

Ms. Carolyn Bury
U.S. Environmental Protection Agency
Land and Chemicals Division
Remediation and Re-use Branch
Corrective Action Section 2 – LU9J
77 West Jackson Blvd
Chicago, IL 60604

Arcadis U.S., Inc. 6723 Towpath Road P O Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 449 0017

Subject:

Former Koppers Wood-Treating Site – Carbondale, IL Groundwater Monitoring Network Modifications Report

ENVIRONMENT

www.arcadis.com

Date:

February 12, 2016

Dear Ms. Bury:

On behalf of Beazer East, Inc., enclosed please find the *Groundwater Monitoring Network Modifications Report* for the Former Koppers Wood-Treating Site in Carbondale, Illinois (the Site). This report documents the completion of groundwater monitoring network modifications at the Site, conducted in accordance with the final *Groundwater Monitoring Plan*, which was submitted to the United States Environmental Protection Agency (USEPA) on November 25, 2015, and approved by USEPA on December 15, 2015. The report also presents the analytical results for soil samples collected during drilling for certain of the new monitoring wells along the southern property boundary of the Site. The soil sampling and analysis work was completed at the request of USEPA, and in accordance with a scope of work submitted to the USEPA on September 17, 2015 and conditionally approved by USEPA on September 29, 2015.

Please contact Michael Slenska of Beazer (412 208 8867) or me if you have any

Contact:

David Bessingpas

Phone:

218 829 4607

Email:

david.bessingpas@arcadis.com

Our ref:

B0039321.0000

Sincerely,

Arcadis U.S., Inc.

questions or comments.

David Bessingpas Sr. Project Manager

David Bessingpas

Carolyn Bury, USEPA February 12, 2016

Copies:

Jim Moore, IEPA Michael Slenska, Beazer Jeffrey Holden, Arcadis Keith White, Arcadis Angie Gatchie, FTS

Beazer East, Inc.

GROUNDWATER MONITORING NETWORK MODIFICATIONS REPORT

Former Koppers Wood-Treating Site Carbondale, Illinois

February 2016

Keith a. Whit

Keith A. White, P.G. Principal Geologist

David Bessingpas Certified Project Manager

David Bessingpas

Jelly on

Kelly Hoehn

Environmental Scientist

GROUNDWATER MONITORING NETWORK MODIFICATIONS REPORT

Former Koppers Wood-Treating Site Carbondale, Illinois

Prepared for:

Beazer East, Inc.

Prepared by:

Arcadis U.S., Inc.

430 First Avenue North

Suite 720

Minneapolis

Minnesota 55401

Tel 612 339 9434

Fax 612 336 4538

Our Ref.:

B0039321.0000.00002

Date:

February 2016

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyms	and Abbreviations	iv
1	Introd	luction	1
2	Sumn	nary of Work	2
	2.1	Overview	2
	2.2	Soil Borings	2
		Soil Sampling and Analysis	
	2.4	Monitoring Well/Piezometer Installation	4
	2.5	Monitoring Well/Piezometer Development	5
	2.6	Monitoring Well Decommissioning	5
	2.7	Surface Water Gauge Installation	5
3	Refer	ences	6

TABLES

Table 1 Validated Soil Sample Analytical Data Summary

Table 2 Monitoring Well and Piezometer Construction Summary

Table 3 Monitoring Well and Piezometer Development Summary

FIGURE

Figure 1 Site Plan

APPENDICES

Appendix A Soil Boring and Monitoring Well/Piezometer Construction Logs

Appendix B Laboratory Analytical Report

Appendix C Data Review Report

Appendix D Illinois Environmental Protection Agency Well Completion Reports

Appendix E Illinois Department of Public Health Water Well Sealing Forms

ACRONYMS AND ABBREVIATIONS

Arcadis, U.S., Inc.

Beazer East, Inc.

bgs below ground surface

FTS Field & Technical Services, LLC

GMP Groundwater Monitoring Plan

IEPA Illinois Environmental Protection Agency

PID photoionization detector

pg/g picograms per gram

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

REDI Roberts Environmental Drilling, Inc.

Site Former Koppers Wood-Treating Site in Carbondale, Illinois

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEQ toxicity equivalent

USCS United Soil Classification System

USEPA United States Environmental Protection Agency

1 INTRODUCTION

On behalf of Beazer East, Inc. (Beazer), Arcadis U.S., Inc. (Arcadis) has prepared this *Groundwater Monitoring Network Modifications Report* to document the completion of groundwater monitoring network modifications at the Former Koppers Wood-Treating Site in Carbondale, Illinois (the Site), conducted in November and December 2015¹. The groundwater monitoring network modifications were completed in accordance with the final *Groundwater Monitoring Plan* (GMP), which was submitted to the United States Environmental Protection Agency (USEPA) on November 25, 2015 (Arcadis 2015b), and approved by USEPA on December 15, 2015 (USEPA 2015b).

In addition to summarizing the completed groundwater monitoring network modifications, this report also presents the analytical results for soil samples collected during drilling for certain of the new monitoring wells along the southern property boundary of the Site. The soil sampling and analysis work was completed at the request of USEPA, and in accordance with a scope of work submitted to the USEPA on September 17, 2015 (Arcadis 2015a) and conditionally approved by USEPA on September 29, 2015 (USEPA 2015a).

¹ With the exception of development of new piezometer P-10A, all work was completed in November and December 2015. Development of piezometer P-10A was completed on February 5, 2016, after allowing time for sufficient groundwater recharge following installation.

2 SUMMARY OF WORK

2.1 Overview

The groundwater monitoring network modifications activities completed at the Site consisted of the following:

- Drilling soil borings for new A/B-Unit monitoring well and piezometer² installations
- · Collecting and analyzing soil samples from pre-designated boring locations
- Installing and developing A/B-Unit monitoring wells and piezometers
- Decommissioning all existing C-Unit monitoring wells
- Installing surface water gauges

These tasks were conducted in accordance with the procedures outlined in the final GMP (Arcadis 2015b). Additional details regarding the completed scope of work are provided in Sections 2.2 through 2.7 below.

Soil boring drilling, monitoring well/piezometer installation, and monitoring well decommissioning were conducted by Roberts Environmental Drilling, Inc. (REDI) of Millstadt, Illinois, under the direction of Arcadis. Soil sampling and well development were conducted by Arcadis. Surface water gauges were installed by Wheetley Construction Company, LLC of Carbondale, Illinois, under the direction of Field & Technical Services, LLC (FTS). Survey of the newly installed monitoring wells, piezometers, and surface water gauges was conducted by Shawnee Professional Services of Vienna, Illinois.

Investigation-derived wastes generated during the field activities were managed as follows:

- Disposable investigation equipment, disposable personal protective equipment, and soil cuttings from hollow-stem auger soil borings were placed in 55-gallon drums and shipped off Site for disposal.
- Equipment cleaning fluids and purge water from well development were temporarily placed into 55gallon drums and subsequently discharged to the on-Site waste water treatment system.
- Steel protective casing and stainless steel riser sections from the decommissioned C-Unit monitoring wells were placed into a 10-cubic yard roll-off container and shipped off Site for disposal.
- Concrete pads from the decommissioned C-Unit monitoring wells were crushed on Site for reuse.

2.2 Soil Borings

Soil borings were drilled at 14 locations (Figure 1) between November 16 and 24, 2015. An all-terrain vehicle-mounted hollow-stem auger drill rig was used. Down-hole tooling consisted of a nominal 4.25-inch inside diameter hollow-stem auger to drill the borings, and nominal 2-inch outside diameter split-spoons

² While there is no difference in the construction of the monitoring wells and piezometers, the nomenclature "monitoring well" was used for locations that are designated for both water level measurement and sampling in the GMP, and the nomenclature "piezometer" was used for locations that are designated for water level measurement only in the GMP.

for soil sampling. Eight of the 14 borings were drilled to depths of 15 to 16 feet below ground surface (bgs), for the installation of "A-Unit" monitoring wells or piezometers³. The remaining six borings were drilled to depths of 36 to 48 feet bgs, for the installation of "B-Unit" monitoring wells. These B-Unit borings were advanced until split-spoon soil samples representative of the C-Unit (generally evidenced by dark gray silty clay) were obtained, at which point the borings were terminated.

With the exception of the borings drilled for A-Unit monitoring wells, which were blind-drilled following drilling of the adjacent borings for B-Unit monitoring wells, continuous soil samples were recovered from each boring. Recovered samples were screened with a photoionization detector (PID) and logged for soil type (using the United Soil Classification System [USCS]) and visual/olfactory evidence of impacts. Soil boring logs documenting the observations recorded during drilling are provided in Appendix A. No creosote-like product or creosote-like odors were observed during drilling of the soil borings.

As further discussed in Section 2.4, following drilling, all soil borings were converted to either monitoring wells or piezometers.

2.3 Soil Sampling and Analysis

At soil boring locations OW-210B, OW-211B, and P-11A (Figure 1), soil samples were collected for laboratory analysis from the 0- to 2-, 2- to 4-, 4- to 6-, 6- to 8-, and 8- to 10-foot bgs depth intervals. An additional sample was collected from the midpoint between 10 feet and the final boring depth at locations OW-210B (28-30 feet bgs) and OW-211B (26-28 feet bgs). Two blind duplicate samples were collected: DUP-01 (20151117) was collected from the 0- to 2-foot depth interval at P-11A, and DUP-02 (20151119) was collected from the 4- to 6-foot depth interval at OW-211B. Soil samples were submitted to Vista Analytical Laboratory in El Dorado Hills, California, for analysis of dioxins and furans using USEPA Method 8290. Samples were shipped to the laboratory using appropriate chain-of-custody procedures.

The dioxin/furan analytical results are summarized in Table 1, and the associated laboratory report is provided in Appendix B. The analytical data were reviewed for quality and completeness in accordance with the *Quality Assurance Project Plan* (QAPP; Arcadis 2008). A data review report (including completed chain-of-custody forms and corrected laboratory analytical data sheets) is provided in Appendix C. All results were deemed useable for their intended purpose.

As indicated in Table 1, one or more dioxin/furan congeners were detected in all 19 soil samples. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalent (TEQ) concentrations ranged from 0.03 to 127 picograms per gram (pg/g). As indicated in Table 1 and the summary table below, TCDD TEQ concentrations generally decrease as a function of depth:

arcadis.com

³ As discussed in the GMP (Arcadis 2015b), the "A/B-Unit" represents a single hydrostratigraphic unit, and consists mainly of fractured silty clay with frequent organics and occasional, discontinuous sand stringers. Consistent with prior convention, "A-Unit" wells and piezometers screen the water table in the upper portion of the A/B-Unit, while "B-Unit" wells and piezometers screen the bottom 10 feet of the A/B-Unit.

Depth Interval	TCDD TEQ Concentrations (pg/g)									
(feet bgs)	OW-210B	OW-211B	P-11A							
0-2	15.3	97.2	46.7 [127]							
2-4	3.48	17.7	13.4							
4-6	2.06	4.84 [3.89]	3.56 0.665							
6-8	0.292	0.419								
8-10	0.0567	0.855	0.218							
26-28	N/A	0.0332	N/A							
28-30	0.319	N/A	N/A							

Notes: [] = duplicate sample result, N/A = not applicable

2.4 Monitoring Well/Piezometer Installation

A total of five A-Unit monitoring wells (OW-208A, OW-209A, OW-210A, OW-211A, and OW-212A), three A-Unit piezometers (P-9A, P-10A, and P-11A), and six B-Unit monitoring wells (OW-207B, OW-208B, OW-209B, OW-210B, OW-211B, and OW-212B) were installed between November 16 and 24, 2015 (see Figure 1 for locations). The monitoring wells and piezometers were installed through the hollow-stem augers once the targeted depth was reached, in accordance with the procedures outlined in the *Monitoring Well Drilling and Installation Standard Operating Procedure*, which was provided as Appendix D to the final GMP (Arcadis 2015b).

Monitoring wells and piezometers were constructed with 2-inch diameter, 10-foot long, 0.010-inch slotted Schedule 40 polyvinyl chloride (PVC) screens, along with Schedule 40 PVC riser extending from the top of the screen to approximately 2 to 3 feet above ground surface. Each monitoring well and piezometer had a #10-20 filter sand pack extending from the bottom of the well to approximately 1 to 2 feet above the top of the screened interval. A 1- to 2-foot thick bentonite seal was placed over the sand pack, and the remaining annulus was sealed with cement grout to the ground surface.

The surface completions for the monitoring wells and piezometers consisted of an above-grade steel well protective casing, locking cover, and concrete pad. In addition, bollards (i.e., concrete-filled steel casings) were installed surrounding new monitoring wells OW-207B, OW-208A, and OW-208B, and existing wells OW-205A, OW-205B, OW-206A, and OW-207A, as protection from floating debris during Glade Creek flood events.

Construction details for each monitoring well and piezometer are summarized in Table 2. Well construction details are also included on the soil boring logs in Appendix A. Illinois Environmental Protection Agency (IEPA) Well Completion Reports were submitted to the IEPA on January 26, 2016, and are provided in Appendix D.

The locations, ground surface elevations, and top-of-inner casing elevations at the new monitoring wells and piezometers were surveyed on December 8, 2015. The surveyed locations are shown on Figure 1. The survey data are included in Table 2 and on the boring logs in Appendix A.

2.5 Monitoring Well/Piezometer Development

Following installation, the monitoring wells and piezometers were developed in accordance with the bailer method as outlined in Appendix E to the final GMP (Arcadis 2015b). The development process involved surging the well screens followed by repeated bailing to remove at least three well volumes of water, along with any entrained solids. The monitoring wells and piezometers were developed between December 7 and 9, 2015, with the exception of P-10A, which was developed on February 5, 2016, after allowing time for sufficient groundwater recharge following installation. Details of the monitoring well and piezometer development are presented in Table 3.

2.6 Monitoring Well Decommissioning

Seven C-Unit monitoring wells (OW-17C, OW-23C, OW-27C, OW-35C, OW-36C, R-13C, and R-14C)⁴ were decommissioned between November 21 and 25, 2015. Well decommissioning was performed via abandonment-in-place in accordance with Section 920.120 of the Illinois Water Well Construction Code, as well as the *Monitoring Well Decommissioning Standard Operating Procedure*, which was provided as Appendix A to the final GMP (Arcadis 2015b). This generally involved removal of the casing down to 2 feet bgs and tremie-grouting Portland cement to the surface. The concrete pad, protective casing, and concrete bollards were removed and the ground surface was restored to match the surrounding area. Illinois Department of Public Health Water Well Sealing Forms were submitted to the Jackson County Health Department on December 22, 2015, and are provided in Appendix E.

2.7 Surface Water Gauge Installation

Two new surface water gauges (GC-4 and GC-5; Figure 1) were installed on November 11, 2015. These two surface water gauges consist of concrete blocks (approximately 1-foot wide by 2-feet long by 2-feet tall) set into the bottom/side of Glade Creek. A new surface water monitoring point was also established at GC-3; Figure 1); however, the surface water elevation measuring point at this location was established as the top of an existing concrete culvert, so a concrete block was not needed at this location.

The locations and measuring point elevations of GC-3, GC-4, and GC-5 were surveyed on December 8, 2015. The surveyed locations are shown on Figure 1.

⁴ These represent all C-Unit monitoring wells that previously existed at the Site.

3 REFERENCES

Arcadis. 2008. Quality Assurance Project Plan. February 8.

Arcadis. 2015a. Email from D. Bessingpas (Arcadis) to C. Bury (USEPA) re: Carbondale Site – Well Network Modifications and Dioxin/Furan Soil Sampling SOW. September 17.

Arcadis. 2015b. *Groundwater Monitoring Plan*. Beazer East, Inc. Former Koppers Wood-Treating Site, Carbondale, Illinois. November 25.

USEPA. 2015a. Letter from C. Bury (USEPA) M. Slenska (Beazer) re: Proposed New Well, Piezometer, SW Gauge Locations; Soil Sampling of Soil Borings. September 29.

USEPA. 2015b. Letter from C. Bury (USEPA) to M. Slenska (Beazer) re: Approval of November 25, 2015 Groundwater Monitoring Plan. December 15.

TABLES

Table 1
Validated Soil Sample Analytical Data Summary
Former Koppers Wood-Treating Site
Carbondale, Illinois

Sample ID		OW-210B	OW-210B	OW-210B	OW-210B	OW-210B	OW-210B	OW-211B	OW-211B	OW-211B	OW-211B	OW-211B	OW-211B	P-11A
Depth (feet bgs)		0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	28 - 30	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	26 - 28	0 - 2
Sample Date	Units	11/16/15	11/16/15	11/16/15	11/16/15	11/16/15	11/16/15	11/19/15	11/19/15	11/19/15	11/19/15	11/19/15	11/19/15	11/17/15
1,2,3,4,6,7,8-HpCDD	pg/g	606	61.4	43.9	10.2	2.15 J	11.0	3,680 EJ	380	121 [108]	11.1	22.7	1.71 J	2,250 [6,660 D]
1,2,3,4,6,7,8-HpCDF	pg/g	43.9	0.797 J	1.13 J	0.725 J	0.115 J	0.251 J	735	8.61	2.60 [4.51]	0.452 J	1.14 J	0.217 U	293 [605]
1,2,3,4,7,8,9-HpCDF	pg/g	3.48	0.0982 U	0.117 U	0.120 U	0.0817 U	0.0956 U	45.6	0.678 J	0.138 U [0.272 U]	0.138 U	0.168 U	0.210 U	24.0 [44.5]
1,2,3,4,7,8-HxCDD	pg/g	2.99	0.198 U	0.192 U	0.112 U	0.129 U	0.162 U	29.5	1.80 J	0.732 J [0.666 J]	0.201 U	0.244 U	0.190 U	6.92 J [23.1 J]
1,2,3,4,7,8-HxCDF	pg/g	2.30 J	0.0957 U	0.0841 U	0.0871 U	0.0758 U	0.0902 U	27.6	0.351 J	0.0853 U [0.156 UX]	0.132 U	0.0939 U	0.0725 U	15.2 [33.8]
1,2,3,6,7,8-HxCDD	pg/g	9.93	0.263 J	0.196 U	0.117 U	0.128 U	0.167 U	101	3.14	0.971 J [1.20 J]	0.197 U	0.363 J	0.198 U	40.3 [99.0]
1,2,3,6,7,8-HxCDF	pg/g	0.873 J	0.0994 U	0.0882 U	0.0922 U	0.0707 U	0.0944 U	15.5	0.178 UX	0.0861 U [0.100 U]	0.136 U	0.0978 U	0.0711 U	5.35 [9.52]
1,2,3,7,8,9-HxCDD	pg/g	5.65	0.221 U	0.212 U	0.131 U	0.145 U	0.854 J	57.3	3.39	1.10 J [0.985 J]	0.231 U	0.280 U	0.227 U	12.0 J [40.2 J]
1,2,3,7,8,9-HxCDF	pg/g	0.441 J	0.151 U	0.126 U	0.128 U	0.108 U	0.131 U	5.07	0.195 U	0.127 U [0.152 U]	0.209 U	0.156 U	0.103 U	2.89 [6.65]
1,2,3,7,8-PeCDD	pg/g	1.73 J	0.118 U	0.181 U	0.130 UX	0.0986 U	0.118 U	12.2	0.740 J	0.188 UX [0.212 J]	0.118 J	0.155 UX	0.117 U	2.80 [6.25]
1,2,3,7,8-PeCDF	pg/g	1.22 J	0.0716 U	0.0832 U	0.0537 U	0.0509 U	0.0610 U	2.08 J	0.0598 U	0.0647 U [0.0782 U]	0.0537 U	0.0601 U	0.0515 U	6.89 [2.36 J]
2,3,4,6,7,8-HxCDF	pg/g	0.720 J	0.104 U	0.0877 U	0.0877 U	0.0780 U	0.0930 U	26.2	0.307 J	0.126 J [0.193 J]	0.148 U	0.0989 U	0.0740 U	4.47 [13.2]
2,3,4,7,8-PeCDF	pg/g	0.937 J	0.0674 U	0.0744 U	0.0492 U	0.0470 U	0.0608 U	5.88	0.0940 UX	0.0627 U [0.0827 U]	0.0549 U	0.0599 U	0.0443 U	4.37 [7.41]
2,3,7,8-TCDD	pg/g	0.355 UX	0.113 U	0.121 U	0.155 UX	0.0918 U	0.109 U	1.32	0.346 J	0.279 J [0.155 UX]	0.327 UX	0.248 UX	0.0842 U	0.607 [0.951]
2,3,7,8-TCDF	pg/g	0.838	0.0929 U	0.104 U	0.0870 U	0.0733 U	0.0941 U	1.12	0.0814 U	0.0700 U [0.0659 U]	0.0623 U	0.0750 U	0.0591 U	3.62 J [1.21 J]
OCDD	pg/g	14,300 EJ	9,440 EJ	5,370	604	113	401	33,500 EJ	39,400 EJ	10,100 EJ [7,480 EJ]	618	1,930	53.3	21,300 EJ [68,500 DJ]
OCDF	pg/g	314	5.42	6.68	4.51 J	0.378 J	1.19 J	3,040	40.0	11.4 [20.6]	1.78 J	4.58 J	0.319 J	2,020 [3,770]
Total HpCDD	pg/g	1,420	122	92.2	21.6	5.73	24.2	7,530	744	243 [212]	23.3	48.9	4.45	4,980 J [19,300 J]
Total HpCDF	pg/g	215	3.62	4.72	3.20	0.115	0.975	2,860	30.9	9.21 [16.4]	1.56	3.94	0.215	1,460 [2,980]
Total HxCDD	pg/g	156	2.87	5.88	7.91	2.81	2.55	851	31.7	23.3 [16.1]	18.2	11.1	0.889	559 [1,440]
Total HxCDF	pg/g	33.5	0.402	0.584	0.163	0.108 U	0.131	713	7.62	2.43 [3.90]	0.455	1.08	0.103 U	215 [538]
Total PeCDD	pg/g	34.1	0.118 U	1.13	0.872	1.36	0.412 UX	107	4.00	8.40 [4.10]	20.0	5.64	0.117 U	43.3 [82.5]
Total PeCDF	pg/g	10.2	0.0716 U	0.0832 U	0.0537 U	0.0509 U	0.0610 U	133	0.858	0.254 [0.448]	0.0650 UX	0.136	0.0515 U	48.4 [71.5]
Total TCDD	pg/g	34.4	0.113 U	0.121 U	0.950	0.675	0.395 UX	46.0	1.35	1.95 [1.65]	5.96	0.815	1.33	21.2 [29.2]
Total TCDF	pg/g	11.0	0.0929 U	0.272 UX	0.0870 U	0.0733 U	0.0941 U	26.6	0.437 UX	0.287 [0.138]	0.0623 U	0.106	0.0591 U	55.2 [20.6]
TCDD-TEQ	pg/g	15.3	3.48	2.06	0.292	0.0567	0.319	97.2	17.7	4.84 [3.89]	0.419	0.855	0.0332	46.7 [127]

G:\Project Docs\Div20\ccurtis-11324\CSC16\01716CDale\Table 1_Validated Soil Analytical Summary.xlsx

Table 1
Validated Soil Sample Analytical Data Summary
Former Koppers Wood-Treating Site
Carbondale, Illinois

Sample ID		P-11A	P-11A	P-11A	P-11A
Depth (feet bgs)		2 - 4	4 - 6	6 - 8	8 - 10
Sample Date	Units	11/17/15	11/17/15	11/17/15	11/17/15
1,2,3,4,6,7,8-HpCDD	pg/g	217	112	22.4	12.7
1,2,3,4,6,7,8-HpCDF	pg/g	3.41	8.56	2.14 J	1.05 J
1,2,3,4,7,8,9-HpCDF	pg/g	0.237 J	0.680 J	0.173 J	0.145 U
1,2,3,4,7,8-HxCDD	pg/g	0.636 J	0.574 J	0.199 U	0.169 U
1,2,3,4,7,8-HxCDF	pg/g	0.163 J	0.379 J	0.0870 U	0.0725 U
1,2,3,6,7,8-HxCDD	pg/g	1.07 J	1.53 J	0.571 J	0.171 U
1,2,3,6,7,8-HxCDF	pg/g	0.112 U	0.0837 U	0.0885 U	0.0752 U
1,2,3,7,8,9-HxCDD	pg/g	0.936 J	0.886 J	0.478 J	0.194 U
1,2,3,7,8,9-HxCDF	pg/g	0.156 U	0.122 U	0.139 U	0.113 U
1,2,3,7,8-PeCDD	pg/g	0.291 UX	0.263 J	0.213 J	0.113 UX
1,2,3,7,8-PeCDF	pg/g	0.0763 U	0.0645 U	0.0600 U	0.0545 U
2,3,4,6,7,8-HxCDF	pg/g	0.119 U	0.218 J	0.0947 U	0.0760 U
2,3,4,7,8-PeCDF	pg/g	0.0596 U	0.103 UX	0.0611 U	0.0597 U
2,3,7,8-TCDD	pg/g	0.118 U	0.295 J	0.100 U	0.210 UX
2,3,7,8-TCDF	pg/g	0.0881 U	0.0781 U	0.0857 U	0.0795 U
OCDD	pg/g	36,400 EJ	4,720	320	262 J
OCDF	pg/g	22.4	55.8	13.9	6.50
Total HpCDD	pg/g	483	268	52.9	31.5
Total HpCDF	pg/g	16.3	40.3	10.3	4.58
Total HxCDD	pg/g	12.7	21.0	21.0	6.27
Total HxCDF	pg/g	3.06	7.20	1.71	0.611
Total PeCDD	pg/g	0.252	1.23	18.9	4.25
Total PeCDF	pg/g	0.130	0.773 UX	0.136	0.0597 U
Total TCDD	pg/g	0.118 U	2.62	3.05	1.55
Total TCDF	pg/g	0.0881 U	1.64	0.0857 U	0.0795 U
TCDD-TEQ	pg/g	13.4	3.56	0.665	0.218

Definitions:

pg/g picograms per gram, or parts per trillion (ppt)

bgs below ground surface

TCDD 2,3,7,8 tetrachlorodibenzo-p-dioxin

TEQ Toxicity Equivalent, calculated using 2005 World Health Organization (WHO) Toxicity Equivalent Factors (TEFs), and assuming

non-detects equal zero

[] Analytical result for duplicate sample

Laboratory Qualifiers:

The result is based on analysis of a diluted sample

The amount detected is below the Low Calibration Limit

U Compound not detected; reported value is the sample-specific estimated detection limit

Validation Qualifiers:

DJ The result is based on analysis of a diluted sample and the amount detected is below the Low Calibration Limit; estimated value

EJ The amount detected is above the High Calibration Limit; estimated value

J Estimated value

UX Compound not detected; reported value is the estimated maximum possible concentration

G:\Project Docs\Div20\ccurtis-11324\CSC16\01716CDale\Table 1_Validated Soil Analytical Summary.xlsx

Table 2
Monitoring Well and Piezometer Construction Summary
Former Koppers Wood-Treating Site
Carbondale, Illinois

Well/ Piezometer ID	Date Installed	Northing ¹	Easting ¹	Surface Elevation (feet AMSL)	Top of Casing Elevation (feet AMSL)	Top of Bentonite Seal (feet bgs)	Top of Primary Filter Pack ² (feet bgs)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Well Diameter (inches)	Slot Size (inches)	Well Construction Materials
OW-207B	11/24/15	5609.993	8723.535	369.95	372.66	20.5	22.5	24.7	34.2	2	0.010	Schedule 40 PVC
OW-208A	11/23/15	5157.457	8978.953	368.10	370.58	2.5	4	5.2	14.7	2	0.010	Schedule 40 PVC
OW-208B	11/23/15	5153.611	8984.426	368.08	370.78	24	26	28.2	37.7	2	0.010	Schedule 40 PVC
OW-209A	11/18/15	4654.314	6340.697	395.27	398.00	2.5	4	5.2	14.7	2	0.010	Schedule 40 PVC
OW-209B	11/18/15	4651.993	6334.451	395.10	397.75	24.5	26.5	28.7	38.2	2	0.010	Schedule 40 PVC
OW-210A	11/17/15	3793.738	4156.199	393.81	396.40	3	4	5.2	14.7	2	0.010	Schedule 40 PVC
OW-210B	11/16/15	3797.299	4163.811	393.77	395.59	29	31	33.2	42.7	2	0.010	Schedule 40 PVC
OW-211A	11/19/15	3634.265	3764.454	394.55	397.04	2.5	3.5	5.2	14.7	2	0.010	Schedule 40 PVC
OW-211B	11/19/15	3630.876	3756.676	394.44	396.87	31	33	34.7	44.2	2	0.010	Schedule 40 PVC
OW-212A	11/20/15	5547.079	5033.001	390.50	393.24	2.5	4	5.2	14.7	2	0.010	Schedule 40 PVC
OW-212B	11/20/15	5548.232	5039.024	390.73	392.92	23.5	26	28.2	37.7	2	0.010	Schedule 40 PVC
P-9A	11/18/15	5248.840	7812.631	385.56	388.43	2.5	4	5.2	14.7	2	0.010	Schedule 40 PVC
P-10A	11/20/15	5123.623	7282.335	395.05	397.68	2.5	4	5.2	14.7	2	0.010	Schedule 40 PVC
P-11A	11/17/15	4089.851	4890.487	394.76	397.38	2.5	4	5.2	14.7	2	0.010	Schedule 40 PVC

Notes:

AMSL above mean sea level (elevations based on the North American Vertical Datum of 1988)

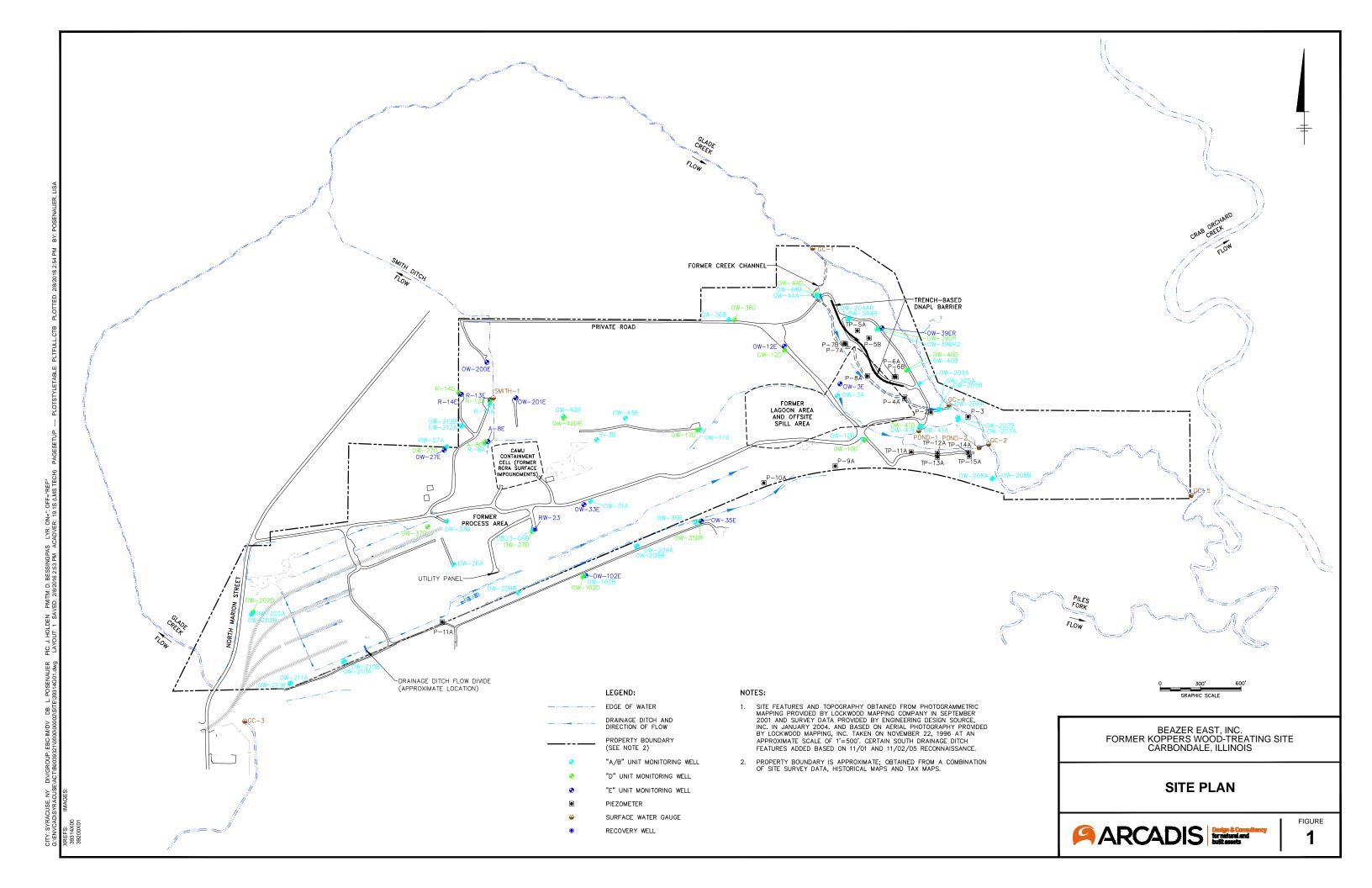
bgs below ground surface PVC polyvinyl chloride

1. Northing and easting based on a Site-specific coordinate system.

2. Primary filter pack consisted of #10-20 filter sand.

G:\Project Docs\Div20\ccurtis-11324\CSC16\01716CDale\Table 2_Well Construction Summary.xlsx

Table 3
Monitoring Well and Piezometer Development Summary
Former Koppers Wood-Treating Site
Carbondale, Illinois


Well/ Piezometer ID	Development Date	Pre-Development Water Level (feet btoc)	Pre-Development Total Depth (feet btoc)	Well Volume (gallons)	Volume Removed (gallons)	Well Volumes Removed	Post- Development Water Level (feet btoc)	Post- Development Total Depth (feet btoc)	Observations/Notes
OW-207B	12/09/15	5.61	36.54	4.9	25.0	5.1	32.14	37.33	Cloudy and turbid groundwater during development.
OW-208A	12/07/15	2.26	18.14	2.5	12.5	5.0	16.84	18.14	Slightly turbid groundwater during development.
OW-208B	12/09/15	1.35	41.30	6.4	30.0	4.7	34.91	41.35	Turbid to slightly turbid during development. Well developed dry.
OW-209A	12/07/15	4.02	18.16	2.4	11.5	4.8	13.45	18.16	Slightly turbid to clear groundwater during development.
OW-209B	12/09/15	3.87	37.44	5.4	26.0	4.8	26.34	41.13	Very turbid to less turbid groundwater during development.
OW-210A	12/07/15	6.99	18.00	1.8	10.5	5.8	16.41	18.01	Light brown, turbid groundwater during development.
OW-210B	12/08/15	5.35	44.35	6.2	32.0	5.2	28.32	45.97	Turbid to less turbid groundwater during development.
OW-211A	12/07/15	12.86	17.94	0.8	4.0	5.0	17.22	17.95	Clear groundwater during development.
OW-211B	12/08/15	8.74	44.60	5.7	30.0	5.3	23.44	47.37	Turbid groundwater during development.
OW-212A	12/08/15	6.73	18.27	1.8	9.0	5.0	14.51	18.27	Clear groundwater during development.
OW-212B	12/08/15	6.49	41.10	5.5	25.0	4.5	40.17	41.14	Cloudy turbid groundwater during development.
P-9A	12/07/15	11.66	18.16	1.0	5.5	5.5	15.44	18.16	Turbid groundwater during development.
P-10A	02/05/16	15.34	17.91	0.4	2.2	5.5	17.49	17.91	Slightly turbid to clear groundwater during development.
P-11A	12/07/15	12.53	17.74	0.8	4.5	5.6	16.80	17.75	Clear groundwater during development.

Note:

btoc below top of casing

G:\Project Docs\Div20\ccurtis-11324\CSC16\01716CDale\Table 3_Well Development Summary.xlsx

FIGURE

APPENDICES

APPENDIX A Soil Boring and Monitoring Well/Piezometer Construction Logs

Date Start/Finish: 11/23/2015-11/24/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5609.993 Easting: 8723.535

Casing Elevation: 372.65' AMSL

Borehole Depth: 36'

Surface Elevation: 369.95' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-207B

Client: Beazer East, Inc.

DEPTH	Sample Plip Nimber	Sample Null Null Del	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			/ell/Boring onstruction
- - - 370	-											Steel Protective cover Sand Drain
-		1 0-2	0.6	WH WH WH 7	NA	0.0		_	rk brown Silty CLAY, little Organics (leaves, roots), soft, moist. ht gray-brown soft Silty CLAY, trace Organics, plastic, soft, mo			Concrete Pad (0 to 0.5' bgs)
_		2 2-4	1.3	4 3 3 4	6	0.0					ш	
—5 365 _	3	3 4-6	1.5	2 3 4 5	7	0.1					ш	
-	- 2	4 6-8	1.8	2 4 4 6	8	0.0		Gr no	ay-brown Silty CLAY, trace fine subangular Gravel, trace oxidi: nplastic, moist.	zed lenses,	Ш	2" Sch 40 PVC Riser (2.7' ags to 24.7' bgs)
- - 10 360		5 8-1	0 1.7	2 3 4 5	7	0.0		Lig tra	ht gray-brown Silty CLAY, trace fine subangular Gravel, trace ce Oxidized lenses, nonplastic, moist.	fine Sand,	Ш	Neat Portland Cement Type I/II (0.5' bgs to 20.5' bgs)
- 10 360 -		6 10- ⁻	2 1.6	2 2 4 4	6	0.0			ht gray-brown Silty CLAY, trace fine subangular Gravel, trace ses, trace Organics (root scars), nonplastic, moist.	Oxidized	ш	
-	- 7	7 12-1	4 2.0	1 3 3 5	6	0.0		Gr	ay-brown Silty CLAY, trace oxidized lenses, plastic, soft, moist	t.	ш	
- 15 355	-	3 14-	6 2.0	2 3 5	8	0.0	•		ht gray Silty CLAY, trace fine angular Gravel, trace oxidized le ist.	enses, firm,		
9/	√ F	२ ८	ΆΙ		S	Design of for natu built as	& Consural and sets		marks: ags= above ground surface; bgs = be WH= Weight of Hammer; AMSL= Abo Elevations reference to NAVD 88. No coordinate system.	ove Mean Sea	a Level; ppm= p	parts per million

Date Start/Finish: 11/23/2015-11/24/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5609.993 Easting: 8723.535 Casing Elevation: 372.65' AMSL

Borehole Depth: 36'

Surface Elevation: 369.95' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-207B

Client: Beazer East, Inc.

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Bo Construc	-
-	-	9	16-18	2.0	2 3 6 6	9	0.0					
20	-	10	18-20	2.0	2 3 4 7	7	0.0				Ш	— Neat Portland Cement Type I/II (0.5' bgs to 20.5' bgs)
_ 20 :	350 -	11	20-22	2.0	3 4 4 3	8	0.0			Gray-brown Sitty CLAY, oxidized lens with fine subangular Gravel at 22.4' , firm, low plasticity, moist.		 2" Sch 40 PVC Riser (2.7' ags to 24.7' bgs) Bentonite (20.5' bgs to 22.5' bgs)
		12	22-24	2.0	4 7 7 8	14	0.0					
— 25	345 —	13	24-26	2.0	4 7 9 10	16	0.0			Reddish brown to gray Silty CLAY, trace black Organics, stiff, low plasticity, moist.		
_		14	26-28	2.0	6 6 7 9	13	0.0					
-	-	15	28-30	2.0	5 5 5	10	0.0			Reddish brown to gray Silty CLAY, trace black Organics, trace fine subangular Gravel, stiff, low plasticity, moist.		 Silica Sand (22.5' bgs to 34.5' bgs) 2" Sch 40 PVC 0.010" Slot
- 30	340 -	16	30-32	2.0	3 2 3 4	5	0.0			Reddish brown to gray Silty CLAY, trace black Organics, trace fine subangular Gravel, light gray lenses of Clay, stiff, low plasticity, moist.		Screen (24.7' bgs to 34.2' bgs)
-	-	17	32-34	2.0	3 3 4 7	7	0.0	•		Reddish brown to gray Silty CLAY, trace black Organics, trace fine subangular Gravel, light gray lenses of Clay, soft, low plasticity, moist. Reddish brown to gray Silty CLAY, trace black Organics, trace fine subangular Gravel, light gray lenses of Clay, soft, non-plastic, moist.		
	-	18	34-36	2.0	4	7	0.0			Gravel, light gray lenses of Clay, soft, non-plastic, moist. Dark Gray Silty CLAY, massive, non-plastic, soft to firm, moist.		— 2" Sch 40 PVC End Cap (34.2' bgs to 34.5' bgs)
<u> </u>	A				4			& Consurat and sets		Dark Gray Silty CLAY, massive, non-plastic, soft to firm, moist. Remarks: ags= above ground surface; bgs = below ground s WH= Weight of Hammer; AMSL= Above Mean Se Elevations reference to NAVD 88. Northing and Ea coordinate system.	a Level; ppm= parts p	End Cap (34.2' bgs to 34.5' bgs) licable/Available er million

Date Start/Finish: 11/23/2015-11/24/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5609.993 Easting: 8723.535

Casing Elevation: 372.65' AMSL

Borehole Depth: 36'

Surface Elevation: 369.95' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-207B

Client: Beazer East, Inc.

DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
33 333	18	34-36	2.0	4	8	0.0				Native material collapse (34.5' bgs to 36' bgs)
	-			5					End of boring at 36.0' bgs.	bgs to 36 bgs)
- 40 330	-									
- 45 325 ·	- - -									
- 50 320 ·	-									
ĢΔ	\F	RC	Δ[) SIC	S	Design for natu built as	& Consural and sets		marks: ags= above ground surface; bgs = below ground WH= Weight of Hammer; AMSL= Above Mean Elevations reference to NAVD 88. Northing and coordinate system.	Sea Level; ppm= parts per million

Drilling Company: Roberts Environmental Drilling, Inc.

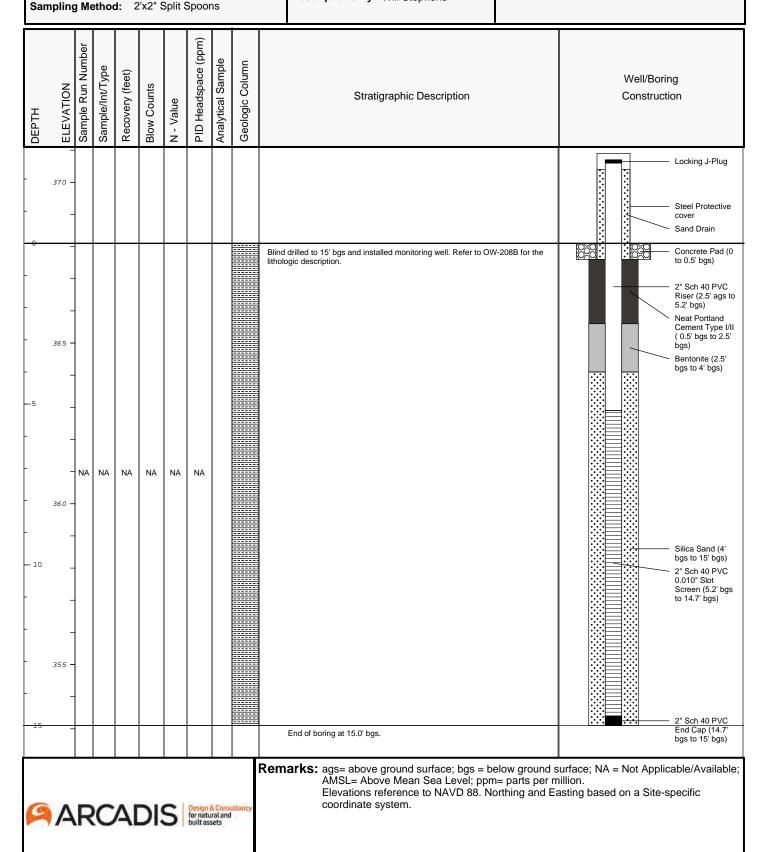
Driller's Name: Brian Schilling
Drilling Method: Hollow Stem Auger
Auger Size: 4.25" Inside Diameter
Rig Type: ATV Mounted CME 75

Northing:5157.457 Easting: 8978.953

Casing Elevation: 370.58' AMSL

Borehole Depth: 15'

Surface Elevation: 368.10' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-208A

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5153.611 Easting: 8984.426

Casing Elevation: 370.78' AMSL

Borehole Depth: 38'

Surface Elevation: 368.08' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-208B

Client: Beazer East, Inc.

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	370 -										Steel Protective cover Sand Drain
-	_	1	0-2	1.4	WH WH WH 6	NA	0.2			Dark brown Silty CLAY, little Organics (roots), very soft, moist. Gray-brown Silty CLAY, trace fine angular Gravel, trace Organics (roots), moist, soft.	Concrete Pad (0 to 0.5' bgs)
-	365 -	2	2-4	1.5	2 2 3 3	5	0.4				
- -5	-	3	4-6	2.0	2 4 7 8	11	0.1			Dark gray-brown Silty CLAY, trace Organics, stiff, plastic, becoming wet.	
	- 360 -	4	6-8	1.7	3 3 4 4	7	0.2			Dark gray-brown Silty CLAY, trace Organics, stiff, plastic, trace oxidized lenses from 6.0 -7.7' bgs.	2" Sch 40 PVC Riser (2.7' ags to 28.2' bgs)
- 10	_	5	8-10	1.8	4 6 7 8	13	0.0			Dark gray-brown Silty CLAY, trace fine subangular Gravel from 8.0' to 9.8' bgs, trace Organics, trace oxidized lenses, stiff, plastic.	Meat Portland Cement Type I/II (0.5' bgs to 24' bgs)
-	_	6	10-12	1.8	2 4 4 6	8	0.0			Dark gray-brown Silty CLAY, trace fine subangular Gravel, trace Organics, trace oxidized lenses, firm, plastic.	
-	355 - -	7	12-14	2.0	3 4 5 7	9	0.0				
15	_	8	14-16	2.0	3 4 7 8	11	0.0			Gray-brown Silty CLAY, trace fine oxidized Gravel lenses at 14.2' and 15.1' bgs, trace fine Sand, stiff, moist.	
9	Α	R	C	Δ[)I	S	Design & for natu built ass	& Const ral and sets		Remarks: ags= above ground surface; bgs = below ground s AMSL= Above Mean Sea Level; WH=Weight of F Elevations reference to NAVD 88. Northing and Ea coordinate system.	lammer; ppm=parts per million

Drilling Company: Roberts Environmental Drilling, Inc

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter

Rig Type: ATV Mounted CME 75 Sampling Method: 2'x2" Split Spoons Northing:5153.611 Easting: 8984.426

Casing Elevation: 370.78' AMSL

Borehole Depth: 38'

Surface Elevation: 368.08' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-208B

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site Carbondale, Illinois

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_	9	16-18	2.0	3 4 7 9	11	0.0			Gray-brown Silty CLAY, trace oxidized lenses and vertical lenses of light gray Clay, moist.	
	350 -	10	18-20	2.0	4 6 7 9	13	0.0				Next Parties d
_ 20	-	11	20-22	2.0	4 4 5 5	9	0.0			Reddish-brown Silty CLAY, trace fine subangular Gravel, trace light gray vertical Clay lenses, firm, moist	- Neat Portland Cement Type I/II (0.5' bgs to 24' bgs)
-	- 345 -	12	22-24	2.0	5 6 9	15	0.0				2" Sch 40 PVC Riser (2.7' ags to 28.2' bgs)
- - 25	-	13	24-26	2.0	7 6 11 11	17	0.0			Reddish-brown CLAY, trace black Organics, trace light gray Clay lenses from 26' to 28' bgs, plastic, stiff, moist.	Bentonite (24' bgs to 26' bgs)
	-	14	26-28	2.0	3 4 5 4	9	0.0				
_ 30	340 -	15	28-30	2.0	2 3 4 4	7	0.0			Reddish-brown CLAY, trace fine subangular Gravel, nonplastic, soft, moist.	
- 30	-	16	30-32	1.8	3 4 4 4	8	0.0			Gray Silty CLAY, nonplastic, soft, moist to wet at 32' bgs.	
	335 —	17	32-34	2.0	2 2 3 4	5	0.0			Reddish-brown Silty CLAY, stiff, moist.	Silica Sand (26' bgs to 38' bgs) 2" Sch 40 PVC 0.010" Slot Screen (28.2' bgs to 32' bgs)
	_	18	34-36	2.0	2		0.0				bys to 37.7 bys)

coordinate system.

Drilling Company: Roberts Environmental Drilling, Inc

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5153.611 Easting: 8984.426

Casing Elevation: 370.78' AMSL

Borehole Depth: 38'

Surface Elevation: 368.08' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-208B

Client: Beazer East, Inc.

DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	_	34-36	2.0	4	7	0.0			Reddish-brown Silty CLAY, stiff, moist.	
		36-38	2.0	5 2 4 6 9	10	0.0	-		Reddish-brown SILT, little to trace fine Sand, trace fine subangular Gravel, wet. Gray to reddish-brown Silty CLAY, trace fine Sand, soft, moist. Dark Gray Silty CLAY, firm, moist.	Silica Sand (26' bgs to 38' bgs) 2" Sch 40 PVC End Cap (37.7' bgs to 38' bgs)
— 40	- -								End of boring at 38.0' bgs.	
325	-									
- 45	-									
- 320 - 	- -									
	_									
9/	Remarks: ags= above ground surface; bgs = below ground surface; NA = Not Applicable/Available AMSL= Above Mean Sea Level; WH=Weight of Hammer; ppm=parts per million Elevations reference to NAVD 88. Northing and Easting based on Site-specific coordinate system.									

Drilling Company: Roberts Environmental Drilling, Inc.

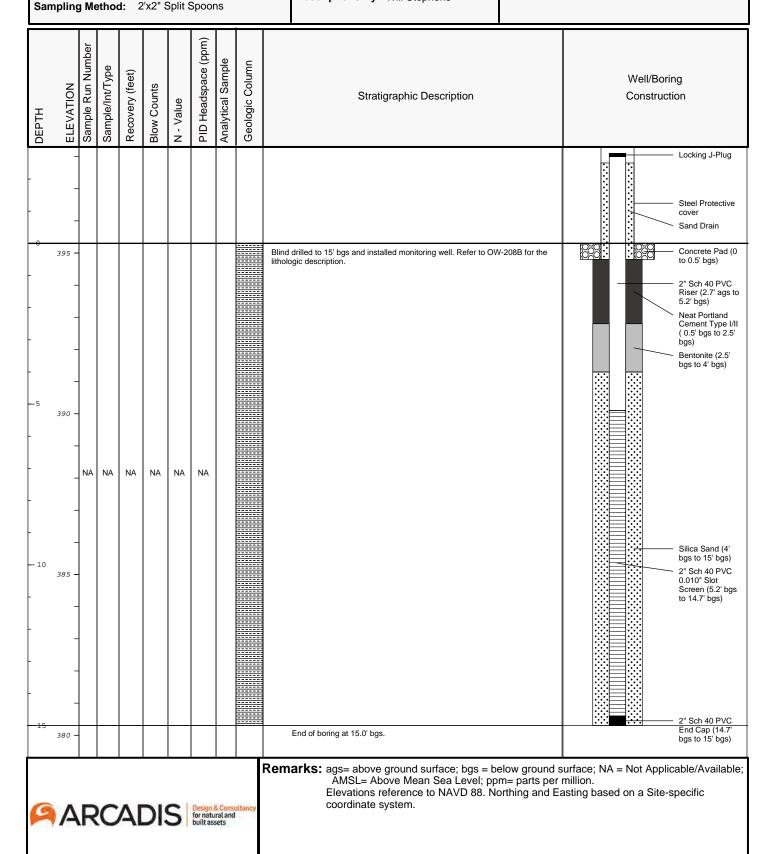
Driller's Name: Brian Schilling
Drilling Method: Hollow Stem Auger
Auger Size: 4.25" Inside Diameter
Rig Type: ATV Mounted CME 75

Northing: 4654.314 Easting: 6340.697

Casing Elevation: 398.00' AMSL

Borehole Depth: 15'

Surface Elevation: 395.27' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-209A

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

Date Start/Finish: 11/17/2015 -11/18/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:4651.993 Easting: 6334.451

Casing Elevation: 397.75' AMSL

Borehole Depth: 40'

Surface Elevation: 395.10' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-209B

Client: Beazer East, Inc.

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	-											Steel Protective cover Sand Drain
39	95 -				1				××	rown Silty CLAY, some Organics (roots), wet.		Concrete Pad (0 to 0.5' bgs)
_	-	1	0-2	1.7	2	6	0.0		× × E	lack FILL, [Cinders, Slag, red Brick] little fine to medium Sand, moist.		
-					5				G	ray-blue Silty CLAY, little fine angular Gravel fragments, soft, moist.		
_	_	2	2-4	1.5	1 3 2	5	0.0		E	rown-gray Silty CLAY, trace thin oxidized root scars, soft, moist.		
_5 ₃₉	90 -	3	4-6	1.8	1 3 5	8	0.0			rown-gray Silty CLAY, trace Organics (wood), oxidation, soft, moist.		
_	_	4	6-8	2.0	7 2 3 7 8	10	0.0		(Gray-brown Silty CLAY, firm to soft, mottled with oxidized lenses, wet.	-	2" Sch 40 PVC Riser (2.7' ags to 28.7' bgs)
	-	5	8-10	2.0	1 2 3 6	5	0.0					Neat Portland Cement Type I/II (0.5' bgs to 24.5' bgs)
	_	6	10-12	1.9	1 3 5 5	8	0.0					
		7	12-14	2.0	1 3 5 6	8	0.0		o o	tray-brown Silty CLAY, trace Organics (wood), firm to soft, mottled with xidized lenses.		
	1				2					Gray-brown Silty CLAY, trace fine Sand, oxidized lenses, soft, moist.		
-15 ₃₈	30 -	8	14-16	1.8	2 4	6	6.0		·	lark Gray Silty CLAY, soft, moist.		
9,	380 7 8 114-161 1.8 1											

Date Start/Finish: 11/17/2015 -11/18/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:4651.993 Easting: 6334.451

Casing Elevation: 397.75' AMSL

Borehole Depth: 40'

Surface Elevation: 395.10' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-209B

Client: Beazer East, Inc.

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	_	9	16-18	2.0	2 2 5 7	7	0.0		Gra	ny-brown Silty CLAY, oxidation lenses, soft, moist.	
_ 20	-	10	18-20	2.0	2 5 7 10	12	0.0				
	375 -	11	20-22	1.7	2 3 4 6	7	0.0				Neat Portland Cement Type I/II (0.5' bgs to 24.5' bgs)
_	-	12	22-24	2.0	2 3 5 7	8	0.0			Trace fine Sand lenses. ny-brown Silty CLAY, trace fine subangular to subround Gravel, trace fine	2" Sch 40 PVC Riser (2.7' ags to 28.7' bgs)
25	370 -	13	24-26	1.7	6 7 12 10	19	0.0			nd, moist. Inge oxidized stiff Silty CLAY, trace fine Sand, trace fine subangular Grist.	Bentonite (24.5' bgs to 26.5' bgs)
	-	14	26-28	2.0	6 8 12 13	20	0.0		Ora Gra	inge oxidized to brown Silty CLAY, trace fine Sand, trace fine subangul vel, vertical lenses of light gray Clay, soft, moist.	ar San
	-	15	28-30	2.0	6 12 12	24	0.0			Medium stiffness from 28' to 30.4' bgs.	
30	365 -	16	30-32	1.2	4 6 10 8	16	0.0		Red	ddish-brown fine SAND, trace Silt, wet.	Silica Sand (26.5' bgs to 38.5' bgs)
_	-	17	32-34	1.5	7 16 16 22	32	0.0		+: <u></u> :	inge-brown very fine Silty SAND, some Silt, dense, wet.	2" Sch 40 PVC 0.010" Slot
	-	18	34-36	2.0	18	40	0.0			wnish-gray Silty CLAY, trace fine subangular Gravel, trace fine Sand, s	Screen (28.7' to
9	Remarks: ags= above ground surface; bgs = below ground surface; AMSL= above mean sea level; ppm= parts per million Elevations reference to NAVD 88. Northing and Easting based on Site-specific coordinate system										

Date Start/Finish: 11/17/2015 -11/18/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:4651.993 Easting: 6334.451

Casing Elevation: 397.75' AMSL

Borehole Depth: 40'

Surface Elevation: 395.10' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-209B

Client: Beazer East, Inc.

		Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
36	50 -	18	34-36	2.0	20	40	0.0			Brownish-gray Silty CLAY, trace fine subangular Gravel, trace fine Sand, stiff, moist.	
_	_	19	36-38	1.8	6 7 13	20	0.0			Lenses of dark gray Silty Clay at 36' bgs.	Silica Sand (26.5' bgs to 38.5' bgs)
	+				15 15					Dark gray Silty CLAY, stiff, low plasticity, moist.	2" Sch 40 PVC
-		20	38-40	1.8	13	26	0.0			Orange-brown lens of Silty CLAY, stiff, moist.	End Cap (38.2' bgs to 38.5' bgs)
		20	30 40	1.0	13 20	20	0.0			Dark Gray Silty CLAY, stiff, low plasticity, trace Organics (wood), moist.	Native collapse (38.5' bgs to 40'
40 35	55 -				20					End of boring at 40.0' bgs.	bgs)
- 45 ₃₅										Pomarks: aga, above graved outsoo; bas, below graved a	urface: MMSL - above moon acc lovel:
9	Remarks: ags= above ground surface; bgs = below ground surface; AMSL= above mean sea level; ppm= parts per million Elevations reference to NAVD 88. Northing and Easting based on Site-specific coordinate system										

Drilling Company: Roberts Environmental Drilling, Inc.

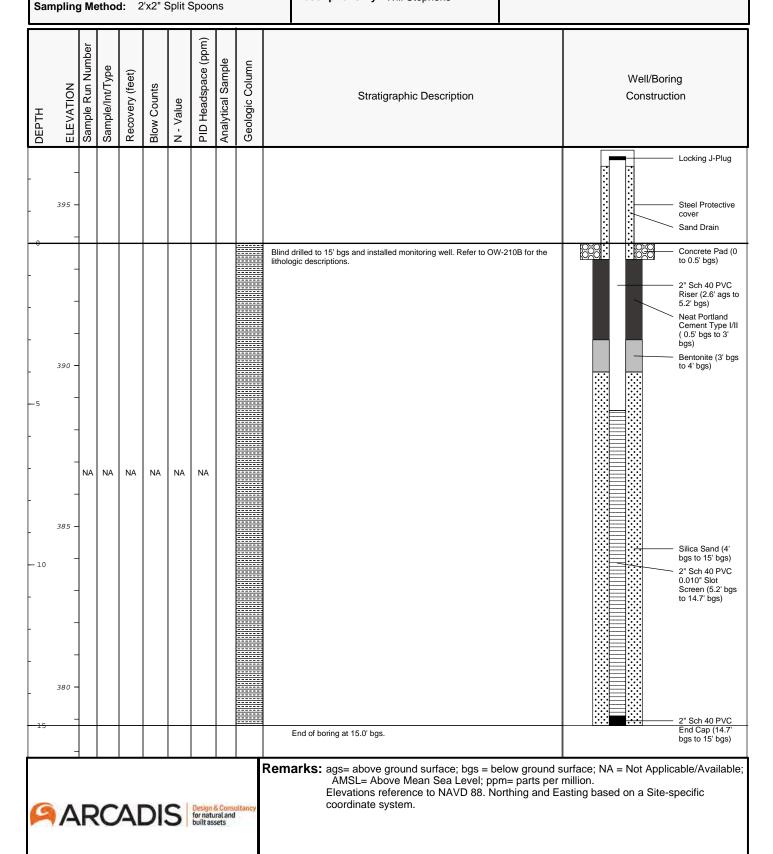
Driller's Name: Brian Schilling
Drilling Method: Hollow Stem Auger
Auger Size: 4.25" Inside Diameter
Rig Type: ATV Mounted CME 75

Northing:3793.738 Easting: 4156.199

Casing Elevation: 396.40' AMSL

Borehole Depth: 15'

Surface Elevation: 393.81' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-210A

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

Date Start/Finish: 11/16/2015-11/17/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger

Auger Size: 4.25" Diameter Rig Type: ATV Mounted CME 75 Sampling Method: 2'x2" Split Spoons

Northing:3797.299 Easting: 4163.811 Casing Elevation: 395.59' AMSL

Borehole Depth: 48'

Surface Elevation: 393.77' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-210B

Client: Beazer East, Inc.

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 395 - -										Locking J-Plug Steel Protective cover Sand Drain
	-	1	0-2	1.5	1 3 4 5	7	0.1			ark brown fine to medium SAND, little Silt, little red Brick and Concrete [FILL], oist.	Concrete Pad (0 to 0.5' bgs)
	390 —	2	2-4	1.5	5 5 5 9	10	1.2			an Silty CLAY, little to trace brown Organics, trace orange oxidized lenses, inse, moist.	
5	-	3	4-6	1.8	5 5 9 14	14	5.1				
	-	4	6-8	1.8	4 4 6 9	10	1.3		Gı	ray-brown Silty CLAY, dense, oxidized lenses, moist, becoming wet.	2" Sch 40 PVC Riser (1.8' ags to 33.2' bgs)
10	385 -	5	8-10	1.8	2 3 4 6	7	1.9				Neat Portland Cement Type I/II (0.5' bgs to 29' bgs)
	-	6	10-12	1.7	2 3 7 9	10	2.3		Ta	n and gray-brown Silty CLAY, trace Organics, dense, oxidized lenses, moist.	
-	- 380 -	7	12-14	1.9	3 7 8 10	15	4.1		Gı	ray-brown Silty CLAY, trace brown Organics, orange oxidized lenses, moist.	
— 15	_	8	14-16	2.0	2 5 9 8	14	0.8				
9										marks: ags= above ground surface; bgs = below ground s ppm= parts per million; US EPA= United State En Elevations reference to NAVD 88. Northing and Ec coordinate system. Soil samples collected from 2' intervals for Dioxin, 8290	vironmental Protection Agency asting based on Site-specific

Date Start/Finish: 11/16/2015-11/17/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger

Auger Size: 4.25" Diameter Rig Type: ATV Mounted CME 75 Sampling Method: 2'x2" Split Spoons

Northing:3797.299 Easting: 4163.811 Casing Elevation: 395.59' AMSL

Borehole Depth: 48'

Surface Elevation: 393.77' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-210B

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site Carbondale, Illinois

DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction	
-	9	16-18	2.0	3 5 10 10	15	0.6			Light gray to tan Silty CLAY, trace brown Organics, trace Coal, low plasiticity, moist.		
- 375 20		18-20	2.0	1 3 5 7	8	0.7				Ш	
-	11	20-22	2.0	1 3 3 6	6	0.5				Ш	
370		22-24	2.0	3 4 7 7	11	0.6					
— 25	13	24-26	2.0	3 3 7 5	10	0.5			Light brown to light gray Silty CLAY, trace Organics, trace white to light gray medium Gravel, low plasicity, moist. Tan Sandy SILT, loose, wet.	2" Sch 40 PVC Riser (1.8' ags to 33.2' bgs)	
_	14	26-28	2.0	2 3 5 5	8	0.5			Light brown to gray Silty CLAY, trace lenses of brown fine Sand at 27.0' bgs, trace lenses of light gray to pink Clay at 27.5' bgs, moist.		
- 365 -		28-30	2.0	4 8 10 11	18	0.5			Trace Organics. Brown Silty CLAY, trace fine to medium subangular Gravel, trace Organics, moist.		
— 30 -	16	30-32	2.0	5 6 11	17	0.5			Brown Silty CLAY, trace Organics, trace fine Sand, moist.	Bentonite (29' bgs to 31' bgs)	
- - 360		32-34	1.5	4 8 13	21	0.5	-		Light gray and pink vertical lenses of Clay.	Silica Sand (31' bgs to 43' bgs)	
360		34-36	2.0	6 12	24	0.5			Light brown Silty CLAY, trace fine subangular Gravel fragments, trace Sand lenses, moist.		
<u>A</u> A	Remarks: ags= above ground surface; bgs = below ground surface; AMSL= above mean sea level; ppm= parts per million; US EPA= United State Environmental Protection Agency Elevations reference to NAVD 88. Northing and Easting based on Site-specific coordinate system. Soil samples collected from 2' intervals for Dioxin/Furan analysis via US EPA Method										

8290

Date Start/Finish: 11/16/2015-11/17/2015

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger

Auger Size: 4.25" Diameter Rig Type: ATV Mounted CME 75 Sampling Method: 2'x2" Split Spoons

Northing:3797.299 Easting: 4163.811 Casing Elevation: 395.59' AMSL

Borehole Depth: 48'

Surface Elevation: 393.77' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-210B

Client: Beazer East, Inc.

DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction	
-	18	34-36	2.0	12 13	24	0.5					
-	19	36-38	2.0	6 12 12 12	24	0.5			Light brown to brown Silty CLAY, trace Organics, trace fine Sand lenses, moist.		
355 -	20	38-40	1.6	3 6 6	12	0.5			Gray-brown Silty CLAY, trace fine subangular Gravel, trace fine Sand, moist.	2" Sch 40 PVC 0.010" Slot Screen (33.2' to 42.7' bgs) Silica Sand (31' bgs to 43' bgs)	
- 40	21	40-42	1.5	3 3 3	6	0.5	-				
350 -	22	42-44	1.7	8 8 12	20	0.5	-		Transitioning to a gray Silty CLAY at 42.0' bgs. Gray-brown Silty CLAY, trace fine angular Gravel fragments, moist.	2" Sch 40 PVC End Cap (42.7' bgs to 43' bgs) Backfilled with	
- 45	23	44-46	2.0	10 12 12 13	24	0.5			Dark gray Silty CLAY, trace fine Gravel fragments, trace pink lenses of Clay, moist.	Silica Sand (43' bgs to 43.5' bgs) Backfilled with Bentonite (43.5' bgs to 48' bgs)	
-	24	46-48	1.5	4 7 9 10	16	0.5			Dark gray Silty CLAY, trace pink lenses of Clay, trace Coal fragments, moderately stiff, moist.	Backfilled with Bentonite (46' bgs to 48' bgs)	
345 -									End of boring at 48.0' bgs.		
- 50 											
-											
340 -	Remarks: ags= above ground surface; bgs = below ground surface; AMSL= above mean sea level; ppm= parts per million; US EPA= United State Environmental Protection Agency Elevations reference to NAVD 88. Northing and Easting based on Site-specific coordinate system. Soil samples collected from 2' intervals for Dioxin/Furan analysis via US EPA Method 8290										

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

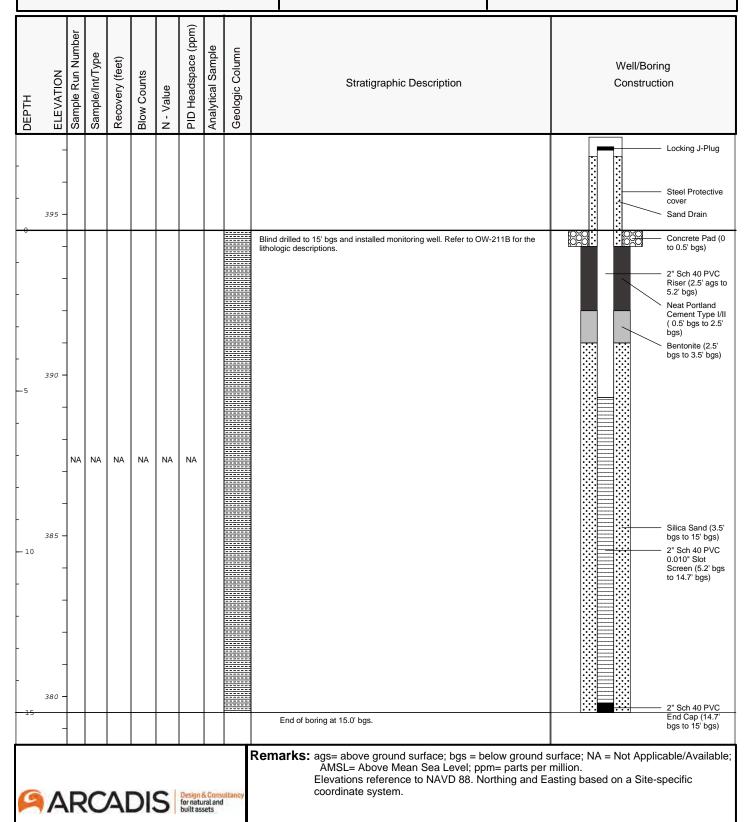
Sampling Method: 2'x2" Split Spoons

Northing:3634.265 Easting: 3764.454

Casing Elevation: 397.04' AMSL

Borehole Depth: 15'

Surface Elevation: 394.55' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-211A

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

Drilling Company: Roberts Environmental Drilling, Inc.

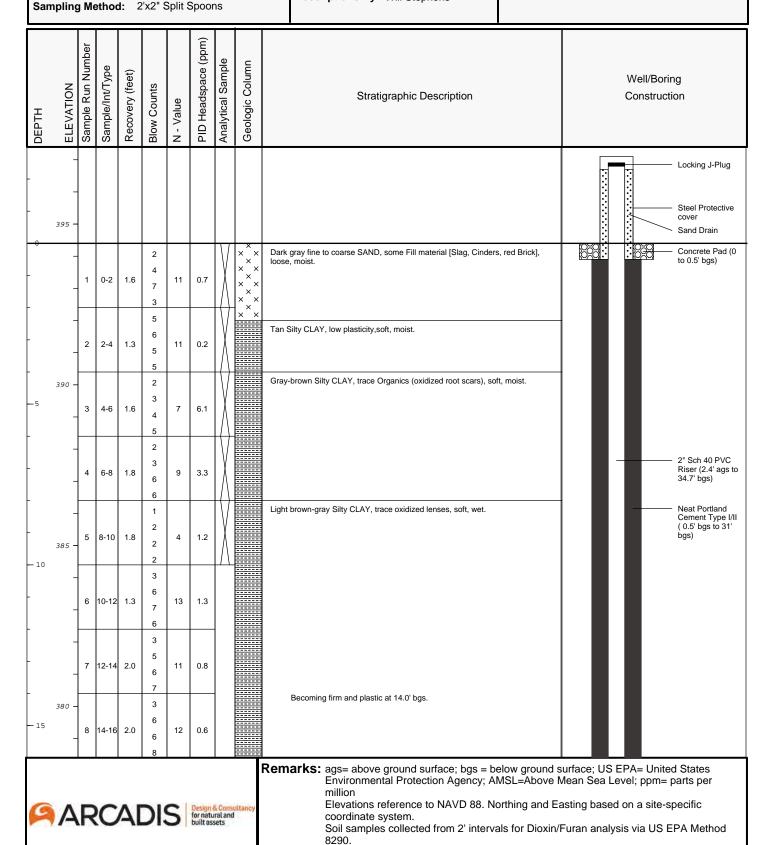
Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Northing:3630.876 Easting: 3756.676

Casing Elevation: 396.87' AMSL

Borehole Depth: 46'

Surface Elevation: 394.44' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-211B

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

DUP-02 collected from 4-6' bgs.

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:3630.876 Easting: 3756.676

Casing Elevation: 396.87' AMSL

Borehole Depth: 46'

Surface Elevation: 394.44' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-211B

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site Carbondale, Illinois

DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Borii Construct	
-	-	9	16-18	2.0	4 4 7 7	11	1.2			Light brown-gray Silty CLAY, trace oxidized lenses, wet.		
	- 375 -	10	18-20	1.8	3 3 5 6	8	0.7			Light brown-gray Silty CLAY, little to trace oxidized lenses, trace Organics and black rounded Gravel, becoming stiff at 20.0' bgs, wet.		
— 20 _	-	11	20-22	2.0	3 6 8 10	14	0.3				ш	
-	_	12	22-24	1.8	3 5 7	12	0.9			Gray-brown mottled Silty CLAY, trace Coal, oxidized, stiff, moist. Light gray to blue Silty CLAY with abundant oxidized lenses, stiff, moist.		Neat Portland Cement Type I/II
_ 25	370 –	13	24-26	2.0	2 3 5	8	0.1				ш	(0.5' bgs to 31' bgs) 2" Sch 40 PVC Riser (2.4' ags to 34.7' bgs)
	-	14	26-28	2.0	3 5 6 7	11	0.6			Reddish brown Silty CLAY, trace fine Sand stringers, trace brown Organics, trace fine subangular Gravel, moist.		
_ 30	- 365 -	15	28-30	2.0	3 5 6 9	11	0.1				ш	
_	-	16	30-32	1.9	5 7 7 5	14	0.1			Fine to medium gray Gravel lens at 31.0' bgs.		· Bentonite (31'
	-	17	32-34	2.0	5 7 7 8	14	0.1					bgs to 33' bgs)
25	360 —	18	34-36	2.0	4	11	0.2					Silica Sand (33' bgs to 44.5' bgs)

million

Elevations reference to NAVD 88. Northing and Easting based on a site-specific coordinate system.

Soil samples collected from 2' intervals for Dioxin/Furan analysis via US EPA Method 8290.

DUP-02 collected from 4-6' bgs.

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:3630.876 Easting: 3756.676

Casing Elevation: 396.87' AMSL

Borehole Depth: 46'

Surface Elevation: 394.44' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-211B

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site Carbondale, Illinois

DEРТН —	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-	18	34-36	2.0	7	11	0.2			Reddish brown Silty CLAY, trace fine Sand stringers, trace brown Organics, trace fine subangular Gravel, trace light gray vertical Clay lenses, moist.	
-	-	19	36-38	2.0	7 12 12 8	24	0.1	-		Orange-brown Silty CLAY, little fine to medium subangular Gravel, trace fine Sand, trace black Coal, stiff, moist.	
-	- 355 -	20	38-40	2.0	7 9 16 25	25	0.1	-		Orange-brown fine Silty SAND, little fine subangular Gravel, little Silt, loose,	2" Sch 40 PVC 0.010" Slot
40	-	21	40-42	1.1	7 9 9	18	0.1			wet.	Screen (34.7' to 44.2' bgs) Silica Sand (33' bgs to 44.5' bgs)
	-	22	42-44	2.0	6 8 8	16	0.1			Orange-brown Sitty CLAY, trace vertical light gray lenses of Clay, trace fine angular Gravel, stiff, moist.	
— 45	350 -	23	44-46	2.0	12 12 14 16	26	0.1			Dark gray Silty CLAY, trace Organics, stiff, moist.	2" Sch 40 PVC End Cap (44.2' bgs to 44.5' bgs) Backfilled with Bentonite (44.5' bgs to 46' bgs)
-	-									End of boring at 46.0' bgs.	
 50	345 - -										
-	-										
ARCADIS Design & Consultancy for natural and built assets										Remarks: ags= above ground surface; bgs = below ground s Environmental Protection Agency; AMSL=Above Million Elevations reference to NAVD 88. Northing and Eacoordinate system. Soil samples collected from 2' intervals for Dioxin/	Mean Sea Level; ppm= parts per asting based on a site-specific

DUP-02 collected from 4-6' bgs.

8290.

Drilling Company: Roberts Environmental Drilling, Inc.

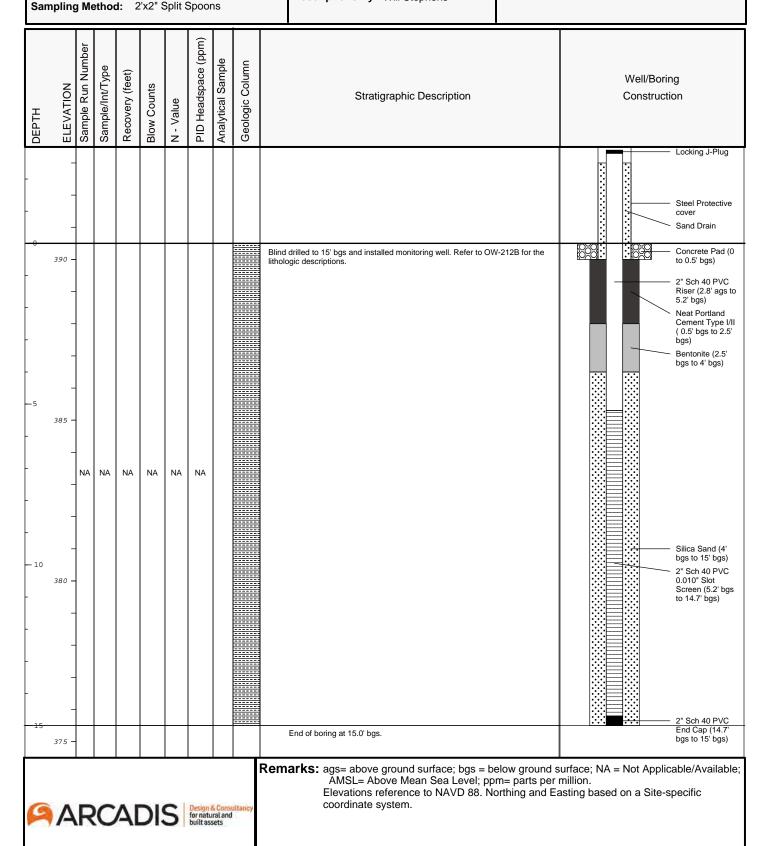
Driller's Name: Brian Schilling
Drilling Method: Hollow Stem Auger
Auger Size: 4.25" Inside Diameter
Rig Type: ATV Mounted CME 75

Northing:5547.079 Easting: 5033.001

Casing Elevation: 393.24' AMSL

Borehole Depth: 15'

Surface Elevation: 390.50' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-212A

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5548.232 Easting: 5039.024 Casing Elevation: 392.92' AMSL

Borehole Depth: 40'

Surface Elevation: 390.73' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-212B

Client: Beazer East, Inc.

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	1 1										Locking J-Plug Steel Protective cover Sand Drain
3	390 -	1	0-2	1.6	2 2 2 2	4	0.0			Brown Silty SAND, little fine subangular Gravel, trace Organics (roots, grass), moist. Brown Silty CLAY, trace Organics (roots), soft, moist.	Concrete Pad (0 to 0.5' bgs)
	-	2	2-4	1.8	2 5 5	10	0.0			Gray-brown Silty CLAY, trace Organics (root scars, oxidized lenses), low plasticity, soft, moist.	
5 5	-885 -	3	4-6	1.8	3 4 5 6	9	0.0				
-	-	4	6-8	2.0	2 3 2 3	5	0.0			Gray-brown Silty CLAY, soft, nonplastic, wet.	——————————————————————————————————————
-	-	5	8-10	2.0	WH 2 2 3	4	0.0				Neat Portland Cement Type I/II (0.5' bgs to 23.5' bgs)
10	380 -	6	10-12	1.6	3 5 6 7	11	0.0			Brown Silty CLAY, trace Organics (roots), medium stiff, plastic, moist.	
-	-	7	12-14	2.0	2 5 6 8	11	0.0			Trace oxidized lenses	
- - 15	- 375 -	8	14-16	2.0	3 4 6 9	10	0.0				
9	Α	R	C	ΔI		S	Design of for natural built as:	& Const ral and sets		emarks: ags= above ground surface; bgs = below ground so Above Mean Sea Level; WH= weight of hammer; Elevations reference to NAVD 88. Northing and E coordinate system.	ppm= parts per million

Drilling Company: Roberts Environmental Drilling, Inc.

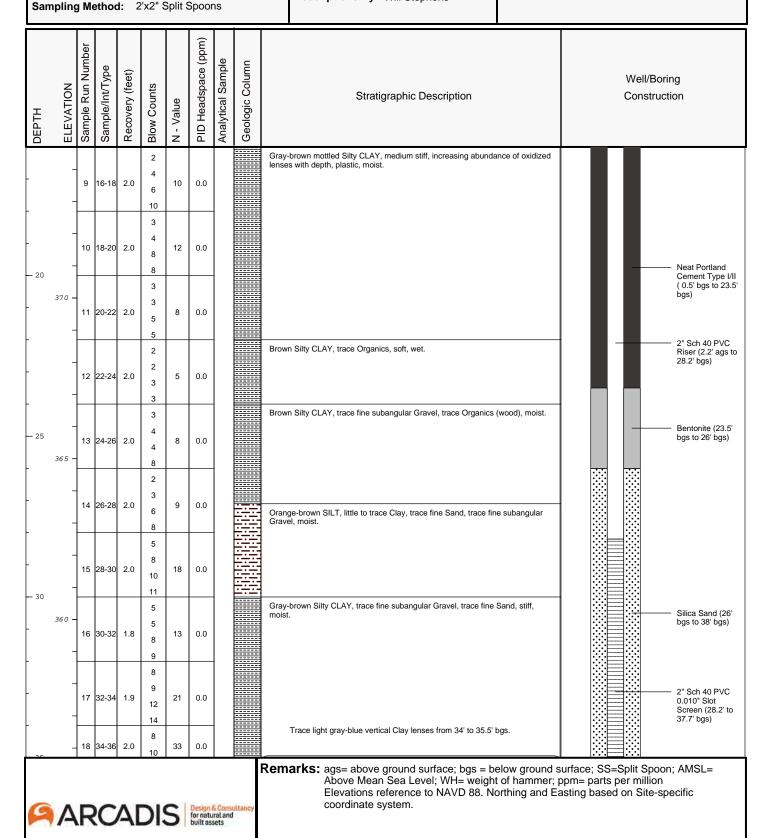
Driller's Name: Brian Schilling
Drilling Method: Hollow Stem Auger
Auger Size: 4.25" Inside Diameter
Rig Type: ATV Mounted CME 75

Northing:5548.232 Easting: 5039.024

Casing Elevation: 392.92' AMSL

Borehole Depth: 40'

Surface Elevation: 390.73' AMSL


Descriptions By: Will Stephens

Well/Boring ID: OW-212B

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5548.232 Easting: 5039.024 Casing Elevation: 392.92' AMSL

Borehole Depth: 40'

Surface Elevation: 390.73' AMSL

Descriptions By: Will Stephens

Well/Boring ID: OW-212B

Client: Beazer East, Inc.

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
		18	34-36	2.0	23	33	0.0			Gray-brown Silty CLAY, trace fine subangular Gravel, trace fine Sand, moist.	
-	355 -				17			-		Brown fine SAND, trace Silt, loose, wet.	
-	-	19	36-38	2.0	10 12 16	28	0.0			Dark brown-gray Silty CLAY, trace fine Sand, trace fine subangular Gravel, trace Coal, stiff, moist.	Silica Sand (26' bgs to 38' bgs)
-	-				13			_		Dark gray Silty CLAY, trace fine to medium subangular Gravel, stiff, moist.	2" Sch 40 PVC
					9					Dark gray Silty CLAY, trace fine angular Gravel, stiff, massive, nonplastic, moist	End Cap (37.7' bgs to 38' bgs)
+		20	38-40	2.0	12 14	26	0.0				Backfilled with Bentonite (38'
	_				10						bgs to 40' bgs)
40										End of boring at 40.0' bgs.	
- - - - - - - - -	345 -										
ARCADIS Design & Consultancy for natural and built assets								& Consural and sets		Remarks: ags= above ground surface; bgs = below ground so Above Mean Sea Level; WH= weight of hammer; pelevations reference to NAVD 88. Northing and Eacoordinate system.	opm= parts per million

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75 Sampling Method: 2'x2" Split Spoons

Northing:5248.84 Easting: 7812.631 Casing Elevation: 388.43' AMSL

Borehole Depth: 16'

Surface Elevation: 385.56' AMSL

Descriptions By: Will Stephens

Well/Boring ID: P-9A

Client: Beazer East, Inc.

DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- - -									Steel Protective cover
385	1	0-2	1.2	WH WH 1	NA	0.0		Liç	ght brown Silty CLAY, trace Organics (leaves, roots), very soft, wet.	Concrete Pad (0 to 0.5' bgs) 2" Sch 40 PVC Riser (2.9' ags to 5.2' bgs)
-	2	2-4	1.3	WH 2 3 3	5	0.0		Gr	ay-brown Silty CLAY, soft, nonplastic, trace oxidation, moist.	Neat Portland Cement Type I/II (0.5' bgs to 2.5' bgs) Bentonite (2.5' bgs to 4' bgs)
5 380	3	4-6	1.7	2 4 4 5	8	0.0		Gr	ay Silty CLAY, trace Organics (oxidized brown and black root scars), creasing stiffness with depth, moist.	
_	4	6-8	1.8	3 5 7 7	12	0.0			ay brown matted Situ CLAV trace Organics (roots) evidined root soors	
- 10	5	8-10	1.7	2 5 5 7	10	0.0			ay-brown mottled Silty CLAY, trace Organics (roots), oxidized root scars, sist.	Silica Sand (4' bgs to 15' bgs) 2" Sch 40 PVC
375	6	10-12	1.7	2 2 3 3	5	0.0				2" Sch 40 PVC 0.010" Slot Screen (5.2' bgs to 14.7' bgs)
-	7	12-14	1.8	2 3 3 5	6	0.0			ay SILT, trace fine Sand, trace Clay, moist.	
— 15 370	- 8 -	14-16	1.8	2 2 3 3	5	0.0		Gı	ay-brown mottled Silty CLAY, oxidized root scars, moist. End of boring at 16.0' bgs.	2" Sch 40 PVC End Cap (14.7' bgs to 15' bgs) Native collapse
9/	۸F	2C	ΔI) SIC	S	Design of for natural built as:	& Const ral and sets		marks: ags= above ground surface; bgs = below groun WH= Weight of Hammer; AMSL= Above Mean Elevations reference to NAVD 88. Northing and coordinate system.	Sea Level; ppm= parts per million

Drilling Company: Roberts Environmental Drilling, Inc.

Driller's Name: Brian Schilling Drilling Method: Hollow Stem Auger Auger Size: 4.25" Inside Diameter Rig Type: ATV Mounted CME 75

Sampling Method: 2'x2" Split Spoons

Northing:5123.623 Easting: 7282.335 Casing Elevation: 397.68' AMSL

Borehole Depth: 16'

Surface Elevation: 395.05' AMSL

Descriptions By: Will Stephens

Well/Boring ID: P-10A

Client: Beazer East, Inc.

DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	-									Steel Protective cover Sand Drain
-	- 1	0-2	1.0	WH WH WH 4	NA	0.0		× × × × × × × × × × × ×	Brown Silty CLAY, trace Organics (leaves, roots), trace Coal from 2' to 3' bgs, soft, moist. [FILL]	Concrete Pad (0 to 0.5' bgs) 2" Sch 40 PVC Riser (2.6' ags to 5.2' bgs)
-	- 2	2-4	1.4	2 2 6 7	8	0.0		× × × ×	Brown fine SAND, little Silt, trace fine angular Gravel, dense, moist.	Neat Portland Cerment Type I/II (0.5' bgs to 2.5' bgs) Bentonite (2.5' bgs to 4' bgs)
-5 390) - 3	4-6	1.9	3 3 6 6	9	0.0			Gray-brown Silty CLAY, trace Organics (roots), oxidized root scars, moist.	
-	4	6-8	2.0	5 7 8 11	15	0.0			Gray-brown Sitty CLAY, trace Organics (roots), trace black staining 7.0 to 7.1' bgs, soft at 8' bgs, moist.	
- - 10 385	- 5	8-10	1.8	2 2 4 4	6	0.0				Silica Sand (4' bgs to 15' bgs) 2" Sch 40 PVC
-	- 6	10-12	1.8	3 4 4 5	8	0.0			Reddish-brown Silty CLAY, trace Organics (wood, roots), firm, moist.	2" Sch 40 PVC 0.010" Slot Screen (5.2' bgs to 14.7' bgs)
-	7	12-14	2.0	3 5 6 9	11	0.0			Gray-brown Silty CLAY, trace Organics (wood, roots), moist.	
— 15 ₃₈₀	9 - 8	14-16	2.0	3 6 6 8	12	0.0			End of boring at 16.0' bgs.	2" Sch 40 PVC End Cap (14.7' bgs to 15' bgs) Native collapse
ARCADIS Design & Consultancy for natural and built assets						Design of for natural built ass	& Consural and sets		Remarks: gs= above ground surface; bgs = below ground su WH= Weight of Hammer; AMSL= Above Mean Se Elevations reference to NAVD 88. Northing and Ec coordinate system.	a Level; ppm=parts per million.

Drilling Company: Roberts Environmental Drilling, Inc.

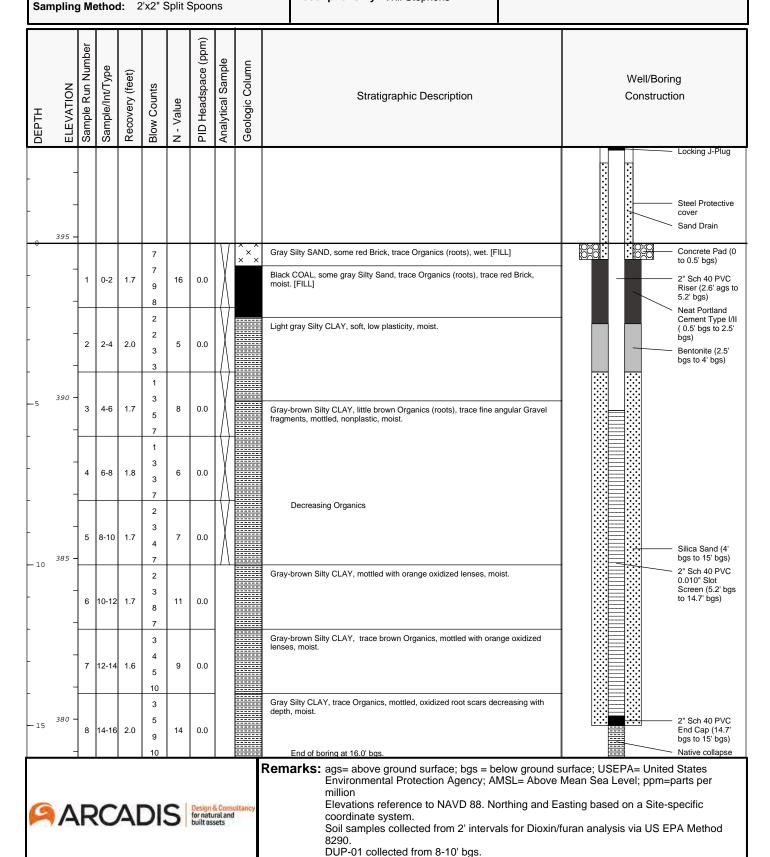
Driller's Name: Brian Schilling
Drilling Method: Hollow Stem Auger
Auger Size: 4.25" Inside Diameter
Rig Type: ATV Mounted CME 75

Northing:4089.851 Easting: 4890.487

Casing Elevation: 397.38' AMSL

Borehole Depth: 16'

Surface Elevation: 394.76' AMSL


Descriptions By: Will Stephens

Well/Boring ID: P-11A

Client: Beazer East, Inc.

Location: Former Koppers Wood-Treating Site

Carbondale, Illinois

APPENDIX B Laboratory Analytical Report

December 11, 2015

Vista Work Order No. 1501148

Mr. David Bessingpas ARCADIS 6602 Excelsior Road Baxter, MN 56425

Dear Mr. Bessingpas,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on November 20, 2015. This sample set was analyzed on a standard turn-around time, under your Project Name 'B0039321.0000.00001'. The work was authorized under your Purchase Order No. B0039275.0000.00002.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Project 1501148 Page 1 of 38

Vista Work Order No. 1501148 Case Narrative

Sample Condition on Receipt:

Nineteen soil samples and three aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 8290

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 8290 using a ZB-5MS GC column.

Holding Times

The method holding time criteria were met for these samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with each preparation batch. No analytes were detected in the Method Blanks. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

As requested, an MS/MSD was performed on sample "P-11A_8-10 (20151117)". The recoveries and RPD of OCDD were outside the QC limits; the criteria were met for all other analytes.

Project 1501148 Page 2 of 38

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	33
Certifications	34
Sample Receipt	35

Project 1501148 Page 3 of 38

Sample Inventory Report

Vista Sample ID	Client Sample ID		Sampled	Received	Components/Containers
1501148-01	OW-210B_0-2 (20151116)		16-Nov-15 12:30	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-02	OW-210B_2-4 (20151116)		16-Nov-15 12:35	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-03	OW-210B_4-6 (20151116)		16-Nov-15 12:45	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-04	OW-210B_6-8 (20151116)		16-Nov-15 12:55	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-05	OW-210B_8-10 (20151116)		16-Nov-15 13:05	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-06	OW-210B_28-30 (20151116)		16-Nov-15 14:25	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-07	P-11A_0-2 (20151117)		17-Nov-15 11:20	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-08	P-11A_2-4 (20151117)		17-Nov-15 11:25	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-09	P-11A_4-6 (20151117)		17-Nov-15 11:32	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-10	P-11A_6-8 (20151117)		17-Nov-15 11:36	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-11	P-11A_8-10 (20151117)	MS/MSD	17-Nov-15 11:45	20-Nov-15 09:25	Amber Glass, 120 mL
		MS/MSD			Amber Glass, 120 mL
1501148-12	DUP-01 (20151117)		17-Nov-15 00:00	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-13	OW-211B_0-2 (20151119)		19-Nov-15 09:05	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-14	OW-211B_2-4 (20151119)		19-Nov-15 09:10	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-15	OW-211B_4-6 (20151119)		19-Nov-15 09:20	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-16	OW-211B_6-8 (20151119)		19-Nov-15 09:28	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-17	OW-211B_8-10 (20151119)		19-Nov-15 09:32	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-18	DUP-02(20151119)		19-Nov-15 00:00	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-19	OW-211B_26-28 (20151119)		19-Nov-15 10:35	20-Nov-15 09:25	Amber Glass, 120 mL
1501148-20	EB-01 (20151116)		16-Nov-15 15:00	20-Nov-15 09:25	Amber Glass NM Bottle, 1L
1501148-21	EB-02 (20151117)		17-Nov-15 12:30	20-Nov-15 09:25	Amber Glass NM Bottle, 1L
1501148-22	EB-03 (20151119)		19-Nov-15 13:30	20-Nov-15 09:25	Amber Glass NM Bottle, 1L

Vista Project: 1501148 Client Project: B0039321.0000.00001

Project 1501148 Page 4 of 38

ANALYTICAL RESULTS

Project 1501148 Page 5 of 38

Sample ID: Method	Blank						EPA M	lethod 8290
Matrix: Solid Sample Size: 10.0 g	5	QC Batch: B5K0138 Date Extracted: 30-Nov-2015 9:5	58	1	ab Sample: B5K0138-BLK1 ate Analyzed: 06-Dec-15 09:4		MS Analyst: WJL	
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0864		IS	13C-2,3,7,8-TCDD	93.3	40 - 135	
1,2,3,7,8-PeCDD	ND	0.0811			13C-1,2,3,7,8-PeCDD	110	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.0739			13C-1,2,3,4,7,8-HxCDD	108	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.0784			13C-1,2,3,6,7,8-HxCDD	95.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.0863			13C-1,2,3,7,8,9-HxCDD	101	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	0.105			13C-1,2,3,4,6,7,8-HpCDD	103	40 - 135	
OCDD	ND	0.0853			13C-OCDD	82.7	40 - 135	
2,3,7,8-TCDF	ND	0.0766			13C-2,3,7,8-TCDF	95.5	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0506			13C-1,2,3,7,8-PeCDF	115	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0397			13C-2,3,4,7,8-PeCDF	125	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0598			13C-1,2,3,4,7,8-HxCDF	95.8	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0608			13C-1,2,3,6,7,8-HxCDF	90.3	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0652			13C-2,3,4,6,7,8-HxCDF	90.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0900			13C-1,2,3,7,8,9-HxCDF	92.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.0595			13C-1,2,3,4,6,7,8-HpCDF	85.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0581			13C-1,2,3,4,7,8,9-HpCDF	98.8	40 - 135	
OCDF	ND	0.147			13C-OCDF	80.5	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	87.4	40 - 135	
					Toxic Equivalent Quotient (T	EQ) Data		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	0.0506						
Total PeCDD	ND	0.0900						
Total HxCDD	ND	0.0595						
Total HpCDD	ND	0.147						
Total TCDF	ND	0.0766						
Total PeCDF	ND	0.0506						
Total HxCDF	ND	0.0900						
Total HpCDF	ND	0.0595			CL- Lower control limit - unner control lin			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 6 of 38

Sample ID: OPR						T		EPA Method 8290
Matrix: Solid Sample Size: 10.0 g			B5K0138 30-Nov-2015	5 9:58		Lab Sample: B5K0138-BS1 Date Analyzed: 06-Dec-15 06:28	Column: ZB-5MS Ar	nalyst: WJL
Analyte	Amt Found (pg/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	16.7	20.0	83.5	70 - 130	IS	13C-2,3,7,8-TCDD	98.2	40 - 135
1,2,3,7,8-PeCDD	88.7	100	88.7	70 - 130		13C-1,2,3,7,8-PeCDD	110	40 - 135
1,2,3,4,7,8-HxCDD	88.3	100	88.3	70 - 130		13C-1,2,3,4,7,8-HxCDD	117	40 - 135
1,2,3,6,7,8-HxCDD	89.1	100	89.1	70 - 130		13C-1,2,3,6,7,8-HxCDD	104	40 - 135
1,2,3,7,8,9-HxCDD	88.4	100	88.4	70 - 130		13C-1,2,3,7,8,9-HxCDD	110	40 - 135
1,2,3,4,6,7,8-HpCDD	89.2	100	89.2	70 - 130		13C-1,2,3,4,6,7,8-HpCDD	126	40 - 135
OCDD	178	200	88.9	70 - 130		13C-OCDD	100	40 - 135
2,3,7,8-TCDF	17.0	20.0	85.0	70 - 130		13C-2,3,7,8-TCDF	103	40 - 135
1,2,3,7,8-PeCDF	98.8	100	98.8	70 - 130		13C-1,2,3,7,8-PeCDF	113	40 - 135
2,3,4,7,8-PeCDF	97.3	100	97.3	70 - 130		13C-2,3,4,7,8-PeCDF	122	40 - 135
1,2,3,4,7,8-HxCDF	88.7	100	88.7	70 - 130		13C-1,2,3,4,7,8-HxCDF	96.5	40 - 135
1,2,3,6,7,8-HxCDF	91.8	100	91.8	70 - 130		13C-1,2,3,6,7,8-HxCDF	90.7	40 - 135
2,3,4,6,7,8-HxCDF	88.0	100	88.0	70 - 130		13C-2,3,4,6,7,8-HxCDF	92.8	40 - 135
1,2,3,7,8,9-HxCDF	92.9	100	92.9	70 - 130		13C-1,2,3,7,8,9-HxCDF	96.5	40 - 135
1,2,3,4,6,7,8-HpCDF	89.9	100	89.9	70 - 130		13C-1,2,3,4,6,7,8-HpCDF	91.3	40 - 135
1,2,3,4,7,8,9-HpCDF	91.3	100	91.3	70 - 130		13C-1,2,3,4,7,8,9-HpCDF	126	40 - 135
OCDF	187	200	93.3	70 - 130		13C-OCDF	99.2	40 - 135
					CRS	37Cl-2,3,7,8-TCDD	86.6	40 - 135

LCL-UCL - Lower control limit - upper control limit

Project 1501148 Page 7 of 38

Sample ID: OW-21	0B_0-2 (20151116)								EPA Mo	ethod 8290
	ADIS 9321.0000.00001 pv-2015 12:30	Sample Data Matrix: Sample Size: % Solids:	Soil 15.1 g 66.5		Lab QC	oratory Data Sample: Batch: e Analyzed :		Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	30-Nov-2015 Analyst: WJL	
Analyte Conc.	(pg/g)	DL EMP	PC	Qualifiers		Labeled Standa	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.33	55		IS	13C-2,3,7,8-TC	DD	98.2	40 - 135	
1,2,3,7,8-PeCDD	1.73			J		13C-1,2,3,7,8-P	PeCDD	104	40 - 135	
1,2,3,4,7,8-HxCDD	2.99					13C-1,2,3,4,7,8	-HxCDD	111	40 - 135	
1,2,3,6,7,8-HxCDD	9.93					13C-1,2,3,6,7,8	-HxCDD	100	40 - 135	
1,2,3,7,8,9-HxCDD	5.65					13C-1,2,3,7,8,9	-HxCDD	103	40 - 135	
1,2,3,4,6,7,8-HpCDD	606					13C-1,2,3,4,6,7	,8-HpCDD	112	40 - 135	
OCDD	14300			Е		13C-OCDD		119	40 - 135	
2,3,7,8-TCDF	0.838					13C-2,3,7,8-TC	DF	96.9	40 - 135	
1,2,3,7,8-PeCDF	1.22			J		13C-1,2,3,7,8-P	PeCDF	109	40 - 135	
2,3,4,7,8-PeCDF	0.937			J		13C-2,3,4,7,8-P	PeCDF	114	40 - 135	
1,2,3,4,7,8-HxCDF	2.30			J		13C-1,2,3,4,7,8	-HxCDF	94.7	40 - 135	
1,2,3,6,7,8-HxCDF	0.873			J		13C-1,2,3,6,7,8	-HxCDF	89.1	40 - 135	
2,3,4,6,7,8-HxCDF	0.720			J		13C-2,3,4,6,7,8	-HxCDF	91.8	40 - 135	
1,2,3,7,8,9-HxCDF	0.441			J		13C-1,2,3,7,8,9	-HxCDF	96.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	43.9					13C-1,2,3,4,6,7	,8-HpCDF	93.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	3.48					13C-1,2,3,4,7,8	,9-HpCDF	107	40 - 135	
OCDF	314					13C-OCDF		95.0	40 - 135	
					CRS	37Cl-2,3,7,8-T0	CDD	88.1	40 - 135	
						Toxic Equivale	nt Quotient (TEQ) Data		
						TEQMinWHO2	005Dioxin	15.3		
TOTALS										
Total TCDD	34.4	34.								
Total PeCDD	34.1	34.	5							
Total HxCDD	156									
Total HpCDD	1420									
Total TCDF	11.0	12.								
Total PeCDF	10.2	10.	6							
Total HxCDF	33.5									
Total HpCDF	215									
DL - Sample specifc esti	imated detection limit				LCL-UC	L- Lower control lim	it - upper control limit			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 8 of 38

CII A D									ethod 8290
•	DIS 21.0000.00001 -2015 12:35	Sample Daniel Sample S	Soil Size: 12.4 g		Lab QC	Doratory Data Sample: 1501148-02 Batch: B5K0138 e Analyzed: 06-Dec-15 11:15	Date Received: Date Extracted: Column: ZB-5MS	20-Nov-2015 30-Nov-2015 3 Analyst: WJL	
Analyte Conc. (p	og/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.113			IS	13C-2,3,7,8-TCDD	86.4	40 - 135	
1,2,3,7,8-PeCDD	ND	0.118				13C-1,2,3,7,8-PeCDD	94.5	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.198				13C-1,2,3,4,7,8-HxCDD	96.3	40 - 135	
1,2,3,6,7,8-HxCDD	0.263			J		13C-1,2,3,6,7,8-HxCDD	89.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.221				13C-1,2,3,7,8,9-HxCDD	90.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	61.4					13C-1,2,3,4,6,7,8-HpCDD	92.4	40 - 135	
OCDD	9440			Е		13C-OCDD	101	40 - 135	
2,3,7,8-TCDF	ND	0.0929				13C-2,3,7,8-TCDF	89.8	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0716				13C-1,2,3,7,8-PeCDF	98.2	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0674				13C-2,3,4,7,8-PeCDF	103	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0957				13C-1,2,3,4,7,8-HxCDF	86.1	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0994				13C-1,2,3,6,7,8-HxCDF	82.5	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.104				13C-2,3,4,6,7,8-HxCDF	84.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.151				13C-1,2,3,7,8,9-HxCDF	85.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.797			J		13C-1,2,3,4,6,7,8-HpCDF	80.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0982				13C-1,2,3,4,7,8,9-HpCDF	91.9	40 - 135	
OCDF	5.42					13C-OCDF	79.7	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	82.1	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	3.48		
TOTALS									
Total TCDD	ND	0.113							
Total PeCDD	ND	0.118							
Total HxCDD	2.87								
Total HpCDD	122								
Total TCDF	ND	0.0929							
Total PeCDF	ND	0.0716							
Total HxCDF	0.402		0.540						
Total HpCDF DL - Sample specifc estima	3.62								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 9 of 38

Sample ID: OW-210B	3_4-6 (20151116)								EPA Mo	ethod 8290
"	NIS 21.0000.00001 2015 12:45	Sample Da Matrix: Sample S % Solids:	Soil ize: 12.1 g		Lab QC	oratory Data Sample: Batch: e Analyzed :	1501148-03 B5K0138 06-Dec-15 12:03	Date Received: Date Extracted: 3 Column: ZB-5MS	30-Nov-2015	
Analyte Conc. (p	g/g)	DL I	EMPC	Qualifiers		Labeled Standa	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND 0	.121			IS	13C-2,3,7,8-TC	DD	77.5	40 - 135	
1,2,3,7,8-PeCDD	ND 0	.181				13C-1,2,3,7,8-P	PeCDD	83.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND 0	.192				13C-1,2,3,4,7,8	-HxCDD	84.7	40 - 135	
1,2,3,6,7,8-HxCDD	ND 0	.196				13C-1,2,3,6,7,8	-HxCDD	78.2	40 - 135	
1,2,3,7,8,9-HxCDD	ND 0	.212				13C-1,2,3,7,8,9	-HxCDD	80.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	43.9					13C-1,2,3,4,6,7	,8-HpCDD	83.6	40 - 135	
OCDD	5370					13C-OCDD		79.3	40 - 135	
2,3,7,8-TCDF	ND 0	.104				13C-2,3,7,8-TC	DF	80.3	40 - 135	
1,2,3,7,8-PeCDF	ND 0.	0832				13C-1,2,3,7,8-P	PeCDF	86.9	40 - 135	
2,3,4,7,8-PeCDF	ND 0.	0744				13C-2,3,4,7,8-P	PeCDF	90.5	40 - 135	
1,2,3,4,7,8-HxCDF	ND 0.	0841				13C-1,2,3,4,7,8	-HxCDF	74.5	40 - 135	
1,2,3,6,7,8-HxCDF	ND 0.	0882				13C-1,2,3,6,7,8	-HxCDF	70.9	40 - 135	
2,3,4,6,7,8-HxCDF	ND 0.	0877				13C-2,3,4,6,7,8	-HxCDF	73.8	40 - 135	
	ND 0	.126				13C-1,2,3,7,8,9		76.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	1.13			J		13C-1,2,3,4,6,7	,8-HpCDF	70.0	40 - 135	
	ND 0	.117				13C-1,2,3,4,7,8	_	84.0	40 - 135	
	6.68					13C-OCDF		71.9	40 - 135	
					CRS	37Cl-2,3,7,8-TC	CDD	84.7	40 - 135	
						Toxic Equivale	nt Quotient (TEC	Q) Data		
						TEQMinWHO2	005Dioxin	2.06		
TOTALS										
Total TCDD	ND 0.	121					<u> </u>			_
Total PeCDD	1.13									
Total HxCDD	5.88									
Total HpCDD	92.2									
Total TCDF	ND		0.272							
Total PeCDF	ND 0.0	0832								
Total HxCDF	0.584		0.802							
Total HpCDF	4.72									
DL - Sample specifc estimat	ted detection limit		<u> </u>		LCL-UC	L- Lower control limi	it - upper control limit	i		

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 10 of 38

Sample ID: OW-210B	3_6-8 (20151116)							EPA M	ethod 8290
_	IS 21.0000.00001 2015 12:55	Sample Dat Matrix: Sample Si % Solids:	Soil		Lab QC I	oratory Data Sample: 1501148-04 Batch: B5K0138 e Analyzed: 06-Dec-15 12:51	Date Received: Date Extracted: Column: ZB-5MS		
Analyte Conc. (pg	g/g)	DL F	EMPC Q	ualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.155		IS	13C-2,3,7,8-TCDD	90.8	40 - 135	
1,2,3,7,8-PeCDD	ND		0.130			13C-1,2,3,7,8-PeCDD	102	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.112				13C-1,2,3,4,7,8-HxCDD	101	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.117				13C-1,2,3,6,7,8-HxCDD	91.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.131				13C-1,2,3,7,8,9-HxCDD	94.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	10.2					13C-1,2,3,4,6,7,8-HpCDD	98.5	40 - 135	
OCDD	604					13C-OCDD	82.3	40 - 135	
2,3,7,8-TCDF	ND 0	.0870				13C-2,3,7,8-TCDF	93.7	40 - 135	
1,2,3,7,8-PeCDF	ND 0	.0537				13C-1,2,3,7,8-PeCDF	106	40 - 135	
2,3,4,7,8-PeCDF	ND 0	.0492				13C-2,3,4,7,8-PeCDF	109	40 - 135	
1,2,3,4,7,8-HxCDF	ND 0	.0871				13C-1,2,3,4,7,8-HxCDF	88.5	40 - 135	
1,2,3,6,7,8-HxCDF	ND 0	.0922				13C-1,2,3,6,7,8-HxCDF	84.2	40 - 135	
2,3,4,6,7,8-HxCDF	ND 0	.0877				13C-2,3,4,6,7,8-HxCDF	88.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.128				13C-1,2,3,7,8,9-HxCDF	89.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.725			J		13C-1,2,3,4,6,7,8-HpCDF	84.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.120				13C-1,2,3,4,7,8,9-HpCDF	95.0	40 - 135	
	4.51			J		13C-OCDF	78.9	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	87.3	40 - 135	
						Toxic Equivalent Quotient (TEQ)	Data		
						TEQMinWHO2005Dioxin	0.292		
TOTALS									
	0.950		2.01						
	0.872		5.35						
	7.91								
	21.6								
		0870							
		0537							
	0.163		0.538						
Total HpCDF DL - Sample specifc estimate	3.20					L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 11 of 38

Client Data Name: ARCADI Project: B003932	IS 1.0000.00001	Sample Dat	a		Lab				
Date Collected: 16-Nov-2	2015 13:05	Matrix: Sample Si % Solids:	Soil ze: 12.5 g 80.0		Lab QC 1	Oratory Data Sample: 1501148-05 Batch: B5K0138 e Analyzed: 06-Dec-15 13:39	Date Received: Date Extracted: Column: ZB-5MS		
Analyte Conc. (pg	g/g)	DL E	CMPC (Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND 0	.0918			IS	13C-2,3,7,8-TCDD	92.0	40 - 135	
1,2,3,7,8-PeCDD	ND 0	.0986				13C-1,2,3,7,8-PeCDD	97.7	40 - 135	
1,2,3,4,7,8-HxCDD	ND 0	0.129				13C-1,2,3,4,7,8-HxCDD	98.8	40 - 135	
1,2,3,6,7,8-HxCDD	ND 0	0.128				13C-1,2,3,6,7,8-HxCDD	92.9	40 - 135	
1,2,3,7,8,9-HxCDD	ND 0	0.145				13C-1,2,3,7,8,9-HxCDD	96.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	2.15			J		13C-1,2,3,4,6,7,8-HpCDD	97.6	40 - 135	
OCDD	113					13C-OCDD	83.6	40 - 135	
2,3,7,8-TCDF	ND 0	.0733				13C-2,3,7,8-TCDF	93.2	40 - 135	
1,2,3,7,8-PeCDF	ND 0	.0509				13C-1,2,3,7,8-PeCDF	104	40 - 135	
2,3,4,7,8-PeCDF	ND 0	.0470				13C-2,3,4,7,8-PeCDF	106	40 - 135	
1,2,3,4,7,8-HxCDF	ND 0	.0758				13C-1,2,3,4,7,8-HxCDF	88.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND 0	.0707				13C-1,2,3,6,7,8-HxCDF	86.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND 0	.0780				13C-2,3,4,6,7,8-HxCDF	86.5	40 - 135	
1,2,3,7,8,9-HxCDF	ND 0	0.108				13C-1,2,3,7,8,9-HxCDF	90.0	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.115			J		13C-1,2,3,4,6,7,8-HpCDF	82.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND 0	.0817				13C-1,2,3,4,7,8,9-HpCDF	99.3	40 - 135	
	0.378			J		13C-OCDF	80.5	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	81.3	40 - 135	
						Toxic Equivalent Quotient (TEQ)	Data		
						TEQMinWHO2005Dioxin	0.0567		
TOTALS									
Total TCDD	0.675		0.862						
	1.36		1.95						
	2.81		3.28						
	5.73								
		0733							
		0509							
		.108							
Total HpCDF DL - Sample specifc estimate	0.115		0.267						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 12 of 38

Sample ID: OW-210I	B_28-30 (20151116)								EPA M	ethod 8290
•	DIS 21.0000.00001 -2015 14:25	Sample Da Matrix: Sample Si % Solids:	Soil		Lab QC	ooratory Data Sample: Batch: e Analyzed :	1501148-06 B5K0138 06-Dec-15 14:2'	Date Received: Date Extracted: 7 Column: ZB-5MS	30-Nov-2015	
Analyte Conc. (p	og/g)	DL I	EMPC	Qualifiers		Labeled Standa	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.109			IS	13C-2,3,7,8-TC	DD	81.3	40 - 135	
1,2,3,7,8-PeCDD	ND	0.118				13C-1,2,3,7,8-P	PeCDD	87.9	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.162				13C-1,2,3,4,7,8	-HxCDD	93.5	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.167				13C-1,2,3,6,7,8	-HxCDD	84.2	40 - 135	
1,2,3,7,8,9-HxCDD	0.854			J		13C-1,2,3,7,8,9	-HxCDD	90.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	11.0					13C-1,2,3,4,6,7	,8-HpCDD	91.5	40 - 135	
OCDD	401					13C-OCDD		77.9	40 - 135	
2,3,7,8-TCDF	ND (0.0941				13C-2,3,7,8-TC	DF	82.1	40 - 135	
1,2,3,7,8-PeCDF	ND (0.0610				13C-1,2,3,7,8-P	PeCDF	92.8	40 - 135	
2,3,4,7,8-PeCDF	ND (0.0608				13C-2,3,4,7,8-P	PeCDF	94.1	40 - 135	
1,2,3,4,7,8-HxCDF	ND (0.0902				13C-1,2,3,4,7,8	-HxCDF	81.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND (0.0944				13C-1,2,3,6,7,8	-HxCDF	77.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND (0.0930				13C-2,3,4,6,7,8	-HxCDF	81.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.131				13C-1,2,3,7,8,9	-HxCDF	81.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.251			J		13C-1,2,3,4,6,7	,8-HpCDF	77.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND (0.0956				13C-1,2,3,4,7,8	_	88.7	40 - 135	
OCDF	1.19			J		13C-OCDF		73.0	40 - 135	
					CRS	37Cl-2,3,7,8-T0	CDD	73.9	40 - 135	
						Toxic Equivale	nt Quotient (TEC	Q) Data		
						TEQMinWHO2	2005Dioxin	0.319		
TOTALS										
Total TCDD	ND		0.395							
Total PeCDD	ND		0.412							
Total HxCDD	2.55									
Total HpCDD	24.2									
Total TCDF		0941								
Total PeCDF		0610								
Total HxCDF	0.131									
Total HpCDF DL - Sample specifc estima	0.975									

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 13 of 38

Sample ID: P-11A_0	0-2 (20151117)								EPA Mo	ethod 8290
	ADIS 9321.0000.00001 pv-2015 11:20	Sample Data Matrix: Sample Size: % Solids:	Soil 12.5 g 80.0		Lab QC	poratory Data Sample: Batch:		Date Received: Date Extracted: 5 Column: ZB-5MS	30-Nov-2015 Analyst: WJL	
Analyte Conc.	(ng/g)	DL EMP	C	Qualifiers		Labeled Standa		1 Column: DB-225 %R	Analyst: DB LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.607	DL ENII	C	Quanners	IS	13C-2,3,7,8-TC		97.7	40 - 135	Quanners
1,2,3,7,8-PeCDD	2.80				15	13C-2,3,7,8-1C 13C-1,2,3,7,8-P		111	40 - 135	
1,2,3,4,7,8-HxCDD	6.92					13C-1,2,3,4,7,8-1		108	40 - 135	
1,2,3,6,7,8-HxCDD	40.3					13C-1,2,3,4,7,8		98.7	40 - 135	
1,2,3,7,8,9-HxCDD	12.0					13C-1,2,3,7,8,9		103	40 - 135	
1,2,3,4,6,7,8-HpCDD	2250					13C-1,2,3,4,6,7		119	40 - 135	
OCDD	21300			Е		13C-OCDD	о превв	116	40 - 135	
2,3,7,8-TCDF	3.62			_		13C-2,3,7,8-TC	DF	97.0	40 - 135	
1,2,3,7,8-PeCDF	6.89					13C-1,2,3,7,8-P		115	40 - 135	
2,3,4,7,8-PeCDF	4.37					13C-2,3,4,7,8-P		118	40 - 135	
1,2,3,4,7,8-HxCDF	15.2					13C-1,2,3,4,7,8		96.5	40 - 135	
1,2,3,6,7,8-HxCDF	5.35					13C-1,2,3,6,7,8		91.6	40 - 135	
2,3,4,6,7,8-HxCDF	4.47					13C-2,3,4,6,7,8		92.3	40 - 135	
1,2,3,7,8,9-HxCDF	2.89					13C-1,2,3,7,8,9		96.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	293					13C-1,2,3,4,6,7		90.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	24.0					13C-1,2,3,4,7,8	•	109	40 - 135	
OCDF	2020					13C-OCDF	, ,	96.2	40 - 135	
					CRS	37C1-2,3,7,8-TC	CDD	85.0	40 - 135	
						Toxic Equivaler	nt Quotient (TE	Q) Data		
						TEQMinWHO2	005Dioxin	46.7		
TOTALS										
Total TCDD	21.2	21.4	1							
Total PeCDD	43.3									
Total HxCDD	559									
Total HpCDD	4980									
Total TCDF	55.2									
Total PeCDF	48.4	49.0								
Total HxCDF	215	216								
Total HpCDF DL - Sample specifc esting	1460					CL- Lower control limi				

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 14 of 38

Sample ID: P-11A_2	2-4 (20151117)							EPA M	ethod 8290
	ADIS 9321.0000.00001 ov-2015 11:25	Sample D Matrix: Sample S % Solids	Soil Size: 12.8 g		Lab QC	Sample: 1501148-08 Batch: B5K0138 e Analyzed: 07-Dec-15 14:15	Date Received: Date Extracted: Column: ZB-5MS	30-Nov-2015	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.118			IS	13C-2,3,7,8-TCDD	86.6	40 - 135	
1,2,3,7,8-PeCDD	ND		0.291			13C-1,2,3,7,8-PeCDD	94.0	40 - 135	
1,2,3,4,7,8-HxCDD	0.636			J		13C-1,2,3,4,7,8-HxCDD	89.2	40 - 135	
1,2,3,6,7,8-HxCDD	1.07			J		13C-1,2,3,6,7,8-HxCDD	88.9	40 - 135	
1,2,3,7,8,9-HxCDD	0.936			J		13C-1,2,3,7,8,9-HxCDD	88.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	217					13C-1,2,3,4,6,7,8-HpCDD	89.2	40 - 135	
OCDD	36400			E		13C-OCDD	102	40 - 135	
2,3,7,8-TCDF	ND	0.0881				13C-2,3,7,8-TCDF	89.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0763				13C-1,2,3,7,8-PeCDF	91.5	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0596				13C-2,3,4,7,8-PeCDF	98.3	40 - 135	
1,2,3,4,7,8-HxCDF	0.163			J		13C-1,2,3,4,7,8-HxCDF	82.1	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.112				13C-1,2,3,6,7,8-HxCDF	78.9	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.119				13C-2,3,4,6,7,8-HxCDF	79.3	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.156				13C-1,2,3,7,8,9-HxCDF	85.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	3.41					13C-1,2,3,4,6,7,8-HpCDF	80.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.237			J		13C-1,2,3,4,7,8,9-HpCDF	91.8	40 - 135	
OCDF	22.4					13C-OCDF	81.8	40 - 135	
					CRS	37C1-2,3,7,8-TCDD	82.5	40 - 135	
						Toxic Equivalent Quotient (TEC	Q) Data		
						TEQMinWHO2005Dioxin	13.4		
TOTALS									
Total TCDD	ND	0.118							
Total PeCDD	0.252		1.58						
Total HxCDD	12.7								
Total HpCDD	483								
Total TCDF	ND	0.0881							
Total PeCDF	0.130		0.207						
Total HxCDF	3.06								
Total HpCDF DL - Sample specife estin	16.3								

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 15 of 38

Sample ID: P-11A_4	1-6 (20151117)							EPA Mo	ethod 8290
Client Data Name: ARCA Project: B0039 Date Collected: 17-No	321.0000.00001	Sample D Matrix: Sample S % Solids	Soil Size: 13.0 g		Lab QC	Doratory Data Sample: 1501148-09 Batch: B5K0138 e Analyzed: 07-Dec-15 15:00	Date Received: Date Extracted: 3 Column: ZB-5MS	30-Nov-2015	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.295			J	IS	13C-2,3,7,8-TCDD	95.1	40 - 135	
1,2,3,7,8-PeCDD	0.263			J		13C-1,2,3,7,8-PeCDD	102	40 - 135	
1,2,3,4,7,8-HxCDD	0.574			J		13C-1,2,3,4,7,8-HxCDD	104	40 - 135	
1,2,3,6,7,8-HxCDD	1.53			J		13C-1,2,3,6,7,8-HxCDD	98.5	40 - 135	
1,2,3,7,8,9-HxCDD	0.886			J		13C-1,2,3,7,8,9-HxCDD	103	40 - 135	
1,2,3,4,6,7,8-HpCDD	112					13C-1,2,3,4,6,7,8-HpCDD	104	40 - 135	
OCDD	4720					13C-OCDD	98.5	40 - 135	
2,3,7,8-TCDF	ND	0.0781				13C-2,3,7,8-TCDF	98.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0645				13C-1,2,3,7,8-PeCDF	106	40 - 135	
2,3,4,7,8-PeCDF	ND		0.103			13C-2,3,4,7,8-PeCDF	108	40 - 135	
1,2,3,4,7,8-HxCDF	0.379			J		13C-1,2,3,4,7,8-HxCDF	95.6	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0837				13C-1,2,3,6,7,8-HxCDF	91.6	40 - 135	
2,3,4,6,7,8-HxCDF	0.218			J		13C-2,3,4,6,7,8-HxCDF	94.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.122				13C-1,2,3,7,8,9-HxCDF	97.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	8.56					13C-1,2,3,4,6,7,8-HpCDF	90.4	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.680			J		13C-1,2,3,4,7,8,9-HpCDF	108	40 - 135	
OCDF	55.8					13C-OCDF	88.6	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	83.9	40 - 135	
						Toxic Equivalent Quotient (TEC	Q) Data		
						TEQMinWHO2005Dioxin	3.56		
TOTALS									
Total TCDD	2.62		2.90						
Total PeCDD	1.23		3.52						
Total HxCDD	21.0								
Total HpCDD	268								
Total TCDF	1.64		1.75						
Total PeCDF	ND		0.773						
Total HxCDF	7.20								
Total HpCDF	40.3								
DL - Sample specifc estir	nated detection limit				LCL-UC	L- Lower control limit - upper control limit			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 16 of 38

Sample ID: P-11A_0	5-8 (20151117)						EPA M	ethod 8290
	ADIS 321.0000.00001 v-2015 11:36	Sample Data Matrix: Sample Size: % Solids:	Soil 10.4 g 96.4	Lab QC 1	oratory Data Sample: 1501148-10 Batch: B5K0138 e Analyzed: 07-Dec-15 15:51	Date Received: Date Extracted: Column: ZB-5MS	30-Nov-2015	
Analyte Conc.	(pg/g)	DL EMPO	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.100		IS	13C-2,3,7,8-TCDD	79.2	40 - 135	
1,2,3,7,8-PeCDD	0.213		J		13C-1,2,3,7,8-PeCDD	82.9	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.199			13C-1,2,3,4,7,8-HxCDD	90.0	40 - 135	
1,2,3,6,7,8-HxCDD	0.571		J		13C-1,2,3,6,7,8-HxCDD	84.4	40 - 135	
1,2,3,7,8,9-HxCDD	0.478		J		13C-1,2,3,7,8,9-HxCDD	86.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	22.4				13C-1,2,3,4,6,7,8-HpCDD	87.6	40 - 135	
OCDD	320				13C-OCDD	76.4	40 - 135	
2,3,7,8-TCDF	ND	0.0857			13C-2,3,7,8-TCDF	81.5	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0600			13C-1,2,3,7,8-PeCDF	86.1	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0611			13C-2,3,4,7,8-PeCDF	88.9	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0870			13C-1,2,3,4,7,8-HxCDF	80.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0885			13C-1,2,3,6,7,8-HxCDF	78.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0947			13C-2,3,4,6,7,8-HxCDF	78.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.139			13C-1,2,3,7,8,9-HxCDF	79.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	2.14		J		13C-1,2,3,4,6,7,8-HpCDF	76.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.173		J		13C-1,2,3,4,7,8,9-HpCDF	87.8	40 - 135	
OCDF	13.9				13C-OCDF	73.1	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	82.0	40 - 135	
					Toxic Equivalent Quotient (TEQ) Data		
					TEQMinWHO2005Dioxin	0.665		
TOTALS								
Total TCDD	3.05	3.42						
Total PeCDD	18.9	20.5						
Total HxCDD	21.0							
Total HpCDD	52.9							
Total TCDF	ND	0.0857						
Total PeCDF	0.136							
Total HxCDF	1.71							
Total HpCDF DL - Sample specife estin	10.3							

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 17 of 38

Sample ID: P-11A_	8-10 (20151117)								EPA M	ethod 8290
-	ADIS 9321.0000.00001 pv-2015 11:45	Sample D Matrix: Sample 8	Soil Size: 12.4 g		Lab QC	ooratory Data Sample: Batch: e Analyzed:	1501148-11 B5K0138 07-Dec-15 16:39		20-Nov-2015 30-Nov-2015 3 Analyst: WJL	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Stand	lard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.210		IS	13C-2,3,7,8-TC	CDD	88.8	40 - 135	
1,2,3,7,8-PeCDD	ND		0.113			13C-1,2,3,7,8-l	PeCDD	93.9	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.169				13C-1,2,3,4,7,8	8-HxCDD	94.3	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.171				13C-1,2,3,6,7,8	8-HxCDD	90.0	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.194				13C-1,2,3,7,8,9	9-HxCDD	90.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	12.7					13C-1,2,3,4,6,7	7,8-HpCDD	93.1	40 - 135	
OCDD	262					13C-OCDD		76.6	40 - 135	
2,3,7,8-TCDF	ND	0.0795				13C-2,3,7,8-T0	CDF	92.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0545				13C-1,2,3,7,8-1	PeCDF	100	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0597				13C-2,3,4,7,8-l	PeCDF	102	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0725				13C-1,2,3,4,7,8	8-HxCDF	87.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0752				13C-1,2,3,6,7,8	8-HxCDF	83.5	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0760				13C-2,3,4,6,7,8	8-HxCDF	86.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.113				13C-1,2,3,7,8,9	9-HxCDF	87.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	1.05			J		13C-1,2,3,4,6,7	7,8-HpCDF	82.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.145				13C-1,2,3,4,7,8	8,9-HpCDF	96.2	40 - 135	
OCDF	6.50					13C-OCDF		77.6	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	82.8	40 - 135	
						Toxic Equivale	ent Quotient (TEQ	Q) Data		
						TEQMinWHO2	2005Dioxin	0.218		
TOTALS										
Total TCDD	1.55		2.53							
Total PeCDD	4.25		5.86							
Total HxCDD	6.27									
Total HpCDD	31.5									
Total TCDF		0.0795								
Total PeCDF		0.0597								
Total HxCDF	0.611		0.788							
Total HpCDF	4.58									
DL - Sample specifc esti	imated detection limit				LCL-UC	L- Lower control lim	nit - upper control limit			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 18 of 38

Sample ID: Mat	rix Spike											EPA M	lethod 8290
Source Client ID: Source LabNumber: Matrix: Sample Size:	P-11A_8-10 (2 1501148-11 Solid 12.4/12.4 g	0151117)			QC Batch: Date Extract		5K0138 0-Nov-20	015 9:58		Lab Sample: B5K0138-MS1/B5K0 Date Analyzed: 06-Dec-15 07:16 Co 06-Dec-15 08:04 Co	olumn: ZB-5	MS Analyst: WJL	
Analyte		Spike-MS (pg/g)	MS %R	MS Qualifiers	Spike-MSD (pg/g)	MSD %R	RPD	MSD Qualifiers		Labeled Standard	MS %R	MS MSD Qualifiers %R	MSD Qualifiers
2,3,7,8-TCDD		20.0	87.8		20.0	88.0	0.228		IS	13C-2,3,7,8-TCDD	93.3	91.3	
1,2,3,7,8-PeCDD		100	91.3		100	91.3	0			13C-1,2,3,7,8-PeCDD	110	107	
1,2,3,4,7,8-HxCDD		100	92.1		100	92.6	0.541			13C-1,2,3,4,7,8-HxCDD	112	108	
1,2,3,6,7,8-HxCDD		100	92.7		100	89.8	3.18			13C-1,2,3,6,7,8-HxCDD	98.6	98.7	
1,2,3,7,8,9-HxCDD		100	91.6		100	91.0	0.657			13C-1,2,3,7,8,9-HxCDD	107	103	
1,2,3,4,6,7,8-HpCDD		100	87.3		100	84.4	3.38			13C-1,2,3,4,6,7,8-HpCDD	105	102	
OCDD		200	43.0	Н	200	56.9	27.8	Н		13C-OCDD	88.9	85.3	
2,3,7,8-TCDF		20.0	83.7		20.0	84.7	1.19			13C-2,3,7,8-TCDF	94.7	92.7	
1,2,3,7,8-PeCDF		100	100		100	101	0.995			13C-1,2,3,7,8-PeCDF	115	116	
2,3,4,7,8-PeCDF		100	98.5		100	96.8	1.74			13C-2,3,4,7,8-PeCDF	123	122	
1,2,3,4,7,8-HxCDF		100	91.5		100	88.8	3.00			13C-1,2,3,4,7,8-HxCDF	96.2	91.6	
1,2,3,6,7,8-HxCDF		100	95.1		100	92.9	2.34			13C-1,2,3,6,7,8-HxCDF	88.1	84.9	
2,3,4,6,7,8-HxCDF		100	90.6		100	89.1	1.67			13C-2,3,4,6,7,8-HxCDF	89.2	91.4	
1,2,3,7,8,9-HxCDF		100	93.0		100	93.9	0.963			13C-1,2,3,7,8,9-HxCDF	95.5	90.3	
1,2,3,4,6,7,8-HpCDF		100	92.3		100	91.7	0.652			13C-1,2,3,4,6,7,8-HpCDF	85.4	80.2	
1,2,3,4,7,8,9-HpCDF		100	90.6		100	89.8	0.887			13C-1,2,3,4,7,8,9-HpCDF	102	95.8	
OCDF		200	93.3		200	92.2	1.19			13C-OCDF	82.5	80.1	
									CRS	S 37C1-2,3,7,8-TCDD	87.3	81.7	

Project 1501148 Page 19 of 38

2,3,7,8-TCDD 0.951 IS 13C-2,3,7,8-TCDD 82.2 40 - 135 1,2,3,7,8-PeCDD 6.25 13C-1,2,3,7,8-PeCDD 85.8 40 - 135 1,2,3,4,7,8-HxCDD 23.1 13C-1,2,3,4,7,8-HxCDD 88.7 40 - 135 1,2,3,6,7,8-HxCDD 99.0 13C-1,2,3,6,7,8-HxCDD 80.9 40 - 135 1,2,3,7,8,9-HxCDD 40.2 13C-1,2,3,7,8,9-HxCDD 82.1 40 - 135 1,2,3,4,6,7,8-HpCDD 6660 D 13C-1,2,3,4,6,7,8-HpCDD 91.7 40 - 135	Sample ID: DUP-0	1 (20151117)							EPA M	ethod 8290
23,7,8-TCDD	Name: ARC Project: B003	39321.0000.00001	Matrix: Sample Size:	12.4 g	La Q0	b Sample: C Batch:	B5K0138 07-Dec-15 17:27	Date Extracted: Column: ZB-5MS	30-Nov-2015 S Analyst: WJL	
12.3.7.8-PCDD	Analyte Conc	. (pg/g)	DL EMPC	Qualifier	S	Labeled Stand	ard	%R	LCL-UCL	Qualifiers
12,3,47,8-HxCDD 23.1 13C-1,2,3,47,8-HxCDD 88.7 40-135 12,3,67,8-HxCDD 99.0 13C-1,2,3,6,7,8-HxCDD 80.9 40-135 12,3,7,8-HxCDD 6660 13C-1,2,3,6,7,8-HxCDD 82.1 40-135 12,3,46,7,8-HxCDD 6660 D 13C-1,2,3,4,6,7,8-HxCDD 91.7 40-135 12,3,4,6,7,8-HxCDF 6660 D 13C-0CDD 89.2 40-135 12,3,7,8-PcDF 1,21 13C-2,3,7,8-PcDF 82.5 40-135 12,3,7,8-PcDF 2,36 J 13C-1,2,3,7,8-PcDF 82.5 40-135 12,3,7,8-PcDF 741 13C-2,3,4,8-PcDF 89.7 40-135 12,3,4,7,8-HxCDF 33.8 13C-1,2,3,7,8-HxCDF 77.9 40-135 12,3,4,7,8-HxCDF 33.8 13C-1,2,3,6,7,8-HxCDF 77.9 40-135 12,3,4,6,7,8-HxCDF 13.2 13C-2,3,4,6,7,8-HxCDF 73.2 40-135 12,3,4,6,7,8-HxCDF 13.2 13C-1,2,3,6,7,8-HxCDF 74.9 40-135 12,3,4,6,7,8-HxCDF 605 13C-1,2,3,6,7,8-HxCDF 74.9 40-135 12,3,4,7,8,9-HxCDF 64.5 13C-1,2,3,4,7,8-HxCDF 75.2 40-135 12,3,4,7,8,9-HxCDF 44.5 13C-1,2,3,4,7,8-HxCDF 75.2 40-135 12,3,4,7,8,9-HxCDF 44.5 13C-1,2,3,4,7,8-HxCDF 75.2 40-135 12,3,4,7,8,9-HxCDF 44.5 13C-1,2,3,4,7,8-HyCDF 92.3 40-135 12,3,4,7,8,9-HyCDF 44.5 13C-1,2,3,4,7,8-HyCDF 92.3 40-135 12,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	2,3,7,8-TCDD	0.951			IS	13C-2,3,7,8-TC	CDD	82.2	40 - 135	
12.3,67,8-HxCDD	1,2,3,7,8-PeCDD	6.25				13C-1,2,3,7,8-I	PeCDD	85.8	40 - 135	
1,2,3,7,8,9-HxCDD	1,2,3,4,7,8-HxCDD	23.1				13C-1,2,3,4,7,8	3-HxCDD	88.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	1,2,3,6,7,8-HxCDD	99.0				13C-1,2,3,6,7,8	8-HxCDD	80.9	40 - 135	
D 13C-OCDD 89.2 40-135	1,2,3,7,8,9-HxCDD	40.2				13C-1,2,3,7,8,9	-HxCDD	82.1	40 - 135	
2,3,7,8-TCDF	1,2,3,4,6,7,8-HpCDD	6660		D		13C-1,2,3,4,6,7	7,8-HpCDD	91.7	40 - 135	D
1,2,3,7,8-PeCDF	OCDD	68500		D		13C-OCDD		89.2	40 - 135	D
2,3,4,7,8-PeCDF	2,3,7,8-TCDF	1.21				13C-2,3,7,8-TC	CDF	82.5	40 - 135	
1,2,3,4,7,8-HxCDF	1,2,3,7,8-PeCDF	2.36		J		13C-1,2,3,7,8-I	PeCDF	86.7	40 - 135	
1,2,3,6,7,8-HxCDF	2,3,4,7,8-PeCDF	7.41				13C-2,3,4,7,8-I	PeCDF	89.7	40 - 135	
2,3,4,6,7,8-HxCDF 13.2 13.2 13.2,3,4,6,7,8-HxCDF 74.9 40 - 135 1,2,3,7,8,9-HxCDF 6.65 13.2,3,7,8,9-HxCDF 77.4 40 - 135 1,2,3,4,6,7,8-HpCDF 60.5 13.2,3,4,6,7,8-HpCDF 75.2 40 - 135 1,2,3,4,7,8,9-HpCDF 44.5 13.2,3,4,7,8,9-HpCDF 92.3 40 - 135 1.2,3,4,7,8,9-HpCDF 92.3 40 - 135 1.2,3,4,7,8,9-HpCDF 92.3 40 - 135 13.2 0CDF 3770 13.2 0CDF 84.5 40 - 135 0CRS 37CI-2,3,7,8-TCDD 74.6 40 - 135 0CRS 37CI-2,3,7,8-TCDD 74.6 40 - 135 0CRS 37CI-2,3,7,8-TCDD 74.6 13.5 0CRS 37CI-2,3,7,8,9-HpCDF 74.6 0CRS 37CI-2,3,7,8,9-HpCDF 74.6 0CRS 37CI-2,3,7,8,9-HpCDF 74.6 0CRS 37CI-2,3,7,8,9-HpCDF 74.6 0CRS 37CI-2,3,7,8,9-HpCDF 75.2 0CRS 37CI-2,3,7,8,9-HpCDF 75.	1,2,3,4,7,8-HxCDF	33.8				13C-1,2,3,4,7,8	8-HxCDF	77.9	40 - 135	
1,2,3,7,8,9-HxCDF	1,2,3,6,7,8-HxCDF	9.52				13C-1,2,3,6,7,8	8-HxCDF	73.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	2,3,4,6,7,8-HxCDF	13.2				13C-2,3,4,6,7,8	8-HxCDF	74.9	40 - 135	
1,2,3,4,7,8,9-HpCDF 44.5 OCDF 3770 13C-1,2,3,4,7,8,9-HpCDF 92.3 40 - 135 OCDF 84.5 40 - 135 CRS 37Cl-2,3,7,8-TCDD 74.6 40 - 135 Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 127 TOTALS Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PCDF 71.5 72.4 Total HxCDF 538	1,2,3,7,8,9-HxCDF	6.65				13C-1,2,3,7,8,9	9-HxCDF	77.4	40 - 135	
13C-OCDF	1,2,3,4,6,7,8-HpCDF	605				13C-1,2,3,4,6,7	7,8-HpCDF	75.2	40 - 135	
CRS 37Cl-2,3,7,8-TCDD 74.6 40 - 135 Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 127 TOTALS Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 72.4 Total HxCDF 538 Tota	1,2,3,4,7,8,9-HpCDF	44.5				13C-1,2,3,4,7,8	3,9-HpCDF	92.3	40 - 135	
Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 127	OCDF	3770				13C-OCDF		84.5	40 - 135	
TOTALS Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 72.4 Total HxCDF 538					CRS	37Cl-2,3,7,8-T	CDD	74.6	40 - 135	
TOTALS Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538						Toxic Equivale	ent Quotient (TEQ) Data		
Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538						TEQMinWHO2	2005Dioxin	127		
Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538	TOTALS									
Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538	Total TCDD									
Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538			85.4							
Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538										
Total PeCDF 71.5 72.4 Total HxCDF 538 72.4										
Total HxCDF 538										
			72.4							
Total HpCDF 2980										
DL - Sample specific estimated detection limit LCL-UCL- Lower control limit - upper control limit										

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 20 of 38

Client Data Name: ARCADIS										
Project: B0039321.000 Date Collected: 19-Nov-2015		Sample Data Matrix: Sample Size: % Solids:	Soil 12.7 g 78.9		Lab QC	Sample: Batch: e Analyzed:		Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	Analyst: WJL	
Analyte Conc. (pg/g)	D	L EMPO	C	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD 1.32					IS	13C-2,3,7,8-T	CDD	89.9	40 - 135	
1,2,3,7,8-PeCDD 12.2						13C-1,2,3,7,8-	PeCDD	98.6	40 - 135	
1,2,3,4,7,8-HxCDD 29.5						13C-1,2,3,4,7,	8-HxCDD	96.6	40 - 135	
1,2,3,6,7,8-HxCDD 101						13C-1,2,3,6,7,	8-HxCDD	92.1	40 - 135	
1,2,3,7,8,9-HxCDD 57.3						13C-1,2,3,7,8,5		92.7	40 - 135	
1,2,3,4,6,7,8-HpCDD 3680				E		13C-1,2,3,4,6,	7,8-HpCDD	113	40 - 135	
OCDD 33500)			E		13C-OCDD		106	40 - 135	
2,3,7,8-TCDF 1.12						13C-2,3,7,8-T	CDF	90.2	40 - 135	
1,2,3,7,8-PeCDF 2.08				J		13C-1,2,3,7,8-	PeCDF	100	40 - 135	
2,3,4,7,8-PeCDF 5.88						13C-2,3,4,7,8-	PeCDF	104	40 - 135	
1,2,3,4,7,8-HxCDF 27.6						13C-1,2,3,4,7,	8-HxCDF	88.3	40 - 135	
1,2,3,6,7,8-HxCDF 15.5						13C-1,2,3,6,7,	8-HxCDF	81.8	40 - 135	
2,3,4,6,7,8-HxCDF 26.2						13C-2,3,4,6,7,	8-HxCDF	84.5	40 - 135	
1,2,3,7,8,9-HxCDF 5.07						13C-1,2,3,7,8,	9-HxCDF	87.6	40 - 135	
1,2,3,4,6,7,8-HpCDF 735						13C-1,2,3,4,6,	7,8-HpCDF	86.7	40 - 135	
1,2,3,4,7,8,9-HpCDF 45.6						13C-1,2,3,4,7,	8,9-HpCDF	96.2	40 - 135	
OCDF 3040						13C-OCDF	•	92.0	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	84.8	40 - 135	
						Toxic Equival	ent Quotient (TEC	Q) Data		
						TEQMinWHO	2005Dioxin	97.2		
TOTALS										
Total TCDD 46.0		46.2								
Total PeCDD 107										
Total HxCDD 851										
Total HpCDD 7530										
Total TCDF 26.6										
Total PeCDF 133										
Total HxCDF 713										
Total HpCDF 2860 DL - Sample specific estimated detections of the specific estimated detection of the specific estimated detection.							nit - upper control limit			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 21 of 38

Sample ID: OW-211	IB_2-4 (20151119)			EPA Method 82
•	ADIS 9321.0000.00001 pv-2015 9:10	Sample Data Matrix: Soil Sample Size: 12.5 g % Solids: 81.1		Laboratory DataLab Sample:1501148-14Date Received:20-Nov-20159:25QC Batch:B5K0138Date Extracted:30-Nov-20159:58Date Analyzed:07-Dec-15 19:03Column: ZB-5MSAnalyst: WJL
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers	Labeled Standard %R LCL-UCL Qualifie
2,3,7,8-TCDD	0.346		J	IS 13C-2,3,7,8-TCDD 96.0 40 - 135
1,2,3,7,8-PeCDD	0.740		J	13C-1,2,3,7,8-PeCDD 103 40 - 135
1,2,3,4,7,8-HxCDD	1.80		J	13C-1,2,3,4,7,8-HxCDD 105 40 - 135
1,2,3,6,7,8-HxCDD	3.14			13C-1,2,3,6,7,8-HxCDD 96.6 40 - 135
1,2,3,7,8,9-HxCDD	3.39			13C-1,2,3,7,8,9-HxCDD 96.8 40 - 135
1,2,3,4,6,7,8-HpCDD	380			13C-1,2,3,4,6,7,8-HpCDD 102 40 - 135
OCDD	39400		E	13C-OCDD 112 40 - 135
2,3,7,8-TCDF	ND	0.0814		13C-2,3,7,8-TCDF 95.0 40 - 135
1,2,3,7,8-PeCDF	ND	0.0598		13C-1,2,3,7,8-PeCDF 107 40 - 135
2,3,4,7,8-PeCDF	ND	0.0940		13C-2,3,4,7,8-PeCDF 110 40 - 135
1,2,3,4,7,8-HxCDF	0.351		J	13C-1,2,3,4,7,8-HxCDF 96.3 40 - 135
1,2,3,6,7,8-HxCDF	ND	0.178		13C-1,2,3,6,7,8-HxCDF 94.1 40 - 135
2,3,4,6,7,8-HxCDF	0.307		J	13C-2,3,4,6,7,8-HxCDF 93.1 40 - 135
1,2,3,7,8,9-HxCDF	ND	0.195		13C-1,2,3,7,8,9-HxCDF 94.3 40 - 135
1,2,3,4,6,7,8-HpCDF	8.61			13C-1,2,3,4,6,7,8-HpCDF 89.7 40 - 135
1,2,3,4,7,8,9-HpCDF	0.678		J	13C-1,2,3,4,7,8,9-HpCDF 97.3 40 - 135
OCDF	40.0			13C-OCDF 88.4 40 - 135
				CRS 37Cl-2,3,7,8-TCDD 86.2 40 - 135
				Toxic Equivalent Quotient (TEQ) Data
				TEQMinWHO2005Dioxin 17.7
TOTALS				
Total TCDD	1.35	1.66		
Total PeCDD	4.00	5.28		
Total HxCDD	31.7			
Total HpCDD	744			
Total TCDF	ND	0.437		
Total PeCDF	0.858	1.44		
Total HxCDF	7.62	7.80		
Total HpCDF DL - Sample specifc esting	30.9			

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 22 of 38

Sample ID: OW-211B	3_4-6 (20151119)							EPA M	ethod 8290
-	DIS 21.0000.00001 -2015 9:20	Sample Da Matrix: Sample S % Solids	Soil Size: 12.8 g		Lab QC	Doratory Data Sample: 1501148-15 Batch: B5K0138 e Analyzed: 07-Dec-15 19:51	Date Received: Date Extracted: Column: ZB-5MS		
Analyte Conc. (p	og/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.279			J	IS	13C-2,3,7,8-TCDD	91.5	40 - 135	
1,2,3,7,8-PeCDD	ND		0.188			13C-1,2,3,7,8-PeCDD	97.7	40 - 135	
1,2,3,4,7,8-HxCDD	0.732			J		13C-1,2,3,4,7,8-HxCDD	100	40 - 135	
1,2,3,6,7,8-HxCDD	0.971			J		13C-1,2,3,6,7,8-HxCDD	90.5	40 - 135	
1,2,3,7,8,9-HxCDD	1.10			J		13C-1,2,3,7,8,9-HxCDD	95.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	121					13C-1,2,3,4,6,7,8-HpCDD	95.5	40 - 135	
OCDD	10100			Е		13C-OCDD	98.4	40 - 135	
2,3,7,8-TCDF	ND	0.0700				13C-2,3,7,8-TCDF	93.4	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0647				13C-1,2,3,7,8-PeCDF	102	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0627				13C-2,3,4,7,8-PeCDF	102	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0853				13C-1,2,3,4,7,8-HxCDF	89.9	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0861				13C-1,2,3,6,7,8-HxCDF	85.3	40 - 135	
2,3,4,6,7,8-HxCDF	0.126			J		13C-2,3,4,6,7,8-HxCDF	88.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.127				13C-1,2,3,7,8,9-HxCDF	89.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	2.60					13C-1,2,3,4,6,7,8-HpCDF	83.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.138				13C-1,2,3,4,7,8,9-HpCDF	93.3	40 - 135	
OCDF	11.4					13C-OCDF	81.1	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	78.9	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	4.84		
TOTALS									
Total TCDD	1.95		2.41						_
Total PeCDD	8.40		8.74						
Total HxCDD	23.3		23.6						
Total HpCDD	243								
Total TCDF	0.287								
Total PeCDF	0.254		0.343						
Total HxCDF	2.43								
Total HpCDF DL - Sample specifc estima	9.21								

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 23 of 38

Sample ID: OW-21	1B_6-8 (20151119)						EPA M	ethod 8290
-	ADIS 9321.0000.00001 ov-2015 9:28	Sample Size:	Soil 12.7 g 78.7	Lab QC	Sample: 1501148-16 Batch: B5K0138 e Analyzed: 07-Dec-15 20:39	Date Received: Date Extracted: Column: ZB-5MS	30-Nov-2015	
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.327		IS	13C-2,3,7,8-TCDD	88.1	40 - 135	
1,2,3,7,8-PeCDD	0.118		J		13C-1,2,3,7,8-PeCDD	92.2	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.201			13C-1,2,3,4,7,8-HxCDD	96.7	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.197			13C-1,2,3,6,7,8-HxCDD	91.8	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.231			13C-1,2,3,7,8,9-HxCDD	93.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	11.1				13C-1,2,3,4,6,7,8-HpCDD	96.6	40 - 135	
OCDD	618				13C-OCDD	81.6	40 - 135	
2,3,7,8-TCDF	ND	0.0623			13C-2,3,7,8-TCDF	89.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0537			13C-1,2,3,7,8-PeCDF	97.0	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0549			13C-2,3,4,7,8-PeCDF	97.9	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.132			13C-1,2,3,4,7,8-HxCDF	87.6	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.136			13C-1,2,3,6,7,8-HxCDF	87.6	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.148			13C-2,3,4,6,7,8-HxCDF	87.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.209			13C-1,2,3,7,8,9-HxCDF	89.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.452		J		13C-1,2,3,4,6,7,8-HpCDF	84.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.138			13C-1,2,3,4,7,8,9-HpCDF	94.1	40 - 135	
OCDF	1.78		J		13C-OCDF	74.7	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	90.6	40 - 135	
					Toxic Equivalent Quotient (TEQ) Data		
					TEQMinWHO2005Dioxin	0.419		
TOTALS								
Total TCDD	5.96	6.59						
Total PeCDD	20.0	20.5						
Total HxCDD	18.2							
Total HpCDD	23.3							
Total TCDF	ND	0.0623						
Total PeCDF	ND	0.0650						
Total HxCDF	0.455							
Total HpCDF DL - Sample specifc esti	1.56							

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 24 of 38

Sample ID: OW-211B	_8-10 (20151119)							EPA Mo	ethod 8290
	IS :1.0000.00001 :2015 9:32	Sample Da Matrix: Sample S % Solids:	Soil Size: 12.7 g		Lab QC	Sample: 1501148-17 Batch: B5K0138 e Analyzed: 07-Dec-15 21:26		20-Nov-2015 30-Nov-2015 Analyst: WJL	
Analyte Conc. (pg	g/g)	DL I	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.248		IS	13C-2,3,7,8-TCDD	72.6	40 - 135	
7 7-7-7-	ND		0.155			13C-1,2,3,7,8-PeCDD	78.5	40 - 135	
1,2,3,4,7,8-HxCDD	ND ().244				13C-1,2,3,4,7,8-HxCDD	80.7	40 - 135	
1,2,3,6,7,8-HxCDD	0.363			J		13C-1,2,3,6,7,8-HxCDD	75.7	40 - 135	
1,2,3,7,8,9-HxCDD	ND (0.280				13C-1,2,3,7,8,9-HxCDD	77.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	22.7					13C-1,2,3,4,6,7,8-HpCDD	79.0	40 - 135	
OCDD	1930					13C-OCDD	70.1	40 - 135	
2,3,7,8-TCDF	ND 0	.0750				13C-2,3,7,8-TCDF	75.6	40 - 135	
1,2,3,7,8-PeCDF	ND 0	.0601				13C-1,2,3,7,8-PeCDF	81.8	40 - 135	
2,3,4,7,8-PeCDF	ND 0	.0599				13C-2,3,4,7,8-PeCDF	82.9	40 - 135	
1,2,3,4,7,8-HxCDF	ND 0	.0939				13C-1,2,3,4,7,8-HxCDF	73.6	40 - 135	
1,2,3,6,7,8-HxCDF	ND 0	.0978				13C-1,2,3,6,7,8-HxCDF	72.3	40 - 135	
2,3,4,6,7,8-HxCDF	ND 0	.0989				13C-2,3,4,6,7,8-HxCDF	72.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND ().156				13C-1,2,3,7,8,9-HxCDF	70.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	1.14			J		13C-1,2,3,4,6,7,8-HpCDF	69.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND (0.168				13C-1,2,3,4,7,8,9-HpCDF	74.9	40 - 135	
OCDF	4.58			J		13C-OCDF	62.7	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	65.5	40 - 135	
						Toxic Equivalent Quotient (TEQ)	Data		
						TEQMinWHO2005Dioxin	0.855		
TOTALS									
Total TCDD	0.815		1.28						
Total PeCDD	5.64		6.81						
	11.1								
	48.9								
	0.106								
	0.136								
	1.08								
Total HpCDF DL - Sample specifc estimate	3.94								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 25 of 38

Date Collected: 19-Nov-2 Analyte Conc. (pg 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	21.0000.00001 2015 0:00 ND 0.212 0.666 1.20 0.985 108	Sample Da Matrix: Sample S % Solids:	Soil Size: 12.5 g	Qualifiers	Lab QC I	oratory Data Sample: 1501148-18 Batch: B5K0138 e Analyzed: 07-Dec-15 22:14 Labeled Standard 13C-2,3,7,8-TCDD	Date Extracted: Column: ZB-5MS	LCL-UCL	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND 0.212 0.666 1.20 0.985 108	DL			IS				Qualifiers
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	0.212 0.666 1.20 0.985		0.155	Ţ	IS	13C-2 3 7 8-TCDD	0.4.4		
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	0.666 1.20 0.985 108			т		130-2,3,7,0-1000	84.4	40 - 135	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	1.20 0.985 108			J		13C-1,2,3,7,8-PeCDD	88.2	40 - 135	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	0.985 108			J		13C-1,2,3,4,7,8-HxCDD	90.8	40 - 135	
1,2,3,4,6,7,8-HpCDD OCDD	108			J		13C-1,2,3,6,7,8-HxCDD	86.1	40 - 135	
OCDD				J		13C-1,2,3,7,8,9-HxCDD	88.1	40 - 135	
						13C-1,2,3,4,6,7,8-HpCDD	87.3	40 - 135	
2 2 7 8 TCDE	7480			Е		13C-OCDD	85.6	40 - 135	
2,3,7,6-1 CD1	ND (0.0659				13C-2,3,7,8-TCDF	87.9	40 - 135	
1,2,3,7,8-PeCDF	ND (0.0782				13C-1,2,3,7,8-PeCDF	96.6	40 - 135	
2,3,4,7,8-PeCDF	ND (0.0827				13C-2,3,4,7,8-PeCDF	98.7	40 - 135	
1,2,3,4,7,8-HxCDF	ND		0.156			13C-1,2,3,4,7,8-HxCDF	84.2	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.100				13C-1,2,3,6,7,8-HxCDF	79.2	40 - 135	
2,3,4,6,7,8-HxCDF	0.193			J		13C-2,3,4,6,7,8-HxCDF	82.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.152				13C-1,2,3,7,8,9-HxCDF	83.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	4.51					13C-1,2,3,4,6,7,8-HpCDF	77.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.272				13C-1,2,3,4,7,8,9-HpCDF	87.9	40 - 135	
OCDF	20.6					13C-OCDF	71.7	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	82.3	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	3.89		
TOTALS									
Total TCDD	1.65		1.80						
Total PeCDD	4.10		4.86						
	16.1								
1	212								
	0.138		0.368						
	0.448		0.619						
	3.90		4.42						
Total HpCDF DL - Sample specific estimator	16.4								

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 26 of 38

Client Data Name: ARCADIS Project: B0039321.0 Date Collected: 19-Nov-201 Analyte Conc. (pg/g 2,3,7,8-TCDD NI	0000.00001 5 10:35) DL	ample Data Matrix: Sample Size: % Solids:	Soil 12.0 g 83.9		Lab QC I	oratory Data Sample: 1501148-19	Date Received:	20-Nov-2015	9.25
	,	EMP			Date	Batch: B5K0138 e Analyzed: 07-Dec-15 23:02		30-Nov-2015	
2,3,7,8-TCDD NI	0.084		C	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
		2			IS	13C-2,3,7,8-TCDD	77.3	40 - 135	
1,2,3,7,8-PeCDD NI						13C-1,2,3,7,8-PeCDD	80.2	40 - 135	
1,2,3,4,7,8-HxCDD NI	0.190)				13C-1,2,3,4,7,8-HxCDD	85.8	40 - 135	
1,2,3,6,7,8-HxCDD NI	0.198	3				13C-1,2,3,6,7,8-HxCDD	80.1	40 - 135	
1,2,3,7,8,9-HxCDD NI	0.227	,				13C-1,2,3,7,8,9-HxCDD	81.6	40 - 135	
1,2,3,4,6,7,8-HpCDD 1.7	71			J		13C-1,2,3,4,6,7,8-HpCDD	84.1	40 - 135	
OCDD 53.	.3					13C-OCDD	67.4	40 - 135	
2,3,7,8-TCDF NI	0.059	1				13C-2,3,7,8-TCDF	80.1	40 - 135	
1,2,3,7,8-PeCDF NI	0.051	5				13C-1,2,3,7,8-PeCDF	83.8	40 - 135	
2,3,4,7,8-PeCDF NI	0.044	3				13C-2,3,4,7,8-PeCDF	86.9	40 - 135	
1,2,3,4,7,8-HxCDF NI	0.072	5				13C-1,2,3,4,7,8-HxCDF	76.9	40 - 135	
1,2,3,6,7,8-HxCDF NI	0.071	1				13C-1,2,3,6,7,8-HxCDF	75.0	40 - 135	
2,3,4,6,7,8-HxCDF NI	0.074	0				13C-2,3,4,6,7,8-HxCDF	76.9	40 - 135	
1,2,3,7,8,9-HxCDF NI	0.103	}				13C-1,2,3,7,8,9-HxCDF	78.0	40 - 135	
1,2,3,4,6,7,8-HpCDF NI	0.217	7				13C-1,2,3,4,6,7,8-HpCDF	72.2	40 - 135	
1,2,3,4,7,8,9-HpCDF NI	0.210)				13C-1,2,3,4,7,8,9-HpCDF	82.2	40 - 135	
OCDF 0.3	319			J		13C-OCDF	66.0	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	84.4	40 - 135	
						Toxic Equivalent Quotient (TEQ)) Data		
						TEQMinWHO2005Dioxin	0.0332		
TOTALS									
Total TCDD 1.3									
Total PeCDD NI									
Total HxCDD 0.8									
Total HpCDD 4.4									
Total TCDF NI									
Total PeCDF NI									
Total HxCDF NI									
Total HpCDF 0.2 DL - Sample specific estimated d									

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 27 of 38

Sample ID: Method	l Blank						EPA M	lethod 8290
Matrix: Aque Sample Size: 1.00 I		QC Batch: B5L0014 Date Extracted: 03-Dec-201	5 8:24	1	ab Sample: B5L0014-BLK1 Date Analyzed: 09-Dec-15 13:5		MS Analyst: WJL	
Analyte Conc.	(pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.47		IS	13C-2,3,7,8-TCDD	95.1	40 - 135	
1,2,3,7,8-PeCDD	ND	0.826			13C-1,2,3,7,8-PeCDD	104	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.882			13C-1,2,3,4,7,8-HxCDD	102	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.881			13C-1,2,3,6,7,8-HxCDD	93.5	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.982			13C-1,2,3,7,8,9-HxCDD	95.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	1.08			13C-1,2,3,4,6,7,8-HpCDD	102	40 - 135	
OCDD	ND	1.21			13C-OCDD	76.7	40 - 135	
2,3,7,8-TCDF	ND	1.24			13C-2,3,7,8-TCDF	97.8	40 - 135	
1,2,3,7,8-PeCDF	ND	0.556			13C-1,2,3,7,8-PeCDF	108	40 - 135	
2,3,4,7,8-PeCDF	ND	0.468			13C-2,3,4,7,8-PeCDF	113	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.550			13C-1,2,3,4,7,8-HxCDF	89.8	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.577			13C-1,2,3,6,7,8-HxCDF	86.9	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.587			13C-2,3,4,6,7,8-HxCDF	93.5	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.822			13C-1,2,3,7,8,9-HxCDF	93.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.670			13C-1,2,3,4,6,7,8-HpCDF	87.9	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.600			13C-1,2,3,4,7,8,9-HpCDF	103	40 - 135	
OCDF	ND	1.64			13C-OCDF	79.0	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	89.3	40 - 135	
					Toxic Equivalent Quotient (T	EQ) Data		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	1.47						
Total PeCDD	ND	0.826						
Total HxCDD	ND	0.982						
Total HpCDD	ND	1.08						
Total TCDF	ND	1.24						
Total PeCDF	ND	0.556						
Total HxCDF	ND	0.822						
Total HpCDF DL - Sample specifc esti	ND	0.670			CL- Lower control limit - upper control li			

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 28 of 38

Sample ID: OPR								EPA Method 8290
Matrix: Aqueous Sample Size: 1.00 L	'		B5L0014 03-Dec-2015	5 8:24		Lab Sample: B5L0014-BS1 Date Analyzed: 09-Dec-15 11:27	Column: ZB-5MS An	alyst: WJL
Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	183	200	91.3	70 - 130	IS	13C-2,3,7,8-TCDD	89.7	40 - 135
1,2,3,7,8-PeCDD	956	1000	95.6	70 - 130		13C-1,2,3,7,8-PeCDD	102	40 - 135
1,2,3,4,7,8-HxCDD	994	1000	99.4	70 - 130		13C-1,2,3,4,7,8-HxCDD	96.6	40 - 135
1,2,3,6,7,8-HxCDD	949	1000	94.9	70 - 130		13C-1,2,3,6,7,8-HxCDD	95.8	40 - 135
1,2,3,7,8,9-HxCDD	995	1000	99.5	70 - 130		13C-1,2,3,7,8,9-HxCDD	93.3	40 - 135
1,2,3,4,6,7,8-HpCDD	936	1000	93.6	70 - 130		13C-1,2,3,4,6,7,8-HpCDD	107	40 - 135
OCDD	2000	2000	100	70 - 130		13C-OCDD	84.3	40 - 135
2,3,7,8-TCDF	187	200	93.3	70 - 130		13C-2,3,7,8-TCDF	91.5	40 - 135
1,2,3,7,8-PeCDF	1100	1000	110	70 - 130		13C-1,2,3,7,8-PeCDF	99.4	40 - 135
2,3,4,7,8-PeCDF	1050	1000	105	70 - 130		13C-2,3,4,7,8-PeCDF	107	40 - 135
1,2,3,4,7,8-HxCDF	992	1000	99.2	70 - 130		13C-1,2,3,4,7,8-HxCDF	86.5	40 - 135
1,2,3,6,7,8-HxCDF	1030	1000	103	70 - 130		13C-1,2,3,6,7,8-HxCDF	83.6	40 - 135
2,3,4,6,7,8-HxCDF	972	1000	97.2	70 - 130		13C-2,3,4,6,7,8-HxCDF	88.0	40 - 135
1,2,3,7,8,9-HxCDF	1010	1000	101	70 - 130		13C-1,2,3,7,8,9-HxCDF	91.6	40 - 135
1,2,3,4,6,7,8-HpCDF	968	1000	96.8	70 - 130		13C-1,2,3,4,6,7,8-HpCDF	90.7	40 - 135
1,2,3,4,7,8,9-HpCDF	966	1000	96.6	70 - 130		13C-1,2,3,4,7,8,9-HpCDF	111	40 - 135
OCDF	2030	2000	102	70 - 130		13C-OCDF	82.5	40 - 135
					CRS	37Cl-2,3,7,8-TCDD	87.0	40 - 135

LCL-UCL - Lower control limit - upper control limit

Project 1501148 Page 29 of 38

Sample ID: EB-01 (20151116)					EPA M	ethod 8290
Client Data Name: ARCADIS Project: B0039321.0000.0 Date Collected: 16-Nov-2015 15	00001 Sample Size: 0.8	queous 886 L	Laboratory Data Lab Sample: QC Batch: Date Analyzed:	1501148-20 B5L0014	Date Received: Date Extracted: 7 Column: ZB-5MS		
Analyte Conc. (pg/L)	DL EMPC	Qualifiers	Labeled Star	ndard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD ND	1.61	I	IS 13C-2,3,7,8-	TCDD	87.9	40 - 135	
1,2,3,7,8-PeCDD ND	1.11		13C-1,2,3,7,	8-PeCDD	95.9	40 - 135	
1,2,3,4,7,8-HxCDD ND	0.977		13C-1,2,3,4,	7,8-HxCDD	97.4	40 - 135	
1,2,3,6,7,8-HxCDD ND	0.995		13C-1,2,3,6,	7,8-HxCDD	91.1	40 - 135	
1,2,3,7,8,9-HxCDD ND	1.14		13C-1,2,3,7,		92.7	40 - 135	
1,2,3,4,6,7,8-HpCDD ND	1.09		13C-1,2,3,4,0	6,7,8-HpCDD	101	40 - 135	
OCDD ND	1.08		13C-OCDD		79.3	40 - 135	
2,3,7,8-TCDF ND	1.31		13C-2,3,7,8-	TCDF	92.8	40 - 135	
1,2,3,7,8-PeCDF ND	0.556		13C-1,2,3,7,	8-PeCDF	102	40 - 135	
2,3,4,7,8-PeCDF ND	0.508		13C-2,3,4,7,	8-PeCDF	106	40 - 135	
1,2,3,4,7,8-HxCDF ND	0.568		13C-1,2,3,4,	7,8-HxCDF	85.1	40 - 135	
1,2,3,6,7,8-HxCDF ND	0.556		13C-1,2,3,6,	7,8-HxCDF	82.5	40 - 135	
2,3,4,6,7,8-HxCDF ND	0.568		13C-2,3,4,6,	7,8-HxCDF	86.0	40 - 135	
1,2,3,7,8,9-HxCDF ND	0.871		13C-1,2,3,7,	8,9-HxCDF	88.9	40 - 135	
1,2,3,4,6,7,8-HpCDF ND	0.645		13C-1,2,3,4,	6,7,8-HpCDF	82.8	40 - 135	
1,2,3,4,7,8,9-HpCDF ND	0.569		13C-1,2,3,4,	7,8,9-HpCDF	104	40 - 135	
OCDF ND	1.74		13C-OCDF	•	77.7	40 - 135	
			CRS 37Cl-2,3,7,8	TCDD	88.6	40 - 135	
			Toxic Equiva	alent Quotient (TE	Q) Data		
			TEQMinWH	O2005Dioxin	0.00		
TOTALS							
Total TCDD ND	1.61						
Total PeCDD ND	1.11						
Total HxCDD ND	1.14						
Total HpCDD ND	1.09						
Total TCDF ND	1.31						
Total PeCDF ND	0.556						
Total HxCDF ND	0.871						
Total HpCDF ND DL - Sample specific estimated detection	0.645		.CL-UCL- Lower control				

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 30 of 38

Sample ID: EB-02	(20151117)						EPA M	ethod 8290
Project: B003	ADIS 19321.0000.00001 10v-2015 12:30	Sample Data Matrix: Aqueous Sample Size: 0.931 L		Lab QC	boratory Data 2 Sample: 1501148-21 Batch: B5L0014 2 Ge Analyzed: 09-Dec-15 16:15	Date Received: Date Extracted: 5 Column: ZB-5M	03-Dec-2015	
Analyte Conc.	. (pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.29		IS	13C-2,3,7,8-TCDD	92.2	40 - 135	
1,2,3,7,8-PeCDD	ND	0.820			13C-1,2,3,7,8-PeCDD	101	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.882			13C-1,2,3,4,7,8-HxCDD	95.6	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.865			13C-1,2,3,6,7,8-HxCDD	88.9	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.998			13C-1,2,3,7,8,9-HxCDD	90.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	0.950			13C-1,2,3,4,6,7,8-HpCDD	99.4	40 - 135	
OCDD	ND	1.33			13C-OCDD	77.7	40 - 135	
2,3,7,8-TCDF	ND	1.14			13C-2,3,7,8-TCDF	94.5	40 - 135	
1,2,3,7,8-PeCDF	ND	0.476			13C-1,2,3,7,8-PeCDF	100	40 - 135	
2,3,4,7,8-PeCDF	ND	0.456			13C-2,3,4,7,8-PeCDF	106	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.556			13C-1,2,3,4,7,8-HxCDF	84.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.565			13C-1,2,3,6,7,8-HxCDF	82.7	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.535			13C-2,3,4,6,7,8-HxCDF	87.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.839			13C-1,2,3,7,8,9-HxCDF	88.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.555			13C-1,2,3,4,6,7,8-HpCDF	84.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.573			13C-1,2,3,4,7,8,9-HpCDF	98.1	40 - 135	
OCDF	ND	1.42			13C-OCDF	77.3	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	86.8	40 - 135	
					Toxic Equivalent Quotient (TEC	Q) Data		
					TEQMinWHO2005Dioxin	0.00		
TOTALS					-			
Total TCDD	ND	1.29						
Total PeCDD	ND	0.820						
Total HxCDD	ND	0.998						
Total HpCDD	ND	0.950						
Total TCDF	ND	1.14						
Total PeCDF	ND	0.476						
Total HxCDF	ND	0.839						
Total HpCDF	ND	0.573						
DL - Sample specifc est	timated detection limit			LCL-UC	L- Lower control limit - upper control limit			

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Page 31 of 38 Project 1501148

Sample ID: EB-03 (2	20151119)						EPA M	ethod 8290
	DIS 321.0000.00001 v-2015 13:30	Sample Data Matrix: Aqueous Sample Size: 0.904 L		Lab QC	Sample: 1501148-22 Batch: B5L0014 e Analyzed: 10-Dec-15 12:47	Date Received: Date Extracted: Column: ZB-5MS	03-Dec-2015	
Analyte Conc. ((pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.996		IS	13C-2,3,7,8-TCDD	84.7	40 - 135	
1,2,3,7,8-PeCDD	ND	0.815			13C-1,2,3,7,8-PeCDD	91.2	40 - 135	
1,2,3,4,7,8-HxCDD	ND	1.14			13C-1,2,3,4,7,8-HxCDD	85.6	40 - 135	
1,2,3,6,7,8-HxCDD	ND	1.18			13C-1,2,3,6,7,8-HxCDD	77.2	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.34			13C-1,2,3,7,8,9-HxCDD	81.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	1.60			13C-1,2,3,4,6,7,8-HpCDD	83.2	40 - 135	
OCDD	8.98		J		13C-OCDD	67.7	40 - 135	
2,3,7,8-TCDF	ND	0.828			13C-2,3,7,8-TCDF	89.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.580			13C-1,2,3,7,8-PeCDF	91.1	40 - 135	
2,3,4,7,8-PeCDF	ND	0.502			13C-2,3,4,7,8-PeCDF	97.2	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.632			13C-1,2,3,4,7,8-HxCDF	74.8	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.641			13C-1,2,3,6,7,8-HxCDF	70.6	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.623			13C-2,3,4,6,7,8-HxCDF	78.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.953			13C-1,2,3,7,8,9-HxCDF	78.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.828			13C-1,2,3,4,6,7,8-HpCDF	68.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.797			13C-1,2,3,4,7,8,9-HpCDF	76.9	40 - 135	
OCDF	ND	1.85			13C-OCDF	65.3	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	87.4	40 - 135	
					Toxic Equivalent Quotient (TEQ) Data		
					TEQMinWHO2005Dioxin	0.00269		
TOTALS								
Total TCDD	ND 0	.996						
Total PeCDD		.815						
Total HxCDD		1.34						
Total HpCDD		1.60						
Total TCDF		.828						
Total PeCDF		.580						
Total HxCDF		.953						
Total HpCDF DL - Sample specifc estin		.828			L- Lower control limit - upper control limit			

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Page 32 of 38 Project 1501148

DATA QUALIFIERS & ABBREVIATIONS

В

NA

RL

ND

TEQ

Not applicable

Not Detected

Toxic Equivalency

This compound was also detected in the method blank. D **Dilution** \mathbf{E} The associated compound concentration exceeded the calibration range of the instrument. H Recovery and/or RPD was outside laboratory acceptance limits. **Chemical Interference** I J The amount detected is below the Lower Calibration Limit of the instrument. See Cover Letter Conc. Concentration DL Sample-specific estimated detection limit MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested. **EMPC Estimated Maximum Possible Concentration**

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Reporting Limit – concentrations that correspond to low calibration point

Project 1501148 Page 33 of 38

CERTIFICATIONS

Accrediting Authority	Certificate Number
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2014022
Michigan Department of Natural Resources	9932
Nevada Division of Environmental Protection	CA004132015-1
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-003
Pennsylvania Department of Environmental Protection	012
South Carolina Department of Health	87002001
Tennessee Department of Environment & Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-15-6
Virginia Department of General Services	7923
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Project 1501148 Page 34 of 38

OR LABORATO	RY USE ONLY Storage Secured
aboratory Project torage ID WR	[M][[M]
	TAT: (Check One):
1	Standard: 0 21 Days
Ivens	Rush (surcharge may apply):
(Name)	○14 days ○7 days Specify:

183												IR-2	•		Ten	np 2.4	
Project I.D.: B003437	21.000	Ø.00	العد	P.O.#			S	ampler:	VII St	Ephens (Nan			Star	ndard: sh (surc	11000		
Invoice to: Name Dowld Bessh	1 Con	npany (ARCHOIS	Add	dress	6602	Excelsion	- Rd	City Box	le	State	W Zip	Ph#	1218	Ang W	Fax#	
Relinquished by: (Signature and Printed N		U.S.	WillStenk	F - F - T		Time:		Received	XI	are and Printe	d Nake	Rep	nd Pa			Time: 09	2)
Relinquished by: (Signature and Printed N	Jame)	The	Vine go	Date:	9	Time:	113	Received	by: (Signat	are and Printe	d Name)	1000	D:	ate:	14 291	Time:	20
			See "Sa	mple Log-in (Che	ecklist"	' for add	itional s	ample	inform	ation		3/10/				
SHIP TO: Vista Analytical Lal 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Fa	y 95762	73-0106	_Fe	od of Shipment:		Contain		1/3/	Bardis A		1/5	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Bridge S	1	///	
Sample ID	Date	Time	Location/S	ample Description	/		* TE 20 5		15/4	1/3/4	3°/2°	25/3	13/		120		
OW-210B_0-2(26151116)	lifielis	1230	Soil	Sample	1	6 5			X			11			11		
OW-210B_2-4(GUSHIL)	1	1235		1	1	G 50	5		X								
DW-210B-4-6(20151116)		1245			1	6 50)		X								
DW-21013-6-8(2015/116)		1255			1	GST)		X								
W- 2108-8-10/20151116		1305			1	GS	0		X								
W-210B_283(2015/116)	V	1425		1	1	GST			X								
-11A-0-2 (20151117)	11/17/15	1120			1	G Si	0		X								
211A_2-4(20151117)		1125			1	G S			X								
2-11A_4-6 (20151118)		1132			1	G SC)		X								
2-11A-6-8(2015/11B)	V	1136	•	V	1	G Sc			X								
Forms Kepper's Wood Container Types: A = 1 Liter Amber, G P = PUF, T = MM5 Train, O = Other	w	,	2 Carlas	*Bottle Preserva O = Other		Type: T	AND R	SEND MENTAT RESULTS		Addr City: Phon Emai Matrix	pany:_ ess:_4 Minne e:_6(7 l:_Kel Types:	1, 339. 6 Ly, no	St Average St 3434 Schneinking Wa	ate: Morate: Mr. Fr. 2 Orc.	ax:	Com PP = Pulp/Paper towater B = Blood	

AQ = Aqueous, O = Other_

PINK - COPY

FOR LABORATORY USE ONLY	Storage
Laboratory Project ID: 1501148	Secured Yes □ No □
Storage ID WK-2	Temp 2.4 °°C

SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum

VISLA		HAIN OF		310	υĭ			Project ID:	20119		Yes 2 No D
2 of 3 Project I.D.: BOD39321	,0000,0	P.O.#			Sampler	Will S	Storage ID_	WK.	Standard	Tenneck One):	
							(Name)				days Specify:
Invoice to: Name Powis Bessing	Company	ARCADIS A	Addres	SG602 Exce	Isiar Rd	City Box	St St	ate Zip	Ph# 2/8: 8		
Relinquished by: (Signature and Printed No	ame)] H	Will Steplans Date: 11/10	ilie	Time:	& Betch		ture and Ponted NA		edict		15 Time: 0930
Relinquished by: (Signature and Printed Na	ame)	Date:	1113	Time:	Receiv	ed by: (Signa	ture and Printed Na	ne)	Date:	1/20/	Time:
		See "Sample Log-in	Ch	ecklist" fo							
SHIP TO: Vista Analytical Lab 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Far	95762	Method of Shipment	: A	dd Analysis(e	s) Requested	S. Andrian	E REPORT	S.P.R.S.P			///
Sample ID	Date Time	Location/Sample Description	on /							* E	
P-11A_8-10(20151117)	11/17/15 1145	5 Soil Sample	1	G 50		X				- 1	
P-11A-8-10 Gois 11 17) ms/m	50 1145		1	G 50		X					
DUP-01 (20151117)	V -	V	1	G SO		X					
EB-01(20151116)	11/16/15 1501	Equipment Blanks	-11	A AQ		X					
EB-02(20151117)	11/17/15 1230		1	A AQ		X					
EB-03 (20151119)	11/19/15 133		11	AAQ		X					
CW-211B-0-2(20151119)	090	Soil Sample	1	G SO		×					
OW-2118_2-4 (20151119)	0910		I	G 50		X					
DW-211B_4-6 (2015)119)	6420		1	G SO		X					
JW-211B_6-8(20151119)	0928			C. SO		X			+	49	
Former Kopper's Was Container Types: A = 1 Liter Amber, G:	d Treating	Site Carbindole, I	ervative		SEND OCUMENT AND RESUL	CATION	Address City: Mi Phone: 4 Email: k	nneapolis 12.339.94 Celly.hoe	State: N State: N hn@ occ	Fax:	p: 55401
P = PUF, T = MM5 Train, O= Other		O = Oth	ner				CD - C-4:-		00 - 0-1	10001 - 1000	towater D - Dland/C-

WHITE - ORIGINAL

YELLOW - ARCHIVE

PINK - COPY

AQ = Aqueous, O = Other_

FOR LABORATORY USE ONLY	Storage
Laboratory Project ID: 15011	AS Secured Yes No
Storage ID WR'8	Temp 2.4 °°C

VISLU			IIAII OF C	U	O I		עני	1				aboratory l torage ID_	Project	ID: 1	1R10	114		Yes No □ emp 2.4 °°C
Project I.D.: BOO 3932 Dave Bessing pass Invoice to: Name Relinquished by: (Signature and Printed N Relinquished by: (Signature and Printed N	Comp	AUS		dress	Tir Tir		715	B	gelved	City	gnature 4 0	(Name) Sta	B.1	Zip	Sta Ru Ph	andard ish (su ⊇14 da #	eck One : Ҳ 2 rcharge	
			See "Sample Log-in	Che	ckli	st"	for a	dditio	onal s	samp	le in	formati	ion			(d) = (
SHIP TO: Vista Analytical Lab 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Fa	95762	-0106	Method of Shipment: Tracking No.:	Ac	ld Ar	taine	s(es) R	Lequeste	d /	BRAIS!		ERRADA .	/	STANDA	1 (2 th 1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ \$\frac{1}{4} \rightarrow \frac{1}{4} \rightarrow \	S. S
Sample ID	Date	Time	Location/Sample Description	/	Significant of the second	\$/-									1/3/	23/4	TE /	//
	iihalis		Soil Sample	1	G	50				3								
Special Instructions/Comments:		Silv	*Bottle Preserv O = Othe		Type	- - : T=	AN	CUMI D RES				City: M Phone: C Email: Matrix Typ	y:1 :_431 \(\frac{2}{2}\). \(\frac{2}{2}\).	2 Fi 2 Fi 301, 1301, 100 = Di	943L elmo	State: 1	Fax:_odis.	Zip: 55 401 Zip: 55 401 ent, PP = Pulp/Paper, //astewater, B = Blood/Serun

AQ = Aqueous, O = Other

SAMPLE LOG-IN CHECKLIST

	Vista
	Analytical Laborator
TAT	Std

Vista Project #:	150	1148			_ TAT	Sto			
Samples Arrival:	Date/Time	0925	Initials:	B	Locati Shelf/I	on: W	IR-	2	
Logged In:	Date/Time	1048	Initials:	B		on: WK- Rack: <u>EU</u>		BA-	
Delivered By:	FedEx	UPS	On Trac	DHL		Hand elivered	Oth	ner	
Preservation:	(lce)	Blu	ie Ice	Dr	y Ice		None		
Temp °C: 2.5 Temp °C: 2.4	(uncorrected)	Time:	0931		Therm	ometer II): IR-	2	
						YES	NO	NA	
Adequate Sample	Volume Receive	d?				1			
Holding Time Acce	eptable?					V			
Shipping Containe	r(s) Intact?								
Shipping Custody	Seals Intact?					V			
Shipping Documer	ntation Present?					~			
Airbill	Trk # 80	884	917	977	8	V			
Sample Container	Intact?					V			
Sample Custody S	eals Intact?							v	
Chain of Custody /	Sample Docum	entation Pre	esent?			-	/		
COC Anomaly/Sar							V		
If Chlorinated or Di	rinking Water Sa	mples, Acc	eptable Pre	servatio	n?			V	
Na ₂ S ₂ O ₃ Preservat			coc		Sample Contain		None	Э	
Shipping Containe	r	Vista	Client	Reta	in	Return	Disp	ose	

Comments:

APPENDIX C

Data Review Report

Beazer East Inc.

Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans (PCDDs/PCDFs) Analyses

SDG #: 1501148

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #: 24915R Review Level: Tier III

Project: B0039321.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 1501148 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample				Analysis		
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PCDDs/ PCDFs	MET	MISC
OW-210B_0-2 (20151116)	1501148-01	Soil	11/16/2015				Х		
OW-210B_2-4 (20151116)	1501148-02	Soil	11/16/2015				Х		
OW-210B_4-6 (20151116)	1501148-03	Soil	11/16/2015				Х		
OW-210B_6-8 (20151116)	1501148-04	Soil	11/16/2015				Х		
OW-210B_8- 10 (20151116)	1501148-05	Soil	11/16/2015				Х		
OW-210B_28- 30 (20151116)	1501148-06	Soil	11/16/2015				Х		
P-11A_0-2 (20151117)	1501148-07	Soil	11/17/2015				Х		
P-11A_2-4 (20151117)	1501148-08	Soil	11/17/2015				Х		
P-11A_4-6 (20151117)	1501148-09	Soil	11/17/2015				Х		
P-11A_6-8 (20151117)	1501148-10	Soil	11/17/2015				Х		
P-11A_8-10 (20151117)	1501148-11	Soil	11/17/2015				Х		
DUP-01 (20151117)	1501148-12	Soil	11/17/2015	P-11A_0-2 (20151117)			Х		
OW-211B_0-2 (20151119)	1501148-13	Soil	11/19/2015				Х		
OW-211B_2-4 (20151119)	1501148-14	Soil	11/19/2015				Х		
OW-211B_4-6 (20151119)	1501148-15	Soil	11/19/2015				Х		
OW-211B_6-8 (20151119)	1501148-16	Soil	11/19/2015				Х		
OW-211B_8- 10 (20151119)	1501148-17	Soil	11/19/2015				Х		
DUP-02 (20151119)	1501148-18	Soil	11/19/2015	OW-211B_4- 6 (20151119)			Х		
OW-211B_26- 28 (20151119)	1501148-19	Soil	11/19/2015				Х		

			Sample		Analysis						
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PCDDs/ PCDFs	MET	MISC		
EB-01 (20151116)	1501148-20	Water	11/16/2015				Х				
EB-02 (20151117)	1501148-21	Water	11/17/2015				Х				
EB-03 (20151119)	1501148-22	Water	11/19/2015				Х				

Note: Soil sample results were reported on a dry weight basis.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not	
	Items Reviewed	No	Yes	No	Yes	Required	
1.	Sample receipt condition		Х		Х		
2.	Requested analyses and sample results		Х		Х		
3.	Master tracking list		Х		Х		
4.	Methods of analysis		Х		Х		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		Х		
8.	Sample preservation verification (as applicable)		Х		Х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		Х		
11.	Narrative summary of QA or sample problems provided		Х		Х	_	
12.	Data Package Completeness and Compliance		Х		Х		

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II standard operating procedure (SOP) associated with USEPA SW-846 Method 8290 Validating Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans by High Resolution Gas-Chromatograph/Mass-Spectrometry (GC/MS) (SOP #HW-19 Revision 1, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

POLYCHLORINATED DIBENZODIOXINS AND POLYCHLORINATED DIBENZOFURANS (PCDD/PCDF) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW 846 8300	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cool to < 6 °C
SW-846 8290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cool to < 6 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

QA blanks (i.e., laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BAL. Therefore, sample results greater than the BAL resulted in the removal of any laboratory qualifiers applied (i.e., "B"). No qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance including instrument sensitivity and mass resolution were acceptable.

Overall system performance and gas chromatographic column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All compounds associated with the initial calibration standards must exhibit signal-to-noise ratios (S/N) of at least 2.5, isotopic ratios within the limits listed in table 8 of the method, and percent relative standard

deviations (%RSDs) of the relative response factors (RRFs) less than 20% for the labeled standards and less than 30% for the target compounds.

4.2 Continuing Calibration

Instrument performance must be verified at 12-hour periods after successful tune verifications. All compounds associated with the continuing calibration standard must exhibit S/N of at least 2.5, isotopic ratios within the limits listed in table 8 of the method, and percent differences (%D) of the RRFs less than 30% for the labeled standards and less than 20% for the target compounds.

All initial and continuing calibration criteria were within the control limits.

5. Injection Internal Standard Performance

Injection internal standards are added to all extracts prior to instrumental analysis. The injection internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the injection internal standard compounds exhibit a S/N ratio of at least 10 and elute within \pm 15 seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each injection internal standard exhibit a ratio of the two identifying masses (m/z) within the method specified limits.

All injection internal standard S/N, RT, and m/z ratios were within established limits.

6. Surrogate Internal Standard Compounds

All field samples, blanks, laboratory control samples (LCS), and matrix spike/matrix spike duplicate samples (MS/MSD) are spiked with surrogate internal standard compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The acceptance criteria require that the surrogate internal standard compounds exhibit a S/N ratio of at least 10 and elute within ± 15 seconds of the RTs established during calibration. The acceptance criteria also specify that each surrogate internal standard exhibit a calculated recovery and an m/z ratio within the method specified limits.

All sample surrogate internal standard compounds exhibited recoveries within the control limits.

7. Clean-up Recovery Surrogate Performance

All field samples, blanks, LCS, and MS/MSD are spiked with recovery surrogates prior to extract clean-up. Recovery surrogate acceptance criteria require that their calculated recoveries, S/N, m/z ratios, and relative retention times (RRTs) be within the method-specified acceptance limits.

All recovery surrogate recoveries S/N, m/z ratios, and RRTs were within the control limits.

8. MS/MSD Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the (optional) MS/MSD analysis should exhibit recoveries within the method-specified acceptance limits of 80-120%. The relative percent difference (RPD) between the MS and MSD results should be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location P-11A_8-10 (20151117) was used for the MS/MSD analysis. Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Location	Compound	MS Recovery	MSD Recovery
P-11A_8-10 (20151117)	OCDD	< LL but > 10%	< LL but > 10%

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of MS/MSD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (LIL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (LL) but a 400/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > 4x the MS/MSD spiking	Detect	No Action
solution concentration.	Non-detect	NO ACTION

9. Ongoing Precision and Recovery (OPR) Sample Analysis

The OPR analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the OPR analysis must exhibit a percent recovery within the method-specified acceptance limits.

All compounds associated with the OPR analyses exhibited recoveries within the control limits.

10. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit of two times the RL for water matrices or three times the RL for soil matrices is applied.

Detected results in picograms/gram (pg/g) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2,3,7,8-TCDD	0.607	0.951	44.2 %
	1,2,3,7,8-PeCDD	2.80	6.25	76.2 %
	1,2,3,4,7,8-HxCDD	6.92	23.1	107.8 %
	1,2,3,6,7,8-HxCDD	40.3	99.0	84.3 %
	1,2,3,7,8,9-HxCDD	12.0	40.2	108.0 %
	1,2,3,4,6,7,8-HpCDD	2250	6660 D	99.0 %
	OCDD	21300 E	68500 D	105.1 %
	2,3,7,8-TCDF	3.62	1.21	99.8 %
	1,2,3,7,8-PeCDF	6.89	2.36 J	97.9 %
	2,3,4,7,8-PeCDF	4.37	7.41	51.6 %
	1,2,3,4,7,8-HxCDF	15.2	33.8	75.9 %
	1,2,3,6,7,8-HxCDF	5.35	9.52	56.1 %
P-11A_0-2 (20151117) /	2,3,4,6,7,8-HxCDF	4.47	13.2	98.8 %
DUP-01 (20151117)	1,2,3,7,8,9-HxCDF	2.89	6.65	78.8 %
	1,2,3,4,6,7,8-HpCDF	293	605	69.5 %
	1,2,3,4,7,8,9-HpCDF	24.0	44.5	59.9 %
	OCDF	2020	3770	60.4 %
	Total TCDD	21.2	29.2	31.7 %
	Total PeCDD	43.3	82.5	62.3 %
	Total HxCDD	559	1440	88.1 %
	Total HpCDD	4980	19300	118.0 %
	Total TCDF	55.2	20.6	91.3 %
	Total PeCDF	48.4	71.5	38.5 %
	Total HxCDF	215	538	85.8 %
	Total HpCDF	1460	2980	68.5 %
	TEQMinWHO2005Dioxin	46.7	127	92.5 %
	2,3,7,8-TCDD	0.279 J	0.155 EMPC	AC
	1,2,3,7,8-PeCDD	0.188 EMPC	0.212 J	AC
	1,2,3,4,7,8-HxCDD	0.732 J	0.666 J	9.4 %
	1,2,3,6,7,8-HxCDD	0.971 J	1.20 J	21.1 %
	1,2,3,7,8,9-HxCDD	1.10 J	0.985 J	11.0 %
OW-211B_4-6 (20151119) / DUP-02(20151119)	1,2,3,4,6,7,8-HpCDD	121	108	11.4 %
50. 02(20101110)	OCDD	10100 E	7480 E	29.8 %
	2,3,4,6,7,8-HxCDF	0.126 J	0.193 J	42.0 %
	1,2,3,4,6,7,8-HpCDF	2.60	4.51	53.7 %
	OCDF	11.4	20.6	57.5 %
	Total TCDD	1.95	1.65	16.7 %

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Total PeCDD	8.40	4.10	68.8 %
	Total HxCDD	23.3	16.1	36.5 %
	Total HpCDD	243	212	13.6 %
OW-211B_4-6 (20151119) /	Total TCDF	0.287	0.138	70.1 %
DUP-02(20151119)	Total PeCDF	0.254	0.448	55.3 %
	Total HxCDF	2.43	3.90	46.4 %
	Total HpCDF	9.21	16.4	56.1 %
	TEQMinWHO2005Dioxin	4.84	3.89	21.8 %

AC Acceptable

- D Result is from a dilution analysis
- E Concentration is estimated due to exceedance of calibration range
- J Estimated (result is < RL)
- U Not detected

The 1,2,3,4,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, OCDD, and total HpCDD results for field duplicate samples P-11A_0-2 (20151117) and DUP-01 (20151117) exhibited a RPD greater than the control limit. The 1,2,3,4,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, OCDD, and total HpCDD results for P-11A_0-2 (20151117) and DUP-01 (20151117) were qualified as estimated.

11. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, S/N values, and RRTs.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interference quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in pg/g) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
OW-210B_0-2 (20151116)	2,3,7,8-TCDD	0.355 EMPC	0.355 UX
OW-210B_4-6 (20151116)	Total TCDF	0.272 EMPC	0.272 UX
OW-210B_6-8 (20151116)	2,3,7,8-TCDD	0.155 EMPC	0.155 UX
OW-210B_6-8 (20131118)	1,2,3,7,8-PeCDD	0.130 EMPC	0.130 UX
OW-210B_28-30 (20151116)	Total TCDD	0.395 EMPC	0.395 UX
OW-210B_28-30 (20131116)	Total PeCDD	0.412 EMPC	0.412 UX
P-11A_2-4 (20151117)	1,2,3,7,8-PeCDD	0.291 EMPC	0.291 UX
D 11A 4.6 (20151117)	2,3,4,7,8-PeCDF	0.103 EMPC	0.103 UX
P-11A_4-6 (20151117)	Total PeCDF	0.773 EMPC	0.773 UX
P-11A_8-10 (20151117)	2,3,7,8-TCDD	0.210 EMPC	0.210 UX

Sample ID	Compound	Laboratory Result	Reported Result
	1,2,3,7,8-PeCDD	0.113 EMPC	0.113 UX
	2,3,4,7,8-PeCDF	0.0940 EMPC	0.0940 UX
OW-211B_2-4 (20151119)	1,2,3,6,7,8-HxCDF	0.178 EMPC	0.178 UX
	Total TCDF	0.437 EMPC	0.437 UX
OW-211B_4-6 (20151119)	1,2,3,7,8-PeCDD	0.188 EMPC	0.188 UX
OW 244B 6 9 (20454440)	2,3,7,8-TCDD	0.327 EMPC	0.327 UX
OW-211B_6-8 (20151119)	Total PeCDF	0.0650 EMPC	0.0650 UX
OW 244B 9 40 (20454440)	2,3,7,8-TCDD	0.248 EMPC	0.248 UX
OW-211B_8-10 (20151119)	1,2,3,7,8-PeCDD	0.155 EMPC	0.155 UX
DUD 00/20454440)	2,3,7,8-TCDD	0.155 EMPC	0.155 UX
DUP-02(20151119)	1,2,3,4,7,8-HxCDF	0.156 EMPC	0.156 UX
EB-01 (20151116)	OCDD	1.08 EMPC	1.08 UX

Sample results associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
OW-210B_0-2 (20151116)	OCDD	14300 E		14300 EJ
OW-210B_2-4 (20151116)	OCDD	9440 E		9440 EJ
P-11A_0-2 (20151117)	OCDD	21300 E		21300 EJ
P-11A_2-4 (20151117)	OCDD	36400 E		36400 EJ
OW-211B_0-2	1,2,3,4,6,7,8-HpCDD	3680 E		3680 EJ
(20151119)	OCDD	33500 E		33500 EJ
OW-211B_2-4 (20151119)	OCDD	39400 E		39400 EJ
OW-211B_4-6 (20151119)	OCDD	10100 E		10100 EJ
DUP-02(20151119)	OCDD	7480 E		7480 EJ

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting a concentration greater than the linear range were qualified as documented in the table below.

Reported Sample Results	Qualification
Diluted sample result within the calibration range	D
Diluted sample result < the calibration range	DJ

Reported Sample Results	Qualification
Diluted sample result > the calibration range	EDJ
Original sample result > the calibration range	EJ

12. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCDD/PCDF

PCDDs/PCDFs; SW-846 8290	Rep	orted		mance	Not
,	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		X		Х	
B. Equipment blanks		Х	Х		
Ongoing Precision and Accuracy (OPR) Accuracy (%R)		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х	Х		
Surrogate Internal Standard Spike %R		Х		Х	
Recovery Surrogate Standard Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation		<u>I</u>	<u>I</u>	1	<u>U</u>
System performance and column resolution		Х		Х	
Initial calibration %RSD		Х		Х	
Continuing calibration %D		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio		Х		Х	
Injection Internal Standard performance		Х		Х	
Recovery standard performance		Х		Х	
Compound identification and quantitation		<u> </u>	<u> </u>		-1
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	
F. Compound quantification		Х	Х		
RSD – relative standard deviation		1	1	1	1

RSD – relative standard deviation

%R - percent recovery

RPD - relative percent difference %D – difference

SAMPLE COMPLIANCE REPORT

				Compliancy ¹					
Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCDDs/ PCDFs	MET	MISC	Noncompliance
11/16/2015	SW846	OW-210B_0-2 (20151116)	Soil			No			EMPC; Calibration range exceedance
11/16/2015	SW846	OW-210B_2-4 (20151116)	Soil			No			Calibration range exceedance
11/16/2015	SW846	OW-210B_4-6 (20151116)	Soil			No			EMPC
11/16/2015	SW846	OW-210B_6-8 (20151116)	Soil			No			EMPC
11/16/2015	SW846	OW-210B_8-10 (20151116)	Soil			Yes			
11/16/2015	SW846	OW-210B_28-30 (20151116)	Soil			No			EMPC
11/17/2015	SW846	P-11A_0-2 (20151117)	Soil			No			Field duplicate RPD > CL; Calibration range exceedance
11/17/2015	SW846	P-11A_2-4 (20151117)	Soil			No			EMPC; Calibration range exceedance
11/17/2015	SW846	P-11A_4-6 (20151117)	Soil			No			EMPC
11/17/2015	SW846	P-11A_6-8 (20151117)	Soil			Yes			
11/17/2015	SW846	P-11A_8-10 (20151117)	Soil			No			EMPC; MS/MSD %R < LL
11/17/2015	SW846	DUP-01 (20151117)	Soil			No			Field duplicate RPD > CL
11/19/2015	SW846	OW-211B_0-2 (20151119)	Soil			No			Calibration range exceedance
11/19/2015	SW846	OW-211B_2-4 (20151119)	Soil			No			EMPC; Calibration range exceedance
11/19/2015	SW846	OW-211B_4-6 (20151119)	Soil			No			EMPC; Calibration range exceedance
11/19/2015	SW846	OW-211B_6-8 (20151119)	Soil			No			EMPC
11/19/2015	SW846	OW-211B_8-10 (20151119)	Soil			No			EMPC
11/19/2015	SW846	DUP-02(20151119)	Soil			No			EMPC; Calibration range exceedance
11/19/2015	SW846	OW-211B_26-28 (20151119)	Soil			Yes	1		-
11/16/2015	SW846	EB-01 (20151116)	Water			No			EMPC
11/17/2015	SW846	EB-02 (20151117)	Water			Yes			
11/19/2015	SW846	EB-03 (20151119)	Water			Yes			

1	Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise
	unusable.

Validation Performed By:	Dennis Dvke
validation Feriornied by.	Defillis Dyke

Signature:

Date: January 19, 2016

Peer Review: Dennis Capria

Date: January 20, 2016

CHAIN OF CUSTODY / LABORATORY QUALIFIERS / CORRECTED SAMPLE ANALYSIS DATA SHEETS

Wisto CHAIN OF CUSTODY

Sto	boratory Prorage ID	WR-	8		1	emp _	2.4.
				TAT: (C	heck On	e):	
-L	1				d: 0		
repl	nens		- 1		urcharg		20/21/20/20/1
-	(Name)					-	Specify:_
uster	Stat	em Zi	D 56425	Ph# 12	18.829	Fax#	t
Ature an	d Priffed Nath	BR	chod.	Date:	11/2		ime: M2
nature an	d Printed Name)	un	Date:	7	7/S _T	ime:
e inf	ormatic	m					
-			_	7	-	1	//
	0		0		Co.	1.01	2
/	279	/	200	/	1600	60	*/
	EN A BORE	/ 3	A Star	/ ER	1600 / E		3/
/	WAY BOOM	4	A STAR	100/0	The land		/
13/	ERR STR	\$ \$	A CONTRACTOR OF THE PARTY OF TH		A Second	//	
1 5 S	A B B		THE STATE OF THE S			//	7
	THE STATE OF THE S		San		See Line	//	
	//		3 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			//	7
	# B B E E E E E E E E					//	7
\$\frac{\pi}{2} \frac{\pi}{2} \fractinu \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \fr	10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			//	<u> </u>
	\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		7 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /			//	7
	10 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 /		7 3 S			//	<u> </u>
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	\$ 20 / 20 / 20 / 20 / 20 / 20 / 20 / 20		Total S			//	7
	\$ 10 / 5 / 4		7 3 S			//	<u> </u>
	\$ 100 / 100		Total S			//	
	THE STATE OF THE S		Total S			//	
	Start Con Les		S AN S			//	

183		C .		OFC	U	01	VI.	71		Laborato Storage I	ry Proje	Ct ID:_	וטניו	140	Yes Temp 2	No □
Project I.D.: B003937	21.000	Ø. 0	احمد	P.O.#				Sampler:	W11 51	ephans (Nam			Star Rus	h (surch	c One): 21 Days harge may ap 3 7 days S	
Invoice to: Name Dowld Bessin	Poss Con	npany (ARCHOIS	Add	dress	660	2 Ex	celsiar Rd	City Box	ter	State	Zip	Ph#	121A	629.4607 Fax#	
Relinquished by: (Signature and Printed N	ame) 2/11	With .	WillStank	Date: 11/19/1	5	Time	e:/9/	Seceiy	HAY A	ure and Prifled	NAB	Beh		ate:		e:0930
Relinquished by: (Signature and Printed N	ame)	7	7711391	Date:		Time	e:	Receive	ed by: (Signal	ure and Printed	Name)	.0 - (7150	ate:	Tim	e:
		ж. — — — — — — — — — — — — — — — — — — —	See "Sa	mple Log-in (Che	cklis	t" for	· additional	l sample	inform	ation					-
SHIP TO: Vista Analytical Lab 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Faz ATTN:	95762	73-0106	Fe	od of Shipment:		Conta	dysis(es	7 / /8	THE STATE OF THE S		1/3	\$ \\ \$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(3)			7
Sample ID	Date	Time	Location/S	ample Description	/		2/2º	\$ \\$ \\$	\$ \\$ \ \	3/30/5		\$ 6	\$\\\$\		20//	
OW-210B_0-2(245116)	11/16/15	1230	Soil	Sample	1	6	50		X							
OW-2108_2-4(GaSHIL)		1235		F	1	G	50		X							
OW-210B_4-6(20151116)		1245			i	6	50		X							
DW-21013-6-8(2015/116)		1255			1_	G	30		X							
DW-2108-9-10/20151116)		1305			1	G	SO		X							
W-210B_283(20151116)	V	1425		1			So		X							
7-11A_0-2 (20151117)	11/17/15	1120			1		30		X							
2/1A_2-4(2015111)		1125		12	1		SO		X							
2-11A_4-6 (201511B)		1132			2	-	SO		X							
>-11A-6-8(2015/11B)	V	1136		V	i	G	30		X			\vdash	\neg			
Special Instructions/Comments:						100				Name	: Ke	ily	Hoch	A)		
Former Koppers Wood	W	,	2 Carlos	noble, IL			_ A	SEND OCUMENTA ND RESUL	ATION	Addre City: I Phone	Minnes 612	polis 339.	7434 St	ate: <u>MN</u> Fa	th Suite V Zip: 55	
Container Types: A = 1 Liter Amber, G : P = PUF, T = MM5 Train, O= Other	= Glass Jar			*Bottle Preserve O = Other		Туре:	T = Thic	sulfate,		Matrix '	Types:	DW = D	rinking Wa	ter, EF =	Effluent, PP = Pu V = Wastewater, E	

FOR LABORATORY USE ONLY	Storage
1501149	Secured
Laboratory Project ID	Yes No
Storage ID WK	Temp 2.4 °C

2 of 3		CI	HAIN	OF C	U	3	ľÜ	DY			Laborato Storage I		ect ID WR	-0		To	emp 2.L	No 🗆 Ł °°C
Project I.D.: B0039321		. Ooc) P.	O.#				Sam	pler: W	ill St	phen (Name			Sta Ru	indard sh (su	rcharge	e): 21 Days e may apply 7 days Spe	
Invoice to: Name Pour Bessingp	Comp	any A	RCADIS	Ad	dress	660	2 Exc	elsiar Rd	C	ity Baxh	P	State	/ Zip	Ph	# 10 0	29.460	Fax#	
Relinquished by: (Signature and Printed Na		Jr. 1	VII Steplans	Date: 11/19	ما	Tir	ne:	1 1/2	delveros		and Panted	Niferie)	100		atez	11/2		5930
Relinquished by: (Signature and Printed Na	ame)	ym v	VIII SIETIMIS	Date:	13	Tir	ne:	R	eceived by	11 841	au		1.15el	cau	Date:	1/20	Time:	1 20
			See "Sam	ple Log-in	Che	ckli	ist" f	or additi	onal sa	mple i	nform	ation						-10°>
SHIP TO: Vista Analytical Laboratory Vista Analytical Laboratory El Dorado Hills, CA (916) 673-1520 • Fax	95762	-0106	Fed					es) Request	1 1	201613	ERAS	1	ERASO.	0	& PAR	ga / 22		7
ATTN:			Tracking -			1.2	tainer(7/2						(A)				
Sample ID	7.		TO SERVICE SHOW A SERVICE STATE OF STAT	ple Description	V.	-	/	1 1/ 1/	4/2/	3/4/	13/3	/ 4/	2/0/	14/	/	1-/		
2-11A_8-10(20151117)	11/17/15		Soil So	unple	1	G	-			X								
2-11A-8-10 (2015 11 17) ms/m	50 1	145		1	1	G	50			X								
JUP-01 (2015/117)	1				1	G	1			X								
EB-01(20151116)	11/16/15 1		Equipment	Blanks	1	A	AQ			X								
	11/11/151				L	A	AQ			X								
	11/19/15/1	330	1		1	A	AQ			X								
ON-211B-0-2(2015)119)	(20905	Soil Sa	male	1	G	SO			X								
DW-2118_2-4 (2015ilig)	C	910			1	G	50			X								
W-211B_4-6(20151119)	Č	420			1	GT	So			X								
W-211B_6-8(2015119)	V 0	928	1		1	C.	50			X						9		
Former Koppers War	d Trest	ting "	Site Cor	landale, I	L			SI DOCUMI AND RES			Addre City: I Phone	any:_ ss:_43 Minne :612.	ARCA ARCA 30 For apolis 339.90	ois st Au st 134	e. N tate: M	Fax:	Suite 72(Zip: 5540)	
Container Types: A = 1 Liter Amber, G =	= Glass Jar			*Bottle Preserv	ative	Type:	T=T	niosulfate,									nt DD = Duln/E	Daner

P = PUF, T = MM5 Train, O= Other_

O = Other_

Matrix Types: DW = Drinking Water, EF = Effluent, PP = Pulp/Paper, SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum

AQ = Aqueous, O = Other_

PINK - COPY

_						(Check			*
5	LÍ							1 Days	
)	ghin	15		_	10.00			may ap	
	(Na	ne)			014	4 days	07	days S	specify:
		State	Zip)	Ph#		-	Fax#	
ature	w	d Name	Ber	ede	Date	: ///	20/	Tim	ne: 093
ature	and Print	ed Name)	-0 -0		Date	: /	1	Tin	ne:
2 11	nform	nation							1990
. 11	7				-			11	,
	/	290		200	/	600	/	5 8	
/	B	28090	3	28280	/	PA TOO	ST.		
_	/ /	/	7	/	1.5	10	/ /	7	7
			/	/	121	27		/ /	
1	5/	1 /3	5/	/ /	2/5	Y/	/ /	//	
ST.		8 S	3/3/	1	3/3	2/5	18		
The state of the s								//	
							S. S		
				3 3			No.		
18 8				Saria	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		THE STATE OF THE PARTY OF THE P		
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		S. S		
	\$ / £ / £ / £ / £ / £ / £ / £ / £ / £ /		\$\\ \frac{1}{2}\\ \frac{1}{2}\	3 1 S			THE STATE OF THE PARTY OF THE P		
THE PARTY OF THE P			\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3 8	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
			\$ / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 18		S. S		
	\$ \\ \tau \\ \u \u \\ \tau \\		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		S. J. W. S.		
	\$ \\ \tag{\frac{1}{2}} \\ \tag		\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Sar	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	\$ \\ \tau \\ \u \u \\ \tau \\ \tau \\ \tau \\ \tau \\ \tau \\ \tau \\ \u \u \\			Ser Jan	\$ 8				
	\$ \$\frac{1}{2} \frac{1}{2} \			Ser	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

3 & 3 Project I.D.: BOO 3932		. 000 CANS						San	npler:_	Wil		Storage ID		W	Stand Rush	(Check dard: n (surch	k One): 21 harge r	
Dave Bessing pass Invoice to: Name		pany		dress						City	SI N	Stat	e Z	ip.	Ph#	,		Fax#
Relinquished by: (Signature and Printed Na Relinquished by: (Signature and Printed Na	NII	ttyli	Date:	5	Tir		71:	5 8	egelve eceive	d by:	Signatur (Signatur	re and Printed Name	B.Be	hea	Dat		120/1	Time: 0930
	***		See "Sample Log-in	Che	ckli	st"	for	additi	onal	sam	ple i	informatio	n					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SHIP TO: Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 (916) 673-1520 • Fax (916) 673-0106 Tracking No.:				Add Analysis(es) Requested Ad										1//				
Sample ID	Date	Time	Location/Sample Description	/	3/	\$/.	A LOUIS	\$ ⁵ \\$ ⁵	2/2	5 4		1 5 / 5 / 4	3/5/	18/	3/2	/ /	20/	
	11/19/15	0932	Soil Sample	1	G	SO					X							
DUP-02 (2015/119)	1	-		1	6	50					X				Ш			
OW-211B_26-28(2015)1119)	V	1036		1	G	SO					X					+		
					\vdash			\vdash	+		+			1	+	+	1	
Special Instructions/Comments: Former Kopples Wood Container Types: A = 1 Liter Amber, G = P = PUF, T = MM5 Train, O = Other	-		*Bottle Present		· Type	; T=	Al	OCUM ND RE				City: Mix Phone: E Email: K Matrix Type	430 12.33 cly, s: bw ent, SL:	Fire Fire Fire Fire Fire Fire Fire Fire	St Au Sta 434 Lung L king Wat le, SO =	re: M Fa	Zi ax:	Suite 720 p: 55 401 om the PP = Pulp/Paper, stewater, B = Blood/Seri

Sample ID: OW-210	0B_0-2 (20151116)								EPA M	ethod 8290
Client Data Name: ARCA Project: B0039 Date Collected: 16-Nov	9321.0000.00001	Sample Data Matrix: Sample Size: % Solids:	Soil 15.1 g 66.5		Lab QC	ooratory Data Sample: Batch: e Analyzed :		Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	Analyst: WJL	
Analyte Conc. ((pg/g)	DL EMP	C	Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.35	5	UX	IS	13C-2,3,7,8-TC	CDD	98.2	40 - 135	
1,2,3,7,8-PeCDD	1.73			J		13C-1,2,3,7,8-I	PeCDD	104	40 - 135	
1,2,3,4,7,8-HxCDD	2.99					13C-1,2,3,4,7,8	3-HxCDD	111	40 - 135	
1,2,3,6,7,8-HxCDD	9.93					13C-1,2,3,6,7,8	8-HxCDD	100	40 - 135	
1,2,3,7,8,9-HxCDD	5.65					13C-1,2,3,7,8,9	-HxCDD	103	40 - 135	
1,2,3,4,6,7,8-HpCDD	606					13C-1,2,3,4,6,7	,8-HpCDD	112	40 - 135	
OCDD	14300			ΕJ		13C-OCDD		119	40 - 135	
2,3,7,8-TCDF	0.838					13C-2,3,7,8-TC	CDF	96.9	40 - 135	
1,2,3,7,8-PeCDF	1.22			J		13C-1,2,3,7,8-I	PeCDF	109	40 - 135	
2,3,4,7,8-PeCDF	0.937			J		13C-2,3,4,7,8-I	PeCDF	114	40 - 135	
1,2,3,4,7,8-HxCDF	2.30			J		13C-1,2,3,4,7,8	8-HxCDF	94.7	40 - 135	
1,2,3,6,7,8-HxCDF	0.873			J		13C-1,2,3,6,7,8	8-HxCDF	89.1	40 - 135	
2,3,4,6,7,8-HxCDF	0.720			J		13C-2,3,4,6,7,8	3-HxCDF	91.8	40 - 135	
1,2,3,7,8,9-HxCDF	0.441			J		13C-1,2,3,7,8,9	-HxCDF	96.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	43.9					13C-1,2,3,4,6,7	,8-HpCDF	93.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	3.48					13C-1,2,3,4,7,8	3,9-HpCDF	107	40 - 135	
OCDF	314					13C-OCDF		95.0	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	88.1	40 - 135	
						Toxic Equivale	ent Quotient (TE	Q) Data		
						TEQMinWHO2	2005Dioxin	15.3		
TOTALS										
Total TCDD	34.4	34.8								
Total PeCDD	34.1	34.5	5							
Total HxCDD	156									
Total HpCDD	1420									
Total TCDF	11.0	12.9								
Total PeCDF	10.2	10.0	5							
Total HxCDF	33.5									
Total HpCDF DL - Sample specifc estin	215						it - upper control limi			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 8 of 38

Sample ID: OW-21	0B_2-4 (20151116)						EPA M	ethod 8290
	ADIS 9321.0000.00001 ov-2015 12:35	Sample Data Matrix: Soil Sample Size: 12.4 g % Solids: 80.7		Lab QC	Pooratory Data Sample: 1501148-02 Batch: B5K0138 e Analyzed: 06-Dec-15 11:15	Date Received: Date Extracted 5 Column: ZB-5M	: 30-Nov-2015	
Analyte Conc.	. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.113		IS	13C-2,3,7,8-TCDD	86.4	40 - 135	
1,2,3,7,8-PeCDD	ND	0.118			13C-1,2,3,7,8-PeCDD	94.5	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.198			13C-1,2,3,4,7,8-HxCDD	96.3	40 - 135	
1,2,3,6,7,8-HxCDD	0.263		J		13C-1,2,3,6,7,8-HxCDD	89.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.221			13C-1,2,3,7,8,9-HxCDD	90.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	61.4				13C-1,2,3,4,6,7,8-HpCDD	92.4	40 - 135	
OCDD	9440		ΕJ		13C-OCDD	101	40 - 135	
2,3,7,8-TCDF	ND	0.0929			13C-2,3,7,8-TCDF	89.8	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0716			13C-1,2,3,7,8-PeCDF	98.2	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0674			13C-2,3,4,7,8-PeCDF	103	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0957			13C-1,2,3,4,7,8-HxCDF	86.1	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0994			13C-1,2,3,6,7,8-HxCDF	82.5	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.104			13C-2,3,4,6,7,8-HxCDF	84.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.151			13C-1,2,3,7,8,9-HxCDF	85.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.797		J		13C-1,2,3,4,6,7,8-HpCDF	80.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0982			13C-1,2,3,4,7,8,9-HpCDF	91.9	40 - 135	
OCDF	5.42				13C-OCDF	79.7	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	82.1	40 - 135	
					Toxic Equivalent Quotient (TEC	Q) Data		
					TEQMinWHO2005Dioxin	3.48		
TOTALS								
Total TCDD	ND	0.113						
Total PeCDD	ND	0.118						
Total HxCDD	2.87							
Total HpCDD	122							
Total TCDF	ND	0.0929						
Total PeCDF	ND	0.0716						
Total HxCDF	0.402	0.540						
Total HpCDF	3.62							
DL - Sample specifc esti	imated detection limit			LCL-UC	L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 9 of 38

Date Collected: 16-Nov-2 Analyte Conc. (pg	1.0000.00001 2015 12:45 2/g) ND (Soil ize: 12.1 g		Lab QC I	oratory Data Sample:	1501148-03	Date Received:	20-Nov-2015	9-25
	ND (EMDC		Date	Batch: e Analyzed :	B5K0138 06-Dec-15 12:03	Date Extracted: Column: ZB-5MS		
2,3,7,8-TCDD			EMIPC	Qualifiers		Labeled Standa	ırd	%R	LCL-UCL	Qualifiers
	1 ID (0.121			IS	13C-2,3,7,8-TC	DD	77.5	40 - 135	
1,2,3,7,8-PeCDD	ND (0.181				13C-1,2,3,7,8-P	eCDD	83.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND (0.192				13C-1,2,3,4,7,8	-HxCDD	84.7	40 - 135	
1,2,3,6,7,8-HxCDD	ND (0.196				13C-1,2,3,6,7,8	-HxCDD	78.2	40 - 135	
1,2,3,7,8,9-HxCDD	ND (0.212				13C-1,2,3,7,8,9		80.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	43.9					13C-1,2,3,4,6,7	,8-HpCDD	83.6	40 - 135	
OCDD :	5370					13C-OCDD		79.3	40 - 135	
2,3,7,8-TCDF	ND (0.104				13C-2,3,7,8-TC	DF	80.3	40 - 135	
	ND 0	.0832				13C-1,2,3,7,8-P	eCDF	86.9	40 - 135	
	ND 0	.0744				13C-2,3,4,7,8-P		90.5	40 - 135	
	ND 0	.0841				13C-1,2,3,4,7,8		74.5	40 - 135	
	ND 0	.0882				13C-1,2,3,6,7,8		70.9	40 - 135	
	ND 0	.0877				13C-2,3,4,6,7,8		73.8	40 - 135	
	ND (0.126				13C-1,2,3,7,8,9		76.7	40 - 135	
	1.13			J		13C-1,2,3,4,6,7		70.0	40 - 135	
		0.117				13C-1,2,3,4,7,8	_	84.0	40 - 135	
	6.68					13C-OCDF	, r -	71.9	40 - 135	
						37Cl-2,3,7,8-TC	CDD	84.7	40 - 135	
							nt Quotient (TEQ)			
						TEQMinWHO2		2.06		
TOTALS										
Total TCDD	ND 0.	121								
	1.13									
Total HxCDD	5.88									
Total HpCDD	92.2									
Total TCDF	ND		0.272	UX						
Total PeCDF	ND 0.0	0832								
Total HxCDF	0.584		0.802							
Total HpCDF	4.72									

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 10 of 38

Sample ID: OW-21	0B_6-8 (20151116)							EPA M	ethod 8290
1 -	ADIS 9321.0000.00001 pv-2015 12:55	Sample Matrix Sample % Soli	: Soil e Size: 12.8 g		Lab QC	boratory Data 5 Sample: 1501148-04 6 Batch: B5K0138 te Analyzed: 06-Dec-15 12:51		30-Nov-2015	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.155	UX	IS	13C-2,3,7,8-TCDD	90.8	40 - 135	
1,2,3,7,8-PeCDD	ND		0.130	UX		13C-1,2,3,7,8-PeCDD	102	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.112				13C-1,2,3,4,7,8-HxCDD	101	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.117				13C-1,2,3,6,7,8-HxCDD	91.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.131				13C-1,2,3,7,8,9-HxCDD	94.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	10.2					13C-1,2,3,4,6,7,8-HpCDD	98.5	40 - 135	
OCDD	604					13C-OCDD	82.3	40 - 135	
2,3,7,8-TCDF	ND	0.0870				13C-2,3,7,8-TCDF	93.7	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0537				13C-1,2,3,7,8-PeCDF	106	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0492				13C-2,3,4,7,8-PeCDF	109	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0871				13C-1,2,3,4,7,8-HxCDF	88.5	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0922				13C-1,2,3,6,7,8-HxCDF	84.2	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0877				13C-2,3,4,6,7,8-HxCDF	88.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.128				13C-1,2,3,7,8,9-HxCDF	89.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.725			J		13C-1,2,3,4,6,7,8-HpCDF	84.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.120				13C-1,2,3,4,7,8,9-HpCDF	95.0	40 - 135	
OCDF	4.51			J		13C-OCDF	78.9	40 - 135	
					CRS	37C1-2,3,7,8-TCDD	87.3	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	0.292		
TOTALS									
Total TCDD	0.950		2.01						
Total PeCDD	0.872		5.35						
Total HxCDD	7.91								
Total HpCDD	21.6								
Total TCDF	ND	0.0870							
Total PeCDF	ND	0.0537							
Total HxCDF	0.163		0.538						
Total HpCDF	3.20								
DL - Sample specifc esti	imated detection limit				LCL-UC	CL- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 11 of 38

Sample ID: OW-21	0B_8-10 (20151116)							EPA M	ethod 8290
	ADIS 9321.0000.00001 ov-2015 13:05	Sample I Matrix: Sample % Solid	Soil Size: 12.5 g		Lab QC	Doratory Data Sample: 1501148-05 Batch: B5K0138 e Analyzed: 06-Dec-15 13:39	Date Received: Date Extracted Column: ZB-5M	30-Nov-2015	
Analyte Conc.	. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0918			IS	13C-2,3,7,8-TCDD	92.0	40 - 135	
1,2,3,7,8-PeCDD	ND	0.0986				13C-1,2,3,7,8-PeCDD	97.7	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.129				13C-1,2,3,4,7,8-HxCDD	98.8	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.128				13C-1,2,3,6,7,8-HxCDD	92.9	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.145				13C-1,2,3,7,8,9-HxCDD	96.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	2.15			J		13C-1,2,3,4,6,7,8-HpCDD	97.6	40 - 135	
OCDD	113					13C-OCDD	83.6	40 - 135	
2,3,7,8-TCDF	ND	0.0733				13C-2,3,7,8-TCDF	93.2	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0509				13C-1,2,3,7,8-PeCDF	104	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0470				13C-2,3,4,7,8-PeCDF	106	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0758				13C-1,2,3,4,7,8-HxCDF	88.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0707				13C-1,2,3,6,7,8-HxCDF	86.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0780				13C-2,3,4,6,7,8-HxCDF	86.5	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.108				13C-1,2,3,7,8,9-HxCDF	90.0	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.115			J		13C-1,2,3,4,6,7,8-HpCDF	82.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0817				13C-1,2,3,4,7,8,9-HpCDF	99.3	40 - 135	
OCDF	0.378			J		13C-OCDF	80.5	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	81.3	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	0.0567		
TOTALS									
Total TCDD	0.675		0.862						
Total PeCDD	1.36		1.95						
Total HxCDD	2.81		3.28						
Total HpCDD	5.73								
Total TCDF	ND	0.0733							
Total PeCDF	ND	0.0509							
Total HxCDF	ND	0.108							
Total HpCDF	0.115		0.267						
DL - Sample specifc est	imated detection limit				LCL-UC	L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 12 of 38

23,7,8-PCDD	Sample ID: OW-210B	_28-30 (20151116)							EPA Mo	ethod 8290
2,37,8-PCDD	Name: ARCADIS Project: B0039321	1.0000.00001	Matrix: Sample Si	Soil ze: 12.7 g		Lab QC	Sample: 1501148-06 Batch: B5K0138	Date Extracted:	30-Nov-2015	
1,2,3,7,8-PeCDD	Analyte Conc. (pg/	y/g)	DL E	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
1,2,3,4,7,8-HxCDD	2,3,7,8-TCDD	ND (0.109			IS	13C-2,3,7,8-TCDD	81.3	40 - 135	
1,2,3,6,7,8-HxCDD	, , , ,		0.118				13C-1,2,3,7,8-PeCDD	87.9	40 - 135	
1,2,3,7,8,9-HxCDD	1,2,3,4,7,8-HxCDD	ND (0.162				13C-1,2,3,4,7,8-HxCDD	93.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	1,2,3,6,7,8-HxCDD	ND (0.167				13C-1,2,3,6,7,8-HxCDD	84.2	40 - 135	
OCDD	1,2,3,7,8,9-HxCDD (0.854			J		13C-1,2,3,7,8,9-HxCDD	90.1	40 - 135	
2,3,7,8-TCDF	1,2,3,4,6,7,8-HpCDD	11.0					13C-1,2,3,4,6,7,8-HpCDD	91.5	40 - 135	
1,2,3,7,8-PeCDF ND	OCDD 4	401					13C-OCDD	77.9	40 - 135	
2,3,4,7,8-PeCDF ND	2,3,7,8-TCDF	ND 0	.0941				13C-2,3,7,8-TCDF	82.1	40 - 135	
1,2,3,4,7,8-HxCDF	1,2,3,7,8-PeCDF	ND 0	.0610				13C-1,2,3,7,8-PeCDF	92.8	40 - 135	
1,2,3,6,7,8-HxCDF	2,3,4,7,8-PeCDF	ND 0	.0608				13C-2,3,4,7,8-PeCDF	94.1	40 - 135	
2,3,4,6,7,8-HxCDF ND 0.0930	1,2,3,4,7,8-HxCDF	ND 0	.0902				13C-1,2,3,4,7,8-HxCDF	81.0	40 - 135	
1,2,3,7,8,9-HxCDF	1,2,3,6,7,8-HxCDF	ND 0	.0944				13C-1,2,3,6,7,8-HxCDF	77.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	2,3,4,6,7,8-HxCDF	ND 0	.0930				13C-2,3,4,6,7,8-HxCDF	81.0	40 - 135	
1,2,3,4,6,7,8-HpCDF	1,2,3,7,8,9-HxCDF	ND (0.131				13C-1,2,3,7,8,9-HxCDF	81.3	40 - 135	
OCDF 1.19 J 13C-OCDF 73.0 40 - 135	1,2,3,4,6,7,8-HpCDF	0.251			J			77.8	40 - 135	
OCDF 1.19 J 13C-OCDF 73.0 40 - 135	1,2,3,4,7,8,9-HpCDF	ND 0	.0956				13C-1,2,3,4,7,8,9-HpCDF	88.7	40 - 135	
Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 0.319		1.19			J			73.0	40 - 135	
TEQMinWHO2005Dioxin 0.319						CRS	37C1-2,3,7,8-TCDD	73.9	40 - 135	
TOTALS Total TCDD ND 0.395 UX Total PeCDD ND 0.412 UX Total HxCDD 2.55 UX Total HpCDD 24.2 UX Total TCDF ND 0.0941 Total PeCDF ND 0.0610 Total HxCDF 0.131							Toxic Equivalent Quotient (TEQ)	Data		
Total TCDD ND 0.395 UX Total PeCDD ND 0.412 UX Total HxCDD 2.55 Total HpCDD 24.2 Total TCDF ND 0.0941 Total PeCDF ND 0.0610 Total HxCDF 0.131 0.131 0.131 0.141							TEQMinWHO2005Dioxin	0.319		
Total PeCDD ND 0.412 UX Total HxCDD 2.55 UX Total HpCDD 24.2 UX Total TCDF ND 0.0941 Total PeCDF ND 0.0610 Total HxCDF 0.131	TOTALS									
Total PeCDD ND 0.412 UX Total HxCDD 2.55 ————————————————————————————————————	Total TCDD	ND		0.395	UX					
Total HpCDD 24.2 Total TCDF ND 0.0941 Total PeCDF ND 0.0610 Total HxCDF 0.131 0.131	Total PeCDD	ND		0.412						
Total TCDF ND 0.0941 Total PeCDF ND 0.0610 Total HxCDF 0.131										
Total PeCDF ND 0.0610 Total HxCDF 0.131	Total HpCDD 2	24.2								
Total HxCDF 0.131			0941							
			0610							
Total HpCDF 0.975										
DL - Sample specific estimated detection limit LCL-UCL - Lower control limit - upper control limit	· · · · · · · · · · · · · · · · · · ·									

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 13 of 38

Sample ID: P-11A_	0-2 (20151117)								EPA M	ethod 8290
Client Data Name: ARCA Project: B0039 Date Collected: 17-No	9321.0000.00001	Sample Data Matrix: Sample Size: % Solids:	Soil 12.5 g 80.0		Lab QC	poratory Data Sample: Batch:		Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	Analyst: WJL	
Analyte Conc.	. (pg/g)	DL EMP	C	Qualifiers		Labeled Stand	lard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.607				IS	13C-2,3,7,8-T0	CDD	97.7	40 - 135	
1,2,3,7,8-PeCDD	2.80					13C-1,2,3,7,8-	PeCDD	111	40 - 135	
1,2,3,4,7,8-HxCDD	6.92			J		13C-1,2,3,4,7,8	8-HxCDD	108	40 - 135	
1,2,3,6,7,8-HxCDD	40.3					13C-1,2,3,6,7,8	8-HxCDD	98.7	40 - 135	
1,2,3,7,8,9-HxCDD	12.0			J		13C-1,2,3,7,8,9	9-HxCDD	103	40 - 135	
1,2,3,4,6,7,8-HpCDD	2250					13C-1,2,3,4,6,7	7,8-HpCDD	119	40 - 135	
OCDD	21300			ΕJ		13C-OCDD		116	40 - 135	
2,3,7,8-TCDF	3.62					13C-2,3,7,8-T0	CDF	97.0	40 - 135	
1,2,3,7,8-PeCDF	6.89					13C-1,2,3,7,8-	PeCDF	115	40 - 135	
2,3,4,7,8-PeCDF	4.37					13C-2,3,4,7,8-	PeCDF	118	40 - 135	
1,2,3,4,7,8-HxCDF	15.2					13C-1,2,3,4,7,8	8-HxCDF	96.5	40 - 135	
1,2,3,6,7,8-HxCDF	5.35					13C-1,2,3,6,7,8	8-HxCDF	91.6	40 - 135	
2,3,4,6,7,8-HxCDF	4.47					13C-2,3,4,6,7,8	8-HxCDF	92.3	40 - 135	
1,2,3,7,8,9-HxCDF	2.89					13C-1,2,3,7,8,9	9-HxCDF	96.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	293					13C-1,2,3,4,6,7	7,8-HpCDF	90.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	24.0					13C-1,2,3,4,7,8	8,9-HpCDF	109	40 - 135	
OCDF	2020					13C-OCDF	•	96.2	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	85.0	40 - 135	
						Toxic Equivale	ent Quotient (TE	Q) Data		
						TEQMinWHO	2005Dioxin	46.7		
TOTALS										
Total TCDD	21.2	21.4	ļ							
Total PeCDD	43.3									
Total HxCDD	559									
Total HpCDD	4980			J						
Total TCDF	55.2									
Total PeCDF	48.4	49.0)							
Total HxCDF	215	216								
Total HpCDF	1460									
DL - Sample specifc esti	imated detection limit				LCL-UC	L- Lower control lin	nit - upper control limi	t		

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 14 of 38

Sample ID: P-11A_2-4 (20151117)							EPA Mo	ethod 8290
Client Data Name: ARCADIS Project: B0039321. Date Collected: 17-Nov-20	0000.00001	Sample Dat Matrix: Sample Siz % Solids:	Soil		Lab QC I	oratory Data Sample: 1501148-08 Batch: B5K0138 e Analyzed: 07-Dec-15 14:15		20-Nov-2015 30-Nov-2015 Analyst: WJL	
Analyte Conc. (pg/g	;) I	L E	MPC Q	ualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD NI	D 0.	118			IS	13C-2,3,7,8-TCDD	86.6	40 - 135	
1,2,3,7,8-PeCDD NI	D		0.291	UX		13C-1,2,3,7,8-PeCDD	94.0	40 - 135	
1,2,3,4,7,8-HxCDD 0.0	636			J		13C-1,2,3,4,7,8-HxCDD	89.2	40 - 135	
1,2,3,6,7,8-HxCDD 1.0	07			J		13C-1,2,3,6,7,8-HxCDD	88.9	40 - 135	
1,2,3,7,8,9-HxCDD 0.9	936			J		13C-1,2,3,7,8,9-HxCDD	88.0	40 - 135	
1,2,3,4,6,7,8-HpCDD 21	7					13C-1,2,3,4,6,7,8-HpCDD	89.2	40 - 135	
OCDD 36	5400			ΕJ		13C-OCDD	102	40 - 135	
2,3,7,8-TCDF NI	D 0.0	881				13C-2,3,7,8-TCDF	89.3	40 - 135	
1,2,3,7,8-PeCDF N	D 0.0	763				13C-1,2,3,7,8-PeCDF	91.5	40 - 135	
2,3,4,7,8-PeCDF NI	D 0.0	596				13C-2,3,4,7,8-PeCDF	98.3	40 - 135	
1,2,3,4,7,8-HxCDF 0.	163			J		13C-1,2,3,4,7,8-HxCDF	82.1	40 - 135	
1,2,3,6,7,8-HxCDF N	D 0.	112				13C-1,2,3,6,7,8-HxCDF	78.9	40 - 135	
2,3,4,6,7,8-HxCDF N	D 0.	119				13C-2,3,4,6,7,8-HxCDF	79.3	40 - 135	
1,2,3,7,8,9-HxCDF NI	D 0.	156				13C-1,2,3,7,8,9-HxCDF	85.4	40 - 135	
1,2,3,4,6,7,8-HpCDF 3.4	41					13C-1,2,3,4,6,7,8-HpCDF	80.2	40 - 135	
-	237			J		13C-1,2,3,4,7,8,9-HpCDF	91.8	40 - 135	
OCDF 22	2.4					13C-OCDF	81.8	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	82.5	40 - 135	
						Toxic Equivalent Quotient (TEQ)	Data		
						TEQMinWHO2005Dioxin	13.4		
TOTALS									
Total TCDD NI	D 0.1	18							
	252		1.58						
Total HxCDD 12									
Total HpCDD 48									
Total TCDF N									
	130		0.207						
	06								
Total HpCDF 16 DL - Sample specific estimated						L- Lower control limit - upper control limit			

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 15 of 38

Sample ID: P-11A_4	4-6 (20151117)						EPA M	ethod 829
	ADIS 9321.0000.00001 pv-2015 11:32	Sample Data Matrix: Sample Size: % Solids:	Soil 13.0 g 77.2	Lab QC	poratory Data Sample: 1501148-09 Batch: B5K0138 e Analyzed: 07-Dec-15 15	Date Received: Date Extracted: :03 Column: ZB-5MS	30-Nov-2015	
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.295		J	IS	13C-2,3,7,8-TCDD	95.1	40 - 135	
1,2,3,7,8-PeCDD	0.263		J		13C-1,2,3,7,8-PeCDD	102	40 - 135	
1,2,3,4,7,8-HxCDD	0.574		J		13C-1,2,3,4,7,8-HxCDD	104	40 - 135	
1,2,3,6,7,8-HxCDD	1.53		J		13C-1,2,3,6,7,8-HxCDD	98.5	40 - 135	
1,2,3,7,8,9-HxCDD	0.886		J		13C-1,2,3,7,8,9-HxCDD	103	40 - 135	
1,2,3,4,6,7,8-HpCDD	112				13C-1,2,3,4,6,7,8-HpCDD	104	40 - 135	
OCDD	4720				13C-OCDD	98.5	40 - 135	
2,3,7,8-TCDF	ND	0.0781			13C-2,3,7,8-TCDF	98.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0645			13C-1,2,3,7,8-PeCDF	106	40 - 135	
2,3,4,7,8-PeCDF	ND	0.103	UX		13C-2,3,4,7,8-PeCDF	108	40 - 135	
1,2,3,4,7,8-HxCDF	0.379		J		13C-1,2,3,4,7,8-HxCDF	95.6	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0837			13C-1,2,3,6,7,8-HxCDF	91.6	40 - 135	
2,3,4,6,7,8-HxCDF	0.218		J		13C-2,3,4,6,7,8-HxCDF	94.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.122			13C-1,2,3,7,8,9-HxCDF	97.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	8.56				13C-1,2,3,4,6,7,8-HpCDF	90.4	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.680		J		13C-1,2,3,4,7,8,9-HpCDF	108	40 - 135	
OCDF	55.8				13C-OCDF	88.6	40 - 135	
				CRS	37C1-2,3,7,8-TCDD	83.9	40 - 135	
					Toxic Equivalent Quotient (T	EQ) Data		
					TEQMinWHO2005Dioxin	3.56		
TOTALS								
Total TCDD	2.62	2.90						
Total PeCDD	1.23	3.52						
Total HxCDD	21.0							
Total HpCDD	268							
Total TCDF	1.64	1.75						
Total PeCDF	ND	0.773	UX					
Total HxCDF	7.20							
Total HpCDF DL - Sample specifc esti	40.3				L- Lower control limit - upper control lir			

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 16 of 38

Sample ID: P-11A_6	5-8 (20151117)			EPA Method 8
Client Data Name: ARCA Project: B0039 Date Collected: 17-No	321.0000.00001	Sample Data Matrix: Soil Sample Size: 10.4 g % Solids: 96.4		Laboratory Data Lab Sample: 1501148-10 Date Received: 20-Nov-2015 9:25 QC Batch: B5K0138 Date Extracted: 30-Nov-2015 9:58 Date Analyzed: 07-Dec-15 15:51 Column: ZB-5MS Analyst: WJL
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers	Labeled Standard %R LCL-UCL Qualif
2,3,7,8-TCDD	ND	0.100		IS 13C-2,3,7,8-TCDD 79.2 40 - 135
1,2,3,7,8-PeCDD	0.213		J	13C-1,2,3,7,8-PeCDD 82.9 40 - 135
1,2,3,4,7,8-HxCDD	ND	0.199		13C-1,2,3,4,7,8-HxCDD 90.0 40 - 135
1,2,3,6,7,8-HxCDD	0.571		J	13C-1,2,3,6,7,8-HxCDD 84.4 40 - 135
1,2,3,7,8,9-HxCDD	0.478		J	13C-1,2,3,7,8,9-HxCDD 86.1 40 - 135
1,2,3,4,6,7,8-HpCDD	22.4			13C-1,2,3,4,6,7,8-HpCDD 87.6 40 - 135
OCDD	320			13C-OCDD 76.4 40 - 135
2,3,7,8-TCDF	ND	0.0857		13C-2,3,7,8-TCDF 81.5 40 - 135
1,2,3,7,8-PeCDF	ND	0.0600		13C-1,2,3,7,8-PeCDF 86.1 40 - 135
2,3,4,7,8-PeCDF	ND	0.0611		13C-2,3,4,7,8-PeCDF 88.9 40 - 135
1,2,3,4,7,8-HxCDF	ND	0.0870		13C-1,2,3,4,7,8-HxCDF 80.0 40 - 135
1,2,3,6,7,8-HxCDF	ND	0.0885		13C-1,2,3,6,7,8-HxCDF 78.4 40 - 135
2,3,4,6,7,8-HxCDF	ND	0.0947		13C-2,3,4,6,7,8-HxCDF 78.1 40 - 135
1,2,3,7,8,9-HxCDF	ND	0.139		13C-1,2,3,7,8,9-HxCDF 79.8 40 - 135
1,2,3,4,6,7,8-HpCDF	2.14		J	13C-1,2,3,4,6,7,8-HpCDF 76.1 40 - 135
1,2,3,4,7,8,9-HpCDF	0.173		J	13C-1,2,3,4,7,8,9-HpCDF 87.8 40 - 135
OCDF	13.9			13C-OCDF 73.1 40 - 135
				CRS 37Cl-2,3,7,8-TCDD 82.0 40 - 135
				Toxic Equivalent Quotient (TEQ) Data
				TEQMinWHO2005Dioxin 0.665
TOTALS				
Total TCDD	3.05	3.42		
Total PeCDD	18.9	20.5		
Total HxCDD	21.0			
Total HpCDD	52.9			
Total TCDF	ND	0.0857		
Total PeCDF	0.136			
Total HxCDF	1.71			
Total HpCDF DL - Sample specifc estin	10.3			

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 17 of 38

Sample ID: P-11A_	8-10 (20151117)							EPA M	ethod 8290
	ADIS 9321.0000.00001 ov-2015 11:45	Sample Matri Samp % Sol	x: Soil le Size: 12.4 g		Lab QC	boratory Data o Sample: 1501148-11 Batch: B5K0138 te Analyzed: 07-Dec-15 16:39	Date Received: Date Extracted Column: ZB-5M	30-Nov-2015	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.210	UX	IS	13C-2,3,7,8-TCDD	88.8	40 - 135	
1,2,3,7,8-PeCDD	ND		0.113	UX		13C-1,2,3,7,8-PeCDD	93.9	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.169				13C-1,2,3,4,7,8-HxCDD	94.3	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.171				13C-1,2,3,6,7,8-HxCDD	90.0	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.194				13C-1,2,3,7,8,9-HxCDD	90.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	12.7					13C-1,2,3,4,6,7,8-HpCDD	93.1	40 - 135	
OCDD	262			J		13C-OCDD	76.6	40 - 135	
2,3,7,8-TCDF	ND	0.0795				13C-2,3,7,8-TCDF	92.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0545				13C-1,2,3,7,8-PeCDF	100	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0597				13C-2,3,4,7,8-PeCDF	102	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0725				13C-1,2,3,4,7,8-HxCDF	87.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0752				13C-1,2,3,6,7,8-HxCDF	83.5	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0760				13C-2,3,4,6,7,8-HxCDF	86.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.113				13C-1,2,3,7,8,9-HxCDF	87.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	1.05			J		13C-1,2,3,4,6,7,8-HpCDF	82.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.145				13C-1,2,3,4,7,8,9-HpCDF	96.2	40 - 135	
OCDF	6.50					13C-OCDF	77.6	40 - 135	
					CRS	37C1-2,3,7,8-TCDD	82.8	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	0.218		
TOTALS									
Total TCDD	1.55		2.53						
Total PeCDD	4.25		5.86						
Total HxCDD	6.27								
Total HpCDD	31.5								
Total TCDF	ND	0.0795							
Total PeCDF	ND	0.0597							
Total HxCDF	0.611		0.788						
Total HpCDF	4.58								
DL - Sample specifc esti	imated detection limit				LCL-UC	CL- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 18 of 38

Client Data Name: ARCADIS Matrix: Soil Matrix: Soil Lab Sample: Isol 148-12 Date Received: 20-Nov-2015 92-5	Sample ID: DUP-01	1 (20151117)								EPA M	ethod 8290
18 13C-2,3,7,8-TCDD 82.2 40 - 135 12,3,7,8-PCCDD 6.25 13C-1,2,3,7,8-PCCDD 85.8 40 - 135 12,3,4,7,8-HKCDD 23.1 13C-1,2,3,7,8-PCCDD 87.8 40 - 135 12,3,4,7,8-HKCDD 99.0 13C-1,2,3,4,7,8-HKCDD 80.9 40 - 135 12,3,6,7,8-HKCDD 40.2 J 13C-1,2,3,4,6,7,8-HKCDD 80.9 40 - 135 12,3,4,6,7,8-HKCDD 40.2 J 13C-1,2,3,4,6,7,8-HKCDD 80.9 40 - 135 12,3,4,6,7,8-HKCDD 6660 D 13C-1,2,3,4,6,7,8-HKCDD 89.2 40 - 135 DODD 68500 D J 13C-0,000 89.2 40 - 135 12,3,7,8-PCDF 1.21 13C-0,000 89.2 40 - 135 12,3,7,8-PCDF 2.36 J 13C-1,2,3,7,8-PCDF 8.7 40 - 135 12,3,7,8-PCDF 7.41 13C-2,3,7,8-PCDF 86.7 40 - 135 12,3,4,7,8-HKCDF 9.52 13C-1,2,3,4,7,8-HKCDF 79.9 40 - 135 12,3,6,7,8-HKCDF 9.52 13C-1,2,3,6,7,8-HKCDF 73.2 40 - 135 12,3,4,7,8-HKCDF 13.2 13C-2,3,7,8-HKCDF 73.2 40 - 135 12,3,4,7,8-HKCDF 13.2 13C-2,3,4,6,7,8-HKCDF 73.2 40 - 135 12,3,4,7,8-HKCDF 13.2 13C-1,2,3,4,6,7,8-HKCDF 73.2 40 - 135 12,3,4,7,8-HKCDF 665 13C-1,2,3,4,6,7,8-HKCDF 74.9 40 - 135 12,3,4,7,8-HKCDF 665 13C-1,2,3,4,6,7,8-HKCDF 75.2 40 - 135 12,3,4,7,8-HKCDF 44.5 13C-1,2,3,4,8,8-HCDF 75.2 40 - 135 12,3,4,7,8-HKCDF 45.5 13C-1,2,3,4,7,8-HCDF 75.2 40 - 135 12,3,4,7,8-HCDF 605 13C-1,2,3,4,7,8	Name: ARCA Project: B0039	9321.0000.00001	Matrix: Sample Size:	12.4 g		Lab QC	Sample: Batch:	B5K0138 07-Dec-15 17:2	Date Extracted: 27 Column: ZB-5MS	30-Nov-2015 Analyst: WJL	
12.3,7,8-PeCDD	Analyte Conc.	(pg/g)	DL EMP	С	Qualifiers		Labeled Standa	ard	%R	LCL-UCL	Qualifiers
1,2,3,4,7,8-HxCDD	2,3,7,8-TCDD	0.951				IS	13C-2,3,7,8-TC	DD	82.2	40 - 135	
1,2,3,6,7,8-HxCDD	1,2,3,7,8-PeCDD	6.25					13C-1,2,3,7,8-P	eCDD	85.8	40 - 135	
1,2,3,7,8,9-HxCDD	1,2,3,4,7,8-HxCDD	23.1			J		13C-1,2,3,4,7,8	-HxCDD	88.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	1,2,3,6,7,8-HxCDD	99.0					13C-1,2,3,6,7,8	-HxCDD	80.9	40 - 135	
OCDD	1,2,3,7,8,9-HxCDD	40.2			J		13C-1,2,3,7,8,9	-HxCDD	82.1	40 - 135	
2,3,7,8-TCDF	1,2,3,4,6,7,8-HpCDD	6660			D		13C-1,2,3,4,6,7	,8-HpCDD	91.7	40 - 135	D
1,2,3,7,8-PeCDF	OCDD	68500			D J		13C-OCDD		89.2	40 - 135	D
2,3,4,7,8-PeCDF	2,3,7,8-TCDF	1.21					13C-2,3,7,8-TC	DF	82.5	40 - 135	
1,2,3,4,7,8-HxCDF	1,2,3,7,8-PeCDF	2.36			J		13C-1,2,3,7,8-P	eCDF	86.7	40 - 135	
1,2,3,6,7,8-HxCDF	2,3,4,7,8-PeCDF	7.41					13C-2,3,4,7,8-P	eCDF	89.7	40 - 135	
13.2 13.2	1,2,3,4,7,8-HxCDF	33.8					13C-1,2,3,4,7,8	-HxCDF	77.9	40 - 135	
1,2,3,7,8,9-HxCDF	1,2,3,6,7,8-HxCDF	9.52					13C-1,2,3,6,7,8	-HxCDF	73.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	2,3,4,6,7,8-HxCDF	13.2					13C-2,3,4,6,7,8	-HxCDF	74.9	40 - 135	
1,2,3,4,7,8,9-HpCDF 44.5 OCDF 3770 13C-1,2,3,4,7,8,9-HpCDF 92.3 40 - 135 OCDF 84.5 40 - 135 CRS 37C1-2,3,7,8-TCDD 74.6 40 - 135 Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 127 TOTALS Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 J Total TCDF 20.6 Total PeCDF 71.5 72.4 Total HxCDF 538	1,2,3,7,8,9-HxCDF	6.65					13C-1,2,3,7,8,9	-HxCDF	77.4	40 - 135	
13C-OCDF	1,2,3,4,6,7,8-HpCDF	605					13C-1,2,3,4,6,7	,8-HpCDF	75.2	40 - 135	
OCDF 3770	1,2,3,4,7,8,9-HpCDF	44.5					13C-1,2,3,4,7,8	,9-HpCDF	92.3	40 - 135	
Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 127		3770					13C-OCDF		84.5	40 - 135	
TEQMinWHO2005Dioxin 127						CRS	37Cl-2,3,7,8-TC	CDD	74.6	40 - 135	
TOTALS Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 J Total TCDF 20.6 Total PeCDF 71.5 72.4 Total HxCDF 538							Toxic Equivale	nt Quotient (TE	Q) Data		
Total TCDD 29.2 29.4 Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 J Total TCDF 20.6 Total PeCDF 71.5 72.4 Total HxCDF 538							TEQMinWHO2	005Dioxin	127		
Total PeCDD 82.5 85.4 Total HxCDD 1440 Total HpCDD 19300 J Total TCDF 20.6 Total PeCDF 71.5 72.4 Total HxCDF 538	TOTALS										
Total HxCDD 1440 Total HpCDD 19300 Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538	Total TCDD	29.2	29.4	1							
Total HpCDD 19300 J Total TCDF 20.6	Total PeCDD	82.5	85.4	1							
Total TCDF 20.6 Total PeCDF 71.5 Total HxCDF 538	Total HxCDD										
Total PeCDF 71.5 72.4 Total HxCDF 538 538					J						
Total HxCDF 538											
			72.4	1							
Total HpCDF 2980											
DL - Sample specific estimated detection limit LCL-UCL- Lower control limit - upper control limit											

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 20 of 38

Client Data										
Name: ARCADIS Project: B0039321.0000. Date Collected: 19-Nov-2015 9	00001	Sample Data Matrix: Sample Size: % Solids:	Soil 12.7 g 78.9		Lab QC I	oratory Data Sample: Batch: e Analyzed :		Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	Analyst: WJL	
Analyte Conc. (pg/g)	DL	EMPC	2	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD 1.32					IS	13C-2,3,7,8-T	CDD	89.9	40 - 135	
1,2,3,7,8-PeCDD 12.2						13C-1,2,3,7,8-	PeCDD	98.6	40 - 135	
1,2,3,4,7,8-HxCDD 29.5						13C-1,2,3,4,7,	8-HxCDD	96.6	40 - 135	
1,2,3,6,7,8-HxCDD 101						13C-1,2,3,6,7,	8-HxCDD	92.1	40 - 135	
1,2,3,7,8,9-HxCDD 57.3						13C-1,2,3,7,8,		92.7	40 - 135	
1,2,3,4,6,7,8-HpCDD 3680				ΕJ		13C-1,2,3,4,6,	7,8-HpCDD	113	40 - 135	
OCDD 33500				ΕJ		13C-OCDD		106	40 - 135	
2,3,7,8-TCDF 1.12						13C-2,3,7,8-T	CDF	90.2	40 - 135	
1,2,3,7,8-PeCDF 2.08				J		13C-1,2,3,7,8-	PeCDF	100	40 - 135	
2,3,4,7,8-PeCDF 5.88						13C-2,3,4,7,8-	PeCDF	104	40 - 135	
1,2,3,4,7,8-HxCDF 27.6						13C-1,2,3,4,7,	8-HxCDF	88.3	40 - 135	
1,2,3,6,7,8-HxCDF 15.5						13C-1,2,3,6,7,	8-HxCDF	81.8	40 - 135	
2,3,4,6,7,8-HxCDF 26.2						13C-2,3,4,6,7,	8-HxCDF	84.5	40 - 135	
1,2,3,7,8,9-HxCDF 5.07						13C-1,2,3,7,8,	9-HxCDF	87.6	40 - 135	
1,2,3,4,6,7,8-HpCDF 735						13C-1,2,3,4,6,		86.7	40 - 135	
1,2,3,4,7,8,9-HpCDF 45.6						13C-1,2,3,4,7,	-	96.2	40 - 135	
OCDF 3040						13C-OCDF		92.0	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	84.8	40 - 135	
						Toxic Equival	ent Quotient (TEC	Q) Data		
						TEQMinWHO	2005Dioxin	97.2		
TOTALS										
Total TCDD 46.0		46.2								
Total PeCDD 107										
Total HxCDD 851										
Total HpCDD 7530										
Total TCDF 26.6										
Total PeCDF 133										
Total HxCDF 713										
Total HpCDF 2860 DL - Sample specific estimated detections.							nit - upper control limit			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 21 of 38

Sample ID: OW-21	1B_2-4 (20151119)							EPA M	ethod 8290
Project: B003	ADIS 9321.0000.00001 ov-2015 9:10	Sample Matrix Sample % Soli	: Soil e Size: 12.5 g		Lab QC	Doratory Data Sample: 1501148-14 Batch: B5K0138 e Analyzed: 07-Dec-15 19:03		20-Nov-2015 30-Nov-2015 S Analyst: WJL	
Analyte Conc.	. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.346			J	IS	13C-2,3,7,8-TCDD	96.0	40 - 135	
1,2,3,7,8-PeCDD	0.740			J		13C-1,2,3,7,8-PeCDD	103	40 - 135	
1,2,3,4,7,8-HxCDD	1.80			J		13C-1,2,3,4,7,8-HxCDD	105	40 - 135	
1,2,3,6,7,8-HxCDD	3.14					13C-1,2,3,6,7,8-HxCDD	96.6	40 - 135	
1,2,3,7,8,9-HxCDD	3.39					13C-1,2,3,7,8,9-HxCDD	96.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	380					13C-1,2,3,4,6,7,8-HpCDD	102	40 - 135	
OCDD	39400			ΕJ		13C-OCDD	112	40 - 135	
2,3,7,8-TCDF	ND	0.0814				13C-2,3,7,8-TCDF	95.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0598				13C-1,2,3,7,8-PeCDF	107	40 - 135	
2,3,4,7,8-PeCDF	ND		0.0940	UX		13C-2,3,4,7,8-PeCDF	110	40 - 135	
1,2,3,4,7,8-HxCDF	0.351			J		13C-1,2,3,4,7,8-HxCDF	96.3	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.178	UX		13C-1,2,3,6,7,8-HxCDF	94.1	40 - 135	
2,3,4,6,7,8-HxCDF	0.307			J		13C-2,3,4,6,7,8-HxCDF	93.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.195				13C-1,2,3,7,8,9-HxCDF	94.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	8.61					13C-1,2,3,4,6,7,8-HpCDF	89.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.678			J		13C-1,2,3,4,7,8,9-HpCDF	97.3	40 - 135	
OCDF	40.0					13C-OCDF	88.4	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	86.2	40 - 135	
						Toxic Equivalent Quotient (TEC	Q) Data		
						TEQMinWHO2005Dioxin	17.7		
TOTALS									
Total TCDD	1.35		1.66						
Total PeCDD	4.00		5.28						
Total HxCDD	31.7								
Total HpCDD	744								
Total TCDF	ND		0.437	UX					
Total PeCDF	0.858		1.44						
Total HxCDF	7.62		7.80						
Total HpCDF	30.9								
DL - Sample specifc est	timated detection limit				LCL-UC	L- Lower control limit - upper control limit			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 22 of 38

Sample ID: OW-21	1B_4-6 (20151119)						EPA M	ethod 8290
•	ADIS 9321.0000.00001 ov-2015 9:20	Sample Data Matrix: Soil Sample Size: 12.8 g % Solids: 78.6		Lab QC	Sample: 1501148-15 Batch: B5K0138 e Analyzed: 07-Dec-15 19:5	Date Received: Date Extracted: 1 Column: ZB-5MS	30-Nov-2015	
Analyte Conc.	. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.279		J	IS	13C-2,3,7,8-TCDD	91.5	40 - 135	
1,2,3,7,8-PeCDD	ND	0.188	UX		13C-1,2,3,7,8-PeCDD	97.7	40 - 135	
1,2,3,4,7,8-HxCDD	0.732		J		13C-1,2,3,4,7,8-HxCDD	100	40 - 135	
1,2,3,6,7,8-HxCDD	0.971		J		13C-1,2,3,6,7,8-HxCDD	90.5	40 - 135	
1,2,3,7,8,9-HxCDD	1.10		J		13C-1,2,3,7,8,9-HxCDD	95.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	121				13C-1,2,3,4,6,7,8-HpCDD	95.5	40 - 135	
OCDD	10100		E J		13C-OCDD	98.4	40 - 135	
2,3,7,8-TCDF	ND	0.0700			13C-2,3,7,8-TCDF	93.4	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0647			13C-1,2,3,7,8-PeCDF	102	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0627			13C-2,3,4,7,8-PeCDF	102	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0853			13C-1,2,3,4,7,8-HxCDF	89.9	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0861			13C-1,2,3,6,7,8-HxCDF	85.3	40 - 135	
2,3,4,6,7,8-HxCDF	0.126		J		13C-2,3,4,6,7,8-HxCDF	88.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.127			13C-1,2,3,7,8,9-HxCDF	89.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	2.60				13C-1,2,3,4,6,7,8-HpCDF	83.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.138			13C-1,2,3,4,7,8,9-HpCDF	93.3	40 - 135	
OCDF	11.4				13C-OCDF	81.1	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	78.9	40 - 135	
					Toxic Equivalent Quotient (TEC	Q) Data		
					TEQMinWHO2005Dioxin	4.84		
TOTALS								
Total TCDD	1.95	2.41						
Total PeCDD	8.40	8.74						
Total HxCDD	23.3	23.6						
Total HpCDD	243							
Total TCDF	0.287							
Total PeCDF	0.254	0.343						
Total HxCDF	2.43							
Total HpCDF DL - Sample specifc est	9.21							

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 23 of 38

23,7,8-PCDD	Sample ID: OW-211	B_6-8 (20151119)								EPA Me	ethod 8290
2.3,7,8-PCDD	Name: ARCAl Project: B00393	321.0000.00001	Matrix: Sample S	Soil Size: 12.7 g		Lab QC	Sample: Batch:	B5K0138	Date Extracted:	30-Nov-2015	
1,2,3,7,8-PeCDD	Analyte Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
1,2,3,4,7,8-HxCDD	2,3,7,8-TCDD	ND		0.327	UX	IS	13C-2,3,7,8-TC	CDD	88.1	40 - 135	
1,2,3,6,7,8-HxCDD	1,2,3,7,8-PeCDD	0.118			J		13C-1,2,3,7,8-I	PeCDD	92.2	40 - 135	
1,2,3,7,8,9+hxCDD	1,2,3,4,7,8-HxCDD	ND (0.201				13C-1,2,3,4,7,8	3-HxCDD	96.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	1,2,3,6,7,8-HxCDD	ND (0.197				13C-1,2,3,6,7,8	3-HxCDD	91.8	40 - 135	
OCDD	1,2,3,7,8,9-HxCDD	ND (0.231				13C-1,2,3,7,8,9	-HxCDD	93.4	40 - 135	
2,3,7,8-TCDF	1,2,3,4,6,7,8-HpCDD	11.1					13C-1,2,3,4,6,7	,8-HpCDD	96.6	40 - 135	
1,2,3,7,8-PeCDF ND	OCDD	618					13C-OCDD		81.6	40 - 135	
1,2,3,7,8-PeCDF ND	2,3,7,8-TCDF	ND 0	.0623				13C-2,3,7,8-TC	CDF	89.0	40 - 135	
2,3,4,7,8-PeCDF ND 0.0549 13C-2,3,4,7,8-PeCDF 97.9 40-135 1,2,3,4,7,8-HxCDF ND 0.132 13C-1,2,3,4,7,8-HxCDF 87.6 40-135 1,2,3,6,7,8-HxCDF ND 0.136 13C-1,2,3,6,7,8-HxCDF 87.6 40-135 1,2,3,6,7,8-HxCDF ND 0.148 13C-2,3,4,6,7,8-HxCDF 87.1 40-135 1,2,3,7,8,9-HxCDF ND 0.209 13C-1,2,3,7,8-HxCDF 89.2 40-135 1,2,3,4,6,7,8-HyCDF 0.452 J 13C-1,2,3,7,8-HyCDF 84.1 40-135 1,2,3,4,7,8-9-HpCDF ND 0.138 J 13C-1,2,3,4,7,8-HpCDF 94.1 40-135 1,2,3,4,7,8,9-HpCDF ND 0.138 J 13C-0CDF 74.7 40-135 1,2,3,4,7,8,9-HpCDF 74.7 40-135 1,2,3,4,6,7,8-HxCDF 74.7 40-135 1,2,3,4,6,7,8-HxCDF 74.7 40-135 1,2,3,4,6,7,8-HxCDF 74.7 40-135 1,2,3,4,6,7,8-HpCDF 74.7 40-135 1,2,3,4,6,7,8-HpCDF 74.7 40-135 1,2,3,4,7,8,9-HpCDF 74.7 1,2,3,4,7,8,9-HpCDF 74.7 1,2,3,4,7,8,9-HpCDF 74.7 1,2,3,4,7,8,9-HpCDF 74.7 1,2,3,4,7,8,9-HpCDF 74.7 1,2,3,4,7,8,9-Hp		ND 0	.0537				13C-1,2,3,7,8-I	PeCDF	97.0	40 - 135	
1,2,3,4,7,8-HxCDF		ND 0	.0549						97.9	40 - 135	
1,2,3,6,7,8-HxCDF		ND (0.132						87.6	40 - 135	
2,3,4,6,7,8-HxCDF ND 0.148 13C-2,3,4,6,7,8-HxCDF 87.1 40 - 135 1,2,3,7,8,9-HxCDF ND 0.209 13C-1,2,3,7,8,9-HxCDF 89.2 40 - 135 1,2,3,4,6,7,8-HpCDF 0.452 J 13C-1,2,3,4,6,7,8-HpCDF 84.1 40 - 135 1,2,3,4,7,8,9-HpCDF ND 0.138 13C-1,2,3,4,7,8,9-HpCDF 94.1 40 - 135 0.209 1.78 J 13C-1,2,3,4,7,8,9-HpCDF 94.1 40 - 135 0.209 0.138 J 13C-1,2,3,4,7,8,9-HpCDF 94.1 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.6 40 - 135 0.209 0.		ND (0.136						87.6		
13C-1,2,3,7,8,9-HxCDF		ND (0.148						87.1	40 - 135	
1,2,3,4,6,7,8-HpCDF		ND (0.209							40 - 135	
13C-1,2,3,4,7,8,9-HpCDF		0.452			J						
OCDF 1.78	_		0.138					_			
CRS 37C1-2,37,8-TCDD 90.6 40 - 135 Toxic Equivalent Quotient (TEQ) Data TOTALS Total TCDD 5.96 6.59 8 9 8 9 8 9 8 9 8 9 8 9<					J			, r -			
Toxic Equivalent Quotient (TEQ) Data TOTALS TOTAL PCDD 5.96 6.59 7.59						CRS		CDD			
TEQMinWHO2005Dioxin 0.419 TOTALS Total TCDD 5.96 6.59 Total PeCDD 20.0 20.5 Total HxCDD 18.2 Total HpCDD 23.3 Total TCDF ND 0.0623 Total PeCDF ND 0.0650 Total HxCDF 0.455									Q) Data		
Total TCDD 5.96 6.59 Total PeCDD 20.0 20.5 Total HxCDD 18.2									•		
Total PeCDD 20.0 20.5 Total HxCDD 18.2 Total HpCDD 23.3 Total TCDF ND 0.0623 Total PeCDF ND 0.0650 UX Total HxCDF 0.455	TOTALS										
Total HxCDD 18.2 Total HpCDD 23.3 Total TCDF ND 0.0623 Total PeCDF ND 0.0650 UX Total HxCDF 0.455	Total TCDD	5.96		6.59							
Total HpCDD 23.3 Total TCDF ND 0.0623 Total PeCDF ND 0.0650 UX Total HxCDF 0.455 UX	Total PeCDD	20.0		20.5							
Total TCDF ND 0.0623 Total PeCDF ND 0.0650 UX Total HxCDF 0.455 UX	Total HxCDD										
Total PeCDF ND 0.0650 UX Total HxCDF 0.455	Total HpCDD	23.3									
Total HxCDF 0.455	Total TCDF	ND 0.0	0623								
	Total PeCDF			0.0650	UX						
Total HnCDF 1.56	Total HxCDF										
Town Tipe D1	Total HpCDF	1.56									

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 24 of 38

Sample ID: OW-21	1B_8-10 (20151119)			EPA Method 829
	ADIS 9321.0000.00001 ov-2015 9:32	Sample Data Matrix: Soil Sample Size: 12.7 g % Solids: 79.0		Laboratory Data Lab Sample: 1501148-17 Date Received: 20-Nov-2015 9:25 QC Batch: B5K0138 Date Extracted: 30-Nov-2015 9:58 Date Analyzed: 07-Dec-15 21:26 Column: ZB-5MS Analyst: WJL
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers	Labeled Standard %R LCL-UCL Qualifier
2,3,7,8-TCDD	ND	0.248	UX	IS 13C-2,3,7,8-TCDD 72.6 40 - 135
1,2,3,7,8-PeCDD	ND	0.155	UX	13C-1,2,3,7,8-PeCDD 78.5 40 - 135
1,2,3,4,7,8-HxCDD	ND	0.244		13C-1,2,3,4,7,8-HxCDD 80.7 40 - 135
1,2,3,6,7,8-HxCDD	0.363		J	13C-1,2,3,6,7,8-HxCDD 75.7 40 - 135
1,2,3,7,8,9-HxCDD	ND	0.280		13C-1,2,3,7,8,9-HxCDD 77.2 40 - 135
1,2,3,4,6,7,8-HpCDD	22.7			13C-1,2,3,4,6,7,8-HpCDD 79.0 40 - 135
OCDD	1930			13C-OCDD 70.1 40 - 135
2,3,7,8-TCDF	ND	0.0750		13C-2,3,7,8-TCDF 75.6 40 - 135
1,2,3,7,8-PeCDF	ND	0.0601		13C-1,2,3,7,8-PeCDF 81.8 40 - 135
2,3,4,7,8-PeCDF	ND	0.0599		13C-2,3,4,7,8-PeCDF 82.9 40 - 135
1,2,3,4,7,8-HxCDF	ND	0.0939		13C-1,2,3,4,7,8-HxCDF 73.6 40 - 135
1,2,3,6,7,8-HxCDF	ND	0.0978		13C-1,2,3,6,7,8-HxCDF 72.3 40 - 135
2,3,4,6,7,8-HxCDF	ND	0.0989		13C-2,3,4,6,7,8-HxCDF 72.8 40 - 135
1,2,3,7,8,9-HxCDF	ND	0.156		13C-1,2,3,7,8,9-HxCDF 70.7 40 - 135
1,2,3,4,6,7,8-HpCDF	1.14		J	13C-1,2,3,4,6,7,8-HpCDF 69.1 40 - 135
1,2,3,4,7,8,9-HpCDF	ND	0.168		13C-1,2,3,4,7,8,9-HpCDF 74.9 40 - 135
OCDF	4.58		J	13C-OCDF 62.7 40 - 135
				CRS 37CI-2,3,7,8-TCDD 65.5 40 - 135
				Toxic Equivalent Quotient (TEQ) Data
				TEQMinWHO2005Dioxin 0.855
TOTALS				
Total TCDD	0.815	1.28		
Total PeCDD	5.64	6.81		
Total HxCDD	11.1			
Total HpCDD	48.9			
Total TCDF	0.106			
Total PeCDF	0.136			
Total HxCDF	1.08			
Total HpCDF DL - Sample specifc esti	3.94			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 25 of 38

Sample ID: DUP-02	2(20151119)					EPA M	ethod 829 0
Project: B003	ADIS 9321.0000.00001 ov-2015 0:00	Sample Data Matrix: Soil Sample Size: 12.5 % Solids: 80.1	g	Laboratory Data Lab Sample: 1501148-18 QC Batch: B5K0138 Date Analyzed: 07-Dec-15 2		ved: 20-Nov-2015 eted: 30-Nov-2015 5MS Analyst: WJL	
Analyte Conc.	. (pg/g)	DL EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.155	UX	S 13C-2,3,7,8-TCDD	84.4	40 - 135	
1,2,3,7,8-PeCDD	0.212		J	13C-1,2,3,7,8-PeCDD	88.2	40 - 135	
1,2,3,4,7,8-HxCDD	0.666		J	13C-1,2,3,4,7,8-HxCDD	90.8	40 - 135	
1,2,3,6,7,8-HxCDD	1.20		J	13C-1,2,3,6,7,8-HxCDD	86.1	40 - 135	
1,2,3,7,8,9-HxCDD	0.985		J	13C-1,2,3,7,8,9-HxCDD	88.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	108			13C-1,2,3,4,6,7,8-HpCDD	87.3	40 - 135	
OCDD	7480		E J	13C-OCDD	85.6	40 - 135	
2,3,7,8-TCDF	ND	0.0659		13C-2,3,7,8-TCDF	87.9	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0782		13C-1,2,3,7,8-PeCDF	96.6	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0827		13C-2,3,4,7,8-PeCDF	98.7	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.156	UX	13C-1,2,3,4,7,8-HxCDF	84.2	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.100		13C-1,2,3,6,7,8-HxCDF	79.2	40 - 135	
2,3,4,6,7,8-HxCDF	0.193		J	13C-2,3,4,6,7,8-HxCDF	82.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.152		13C-1,2,3,7,8,9-HxCDF	83.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	4.51			13C-1,2,3,4,6,7,8-HpCDF	77.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.272		13C-1,2,3,4,7,8,9-HpCDF	87.9	40 - 135	
OCDF	20.6			13C-OCDF	71.7	40 - 135	
				RS 37Cl-2,3,7,8-TCDD	82.3	40 - 135	
				Toxic Equivalent Quotient (TEQ) Data		
				TEQMinWHO2005Dioxin	3.89		
TOTALS							
Total TCDD	1.65	1.80					
Total PeCDD	4.10	4.86					
Total HxCDD	16.1						
Total HpCDD	212						
Total TCDF	0.138	0.368					
Total PeCDF	0.448	0.619					
Total HxCDF	3.90	4.42					
Total HpCDF DL - Sample specifc est	16.4			-UCL- Lower control limit - upper control			

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 26 of 38

Client Data Name: ARCADIS Project: B0039321.0 Date Collected: 19-Nov-201 Analyte Conc. (pg/g 2,3,7,8-TCDD NI	0000.00001 5 10:35) DL	ample Data Matrix: Sample Size: % Solids:	Soil 12.0 g 83.9		Lab QC I	oratory Data Sample: 1501148-19	Date Received:	20-Nov-2015	9.25
	,	EMP			Date	Batch: B5K0138 e Analyzed: 07-Dec-15 23:02		30-Nov-2015	
2,3,7,8-TCDD NI	0.084		C	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
		2			IS	13C-2,3,7,8-TCDD	77.3	40 - 135	
1,2,3,7,8-PeCDD NI						13C-1,2,3,7,8-PeCDD	80.2	40 - 135	
1,2,3,4,7,8-HxCDD NI	0.190)				13C-1,2,3,4,7,8-HxCDD	85.8	40 - 135	
1,2,3,6,7,8-HxCDD NI	0.198	3				13C-1,2,3,6,7,8-HxCDD	80.1	40 - 135	
1,2,3,7,8,9-HxCDD NI	0.227	'				13C-1,2,3,7,8,9-HxCDD	81.6	40 - 135	
1,2,3,4,6,7,8-HpCDD 1.7	71			J		13C-1,2,3,4,6,7,8-HpCDD	84.1	40 - 135	
OCDD 53.	.3					13C-OCDD	67.4	40 - 135	
2,3,7,8-TCDF NI	0.059	1				13C-2,3,7,8-TCDF	80.1	40 - 135	
1,2,3,7,8-PeCDF NI	0.051	5				13C-1,2,3,7,8-PeCDF	83.8	40 - 135	
2,3,4,7,8-PeCDF NI	0.044	3				13C-2,3,4,7,8-PeCDF	86.9	40 - 135	
1,2,3,4,7,8-HxCDF NI	0.072	5				13C-1,2,3,4,7,8-HxCDF	76.9	40 - 135	
1,2,3,6,7,8-HxCDF NI	0.071	1				13C-1,2,3,6,7,8-HxCDF	75.0	40 - 135	
2,3,4,6,7,8-HxCDF NI	0.074	0				13C-2,3,4,6,7,8-HxCDF	76.9	40 - 135	
1,2,3,7,8,9-HxCDF NI	0.103	}				13C-1,2,3,7,8,9-HxCDF	78.0	40 - 135	
1,2,3,4,6,7,8-HpCDF NI	0.217	7				13C-1,2,3,4,6,7,8-HpCDF	72.2	40 - 135	
1,2,3,4,7,8,9-HpCDF NI	0.210)				13C-1,2,3,4,7,8,9-HpCDF	82.2	40 - 135	
OCDF 0.3	319			J		13C-OCDF	66.0	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	84.4	40 - 135	
						Toxic Equivalent Quotient (TEQ)) Data		
						TEQMinWHO2005Dioxin	0.0332		
TOTALS									
Total TCDD 1.3									
Total PeCDD NI									
Total HxCDD 0.8									
Total HpCDD 4.4									
Total TCDF NI									
Total PeCDF NI									
Total HxCDF NI									
Total HpCDF 0.2 DL - Sample specific estimated d									

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 27 of 38

Sample ID: EB-01 (2	20151116)							EPA M	ethod 8290
_	DIS 321.0000.00001 y-2015 15:00	Sample Da Matrix: Sample S	Aqueous		Lab QC	Doratory Data Sample: 1501148-20 Batch: B5L0014 e Analyzed: 09-Dec-15 15:27	Date Received: Date Extracted: Column: ZB-5MS	03-Dec-2015	
Analyte Conc. ((pg/L)	DL I	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.61			IS	13C-2,3,7,8-TCDD	87.9	40 - 135	
1,2,3,7,8-PeCDD	ND	1.11				13C-1,2,3,7,8-PeCDD	95.9	40 - 135	
1,2,3,4,7,8-HxCDD	ND 0).977				13C-1,2,3,4,7,8-HxCDD	97.4	40 - 135	
1,2,3,6,7,8-HxCDD	ND 0).995				13C-1,2,3,6,7,8-HxCDD	91.1	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.14				13C-1,2,3,7,8,9-HxCDD	92.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	1.09				13C-1,2,3,4,6,7,8-HpCDD	101	40 - 135	
OCDD	ND		1.08	UX		13C-OCDD	79.3	40 - 135	
2,3,7,8-TCDF	ND	1.31				13C-2,3,7,8-TCDF	92.8	40 - 135	
1,2,3,7,8-PeCDF	ND 0).556				13C-1,2,3,7,8-PeCDF	102	40 - 135	
2,3,4,7,8-PeCDF	ND (0.508				13C-2,3,4,7,8-PeCDF	106	40 - 135	
1,2,3,4,7,8-HxCDF	ND ().568				13C-1,2,3,4,7,8-HxCDF	85.1	40 - 135	
1,2,3,6,7,8-HxCDF	ND ().556				13C-1,2,3,6,7,8-HxCDF	82.5	40 - 135	
2,3,4,6,7,8-HxCDF	ND 0).568				13C-2,3,4,6,7,8-HxCDF	86.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND ().871				13C-1,2,3,7,8,9-HxCDF	88.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND ().645				13C-1,2,3,4,6,7,8-HpCDF	82.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND ().569				13C-1,2,3,4,7,8,9-HpCDF	104	40 - 135	
OCDF	ND	1.74				13C-OCDF	77.7	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	88.6	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	0.00		
TOTALS									
Total TCDD		.61							
Total PeCDD		.11							
Total HxCDD		.14							
Total HpCDD		.09							
Total TCDF		.31							
Total PeCDF		.556							
Total HxCDF		871							
Total HpCDF DL - Sample specifc estim		.645				L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Page 30 of 38 Project 1501148

Sample ID: EB-02 (2	20151117)						EPA M	ethod 8290
	ADIS 321.0000.00001 v-2015 12:30	Sample Data Matrix: Aqueous Sample Size: 0.931 L		Lab QC	Foratory Data 1501148-21 Sample: 1501148-21 Batch: B5L0014 e Analyzed: 09-Dec-15 16:15	Date Received: Date Extracted: 5 Column: ZB-5MS	03-Dec-2015	
Analyte Conc. ((pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.29		IS	13C-2,3,7,8-TCDD	92.2	40 - 135	
1,2,3,7,8-PeCDD	ND	0.820			13C-1,2,3,7,8-PeCDD	101	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.882			13C-1,2,3,4,7,8-HxCDD	95.6	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.865			13C-1,2,3,6,7,8-HxCDD	88.9	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.998			13C-1,2,3,7,8,9-HxCDD	90.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	0.950			13C-1,2,3,4,6,7,8-HpCDD	99.4	40 - 135	
OCDD	ND	1.33			13C-OCDD	77.7	40 - 135	
2,3,7,8-TCDF	ND	1.14			13C-2,3,7,8-TCDF	94.5	40 - 135	
1,2,3,7,8-PeCDF	ND	0.476			13C-1,2,3,7,8-PeCDF	100	40 - 135	
2,3,4,7,8-PeCDF	ND	0.456			13C-2,3,4,7,8-PeCDF	106	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.556			13C-1,2,3,4,7,8-HxCDF	84.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.565			13C-1,2,3,6,7,8-HxCDF	82.7	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.535			13C-2,3,4,6,7,8-HxCDF	87.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.839			13C-1,2,3,7,8,9-HxCDF	88.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.555			13C-1,2,3,4,6,7,8-HpCDF	84.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.573			13C-1,2,3,4,7,8,9-HpCDF	98.1	40 - 135	
OCDF	ND	1.42			13C-OCDF	77.3	40 - 135	
				CRS	37C1-2,3,7,8-TCDD	86.8	40 - 135	
					Toxic Equivalent Quotient (TEC	Q) Data		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	1.29						
Total PeCDD	ND 0	0.820						
Total HxCDD		0.998						
Total HpCDD	ND 0	0.950						
Total TCDF		1.14						
Total PeCDF).476						
Total HxCDF).839						
Total HpCDF DL - Sample specifc estin).573						

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1501148 Page 31 of 38

Client Data Name: ARCADIS Project: B0039321.0000 Date Collected: 19-Nov-2015 1 Analyte Conc. (pg/L) 2,3,7,8-TCDD ND 1,2,3,7,8-PeCDD ND 1,2,3,4,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD ND 0CDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	M	nple Data							
2,3,7,8-TCDD ND 1,2,3,7,8-PeCDD ND 1,2,3,4,7,8-HxCDD ND 1,2,3,6,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD ND OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-PeCDF ND			Aqueous).904 L		Laboratory Data Lab Sample: QC Batch: Date Analyzed:	1501148-22 B5L0014 10-Dec-15 12:4	Date Received: Date Extracted: 7 Column: ZB-5MS	03-Dec-2015	
1,2,3,7,8-PeCDD ND 1,2,3,4,7,8-HxCDD ND 1,2,3,6,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD ND OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-PeCDF ND	DL	EMPC	Qual	ifiers	Labeled Stand	dard	%R	LCL-UCL	Qualifiers
1,2,3,4,7,8-HxCDD ND 1,2,3,6,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD ND OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-PeCDF ND	0.996			IS	S 13C-2,3,7,8-T	CDD	84.7	40 - 135	
1,2,3,6,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD ND OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	0.815				13C-1,2,3,7,8-	PeCDD	91.2	40 - 135	
1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD ND OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	1.14				13C-1,2,3,4,7,	8-HxCDD	85.6	40 - 135	
1,2,3,4,6,7,8-HpCDD ND OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	1.18				13C-1,2,3,6,7,	8-HxCDD	77.2	40 - 135	
OCDD 8.98 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	1.34				13C-1,2,3,7,8,	9-HxCDD	81.6	40 - 135	
2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	1.60				13C-1,2,3,4,6,	7,8-HpCDD	83.2	40 - 135	
1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND				J	13C-OCDD		67.7	40 - 135	
2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND	0.828				13C-2,3,7,8-T	CDF	89.3	40 - 135	
1,2,3,4,7,8-HxCDF ND	0.580				13C-1,2,3,7,8-	PeCDF	91.1	40 - 135	
, , , , ,	0.502				13C-2,3,4,7,8-	PeCDF	97.2	40 - 135	
	0.632				13C-1,2,3,4,7,	8-HxCDF	74.8	40 - 135	
1,2,3,6,7,8-HxCDF ND	0.641				13C-1,2,3,6,7,	8-HxCDF	70.6	40 - 135	
2,3,4,6,7,8-HxCDF ND	0.623				13C-2,3,4,6,7,	8-HxCDF	78.1	40 - 135	
1,2,3,7,8,9-HxCDF ND	0.953				13C-1,2,3,7,8,	9-HxCDF	78.2	40 - 135	
1,2,3,4,6,7,8-HpCDF ND	0.828				13C-1,2,3,4,6,		68.5	40 - 135	
1,2,3,4,7,8,9-HpCDF ND	0.797				13C-1,2,3,4,7,		76.9	40 - 135	
OCDF ND	1.85				13C-OCDF	, 1	65.3	40 - 135	
				C	RS 37Cl-2,3,7,8-T	CDD	87.4	40 - 135	
						ent Quotient (TE	Q) Data		
					TEQMinWHC	2005Dioxin	0.00269		
TOTALS									
Total TCDD ND	0.996								
Total PeCDD ND	0.815								
Total HxCDD ND	1.34								
Total HpCDD ND	1.60								
Total TCDF ND	0.828								
Total PeCDF ND	0.580								
Total HxCDF ND	0.953								
Total HpCDF ND	0.828								

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Page 32 of 38 Project 1501148

APPENDIX D Illinois Environmental Protection Agency Well Completion Reports

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-207B

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 49.8 Longitude:

11 43.2

Borehole #: N/A

(.01ft.)

Surveyed by: Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: ARCADIS

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>184-002344</u>

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Depths

Drilling Fluid (Type): N/A

Date Started: 11/23/2015 Date Finished: 11/24/2015

Date: 1/6/2015

Elevations

ANNIII AD CDACE DETAII C

ANNULAR SPACE DETAILS	
Type of Surface Seal: Concrete	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: 15 minutes	
Type of Bentonite Seal Granular, Pe K et, Slurry (Choose One)	
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material: Native Collapse	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

(MSL)* (BGS) Top of Protective Casing 372.66 -2.71 Top of Riser Pipe 369.95 **Ground Surface** 369.45 0.5 Top of Annular Sealant Static Water Level 360.63 9.32 (After Completion) 349.45 20.5 Top of Seal 347.45 22.5 Top of Sand Pack 345.26 24.7 Top of Screen 335.76 34.2 Bottom of Screen 335.45 34.5 Bottom of Well 333.95 36 Bottom of Borehole * Referenced to a National Geodetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	27.41
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1 st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	37.21
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-208A

State Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 45.3 Longitude:

Borehole #: N/A

(.01ft.)

Surveyed by: Shawnee Surveying & Consulting, Inc.

Drilling Contractor: _____Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: ARCADIS

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>184-002344</u>

11 40.1

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Depths

Drilling Fluid (Type): N/A

Date Started: _11/23/2015 ___ Date Finished: 11/23/2015

Date: 1/13/2016

Elevations

ANNULAR SPACE DETAILS

ANNULAR SPACE DETAILS	
Type of Surface Seal:	
Type of Annular Sealant:Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: 15 minutes	
Type of Bentonite Seal Granular, Pexet, Slurry (Choose One)	
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material:	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

(MSL)* (BGS) Top of Protective Casing 370.58 -2.49Top of Riser Pipe 368.10 **Ground Surface** 367.60 0.5 Top of Annular Sealant Static Water Level 360.20 7.89 (After Completion) 365.60 2.5 Top of Seal 364.10 4 Top of Sand Pack 362.90 5.2 Top of Screen 353.40 14.7 Bottom of Screen 353.10 15 Bottom of Well 353.10 15 Bottom of Borehole * Referenced to a National Geodetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.69
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.49
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-208B

State

Plane Coordinate: X _____ Y ____ (or) Latitude:

44 45.3 Longitude:

11 40.0

Borehole #: N/A

Surveyed by: Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: ARCADIS

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>184-002344</u>

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/23/2015 __ Date Finished: 11/23/2015

Date: 1/13/2016

ANNIII AD CDACE DETAII C

ANNULAR SPACE DETAILS	
Type of Surface Seal:	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: 15 minutes	
Type of Bentonite Seal Granular, Pexet, Slurry (Choose One)	7
Installation Method: HSA (Tremie)	Š
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method:HSA (Tremie)	
Type of Backfill Material:	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations Depths (.01ft.)(MSL)* (BGS) Top of Protective Casing 370.78 -2.70Top of Riser Pipe 368.08 **Ground Surface** 367.58 0.5 Top of Annular Sealant Static Water Level 367.45 0.63 (After Completion) 344.08 24 Top of Seal 342.08 26 Top of Sand Pack 339.88 28.2 Top of Screen 330.38 37.7 Bottom of Screen 330.08 38 Bottom of Well 330.08 38 Bottom of Borehole

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	30.91
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1 st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	40.71
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

^{*} Referenced to a National Geodetic Datum

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-209A

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 40.7 Longitude:

12 13.0

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/18/2015 Date Finished: 11/18/2015

Date: 1/13/2015

ANNULAR SPACE DETAILS

ANNULAR SPACE DETAILS	
Type of Surface Seal: Concrete	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: _15 minutes	
Type of Bentonite Seal Granular, Pexet, Slurry (Choose One)	7
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material:(if applicable)	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
398.00	2.73	Top of Riser Pipe
395.27	0	Ground Surface
394.77	0.5	Top of Annular Sealant
392.08	3.19	Static Water Level (After Completion)
392.77	2.5	Top of Seal
391.27	4	Top of Sand Pack
390.07	5.2	Top of Screen
380.57	14.7	Bottom of Screen
380.27		Bottom of Well
 380.27	15	Bottom of Borehole
* Referenced	l to a National Ge	odetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.93
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1 st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.73
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-209B

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 40.7 Longitude:

12 13.1

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/17/2015 Date Finished: 11/18/2015

Date: 1/13/2016

ANNIII AR SPACE DETAILS

ANNULAR SPACE DETAILS	
Type of Surface Seal: Concrete	
	\\\\\
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	=
Setting Time: 15 minutes	
Type of Bentonite Seal Granular, Pe X et, Slu (Choose One)	rry
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	

Type of Backfill Material: Native collapse (if applicable)

Installation Method:

WELL CONSTRUCTION MATERIAL

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

	Elevations (MSL)*	Depths (BGS)	(.01ft.)
			Top of Protective Casing
	397.75	-2.65	Top of Riser Pipe
	395.10	0	Ground Surface
	394.60	0.5	Top of Annular Sealant
	393.20	1.90	Static Water Level (After Completion)
M M	370.60	24.5	Top of Seal
	368.60	26.5	Top of Sand Pack
	366.40	28.7	Top of Screen
	356.90	38.2	Bottom of Screen
	356.60	38.5	Bottom of Well
	355.10 * Referenced	40	Bottom of Borehole
	368.60 366.40 356.90 356.60 355.10	26.5 28.7 38.2 38.5	Top of Sand Pack Top of Screen Bottom of Screen Bottom of Well Bottom of Borehole

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	31.35
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	41.15
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-210A

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 32.5 Longitude:

12 40.3

Borehole #: N/A

(.01ft.)

Surveyed by: Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: ARCADIS

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>184-002344</u>

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Depths

Drilling Fluid (Type): N/A

Date Started: 11/17/2015 ___ Date Finished: 11/17/2015

Date: 1/13/2016

Elevations

ANNULAR SPACE DETAILS

ANNULAR STACE DETAILS	
Type of Surface Seal:	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: 15 minutes	
Type of Bentonite Seal Granular, Pe K et, Slurry (Choose One)	7
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material: (if applicable)	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

(MSL)* (BGS) Top of Protective Casing 396.40 -2.59 Top of Riser Pipe 393.81 **Ground Surface** 393.31 0.5 Top of Annular Sealant Static Water Level 387.59 6.22 (After Completion) 390.81 Top of Seal 389.81 4 Top of Sand Pack 388.61 5.2 Top of Screen 379.11 14.7 Bottom of Screen 378.81 15 Bottom of Well 378.81 15 Bottom of Borehole * Referenced to a National Geodetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.79
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.59
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-210B

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 32.5 Longitude:

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/16/2015 Date Finished: 11/17/2015

Date: 1/13/2016

ANNULAR SPACE DETAILS

MINICEMENTALE DETINES	
Type of Surface Seal:	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: 15 minutes	
Type of Bentonite Seal Granular, Peket, Slurry (Choose One)	
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	

WELL CONSTRUCTION MATERIAL

Installation Method:

Type of Backfill Material: Bentonite

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
395.59	1.82	Top of Riser Pipe
		Ground Surface
393.27	0.5	Top of Annular Sealant
388.24	5.54	Static Water Level (After Completion)
364.77		Top of Seal
362.77	31	Top of Sand Pack
360.57	33.2	Top of Screen
351.07	42.7	Bottom of Screen
350.77	43	Bottom of Well
 345.77	48	Bottom of Borehole
* Referenced	l to a National Ge	odetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	35.02
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	44.82
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-211A

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 30<u>.9</u> Longitude:

Borehole #: N/A

(0164)

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: _ARCADIS

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/19/2015 Date Finished: 11/19/2015

Date: 1/13/2016

ANNULAR SPACE DETAILS	
Type of Surface Seal: Concrete	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: > 24 hours	
Type of Bentonite Seal Granular, Pe X et, Slurry (Choose One)	
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	

WELL CONSTRUCTION MATERIAL

Type of Backfill Material:

Installation Method:

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

	evations ISL)*	Depths (BGS)	(.01ft.)
			Top of Protective Casing
	397.04	2.49	Top of Riser Pipe
-	394.55		Ground Surface
	394.0	0.5	Top of Annular Sealant
=	379.92	14.62	Static Water Level (After Completion)
	392.04	2.5	Top of Seal
	391.04	3.5	Top of Sand Pack
	389.35	5.2	Top of Screen
	379.85	14.7	Bottom of Screen
	379.54		Bottom of Well
	379.54	15	Bottom of Borehole
	* Referenced	l to a National Ge	odetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.69
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.49
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-211B

State Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 30.9 Longitude:

12 45.3

Borehole #: N/A

Surveyed by: Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: _ARCADIS

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/19/2015 Date Finished: 11/19/2015

Date: 1/13/2016

Type of Surface Seal:	ANNULAR SPACE DETAILS	
Installation Method: HSA (Tremie) Setting Time: > 24 hours Type of Bentonite Seal Granular, Pexet, Slurry (Choose One) Installation Method: HSA (Tremie) Setting Time: Type of Sand Pack: Silica Grain Size: FilterSil #1 (Sieve Size) Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite	Type of Surface Seal:	
Setting Time: > 24 hours Type of Bentonite Seal Granular, Pexet, Slurry (Choose One) Installation Method:HSA (Tremie) Setting Time: Type of Sand Pack:Silica Grain Size:FilterSil #1 (Sieve Size) Installation Method:HSA (Tremie) Type of Backfill Material:Bentonite	Type of Annular Sealant: Neat Portland Type 1/II Cement	
Type of Bentonite Seal Granular, Pelet, Slurry (Choose One) Installation Method: HSA (Tremie) Setting Time: Type of Sand Pack: Silica Grain Size: FilterSil #1 (Sieve Size) Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite	Installation Method: HSA (Tremie)	
Installation Method: HSA (Tremie) Setting Time: Type of Sand Pack: Silica Grain Size: FilterSil #1 (Sieve Size) Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite	Setting Time: > 24 hours	
Setting Time: Type of Sand Pack: Silica Grain Size: FilterSil #1 (Sieve Size) Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite		
Type of Sand Pack: Silica Grain Size: FilterSil #1 (Sieve Size) Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite	Installation Method: HSA (Tremie)	
Grain Size: FilterSil #1 (Sieve Size) Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite	Setting Time:	
Installation Method: HSA (Tremie) Type of Backfill Material: Bentonite	Type of Sand Pack: Silica	
Type of Backfill Material: Bentonite	Grain Size: FilterSil#1 (Sieve Size)	
Type of Backfill Material: Bentonite	Installation Method: HSA (Tremie)	
	Type of Backfill Material: Bentonite	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations Depths (.01ft.)(MSL)* (BGS) Top of Protective Casing 396.87 -2.44Top of Riser Pipe 394.44 **Ground Surface** 393.94 0.5 Top of Annular Sealant Static Water Level 387.25 7.18 (After Completion) 363.44 31 Top of Seal 361.44 33 Top of Sand Pack 359.74 34.7 Top of Screen 350.24 44.2 Bottom of Screen 349.94 44.5 Bottom of Well 348.44 46 Bottom of Borehole * Referenced to a National Geodetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	37.14
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	46.94
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>077801</u>0002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-212A

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 49<u>.7</u> Longitude:

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/20/2015 Date Finished: 11/20/2015

Date: 1/13/2016

ANNIII AD CDACE DETAII C

ANNULAR SPACE DETAILS	
Type of Surface Seal: Concrete	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	. =
Setting Time: > 24 hours	
Type of Bentonite Seal Granular, Pe X et, S (Choose One)	lurry
Installation Method: HSA (Tremie)	-
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material:(if applicable)	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
393.24	-2.74	Top of Riser Pipe
390.50		Ground Surface
390.00	0.5	Top of Annular Sealant
385.23	5.27	Static Water Level (After Completion)
388.00	2.5	Top of Seal
386.50	4	Top of Sand Pack
385.30	5.2	Top of Screen
375.80	14.7	Bottom of Screen
375.50		Bottom of Well
375.50	15	Bottom of Borehole

CASING MEASURMENTS

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.95
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1 st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.74
Screen Slot Size **	0.010"

* Referenced to a National Geodetic Datum

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: OW-212B

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 49.7 Longitude:

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/20/2015 Date Finished: 11/20/2015

Date: 1/13/2016

ANNIII AD CDACE DETAII C

ANNULAR SPACE DETAILS	
Type of Surface Seal: Concrete	
Type of Annular Sealant:	
Installation Method: HSA (Tremie)	
Setting Time: > 24 hours	
Type of Bentonite Seal Granular, Pe K et, Slurry (Choose One)	
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: FilterSil#1 (Sieve Size)	
Installation Method: HSA (Tremie)	l
Type of Backfill Material: Bentonite	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
392.92	2.19	Top of Riser Pipe
390.73	0	Ground Surface
390.23	0.5	Top of Annular Sealant
= 384.87	5.86	Static Water Level (After Completion)
367.23	23.5	Top of Seal
364.73		Top of Sand Pack
362.53	28.2	Top of Screen
353.03	37.7	Bottom of Screen
352.73	38	Bottom of Well
350.73	40	Bottom of Borehole
* Referenced	l to a National Ge	odetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	30.39
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	40.19
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: P-9A

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 46.4 Longitude:

11 54.6

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/18/2015 Date Finished: 11/18/2015

Date: 1/13/2016

ANNIII AR SPACE DETAILS

ANNULAR SPACE DETAILS	
Type of Surface Seal:	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: > 24 hours	
Type of Bentonite Seal Granular, Peket, Slurry (Choose One)	
Installation Method: HSA (Tremie)	
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material: Native Collapse	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
388.43	2.87	Top of Riser Pipe
385.56		Ground Surface
385.06	0.5	Top of Annular Sealant
= 375.18	10.38	Static Water Level (After Completion)
383.06	2.5	Top of Seal
381.56	4	Top of Sand Pack
380.36	5.2	Top of Screen
370.86	14.7	Bottom of Screen
370.56		Bottom of Well
 369.56	16	Bottom of Borehole
* Referenced	l to a National Ge	odetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	8.07
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.87
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: P-10A

State

Plane Coordinate: X _____ Y ____ (or) Latitude:

44 45.2 Longitude:

12 01.2

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/20/2015 Date Finished: 11/20/2015

Date: 1/13/2016

ANNULAR SPACE DETAILS

ANNOLAR STACE DETAILS	
Type of Surface Seal:	
Type of Annular Sealant: Neat Portland Type I/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: _ > 24 hours	
Type of Bentonite Seal Granular, Pe X et, Slurry (Choose One)	
Installation Method: HSA (Tremie)	3
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: _HSA (Tremie)	
Type of Backfill Material: Native collapse	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
397.68	-2.63	Top of Riser Pipe
395.05		Ground Surface
394.55	0.5	Top of Annular Sealant
379.88	15.17	Static Water Level (After Completion)
392.55	2.5	Top of Seal
391.05	4	Top of Sand Pack
389.85	5.2	Top of Screen
380.35		Bottom of Screen
380.05		Bottom of Well
 379.05	16	Bottom of Borehole
* Referenced	l to a National Ge	odetic Datum

Diameter of Borehole (inches)	4.25(ID)-8.25(OD) HSA
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.83
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1 st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.63
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number: <u>07</u>78010002 County: Jackson

Site Name: Former Koppers Wood-Treating Site, Carbondale, IL

Well #: P-11A

State

Plane Coordinate: X _____ Y ____ (or) Latitude: _

44 35.3 Longitude:

Borehole #: N/A

Surveyed by: _Shawnee Surveying & Consulting, Inc.

Drilling Contractor: Roberts Environmental Drilling (IL Lic #092-006865)

Consulting Firm: <u>ARCADIS</u>

Drilling Method: Hollow Stem Auger (HSA)

Logged By: Will Stephens, ARCADIS

Report Form

Completed By: Will Stephens, ARCADIS

IL Registration #: <u>18</u>4-002344

Driller: Brian Schilling

Geologist: Will Stephens, ARCADIS

Drilling Fluid (Type): N/A

Date Started: 11/17/2015 Date Finished: 11/17/2015

Date: 1/13/2016

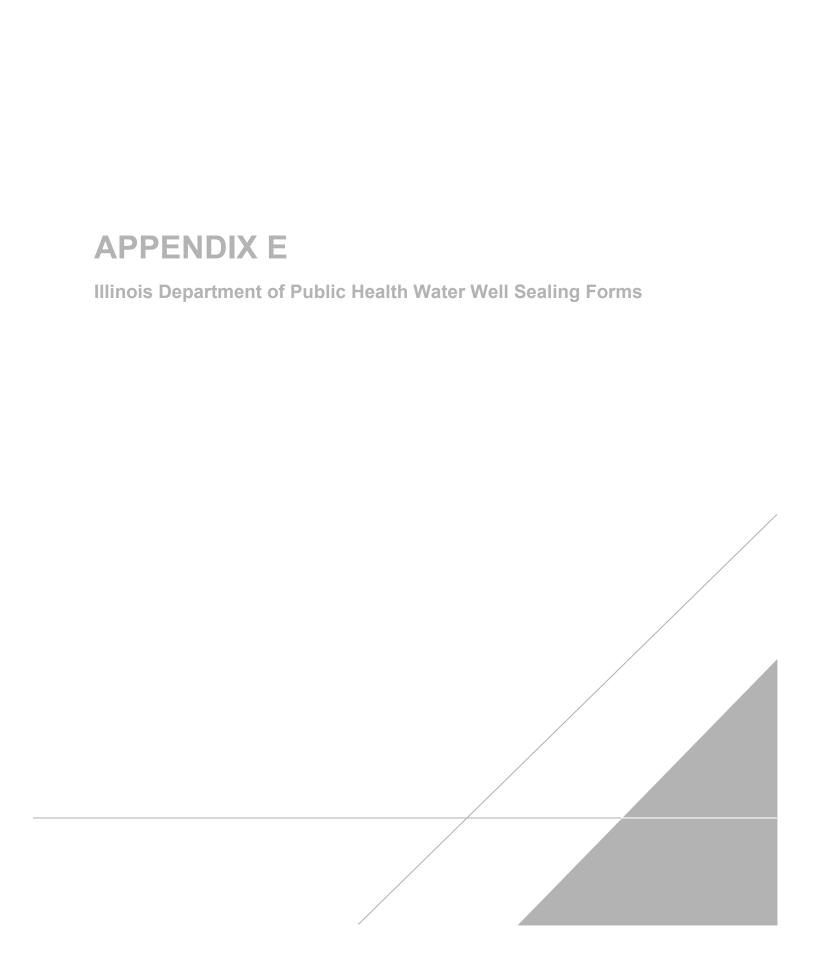
ANNULAR SPACE DETAILS

Type of Surface Seal: Concrete	7777
Type of Surface Seal.	
Type of Annular Sealant: Neat Portland Type 1/II Cement	
Installation Method: HSA (Tremie)	
Setting Time: _> 24 hours	
Type of Bentonite Seal Granular, Pe X et, Slurry (Choose One)	
· · · · · · · · · · · · · · · · · · ·	3
Installation Method: HSA (Tremie)	(
Setting Time:	
Type of Sand Pack: Silica	
Grain Size: _FilterSil #1 (Sieve Size)	
Installation Method: HSA (Tremie)	
Type of Backfill Material: Native collapse	
(if applicable)	

WELL CONSTRUCTION MATERIAL

Installation Method:

(Choose one type of material for each area)


(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Elevations (MSL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
397.38	-2.61	Top of Riser Pipe
394.76		Ground Surface
394.26	0.5	Top of Annular Sealant
= 381.67	13.10	Static Water Level (After Completion)
392.26	2.5	Top of Seal
390.76	4	Top of Sand Pack
389.56	5.2	Top of Screen
380.06	14.7	Bottom of Screen
379.76		Bottom of Well
 378.76	16	Bottom of Borehole
" Referenced	l to a National Ge	odenc Datum

D	4.25(ID)-8.25(OD) HSA
Diameter of Borehole (inches)	4.23(ID)-8.23(OD) II3A
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	7.81
Bottom of Screen to End Cap (feet)	0.3
Screen Length (1st slot to last slot) (feet)	9.5
Total Length of Casing (feet)	17.61
Screen Slot Size **	0.010"

^{**}Hand-Slotted Well Screens are Unacceptable

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

1.	Ownership (N	Name of Controlling Party)	Beazer East, I	nc. (OW-17C)				
2.	Well Location	Well Site Address 15	55 North Marion	Street	City Carbo	ndale	Zip	62901
	Lot #	Land I.D.#		County Jack	son		Township	95
	Range 1V	V Section 10	SW	Quarter of the	SE C	uarter of the	SW	Quarter
	GPS: North Degre Report decim would be latit	1 1 1	Seconds and seconds (0.07 x 60 =	49.2 De decimal part of the	est egrees 89 ne minutes by 60 PS coordinates	Minutes 12 0, e.g. latitude 38 to the nearest 0.	degrees 46.0	
3.	Year Drilled	1986 4. Drillin	g Permit Number	(and date, if kno	wn			
5.	Type of Well	Monitoring	6. Total Depth	(ft.) 78	Diamet	er (in.) 2		
		ear of obstruction Yes ugging (bentonite, neat ceme	ent or other materi	als)				
	Filled with	H.S. Bentonite Grout	From (ft.)	78	to (ft.)		2	
	Kind of plug	Bentonite Chips	From (ft.)	2	to (ft.)		0	
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
		CORD Upper 2 feet of casing ter well driller or other person). Date well w forming well se		ov 25, 2015	
	Name Ch	narley Roberts/Roberts Env.	Drilling	Complete Licen	se Number (092-006865		
	Address	1107 South Mulberry Stree	t City Millsta	adt	State Illinois	5	Zip Code	62260

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

1.	Ownership (N	Name of Controlling Party)	Beazer East, I	Inc. (OW-23C)			
2.	Well Location	Well Site Address 15	55 North Marior	n Street	City Carbo	ondale	Zip	62901
	Lot #	Land I.D.#		County Jac	ckson		Township	95
	Range 1V	V Section 15	NW	Quarter of the	NW	Quarter of the	NW	Quarter
	GPS: North Degre Report decim would be latite	1 1 1	Seconds ands by multiplying the seconds (0.07 x 60)	41.9 [ne decimal part of	West Degrees 89 the minutes by 6 GPS coordinates	Minutes 1 50, e.g. latitude 3 s to the nearest 0	B8 degrees 46	
3.	Year Drilled	1986 4. Drillin	g Permit Number	and date, if kr	nown			
5.	Type of Well	Monitoring	6. Total Depth	n (ft.) 91	Diame	eter (in.) 2		
		ear of obstruction Yes ugging (bentonite, neat ceme	ent or other mater	ials)				
	Filled with	H.S. Bentonite Grout	From (ft.)	91	to (ft.)		2	
	Kind of plug	Bentonite Chips	From (ft.)	2	to (ft.)		0	
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
		CORD Upper 2 feet of casing ter well driller or other person			10. Date well verforming well s		Nov 25, 20°	15
	Name Ch	narley Roberts/Roberts Env.	Drilling	Complete Lice	ense Number	092-006865		
	Address	1107 South Mulberry Stree	t City Millst	adt	State Illino	is	Zip Cod	62260

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

1.	Ownership (N	Name of Controlling Party)	Beazer East, I	nc. (OW-27C))					
2.	Well Location	: Well Site Address 155	55 North Marior	n Street	City C	Carbondale		Zip	62901	
	Lot #	Land I.D.#		County Jac	kson		Tov	vnship	95	
	Range 1W	V Section 9	SE	Quarter of the	SE	Quarter o	of the SE		Quarter	
	GPS: North Degree Report decimate would be latitude	1 1 1	Seconds ds by multiplying the econds (0.07 x 60	47.9 Due decimal part of	Vest Degrees 8 The minutes GPS coordi	s by 60, e.g. latit	tude 38 deg	Second rees 46.0 cond.		
3.	Year Drilled	1986 4. Drilling	g Permit Number	(and date, if kn	own					
5.	Type of Well	Monitoring	6. Total Depth	(ft.) 78	D	iameter (in.)	2			
		ear of obstruction Yes ugging (bentonite, neat cemer	nt or other mater	ials)						
	Filled with	H.S. Bentonite Grout	From (ft.)	78	to	(ft.)	2			
	Kind of plug	Bentonite Chips	From (ft.)	2	to	(ft.)	0			
	Filled with		From (ft.)		to	(ft.)				
	Kind of plug		From (ft.)		to	(ft.)				
	Filled with		From (ft.)		to	(ft.)				
	Kind of plug		From (ft.)		to	(ft.)				
	9. CASING RECORD Upper 2 feet of casing removed Yes 10. Date well was sealed Nov 25, 2015 1. Licensed water well driller or other person approved by the Department performing well sealing									
	Name Ch	narley Roberts/Roberts Env. [Drilling	Complete Lice	nse Numb	oer 092-0068	865			
	Address	1107 South Mulberry Street	City Millst	adt	State	llinois	Z	ip Code	62260	

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

1.	Ownership (N	Name of Controlling Party)	Beazer East, I	nc. (OW-35C)			
2.	Well Location	n: Well Site Address 15!	55 North Marior	n Street	City Carb	ondale	Zip	62901
	Lot #	Land I.D.#		County Jac	kson		Township	95
	Range 1V	N Section 15	NW	Quarter of the	NE	Quarter of the	NW	Quarter
	GPS: North Degre Report decim would be latit	1 1 1	ds by multiplying th	42.4 [e decimal part of	West Degrees 89 the minutes by GPS coordinate	Minutes 1 60, e.g. latitude 3 es to the nearest 0	38 degrees 46	
3.	Year Drilled	1986 4. Drilling	g Permit Number	(and date, if kr	nown			
5.	Type of Well	Monitoring	6. Total Depth	(ft.) 94	Diam	eter (in.) 2		
		ear of obstruction Yes ugging (bentonite, neat ceme	nt or other mater	ials)				
	Filled with	H.S. Bentonite Grout	From (ft.)	94	to (ft.)		2	
	Kind of plug	Bentonite Chips	From (ft.)	2	to (ft.)		0	
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
		CORD Upper 2 feet of casing ter well driller or other person			10. Date well stroming well s		Nov 25, 20	15
	Name Ch	narley Roberts/Roberts Env. I	Drilling	Complete Lice	ense Number	092-006865		
	Address	1107 South Mulberry Street	City Millst	adt	State Illino	ois	Zip Cod	e 62260

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

Ownership (Name of Controlling Party) Beazer East, Inc.		
Well Location: Well Site Address 1555 North Marion St	eet City Carbon	dale Zip 62901
Lot # Land I.D.# Co	unty Jackson	Township 9S
Range 1W Section 10 NE Qua	rter of the SE Qu	uarter of the SW Quarter
GPS: North Degrees 37 Minutes 44 Seconds 57. Report decimal minutes to minutes and seconds by multiplying the de would be latitude 38 degrees 46 minutes 4.2 seconds (0.07 x 60 = 4.2)	cimal part of the minutes by 60,	Minutes 12 Seconds 3.7 e.g. latitude 38 degrees 46.07 minutes No the nearest 0.1 second.
3. Year Drilled 1986 4. Drilling Permit Number (an	d date, if known	
Type of Well Monitoring 6. Total Depth (ft.)	94 Diamete	er (in.) 2
7. Formation clear of obstruction Yes8. Detains of Plugging (bentonite, neat cement or other materials)		
Filled with H.S. Bentonite Grout From (ft.)	94 to (ft.)	2
Kind of plug Bentonite Chips From (ft.)	2 to (ft.)	0
Filled with From (ft.)	to (ft.)	
Kind of plug From (ft.)	to (ft.)	
Filled with From (ft.)	to (ft.)	
Kind of plug From (ft.)	to (ft.)	
 9. CASING RECORD Upper 2 feet of casing removed 11. Licensed water well driller or other person approved by the Department 	10. Date well was	
Name Charley Roberts/Roberts Env. Drilling Co	mplete License Number 09	92-006865
Address 1107 South Mulberry Street City Millstadt	State Illinois	Zip Code 62260

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

1.	Ownership (N	Name of Controlling Party)	Beazer East, I	nc. (R-13C)					
2.	Well Location	n: Well Site Address 15!	55 North Marior	n Street	City Carb	ondale		Zip	62901
	Lot #	Land I.D.#		County Jac	kson		Townsh	hip	95
	Range 1V	N Section 10	SW	Quarter of the	SW	Quarter of the	SW		Quarter
	GPS: North Degre Report decim would be latit	1 1 1	——— ds by multiplying th	51.4 Due decimal part of	Vest Degrees 89 the minutes by 6 GPS coordinates	Minutes 1 60, e.g. latitude 3 s to the nearest	 38 degrees	econd s 46.07 d.	
3.	Year Drilled	1986 4. Drilling	g Permit Number	(and date, if kn	own				
5.	Type of Well	Monitoring	6. Total Depth	n (ft.) 75	Diame	eter (in.) 2			
		ear of obstruction Yes ugging (bentonite, neat ceme	nt or other mater	ials)					
	Filled with	H.S. Bentonite Grout	From (ft.)	75	to (ft.)		2		
	Kind of plug	Bentonite Chips	From (ft.)	2	to (ft.)		0		
	Filled with		From (ft.)		to (ft.)				
	Kind of plug		From (ft.)		to (ft.)				
	Filled with		From (ft.)		to (ft.)				
	Kind of plug		From (ft.)		to (ft.)				
		CORD Upper 2 feet of casing ter well driller or other person			Date well versions Date well seriorming well serior	L	Nov 25,	2015	
	Name Ch	narley Roberts/Roberts Env. I	Drilling	Complete Lice	nse Number	092-006865			
	Address	1107 South Mulberry Street	City Millst	adt	State Illino	is	Zip (Code	62260

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL HEALTH 525 W. JEFFERSON ST. SPRINGFIELD, IL 62761

WATER WELL SEALING FORM

PDF FILLABLE/SAVABLE

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

This form shall be submitted to this Department or the local health department not more than 30 days after a water well, boring or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Illinois Water Well Construction Code. THE LOCAL HEALTH DEPARTMENT OR REGIONAL PUBLIC HEALTH DEPARTMENT MUST BE NOTIFIED AT LEAST 48 HOURS PRIOR TO SEALING.

1.	Ownership (N	Name of Controlling Party)	Beazer East, I	nc. (R-14C)				
2.	Well Location	: Well Site Address 15	55 North Marior	n Street	City Carbo	ndale	Zip	62901
	Lot #	Land I.D.#		County Jack	kson		Township	9S
	Range 1V	V Section 10	NW	Quarter of the	SW	Quarter of the	SW	Quarter
	GPS: North Degree Report decim would be latite	1 1 1	———I nds by multiplying th	51.9 D	lest egrees 89 he minutes by 66PS coordinates	Minutes 12 0, e.g. latitude 3 to the nearest 0	8 degrees 46.	
3.	Year Drilled	1988 4. Drillin	ng Permit Number	(and date, if kno	own			
5.	Type of Well	Monitoring	6. Total Depth	n (ft.) 80	Diame	ter (in.) 2		
		ear of obstruction Yes ugging (bentonite, neat ceme	ent or other mater	ials)				
	Filled with	H.S. Bentonite Grout	From (ft.)	80	to (ft.)		2	
	Kind of plug	Bentonite Chips	From (ft.)	2	to (ft.)		0	
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
	Filled with		From (ft.)		to (ft.)			
	Kind of plug		From (ft.)		to (ft.)			
		CORD Upper 2 feet of casing er well driller or other persor			0. Date well w		Nov 25, 201	5
	Name Ch	narley Roberts/Roberts Env.	Drilling	Complete Licer	nse Number [092-006865		
	Address	1107 South Mulberry Stree	t City Millst	adt	State Illinoi	S	Zip Code	62260

Arcadis U.S., Inc.

430 First Avenue North
Suite 720
Minneapolis, Minnesota 55401

Tel 612 339 9434

Fax 612 336 4538

www.arcadis.com