjects using 100 ppm MI, the calculated dose per application in the ROAT was a little lower than the nominal 0.48 μ g/cm² MI. The reported p-value was 0.00195. The paper reports the McNemar test as showing that the higher reactivity to the ROAT was statistically significant. However, if the McNemar test is properly performed as a one-sided test, the p-value is 0.0010. The results for the two-sided test agree with the results calculated using the SAS program (p. 45)..
- 4. McNemar's test was used to test whether the probability of a reaction to the patch test for the MI-allergic subjects is the same as the probability of a reaction to the ROAT test for a dose of at most 0.48 μg/cm² which is the same as 100 ppm MI. For several of the subjects using 100 ppm MI, the calculated dose per application in the ROAT was a little lower than the nominal 0.48 μg/cm² MI. The reported p-value was 0.000122. The paper reports the McNemar test as showing that the higher reactivity to the ROAT was statistically significant. However, if the McNemar test is properly performed as a one-

sided test, the p-value is 0.000061. The results for 11:36 Tuesday, December 20, 2016 **37** the two-sided test agree with the results calculated using the SAS program (p. 47).

- 5. The Kendall's tau-b was used to measure the correlation between the threshold for the patch test and threshold for the ROAT test among the 17 MI-allergic subjects that reacted to the ROAT. The correlation coefficient was 0.381 (exact p-value 0.062, approximate p-value 0.036). The estimated correlation coefficient calculated in the SAS program (p. 48) was the same value, but the p-value was different (0.0569), likely due to different algorithms used to compute the p-value. The SAS program also gives the Spearman correlation coefficient, which has a similar value.
- 6. In the SAS program, we also calculated the Kendall's tau-b was used to measure the correlation between the threshold for the patch test and threshold for the ROAT test among all 19 MI-allergic subjects. For this purpose we assumed a very high value (999) for the ROAT threshold of the two subjects that did not react during the 21 days. The estimated correlation coefficient calculated in the SAS program was 0.317, and the p-value was 0.094 (p. 50). The SAS program also gives the Spearman correlation coefficient, which has a similar value.

For this paper we were able to reproduce the statistical analyses reasonably well. For the Fisher exact tests, we had to assume that the controls did not respond to 50 ppm since they did not respond to 100 ppm, a reasonable assumption. For the McNemar tests the text implied that a one-sided test was performed but the reported results were for a two-sided test.

4.1. Statistical Results

Simple Kappa Coefficient	
Карра	0.0000
ASE	0.0000
95% Lower Cof Limit	0.0000
95% Upper Conf Limit	0.0000

Table of group by response			
group	response		
Frequency Percent Row Pct Col Pct	0	1	Total
allergic	2	7	9
	7.14	25.00	32.14
	22.22	77.78	
	9.52	100.00	
control	19	0	19
	67.86	0.00	67.86
	100.00	0.00	
	90.48	0.00	
Total	21	7	28
	75.00	25.00	100.00

Statistics for Table of group by response

Statistic	DF	Value	Prob
Chi-Square	1	19.7037	<.0001
Likelihood Ratio Chi-Square	1	21.9561	<.0001
Continuity Adj. Chi-Square	1	15.7739	<.0001
Mantel-Haenszel Chi-Square	1	19.0000	<.0001
Phi Coefficient		-0.8389	
Contingency Coefficient		0.6427	
Cramer's V		-0.8389	
WARNING: 50% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.			

Exact tests

Assume no responses for controls at 50 ppm

11:36 Tuesday, December 20, 2016 39

The FREQ Procedure

Statistics for Table of group by response

dose=50

Pearson Chi-Square Test	
Chi-Square	19.703
	7
DF	1
Asymptotic Pr > ChiSq	<.0001
Exact Pr >= ChiSq	<.0001

Likelihood Ratio Chi-Square Test	
Chi-Square	21.956
	1
DF	1
Asymptotic Pr > ChiSq	<.0001
Exact Pr >= ChiSq	<.0001

Mantel-Haenszel Chi-Square Test	
Chi-Square	19.0000
DF	1
Asymptotic Pr > ChiSq	<.0001
Exact Pr >= ChiSq	<.0001

Exact tests

Assume no responses for controls at 50 ppm

11:36 Tuesday, December 20, 2016 40

The FREQ Procedure

Statistics for Table of group by response

dose=50

Fisher's Exact Test	
Cell (1,1) Frequency (F)	
Left-sided Pr <= F	<.0001
Right-sided Pr >= F	1.0000
Table Probability (P)	<.0001
Two-sided Pr <= P	<.0001

Sample Size = 28

Exact tests Assume no responses for controls at 50 ppm

11:36 Tuesday, December 20, 2016 41

The FREQ Procedure

dose=100

Table of group by response			
group	response		
Frequency Percent Row Pct Col Pct	0	1	Total
allergic	0	10	10
	0.00	34.48	34.48
	0.00	100.00	
	0.00	100.00	
control	19	0	19
	65.52	0.00	65.52
	100.00	0.00	
	100.00	0.00	
Total	19	10	29
	65.52	34.48	100.00

Statistics for Table of group by response

Statistic	DF	Value	Prob
Chi-Square	1	29.0000	<.0001
Likelihood Ratio Chi-Square	1	37.3628	<.0001
Continuity Adj. Chi-Square	1	24.7426	<.0001
Mantel-Haenszel Chi-Square	1	28.0000	<.0001
Phi Coefficient		-1.0000	
Contingency Coefficient		0.7071	

Exact tests

Assume no responses for controls at 50 ppm

11:36 Tuesday, December 20, 2016 42

The FREQ Procedure

Statistics for Table of group by response

dose=100

Statistic	DF	Value	Prob
Cramer's V		-1.0000	
WARNING: 25% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.			

Pearson Chi-Square Test	
Chi-Square	29.000 0
DF	1
Asymptotic Pr > ChiSq	<.0001
Exact Pr >= ChiSq	<.0001

Likelihood Ratio Chi-Square Test	
Chi-Square	37.362
	8
DF	1
Asymptotic Pr > ChiSq	<.0001
Exact Pr >= ChiSq	<.0001

Exact tests

Assume no responses for controls at 50 ppm

11:36 Tuesday, December 20, 2016 43

The FREQ Procedure

Statistics for Table of group by response

dose=100

Mantel-Haenszel Chi-Square Test				
Chi-Square 28.0000				
DF				
Asymptotic Pr > ChiSq	<.0001			
Exact Pr >= ChiSq	<.0001			

Fisher's Exact Test				
Cell (1,1) Frequency (F)				
Left-sided Pr <= F	<.0001			
Right-sided Pr >= F	1.0000			
Table Probability (P)	<.0001			
Two-sided Pr <= P	<.0001			

Sample Size = 29

Exact tests Assume no responses for controls at 50 ppm

11:36 Tuesday, December 20, 2016 44

	dos					
Obs	е	Table	Name1	Label1	cValue1	nValue1
1	50	Table group * response	Cell1_FREQ	Cell (1,1) Frequency (F)	2	2.000000
2	50	Table group * response	XPL_FISH	Left-sided Pr <= F	<.0001	0.00003040 4
3	50	Table group * response	XPR_FISH	Right-sided Pr >= F	1.0000	1.000000
4	50	Table group * response				
5	50	Table group * response	P_TABLE	Table Probability (P)	<.0001	0.00003040 4
6	50	Table group * response	XP2_FISH	Two-sided Pr <= P	<.0001	0.00003040 4
7	100	Table group * response	Cell1_FREQ	Cell (1,1) Frequency (F)	0	0
8	100	Table group * response	XPL_FISH	Left-sided Pr <= F	<.0001	4.9925087E- 8
9	100	Table group * response	XPR_FISH	Right-sided Pr >= F	1.0000	1.000000
10	100	Table group * response				
11	100	Table group * response	P_TABLE	Table Probability (P)	<.0001	4.9925087E- 8
12	100	Table group * response	XP2_FISH	Two-sided Pr <= P	<.0001	4.9925087E- 8

McNemar tests Doses =0.48 ug/cm2 Divide p-values by 2

The FREQ Procedure

Table of roat by patch				
roat		patch		
Frequency Percent Row Pct Col Pct	0	1	Total	
0	0 0.00 0.00	0 0.00	0 0.00	
1	10 100.0 0 100.0 0 100.0 0	0 0.00 0.00	10 100.0 0	
Total	10 100.0 0	0 0.00	10 100.0 0	

Statistics for Table of roat by patch

McNemar's Test				
Statistic (S) 10.0000				
DF	1			
Asymptotic Pr > S	0.0016			
Exact Pr >= S	0.0020			

McNemar tests Doses =0.48 ug/cm2 Divide p-values by 2

The FREQ Procedure

Statistics for Table of roat by patch

Simple Kappa Coefficient			
Карра	0.0000		
ASE	0.0000		
95% Lower Conf Limit	0.0000		
95% Upper Conf Limit	0.0000		

Sample Size = 10

McNemar tests Doses <= 0.48 ug/cm2 Divide p-values by 2

The FREQ Procedure

Table of roat by patch					
roat		patch			
Frequency Percent Row Pct Col Pct	0 1 Total				
0	2 10.53 100.0 0 12.50	0 0.00 0.00 0.00	2 10.53		
1	14 73.68 82.35 87.50	3 15.79 17.65 100.0 0	17 89.47		
Total	16 84.21	3 15.79	19 100.0 0		

Statistics for Table of roat by patch

McNemar's Test				
Statistic (S) 14.000				
	0			
DF 1				
Asymptotic Pr > S	0.0002			
Exact Pr >= S	0.0001			

McNemar tests Doses <= 0.48 ug/cm2 Divide p-values by 2

The FREQ Procedure

Statistics for Table of roat by patch

Simple Kappa Coefficient				
Карра 0.0432				
ASE	0.0381			
95% Lower Conf Limit	-0.0316			
95% Upper Conf Limit	0.1179			

Sample Size = 19

Correlations excluding 2 non-responses to ROAT

The CORR Procedure

11:36 Tuesday, December 20, 2016 49

2 Variables:	patch
	roat

	Simple Statistics					
Variable N Mean Std Dev Median Minimum Maximu						Maximum
patch	1 7	4.23176	4.34100	3.00000	0.48000	15.00000
roat	1 7	13.8652 9	5.55615	14.0000 0	6.60000	25.43000

Spearman Correlation Coefficients, N = 17 Prob > r under H0: Rho=0					
patch roat					
patch	1.00000	0.45216 0.0684			
roat	0.45216 0.0684	1.00000			

Kendall Tau b Correlation Coefficients, N = 17 Prob > tau under H0: Tau=0			
patch roa			
patch	1.00000	0.38111 0.0569	
roat	0.38111 0.0569	1.00000	

2 Variables:	patch
	roat

11:36 Tuesday, December 20, 2016 50

Simple Statistics						
Variable	able N Mean Std Dev Median Minimum Maxir					
patch	19	4.10211	4.11112	3.00000	0.48000	15.00000
roat	19	117.563	310.6588	14.6000	6.60000	999.00000
		68	8	0		

Spearman Correlation Coefficients, N = 19 Prob > r under H0: Rho=0			
patch roat			
patch	1.00000	0.38416 0.1044	
roat	0.38416 0.1044	1.00000	

Kendall Tau b Correlation Coefficients, N = 19 Prob > tau under H0: Tau=0			
patch roa			
patch	1.00000	0.31706 0.0942	
roat	0.31706 0.0942	1.00000	

5. Zachariae et al

Twenty-five MCI/MI-allergic patients and 10 control subjects were tested using a ROAT test for their reaction to MCI/MI. Each subject was exposed to a dose of 0.025 μ g/cm² per day for 4 weeks (ROAT1), followed by a wash-out period of at least four weeks, and then were exposed to a dose of 0.094 μ g/cm² per day for 4 weeks (ROAT2).

1. The reactions to the ROAT1 for the MCI/MI allergic patients and control group were compared using Fisher's exact test. The p-value for a difference in the probability of a reaction was 0.0835, agreeing with the calculations in the SAS program (p. 53).

- The reactions to the ROAT2 for the MCI/MI allergic 11:36 Tuesday, December 20, 2016 51 patients and control group were compared using Fisher's exact test. The p-value for a difference in the probability of a reaction was 0.00022, agreeing with the calculations in the SAS program (p. 57).
- 3. A logistic regression model including a random subject effect was used to compare the proportions of reactions to the ROAT1 and ROAT2 doses among MCI/MI-allergic patients. The observed proportions were 7/25 for ROAT1 and 14/25 for ROAT2. The reported p-value was < 0.0001. The details of the fitted logistic regression model were not given. A suitable model used in the SAS program is of the form log $\{P(\text{Response})/P(\text{No Response})\} = a + b \times \text{dose} + \text{Subject}, \text{ where Subject is assumed to}$ be a random subject effect that is normally distributed with a mean of zero. This takes into account the fact that the same subjects were tested with each dose. A logistic regression without including a subject effect gave a p-value of 0.0484 for the difference between the two doses (p. 61). Adding in a random subject effect to the model and using the SAS GLIMMIX procedure gave very different p-values depending upon the method used to fit the model. The Laplace method is often recommended for cases of binomial sampling where the number of measurements per subject is small; here we have 2 measurements per subject. The p-value using the Laplace method was 0.4936 (p. 65). The default method in SAS is the "Residual Pseudo-likelihood" method, which gives a p-value of 0.0407 (p. 69). The statistical literature does not make clear recommendations as to the preferred method. The fact that the standard error of the estimated variance between subjects was 3 times larger than the estimate for the Laplace method but about 70% of the estimated variance for the "Residual Pseudolikelihood" method suggests that the estimates from the default method are more stable.
- 4. As an alternative approach to compare ROAT1 and ROAT2, the SAS program includes a McNemar test. The p-value was 0.0078 for testing that a reaction to the ROAT is more likely with the higher dose (p. 58, a one-sided test).

For this paper, we were able to reproduce the Fisher exact tests, but could not reproduce the logistic regression analysis comparing the two doses, taking into account a possible subject effect. Differences between statistical software and methods used to fit generalized linear models with random effects can explain the large differences in those p-values.

5.1. Statistical Analyses

Table of group by response				
group	response			
Frequency Percent Row Pct Col Pct	0 1 Total			
allergic	18	7	25	
	51.43	20.00	71.43	
	72.00	28.00		
	64.29	100.00		
control	10	0	10	
	28.57	0.00	28.57	
	100.00	0.00		
	35.71	0.00		
Total	28	7	35	
	80.00	20.00	100.00	

11:36 Tuesday, December 20, 2016 52

Statistics for Table of group by response

Statistic	DF	Value	Prob
Chi-Square	1	3.5000	0.0614
Likelihood Ratio Chi-Square	1	5.3805	0.0204
Continuity Adj. Chi-Square	1	1.9688	0.1606
Mantel-Haenszel Chi-Square	1	3.4000	0.0652
Phi Coefficient		-0.3162	
Contingency Coefficient		0.3015	
Cramer's V		-0.3162	
WARNING: 25% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.			

11:36 Tuesday, December 20, 2016 53

Statistics for Table of group by response

dose=ROAT1

Pearson Chi-Square Test		
Chi-Square 3.50		
DF	1	
Asymptotic Pr > ChiSq	0.0614	
Exact Pr >= ChiSq	0.1554	

Likelihood Ratio Chi-Square Test		
Chi-Square 5.3805		
DF	1	
Asymptotic Pr > ChiSq	0.0204	
Exact Pr >= ChiSq	0.0835	

Mantel-Haenszel Chi-Square Test		
Chi-Square 3.400		
DF	1	
Asymptotic Pr > ChiSq	0.0652	
Exact Pr >= ChiSq	0.1554	

11:36 Tuesday, December 20, 2016 54

Statistics for Table of group by response

dose=ROAT1

Fisher's Exact Test		
Cell (1,1) Frequency (F)		
Left-sided Pr <= F	0.0715	
Right-sided Pr >= F	1.0000	
Table Probability (P)	0.0715	
Two-sided Pr <= P	0.0835	

Sample Size = 35

11:36 Tuesday, December 20, 2016 55

dose=ROAT2

Table of group by response			
group	response		
Frequency Percent Row Pct Col Pct	0	1	Total
allergic	11 31.43 44.00 52.38	14 40.00 56.00 100.00	25 71.43
control	10 28.57 100.00 47.62	0 0.00 0.00 0.00	10 28.57
Total	21 60.00	14 40.00	35 100.00

Statistics for Table of group by response

Statistic	DF	Value	Prob
Chi-Square	1	9.3333	0.0023
Likelihood Ratio Chi-Square	1	12.8143	0.0003
Continuity Adj. Chi-Square	1	7.1458	0.0075
Mantel-Haenszel Chi-Square	1	9.0667	0.0026
Phi Coefficient		-0.5164	
Contingency Coefficient		0.4588	
Cramer's V		-0.5164	
WARNING: 25% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.			

11:36 Tuesday, December 20, 2016 56

Statistics for Table of group by response

dose=ROAT2

Pearson Chi-Square Test		
Chi-Square	9.3333	
DF	1	
Asymptotic Pr > ChiSq	0.0023	
Exact Pr >= ChiSq	0.0056	

Likelihood Ratio Chi-Square Test		
Chi-Square	12.814	
	3	
DF	1	
Asymptotic Pr > ChiSq	0.0003	
Exact Pr >= ChiSq	0.0022	

Mantel-Haenszel Chi-Square Test		
Chi-Square	9.0667	
DF	1	
Asymptotic Pr > ChiSq	0.0026	
Exact Pr >= ChiSq	0.0056	

11:36 Tuesday, December 20, 2016 57

Statistics for Table of group by response

dose=ROAT2

Fisher's Exact Test		
Cell (1,1) Frequency (F)	11	
Left-sided Pr <= F	0.0019	
Right-sided Pr >= F	1.0000	
Table Probability (P)	0.0019	
Two-sided Pr <= P	0.0022	

Sample Size = 35

McNemar test ROAT1 vs ROAT2 Divide p-values by 2

The FREQ Procedure

Table of roat1 by roat2			
roat1	roat2		
Frequency Percent Row Pct Col Pct	0	1	Total
0	11 44.00 61.11 100.0 0	7 28.00 38.89 50.00	18 72.00
1	0 0.00 0.00 0.00	7 28.00 100.0 0 50.00	7 28.00
Total	11 44.00	14 56.00	25 100.0 0

Statistics for Table of roat1 by roat2

McNemar's Test		
Statistic (S) 7.0000		
DF	1	
Asymptotic Pr > S	0.0082	
Exact Pr >= S	0.0156	

McNemar test ROAT1 vs ROAT2 Divide p-values by 2

The FREQ Procedure

Statistics for Table of roat1 by roat2

Simple Kappa Coefficient		
Карра	0.4681	
ASE	0.1445	
95% Lower Conf Limit	0.1850	
95% Upper Conf Limit	0.7512	

Sample Size = 25

Logistic regressions No subject effect

11:36 Tuesday, December 20, 2016 60

The Probit Procedure

Model Information		
Data Set	WORK.C	
Dependent Variable	response	
Number of Observations	50	
Name of Distribution	Logistic	
Log Likelihood	-31.97207794	

Number of Observations Read	50
Number of Observations Used	50

Class Level Information		
Name	Levels	Values
dose	2	ROAT1 ROAT2
response	2	01

Response Profile		
Ordered Value	response	Total Frequency
1	1	21
2	0	29

PROC PROBIT is modeling the probabilities of levels of response having LOWER Ordered Values in the respon profile table.

Algorithm	
converged.	

Logistic regressions No subject effect

11:36 Tuesday, December 20, 2016 61

The Probit Procedure

Type III Analysis of Effects				
Effect	DF	Wald Chi-Square	Pr > ChiSq	
Lincet		Chi-Square		
dose	1	3.8966	0.0484	

	Analysis of Maximum Likelihood Parameter Estimates							
Parameter		DF	Estimate	Standard Error	95 Confi Lin	dence	Chi-Square	Pr > ChiSq
Intercept		1	0.2412	0.4029	۔ 0.5485	1.0309	0.36	0.5495
dose	ROAT1	1	-1.1856	0.6006	- 2.3628	- 0.0084	3.90	0.0484
dose	ROAT2	0	0.0000		•	•		

Model Information				
Data Set	WORK.C			
Response Variable	response			
Response Distribution	Binary			
Link Function	Logit			
Variance Function	Default			
Variance Matrix Blocked By	id			
Estimation Technique	Maximum Likelihood			
Likelihood Approximation	Laplace			
Degrees of Freedom Method	Containment			

	Class Level Information					
Class	Levels	Values				
dose	2	ROAT1 ROAT2				
id	25	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25				

Number of Observations Read	50
Number of Observations Used	50

Response Profile				
Ordered Value	response	Total Frequency		
1	0	29		
2	1	21		
The GLIMMIX procedure is modeling the probability that response='1'.				

Dimensions	
G-side Cov. Parameters	1
Columns in X	3
Columns in Z per Subject	1
Subjects (Blocks in V)	25
Max Obs per Subject	2

Optimization Information				
Optimization Technique	Dual Quasi- Newton			
Parameters in Optimization	3			
Lower Boundaries	1			
Upper Boundaries	0			
Fixed Effects	Not Profiled			
Starting From	GLM estimates			

The GLIMMIX Procedure

	Iteration History						
Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient		
0	0	4	59.300818288		3.388366		
1	0	2	58.418341539	0.88247675	1.592952		
2	0	3	58.020991027	0.39735051	0.459968		
3	0	4	57.428023719	0.59296731	0.50658		
4	0	4	57.137327381	0.29069634	0.22089		
5	0	4	57.049248702	0.08807868	0.100402		
6	0	3	57.034843311	0.01440539	0.083062		
7	0	3	57.030966223	0.00387709	0.024051		
8	0	3	57.030726845	0.00023938	0.015686		
9	0	3	57.030656278	0.00007057	0.000694		
10	0	3	57.030655655	0.00000062	0.000255		
11	0	3	57.030655563	0.00000009	0.000032		

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics				
-2 Log Likelihood	57.03			
AIC (smaller is better)	63.03			
AICC (smaller is better)	63.55			
BIC (smaller is better)	66.69			

Fit Statistics			
CAIC (smaller is better)	69.69		
HQIC (smaller is better)	64.04		

Fit Statistics for Conditional Distribution		
-2 log L(response r. effects)	12.22	
Pearson Chi-Square	6.76	
Pearson Chi-Square / DF	0.14	

Covariance Parameter Estimates			
Cov Parm Subject Estimate Err			
Intercept	id	15.9480	47.1381

Solutions for Fixed Effects						
Effect	iffect dose Estimate Error DF t Value					
Intercept		0.6103	1.3913	24	0.44	0.6648
dose	ROAT1	-3.4471	4.9580	24	-0.70	0.4936
dose	ROAT2	0				

Type III Tests of Fixed Effects				
	Num Den			
Effect	DF	DF	F Value	Pr > F
dose	1	24	0.48	0.4936

Model Information			
Data Set	WORK.C		
Response Variable	response		
Response Distribution	Binary		
Link Function	Logit		
Variance Function	Default		
Variance Matrix Blocked By id			
Estimation Technique	Residual PL		
Degrees of Freedom Method	Containment		

Class Level Information				
Class	Levels	Values		
dose	2	ROAT1 ROAT2		
id	25	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		

Number of Observations Read	50
Number of Observations Used	50

Response Profile			
Ordered Value	response	Total Frequency	
1	0	29	
2	1	21	
The GLIMMIX procedure is modeling the probability that response='1'.			

Dimensions		
G-side Cov. Parameters	1	
Columns in X	3	
Columns in Z per Subject	1	
Subjects (Blocks in V)	25	
Max Obs per Subject	2	

Optimization Information			
Optimization Technique	Newton-Raphson with Ridging		
Parameters in Optimization	1		
Lower Boundaries	1		
Upper Boundaries	0		
Fixed Effects	Profiled		
Starting From	Data		

The GLIMMIX Procedure

	Iteration History					
Iteration	Restarts	Subitera tions	Objective Function	Change	Max Gradient	
0	0	3	219.79173881	0.18508021	2.875E-7	
1	0	3	222.72612978	0.07948512	5.36E-10	
2	0	2	223.87340697	0.02690526	5.194E-7	
3	0	2	224.26111426	0.00865697	5.774E-9	
4	0	2	224.38511647	0.00272487	5.74E-11	
5	0	1	224.4240467	0.00085056	1.115E-6	
6	0	1	224.43618802	0.00026557	1.086E-7	
7	0	1	224.43997787	0.00008274	1.054E-8	
8	0	1	224.44115851	0.00002576	1.022E-9	
9	0	1	224.44152609	0.00000802	9.9E-11	
10	0	0	224.44164051	0.00000000	4.662E-6	

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics		
-2 Res Log Pseudo-Likelihood	224.4 4	
Generalized Chi-Square	31.66	
Gener. Chi-Square / DF	0.66	

Covariance Parameter Estimates							
Cov Parm	Subject	Estimate	Standard Error				
Intercept	id	2.1853	1.5297				

The GLIMMIX Procedure

Solutions for Fixed Effects									
Effect	dose	Estimate	Standard Error	DF	t Value	Pr > t			
Intercept		0.3156	0.5362	24	0.59	0.5616			
dose	ROAT1	-1.4534	0.6720	24	-2.16	0.0407			
dose	ROAT2	0			•				

Type III Tests of Fixed Effects								
	Num	Den						
Effect	DF	DF	F Value	Pr > F				
dose	1	24	4.68	0.0407				

•