REVISED ADDENDUM TO THE CORRECTIVE MEASURES STUDY

TEXTILEATHER CORPORATION 3729 TWINING STREET TOLEDO, OHIO

US EPA ID # OHD 980 279 376 U.S. EPA DOCKET # RCRA-05-2010-0001

by

Haley & Aldrich, Inc. Cleveland, Ohio

for

Textileather Corporation Toledo, Ohio

File No. 36005-012 December 20, 2013 Revised June 25, 2014

Haley & Aldrich, Inc. 5755 Granger Road Suite 320 Cleveland, OH 44131-1442

> Tel: 216.739.0555 Fax: 216.739.0560 HaleyAldrich.com

December 20, 2013 Revised June 25, 2014 File No. 36005-012

U.S. EPA - Region 5 77 West Jackson Blvd Chicago, Il 60604-3590

Attention:	Carolyn Bury
	EPA Project Manager

Subject: Revised Addendum to the Corrective Measures Study Textileather Facility, Toledo, Ohio EPA ID# OHD 980 279 376 U.S. EPA Docket # RCRA-05-2010-0001

Dear Ms. Bury:

On behalf of Textileather Corporation and pursuant to the Administrative Order on Consent (Order) dated 30 September 2009, please find enclosed the revised Addendum to the Corrective Measures Study for the Textileather Facility (the "Facility"). The Corrective Measures Study (CMS) was submitted to the U.S. EPA on 31 December 2012. As presented in the CMS there are three areas (AOI-01, AOI-15, and AOI-28) that may present unacceptable risk for future site use, when the site is ultimately redeveloped. As such, these areas require corrective measures to address.

Textileather has proposed an active remedy for each of the areas where corrective measures were required, which includes removal of impacted media based on the nature and extent of contaminants identified during the Resource Conservation and Recovery Act Facility Investigation. During review of the CMS, the U.S. EPA agreed with the approach for these areas and requested that preliminary remediation goals (PRGs) be established to evaluate whether the excavation remedies meet the corrective measure objectives. Haley & Aldrich proposed risk-based PRGs that were consistent with the methodology established in the RFI and would be protective of human health, given the assumed future use of the Site as commercial/industrial. These proposed PRGs were reviewed and discussed during teleconference calls on August 27 and September 12, 2013 with the U.S. EPA. Based on a follow-up call on March 17, 2014, the U.S. EPA was in general agreement with the methodology to establish the proposed PRGs, utilizing the risk-based approach. However, the U.S. EPA expressed concern regarding the verification of remedy complete for AOI-28, since the proposed PRG was based on a soil gas criteria. With the proposed remedy and impending demolition of the existing structures at the Facility, this criteria may be difficult to verify. Therefore, it was agreed that a PRG based on soil concentrations would be more appropriate for AOI-28. The following revised addendum to the CMS has been prepared to document the methodology used to calculate risk-based preliminary remediation goals (PRGs) that are protective for human health. This revised addendum replaces the document submitted on December 20, 2013 in its entirety.

Textileather Corporation December 20, 2013 Revised June 25, 2014 Page 2

If you have any questions or require additional information, please contact us.

Sincerely yours, HALEY & ALDRICH, INC.

Daniel R. Putz Project Manager

David/J. Hagen

Senior Vice President

c: D. Veinot- Canadian General-Tower

G:\36005 Textileather\012 - Corrective Measures Study\CMS\Addendum Revised 2014\2014-06-25 Textileather CMS Revised Addendum RAOs F.docx

TABLE OF CONTENTS

LIST	OF TA	ABLES	Page i
1.	INTH	RODUCTION	1
2.	PRE	LIMINARY REMEDIATION GOALS	2
	2.1	Proposed Corrective Measures	2
	2.2	Calculation of Risk-Based PRGs	2
	2.3	Post-Remedy Evaluation	5
REF	ERENC	CES	7

TABLES

LIST OF TABLES

Table No.	Title
1	Preliminary Remediation Goals for Soil
2	Preliminary Remediation Goals for Future (AOI-28) Indoor Air

LIST OF FIGURES

Figure No.	Title						
5 (Revised)	Soil Analytical Results - AOI-28						
OF APPENDICES							
•	• •						

Α

LIST

Johnson-Ettinger Model Output for AOI-28

1. INTRODUCTION

The Resource Conservation and Recovery Act (RCRA) Corrective Measures (CMS) (Haley & Aldrich December 2012) was prepared under the direction of Textileather Corporation for the Textileather Facility (the "Facility") located in Toledo, Ohio. The CMS was submitted to the U.S. EPA on 31 December 2012. The United States Environmental Protection Agency (U.S. EPA) ID Number for the Facility is #OHD980279376. The Site is located at 3729 Twining Street, Toledo, Ohio. The CMS describes the evaluation of corrective measures for addressing contaminated environmental media at the Facility identified during the RCRA Facility Investigation (RFI), and the rationale for their selection. The U.S. EPA will select final corrective measures for the Facility after the public comment period has ended and any information submitted during the comment period has been reviewed and considered.

As presented in the CMS there are three areas (AOI-01, AOI-15, and AOI-28) that may present unacceptable risk for future site use, when the site is ultimately redeveloped. As such, these areas require corrective measures to address. Textileather has proposed an active remedy for each of the areas where corrective measures were required, which includes removal of impacted media based on the nature and extent of contaminants identified during the Resource Conservation and Recovery Act Facility Investigation. During review of the CMS, the U.S. EPA agreed with the approach for these areas and requested that preliminary remediation goals (PRGs) be established to evaluate whether the excavation remedies meet the corrective measure objectives. The following addendum to the CMS has been prepared to document the methodology used to calculate risk-based preliminary remediation goals (PRGs) that are protective for human health.

2. PRELIMINARY REMEDIATION GOALS

2.1 Proposed Corrective Measures

The CMS identified three areas (AOI-01, AOI-15, and AOI-28) that may present unacceptable risk for future site use, when the site is ultimately redeveloped. In the CMS, Textileather proposed the most aggressive remedial option, such that the Facility can be brought back to beneficial re-use in the shortest period of time, while minimizing the requirement for long-term maintenance. The CMS concluded that for the issues at the Facility, this turns out to be the most effective, permanent and often most cost-effective alternative:

- AOI-01 excavation of PCB-impacted subsurface soils and NAPL,
- AOI-15 excavation of the NAPL around PZ-31, and
- AOI-28 excavation of VOC-impacted soils.

Based on the evaluation detailed in the CMS, removal of the impacted soils would satisfy the three performance criteria established by the U.S. EPA. In addition, removal would score high in comparison to the balancing criteria. Therefore, the removal option was considered in the CMS to be the best corrective measures alternative for these areas.

2.2 Calculation of Risk-Based PRGs

This addendum provides documentation of the methodology used to calculate risk-based preliminary remediation goals (PRGs) that are protective for human health. PRGs represent chemical concentrations that correspond to set levels of target cancer risk and target hazard index. PRGs may be used to plan remediation (i.e., define the extent of areas that require response actions), and to evaluate the post-remediation confirmatory analytical results, to help determine when remediation has achieved conditions that do not pose unacceptable risks.

PRGs are derived in consideration of the exposure scenarios, media, and chemicals which were associated with risks in excess of USEPA risk management criteria, as defined by the results of the Human Health Risk Assessment (HHRA) provided in the RFI Report (Haley & Aldrich, December 2012). The results of the HHRA indicated that the following media were associated with risks greater than a cancer risk of 1E-04 and/or a hazard index (HI) greater than 1; chemicals that contributed to the risks at these areas are also indicated below, and include polychlorinated biphenyls (PCBs), bis(2-ethylhexyl)phthalate (BEHP), di-n-octylphthalate (DNOP), trichloroethene (TCE), and perchloroethene (PCE).

	Commercial Worker	Construction Worker
AOI-01 Subsurface Soil	X(PCBs)	X(PCBs)
AOI-01 NAPL (indoors)	X(PCBs)	
AOI-15 NAPL (in soil)	$\mathbf{X}_{(ext{PCBs}, ext{ BEHP}, ext{ DNOP})}$	X(PCBs, BEHP)
AOI-28 Soil Vapor	X(TCE, PCE)	

PRGs were derived for three groups of chemicals at the Site:

- 1) Chemicals of Concern (COCs). COCs are chemicals associated with a cancer risk greater than 1E-06 or a hazard index (HI) greater than 1 for Areas of Concern (AOCs) in which cumulative receptor cancer risks exceeded 1E-04 or cumulative receptor hazard index values exceeded 1, based on the results of the HHRA. The COCs are the chemicals listed above.
- 2) Chemicals of Potential Concern (COPCs). COPCs are the chemicals that were quantitatively evaluated in the HHRA because they were detected in at least one sample at a concentration greater than conservative risk-based screening levels. PRGs were derived for COPCs to provide additional information by which to evaluate post-remedial confirmatory data, where required.
- 3) Other Site-related Chemicals of Interest. A PRG was also identified for tetrahydrofuran because it is known to be present in Site media. Although it was not detected at concentrations greater than conservative risk-based screening levels (i.e., not retained as a COPC), a PRG for this chemical will allow for evaluation of post-remedial confirmatory data, where required.

PRGs were not derived for NAPL because the remedial objectives for NAPL are to reduce NAPL volume and/or remove NAPL, not to reduce the concentrations of constituents detected within the NAPL.

USEPA describes methods for deriving PRGs in *Risk Assessment Guidance for Superfund (RAGS) Part* B (USEPA, 1991). The methodology provided in RAGS Part B involves the algebraic rearrangement of the exposure intake and risk calculation algorithms used in the HHRA, to derive PRGs for a given set of receptor exposure parameters, toxicity values, and target risks. This methodology is useful for deriving PRGs at the on-set of the RFI process, before the HHRA has been completed. However, since the results of the HHRA establish a relationship between exposure point concentration (EPC), receptor exposure, toxicity, and risk, the results of the HHRA can be used directly to derive PRGs. In this approach, an equality is established between the EPC used in the HHRA and the risk or HI that was calculated for the EPC. The equality is then used to solve for the concentration that corresponds to a specified level of risk or HI; that concentration is the PRG, as shown in the following equation:

$$\frac{\underline{EPC}}{Risk \text{ or }HI} = \frac{\underline{PRG}}{Target Risk \text{ or }HI}$$

Table 1 provides documentation of the EPCs and risks that were used to derive PRGs in soil. The information provided in Table 1 was excerpted directly from Tables 37 and 38 of the HHRA. As indicated in Table 1, PRGs were derived for a target cancer risk of 1E-05 and a target HI of 1. Achieving a residual (post-remedial) concentration that does not exceed the lower of the PRG set at a target cancer risk of 1E-05 or a HI of 1 ensures that the cumulative cancer risk among all COCs will not exceed 1E-04.

2.2.1 AOI-28

For AOI-28, risks for vapor intrusion were calculated in the HHRA based on measured sub-slab soil gas data. However, it was identified that derivation of PRGs based on soil gas would not be appropriate for evaluation of the post-excavation performance for this area due to complications associated with post-remedial verification sampling of soil gas in the absence of a floor slab (the floor slab at AOI 28 will be removed in order to remediate soil). Therefore, PRGs for vapor intrusion (VI) from soil (soil VI PRGs) were developed using existing soil data, sub-slab soil gas data, and modeling. The PRGs will be used to guide remediation of tetrachloroethene (PCE) and trichloroethene (TCE) in soil at AOI 28, and to then to evaluate post-remedial confirmatory sampling data. The approach used to develop soil VI PRGs is provided below and documented in Table 2.

Table 2 provides the maximum detected soil and sub-slab soil gas concentrations of PCE and TCE at AOI 28. Conceptually, the PCE and TCE concentrations measured in sub-slab soil vapor are a result of partitioning those VOCs from soil to soil gas, and subsequent migration of soil gas through the soil column to void space beneath the concrete floor slab that covers the area of the building designated as AOI 28. Vapor intrusion occurs when sub-slab soil gas migrates into occupied indoor space. In the HHRA, measured soil gas data were used with empirical sub-slab soil gas to indoor air attenuation factors to estimate indoor air concentrations that could arise from the vapor intrusion exposure pathway. Two approaches to deriving soil concentrations that are protective for vapor intrusion were evaluated: the Johnson-Ettinger soil to indoor air model, and direct correlation of bulk soil and soil gas measurements.

Initially, the Johnson-Ettinger soil to indoor air vapor intrusion model was used to calculate a target soil concentration that is protective for vapor intrusion to indoor air. However, it is recognized that the methodology this model uses to estimate partitioning of VOCs from soil to soil gas generally yields overestimates of the resulting soil gas concentrations. To evaluate the significance of this uncertainty at AOI 28, the Johnson-Ettinger model was run using the measured soil concentrations of PCE and TCE. As indicated in Table 2, the estimated soil gas concentrations derived by the model were more than 25 times greater than the sub-slab soil gas concentrations measured at AOI 28. Consequently, the model was not used to derive target soil concentrations.

The measured concentrations of PCE and TCE in soil may be correlated with the measured concentrations of PCE and TCE in sub-slab soil gas. Using this approach, in order to identify a soil concentration that is protective for VI from soil to indoor air under the assumption that a new commercial use building is constructed at AOI 28, it is necessary to identify target (health protective) concentrations of PCE and TCE in indoor air and sub-slab soil gas, and to then establish the soil concentration that is correlated with the target sub-slab soil gas concentration. These steps are described as follows:

- Target Indoor Air Concentrations Indoor air concentrations of PCE and TCE that correspond to full-time commercial worker exposures (8 hours per day, 250 days per year, 25 years) associated with a hazard index of 1 and an excess lifetime cancer risk of 1x10⁻⁵ are provided in Table 2. The lower of the concentrations based on cancer risk and hazard index are selected as the final indoor air target concentrations (Table 2).
- Target Sub-slab Soil Gas Concentrations Sub-slab soil gas concentrations that are protective for migration of soil gas to indoor air at the target indoor air concentrations are derived by dividing the final target indoor air concentrations by a sub-slab soil gas to indoor air attenuation factor of 0.01. This attenuation factor was approved for use by USEPA in the RFI human health risk assessment. Target sub-slab soil gas concentrations are provided in Table 2.
- Target Soil Concentration The target soil concentration may be derived by using the ratio of the measured soil concentration to the measured sub-slab soil gas concentration and then calculating the soil concentration that would correspond to the target sub-slab soil gas concentration. Using this approach, the target soil concentrations of PCE and TCE are 0.68 mg/kg and 0.072 mg/kg, respectively (Table 2).

Based on a review of existing soil sample data from AOI-28, the 0.0 to 2.0-ft soil sample from soil boring SB-28-08 exhibited elevated PCE and TCE soil concentrations in a duplicate analysis that is slightly above the target soil concentrations. Therefore, to be conservative, the proposed excavation remedy for AOI-28 will be extended approximately six feet to the east and one foot north to address these potentially elevated soil concentrations. A revised Figure 5 from the CMS (Haley & Aldrich December 2012), is included in the Figure section of this addendum. The resulting proposed excavation is approximately 630 ft² by 4-ft deep, yielding approximately 93 cubic yards. This equates to approximately 150 ton at 1.6 ton per cubic yard. Utilizing the costing from the CMS of \$138 per ton excavation and disposal, the estimated cost for excavation of impacted soil in AOI-28 is \$20,700. The difference in size of excavation (approximately 20 cubic yards, resulting in approximately 33 tons) does not impact the selection criteria as presented in the CMS (Haley & Aldrich December 2012), consequently removal of the impacted soil remains the preferred remedy.

2.3 **Post-Remedy Evaluation**

As identified in the CMS, the proposed remedies for the three areas that may present unacceptable risk for future site use, should site conditions change are:

- AOI-01 excavation of PCB-impacted subsurface soils and NAPL,
- AOI-15 excavation of the NAPL around PZ-31, and

• AOI-28 – excavation of VOC-impacted soils.

The PRG for excavation of NAPL in AOI-01 and AOI-15 is excavation of all visible signs of NAPL. Based on the RFI activities, the proposed excavations in AOI-01 and AOI-15 presented in the CMS should remove free- and residual- NAPL in these areas. Therefore, no post-remedy sampling is required.

The PRG for the PCB-impacted subsurface soils in AOI-01 is 6.5/8.5 mg/kg for commercial/construction workers. The proposed excavation in AOI-01 presented in the CMS should remove most, if not all, of the PCB-impacted soils. If soil staining or residual NAPL remains at the proposed extend of excavation, soil samples will be obtained from the sidewalls and bottom of the excavation at a rate of 1 per 50 lineal feet on the sidewalls and 1 per 1,000 sqft on the bottom of the excavation. The results will be compared to the PRGs established above.

In AOI-28, the HHRA indicated that the potentially complete future pathway would be for commercial workers exposed to elevated soil gas concentrations, when the site is ultimately redeveloped. Using a direct correlation between measured soil and sub-slab soil gas concentrations, as described above, the target soil concentrations of PCE and TCE are 0.68 mg/kg and 0.072 mg/kg, are proposed as the soil VI PRGs for AOI-28. Four samples from the sidewall and two samples from the bottom of the excavation will be collected to confirm that the potential source of VOCs in soil that may pose a future soil gas issue have been removed.

Results of the post-remedy evaluation will be documented in the construction completion report for the corrective measures.

REFERENCES

- 1. Haley & Aldrich, 2009. Current Conditions Report for Textileather Corporation, December.
- 2. Haley & Aldrich, 2009. RCRA Facility Investigation Work Plan for Textileather Corporation, December.
- 3. Haley & Aldrich, 2010. Eastern Property Boundary Investigation Work Plan for Textileather Corporation, March.
- 4. Haley & Aldrich, 2010. Field Event #1 Data Results RCRA Facility Investigation for Textileather Corporation, May.
- 5. Haley & Aldrich, 2010. Facility Investigation Work Plan Addendum #1 for Field Event #2 for Textileather Corporation, June.
- 6. Haley & Aldrich, 2010. Eastern Property Boundary Investigation Summary and Evaluation Report for Textileather Corporation, October.
- 7. Haley & Aldrich, 2010. Field Event #2 Data Results RCRA Facility Investigation for Textileather Corporation, November.
- 8. Haley & Aldrich, 2011. Site Management Plan for Textileather Corporation, January.
- 9. Haley & Aldrich, 2011. Site Specific Health And Safety Plan for Textileather Corporation, January
- 10. Haley & Aldrich, 2011. CA725 Current Human Exposures Under Control Report RCRA Facility Investigation for Textileather Corporation, January.
- 11. Haley & Aldrich, 2011. Field Event #2A and #2B Data Results RCRA Facility Investigation for Textileather Corporation, July.
- Haley & Aldrich, 2011. CA750 Migration of Contaminated Groundwater Under Control Report

 RCRA Facility Investigation for Textileather Corporation, July.
- 13. Haley & Aldrich, 2011. Field Event #3 Data Results RCRA Facility Investigation for Textileather Corporation, September.
- 14. Haley & Aldrich, 2011. Revised CA725 Current Human Exposures Under Control Report RCRA Facility Investigation for Textileather Corporation, September.
- 15. Haley & Aldrich, 2011. RCRA Facility Investigation Report for Textileather Corporation, September.

- 16. Haley & Aldrich, 2012. Revised RCRA Facility Investigation Report for Textileather Corporation, December.
- 17. Haley & Aldrich, 2012. RCRA Corrective Measure Study for Textileather Corporation, December.
- 18. USEPA, 2000. Fact Sheet #2, Expectations For Final Remedies At RCRA Corrective Action Facilities, March.
- 19. USEPA, 2000. Fact Sheet #3, Final Remedy Selection For Results-Based RCRA Corrective Action, March.
- 20. 2012. "Regional Screening Levels for Chemical Contaminants at Superfund Sites"; EPA Office of Superfund. November.
- 21. USEPA, 2011. "Integrated Risk Information System (IRIS)"; on-line data-base search www.epa.gov/iris.

TABLES

TABLE 1PRELIMINARY REMEDIGATION GOALS FOR SOILTEXTILEATHER CORPORATIONTEXTILEATHER FACILTIYTOLEDO, OHIO

			Basis for Calculating Preliminary Remed				iation Goals (4)			Preliminary Remediation Goals (5)			
	CASRN	Units		EPC	Construct	tion Worker	Commercia	al Worker		Construction Worker		Commerci	al Worker
Constituent			Value	basis	ELCR	н	ELCR	Н		ELCR = 1E-5	HI = 1	ELCR = 1E-5	HI = 1
Chemicals of Concern (1) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248)	53469-21-9 12672-29-6	mg/kg mg/kg	424 4.7	AOI 1 - subs AOI 22 - ss	6E-05 6E-07	6E+01 7E-01	5E-04 6E-06	3E+01 4E-01		76 76	6.5 6.5	8.5 8.5	12 12
Chemicals of Potential Concern (2)Benzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluoranthenebis(2-Ethylhexyl)phthalateDi-n-octyl phthalatePentachlorophenolBenzeneEthylbenzeneTolueneTrichloroetheneXylene (total)AntimonyArsenicChromium TotalLead	56-55-3 50-32-8 205-99-2 117-81-7 117-84-0 87-86-5 71-43-2 100-41-4 108-88-3 79-01-6 1330-20-7 7440-36-0 7440-38-2 7440-47-3 7439-92-1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	6.1 5.9 6.2 73 425 30 0.64 426 3025 5.3 2777 3.4 2.5 42 178	AOI 3 - ss AOI 3 - ss AOI 2 - subs AOI 2 - subs AOI 2 - subs AOI 17 - ss AOI 2 - subs AOI 2 - ss AOI 2 - ss	1.3E-07 1.1E-06 1.4E-07 6.1E-08 0.0E+00 9.8E-07 8.4E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.9E-07 1.0E-08 0.0E+00	0.0E+00 0.0E+00 3.0E-03 1.5E-02 3.4E-02 2.6E-03 5.9E-03 4.6E-02 3.5E-02 3.5E-02 2.7E-02 3.0E-02 6.9E-03 0.0E+00	1.2E-06 1.0E-05 1.2E-06 5.2E-07 0.0E+00 9.8E-06 4.1E-08 0.0E+00 0.0E+00 1.7E-07 0.0E+00 1.4E-06 2.2E-07 0.0E+00	0.0E+00 0.0E+00 5.2E-03 5.0E-02 1.4E-02 4.9E-04 7.4E-03 4.0E-02 2.3E-01 7.2E-03 8.7E-03 1.2E-02 0.0E+00		468 52 453 11,911 307 764 1,624 133	23,823 28,587 876 252 71,928 65,869 152 79,398 124 85 6,119 800	53 5.8 51 1,406 31 159 311 18	14,056 8,434 2,179 1,303 57,277 76,387 131 11,974 467 291 3,479 800
Other Site-Related Constituents of Inter Tetrahydrofuran	r <u>est (3)</u> 109-99-9	mg/kg	5500	Site-wide		Not calculate	d (not a COPC)				95,300		95,300

Notes and Abbreviations:

(1) - Chemicals which posed a cancer risk greater than 1E-06 or a hazard index greater than 1 at AOCs for which cumulative risks were greater than 1E-04 or a hazard index of 1.

(2) - Chemicals that were carried through the risk assessment, but which were not identified as chemicals of concern.

(3) - Chemicals known to be significant Site-related constituents, but that were not retained as chemicals of potential concern because they were not detected in Site soil at concentrations greater than screening levels.

(4) - Source of exposure point concentration and risk used to calculate preliminary remediation goal as defined in note (5).

(5) - Preliminary remediation goals calculated as follows: PRG = target risk or HI / (EPC x ELCR or HI calculated for EPC)

EPC = Exposure Point Concentration. mg/kg = milligrams per kilogram. ELCR = excess lifetime cancer risk HI = hazard index

TABLE 2DERIVATION OF PRELIMINARY REMEDIATION GOALS FOR THE SOIL TO INDOOR AIR EXPOSURE PATHWAY - AOI 28TEXTILEATHER CORPORATIONTEXTILEATHER FACILTIYTOLEDO, OHIO

		Measured at AOI 28		Sub-slab Soil Gas		Target Concentrations				
Chemical of Potential Concern ⁽¹⁾	CASRN	Sub-slab Soil Gas	Soil	Calculated Using	Indoor Air	Indoor Air	Final	Sub-slab	Soil	
		Maximum	Maximum	Model @ Soil Maximum (2	(HI = 1)	(risk = 1E-05)	Indoor Air	Soil Gas ⁽⁴⁾	PRG ⁽⁵⁾	
		(ug/m3)	(mg/kg)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(mg/kg)	
Volatile Organic Compounds										
Tetrachloroethene	127-18-4	310,000	12.1	8,050,000	175	470	175	17520	0.68	
Trichloroethene	79-01-6	64,000	5.28	2,160,000	8.8	30	8.8	876	0.072	

Notes and Abbreviations:

(1) Chemicals of potential concern (COPCs) identified in Table 9 of human health risk assessment.

(2) Calculated using the Johnson-Ettinger soil to indoor air model (Attachment 1).

(3) Based on full time indoor air commercial exposures (8 hours/day, 250 days/yr, 25 years). Values are based on the industrial use indoor air RSL values from the EPA RSL Table (November 2013).

(4) Calculated using a subslab soil gas to indoor air attenuation factor equal to 0.01 (Indoor Air Target / 0.01)

(5) Calculated by establishing the soil concentration that would be protective for the target soil gas concentration, as follows: Soil Maximum x (Target Sub-slab Soil Gas / Sub-slab Soil Gas Maximum)

FIGURES

APPENDIX A

Johnson-Ettinger Model Output for AOI-28

Г

SL-ADV	CALCULATE RISK	-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
version 3.1, 02/04		YES													
Reset to															
Deladits	CALCULATE INCR	EMENTAL RISKS	FROM ACTUAL SOI		enter X in YES	box and initial soil c	onc. below)								
		YES	Х	<u>]</u>											
	ENTER	ENTER Initial													
	Chemical	soil													
	(numbers only,	conc., C _R													
	no dashes)	(µg/kg)	-		Chemical		-								
	127184	1.21E+04]	Tet	rachloroethyler	ne]								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER					
MORE		Depth bolow grado		Depth below	Totals mu	st add up to value of	L _t (cell G28)	Soil		Licor defined					
•	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil temperature,	of enclosed space floor,	grade to top of contamination,	(enter value of 0 if value is unknown)	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	soil type (used to estimate	OR	soil vapor permeability,					
	Ts	L _F	L	L	h _A	h _B	hc	soil vapor		k _v					
	(-C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	-	(cm ⁻)					
	11	15	15	152.4	15	0	0	SIC							
MORE	ENTER Stratum A	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER Strotum C
	OttatumA	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum	Stratum
¥	SCS soil type	soil dry	soil total	soil water-filled	Stratum A soil organic carbon fraction	Stratum B SCS soil type	Stratum B soil dry bulk density	soil total	Stratum B soil water-filled	Stratum B soil organic carbon fraction	Stratum C SCS soil type	soil dry	soil total	soil water-filled	soil organic
¥	SCS soil type	soil dry bulk density, ρ _b ^A	soil total porosity, n ^A	soil water-filled porosity, θ_w^A	Stratum A soil organic carbon fraction, f _{oc} ^A	Stratum B SCS soil type	Stratum B soil dry bulk density, ρ _b ^B	Stratum B soil total porosity, n ^B	Stratum B soil water-filled porosity, θ_w^B	Stratum B soil organic carbon fraction, f _{oc} ^B	Stratum C SCS soil type	soil dry bulk density, ρ _b ^C	soil total porosity, n ^C	soil water-filled porosity, θ _w ^C	soil organic carbon fraction, f_{oc}^{c}
¥	SCS soil type Lookup Soil Parameters	soil dry bulk density, p _b ^A (g/cm ³)	soil total porosity, n ^A (unitless)	stratum A soil water-filled porosity, θ_w^A (cm ³ /cm ³)	stratum A soil organic carbon fraction, f _{oc} ^A (unitless)	Stratum B SCS soil type Lookup Soil Parameters	Stratum B soil dry bulk density, pb ^B (g/cm ³)	Stratum B soil total porosity, n ^B (unitless)	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³)	Stratum B soil organic carbon fraction, f _{oc} ^B (unitless)	Stratum C SCS soil type Lookup Soil Parameters	soil dry bulk density, pb ^C (g/cm ³)	stratum C soil total porosity, n ^C (unitless)	soil water-filled porosity, θ_w^c (cm ³ /cm ³)	soil organic carbon fraction, f _{oc} ^C (unitless)
¥	SCS soil type Lookup Soil Parameters	solidin solidin bulk density, ρ_b^A (g/cm ³) 1.38	stratum A soil total porosity, n ^A (unitless)	stratum A soil water-filled porosity, θ_w^A (cm ³ /cm ³)	Stratum A soil organic carbon fraction, f _{oc} ^A (unitless)	Stratum B SCS soil type Lookup Soil Parameters	Stratum B soil dry bulk density, p _b ^B (g/cm ³) 1.5	Stratum B soil total porosity, n ^B (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³)	Stratum B soil organic carbon fraction, f _{oc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	stratum C soil dry bulk density, p _b ^C (g/cm ³)	stratum C soil total porosity, n ^C (unitless)	stratum c soil water-filled porosity, θ _w ^C (cm ³ /cm ³)	soil organic carbon fraction, f _{oc} ^C (unitless)
¥	SICS soil type Lookup Soil Parameters SIC ENTER	stratum A soil dry bulk density, p _b ^A (g/cm ³) 1.38 ENTER	stratum A soil total porosity, n ^A (unitless) 0.481 ENTER	Stratum A soil water-filled porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER	Stratum A soil organic carbon fraction, f _{cc} ^A (unitless) 0.002 ENTER	Stratum B SCS soil type Lookup Soil Parameters ENTER	Stratum B soil dry bulk density, p _b ^B (g/cm ³) 1.5 ENTER	Stratum B soil total porosity, n ^B (unitless) 0.43	Stratum B soil water-filled porosity, $\theta_w^{\ B}$ (cm ³ /cm ³)	Stratum B soil organic carbon fraction, f _{oc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	stratum C soil dry bulk density, p _b ^C (g/cm ³)	stratum C soil total porosity, n ^c (unitless) 0.43	sinatum c soil water-filled porosity, θ _w ^C (cm ³ /cm ³)	solution c solution raction, carbon fraction, f _{oc} ^C (unitless) 0.002
₩ WORE	SICS soil type Lookup Soil Parameters SIC ENTER Enclosed space	soil dry bulk density, p _b ^A (g/cm ³) 1.38 ENTER Soil-bldg,	Stratum A soil total porosity, n ^A (unitless) 0.481 Enclosed space	Stratum A soil water-filed porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER Enclosed space	stratum A soil organic carbon fraction, f _{cc} ^A (unitless) 0.002 ENTER Enclosed	Stratum B SCS soil type Lookup Soil Parameters ENTER Floor-wall	Stratum B soil dry bulk density, p,b ^B (g/cm ³) 1.5 ENTER Indoor	Stratum B soil total porosity, n ^B (unitless)	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³)	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	soil dry bulk density, p _b ^C (g/cm ³)	stratum C soil total porosity, n ^c (unitless) 0.43	soll water-filled porosity, θ _w ^C (cm ³ /cm ³)	soli organic carbon fraction, f _{cc} ^C (unitless)
₩ WORE ↓	SICS Soll type Lookup Soil Parameters SIC ENTER Enclosed space floor thicknoce	soil dry bulk density, ρ _b ^A (g/cm ³) 1.38 ENTER Soil-bldg. pressure differential	Stratum A soil total porosity, n ^A (unitless) 0.481 Enclosed space floor	Stratum A soli water-filed porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width	Stratum A soil organic carbon fraction, f _{oc} ^A (unitless) 0.002 ENTER Enclosed space boict	Stratum B SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack	Stratum B soil dry bulk density, ρ_b^{B} (g/cm ³) 1.5 ENTER Indoor air exchange	Stratum B soil total porosity, n ^B (unitless)	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³) ENTER Average vapor flow rate into bldg OR	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	soil dry bulk density, ρ _b ^C (g/cm ³)	Stratum C soil total porosity, n ^C (unitless)	soll water-filled porosity, θ _w ^C (cm ³ /cm ³)	soil organic carbon fraction, f _{cc} ^C (unitless)
MORE ↓	SICS soil type Lookup Soil Parameters SIC ENTER Enclosed space floor thickness, Lenek	sini duri A soli dry bulk density, ρ ₀ ⁻⁵ (g/cm ³) 1.38 ENTER Soil-bidg. pressure differential, ΔP	Stratum A soil total porosity, n ^A (unitless) 0.481 ENTER Enclosed space floor length, Ls	Stratum A soli water-filed porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width, Ws	Stratum A soil organic carbon fraction, foc ^A (unitless) 0.002 ENTER Enclosed space height, H ₆	Stratum B SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w	Stratum B soil dry bulk density, ρ_{b}^{B} (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER	Stratum B soil total porosity, n ^B (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³) ENTER Average vapor flow rate into bldg OR ave blank to calcu Q _{soil}	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lokup Soil Parameters	soil dry bulk density, p ^c (g/cm ³)	orratum C soil total porosity, n ^C (unitless)	Sil attal C filled porosity, θ _w ^C (cm ³ /cm ³)	soli organic carbon fraction, f _{cc} ^C (unitless)
₩ WORE ¥	SICS soil type Lookup Soil Parameters SIC ENTER Enclosed space floor thickness, Lenek (cm)	sidialin A soli dry bulk density, ρ _b ^A (g/cm ³) 1.38 ENTER Soli-bidg. pressure differential, ΔP (g/cm-s ²)	Stratum A soil total porosity, n ^A (unitless) 0.481 ENTER Enclosed space floor length, L _B (cm)	Stratum A soli water-filed porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width, W _B (cm)	Stratum A soil organic carbon fraction, f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm)	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack width, w (cm)	Stratum B soil dry bulk density, ρ_b^B (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	Stratum B soil total porosity, n ^B (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³) ENTER Average vapor flow rate into bidg OR ave blank to calcu Q _{soil} (L/m)	Stratum B soli organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	soil dry bulk density, p _b ^C (g/cm ³)	orratum C soil total porosity, n ^c (unitless)	Sintatin C soli water-filled porosity, θ_w^c (cm ³ /cm ³)	soli organic carbon fraction, f _{cc} ^C (unitless)
₩ WORE	SICS soll type Lookup Soll Parameters SIC ENTER Enclosed space floor thickness, Lenek (cm)	soli dry bulk density, p ^b (g/cm ³) 1.38 ENTER Soil-bidg. pressure differential, ΔP (g/cm·s ²)	Stratum A soil total porosity, n ^A (unitless) 0.481 Enclosed space floor length, L _B (cm) 1000	solivater-filed porosity, e, ^A (cm ³ /cm ³) 0.216 Enclosed space floor width, W _B (cm) 1000	Stratum A soil organic carbon fraction, f _{oc} ^A (unitiess) 0.002 ENTER Enclosed space height, H _B (cm) 304.8	Stratum B SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1	Stratum B soil dry bulk density, p ^B , (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n [®] (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ² /cm ³) ENTER Average vapor flow rate into bidg OR ave blank to calcu Q _{sol} (L/m)	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookop Soil Parameters	soil dry bulk density, p _b ^C (g/cm ³)	orratum C soil total porosity, n ^c (unitless)	Sini water-filled porosity,	soli organic carbon fraction, f _{oc} ^C (unitless)
v ₩ ₩ ₩	SICS soll type Lookup Soll Parameters SIC ENTER Enclosed space floor thickness, Lenack (cm) 15 ENTER	soliduir A soli dry bulk density, p ^b (g/cm ³) 1.38 ENTER Soil-bidg. pressure differential, ΔP (g/cm-s ²) 40 ENTER	Stratum A soil total porosity, n ^A (unitless) 0.481 EntER Enclosed space floor length, L ₈ (cm) 1000 ENTER	Stratum A soil water-filed porosity, @w ^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width, W _B (cm) 1000 ENTER	Stratum A soil organic carbon fraction, f _{oc} ^A (unitiess) 0.002 ENTER Enclosed space height, H ₆ (cm) 304.8 ENTER	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack width, w (cm) 0.1 ENTER	Stratum B soil dry bulk density, p ⁸ , (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n [®] (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ² /cm ³) ENTER Average vapor flow rate into bidg OR ave blank to calcu Q _{sol} (L/m)	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	soil dry bulk density, p _b ^C (g/cm ²)	orratum C soil total porosity, n ^c (unitless)	Sini water-filled porosity, ew ^c (cm ³ /cm ³)	soli organic carbon fraction, f _{oc} ^C (unitless)
v ↓ ↓	SICS soll type Lookp Soil Parameters SIC ENTER Enclosed space floor thickness, Leack (cm) 15 ENTER Averaging time for	soliduir A soli dry bulk density, p ^b (g/cm ³) 1.38 ENTER Soil-bidg. pressure differential, ΔP (g/cm-s ²) 40 ENTER Averaging time for	Stratum A soil total porosity, n ^A (unitless) 0.481 EntER Enclosed space floor length, Ls (cm) 1000 ENTER Exposure	Stratum A soil water-filed porosity, @w ^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width, W _B (cm) 1000 ENTER EXPOSURE	Stratum A soil organic carbon fraction, f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm) 304.8 ENTER Target risk for	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack with, w (cm) 0.1 ENTER Target hazard quotient for	Stratum B soil dry bulk density, p ⁸ , (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n [®] (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ² /cm ³) ENTER Average vapor flow rate into bidg OR ave blank to calcu Q _{sol} (L/m)	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	Sratum C soil dry bulk density, p _b ^C (g/cm ²)	orratum C soil total porosity, n ^c (unitless)	Sini water-filled porosity, ew ^c (cm ³ /cm ³)	soli organic carbon fraction, f _{oc} ^C (unitless) 0.002
v Wore ↓	SICS soil type Lookp Soil Parameters SIC ENTER Enclosed space floor thickness, Leack (cm) 15 ENTER Averaging time for carcinogens,	soliduir A soli dry bulk density, p ⁶ (g/cm ³) 1.38 ENTER Soil-bidg. pressure differential, ΔP (g/cm-s ²) 40 ENTER Averaging time for noncarcinogens,	Stratum A soil total porosity, n ^A (unitless) 0.481 Enclosed space floor length, Ls (cm) 1000 ENTER Exposure duration, Co	solivater-filed porosity,	Stratum A soil organic carbon fraction, f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm) 304.8 ENTER Target risk for carcinogens, rcinogens,	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcingers,	Stratum B soil dry bulk density, p _b ^B (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n [®] (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ² /cm ³) ENTER Average vapor flow rate into bidg OR ave blank to calcu Q _{soil} (L/m)	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookup Soil Parameters	Sratum C soil dry bulk density, p _b ^C (g/cm ²)	orratum C soil total porosity, n ^c (unitless)	Sini and the solution of the s	soli organic carbon fraction, f _{oc} ^C (unitless) 0.002
¥ More ↓	SICS soil type Looky-Soil Parameters SIC ENTER Enclosed space floor thickness, Lenek (cm) 15 ENTER Averaging time for carcinogens, AT _C (yrs)	soliduir A soli dry bulk density, p ⁶ (g/cm ³) 1.38 ENTER Soil-bidg. pressure differential, AP (g/cm-s ²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (y'rs)	Stratum A soil total porosity, n ^A (unitless) 0.481 Enclosed space floor length, L ₈ (cm) 1000 ENTER Exposure duration, ED (yrs)	solivater-filed porosity, 0, ^A (cm ³ /cm ³) 0.216 ENTER Enclosed space filoor width, Wa (cm) 1000 ENTER Exposure frequency, EF (days/yr)	Stratum A soil organic carbon fraction, f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H ₈ (cm) 304.8 ENTER Target risk for carcinogens, Target (unitless)	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	Stratum B soil dry bulk density, p _b ^B (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n [®] (unitless) 0.43	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³) ENTER Average vapor flow rate into bldg OR ave blank to calcu Q _{sol} (L/m)	Stratum B soil organic carbon fraction, f _{cc} ^B (unitless) 0.002	Stratum C SCS soil type Lookop Soil Parameters	soil dry bulk density, p _b ^C (g/cm ²)	orratum C soil total porosity, n ^c (unitless)	Sini and the following of the second	soli organic carbon fraction, f _{oc} ^C (unitless) 0.002
₩ WORE ↓	SICS soil type Lookp-Soil Parameters SIC ENTER Enclosed space floor thickness, Leask (cm) 15 ENTER Averaging time for carcinogens, carcinogens, carcinogens, (yrs) 70	soliduir A soli dry bulk density, ρ _b ^Δ (g/cm ³) 1.38 ENTER Soli-bidg. pressure differential, ΔP (g/cm-s ²) 40 ENTER Averaging time for noncarcingens, AT _{RC} (yrs) 25	Stratum A soil total porosity, n ^A (unitless) 0.481 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure duration, ED (yrs)	Stratum A soli water-filed porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width, Wa (cm) 1000 ENTER Exposure frequency, EF (days/yr)	Stratum A soil organic carbon fraction, f _{cc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 304.8 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	Stratum B soil dry bulk density, Pb ⁸ (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n ^B (unitless)	Stratum B soil water-filied porosity, θ_w^{E} (cm ³ /cm ³) ENTER Average vapor flow rate into bldg OR ave blank to calcu Q _a (L/m)	Stratum B soli organic carbon fraction, f.e. ^B (unitless) 0.002	Stratum C SCS soil type Lookop Soil Parameters	Sratum C soil dry bulk density, ρ ^c (g/cm ³) 1.5	orratum C soil total porosity, n ^c (unitless)	Sini adan Filied porosity, θ _w ^c (cm ³ /cm ³)	soli organic carbon fraction, f _{oc} ^c (unitless) 0.002
₩ WORE ↓	SICS Soil type Lookup Soil Parameters SIC ENTER Enclosed space floor thickness, Lenexk (cm) 15 ENTER Averaging time for carcinogens, ATc (yrs) 70	soliduir A soli dry bulk density, ρ _b ⁻ (g/cm ³) 1.38 ENTER Soli-bidg, pressure differential, ΔP (g/cm-s ²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) 25	Stratum A soil total porosity, n ^A (unitless) 0.481 ENTER Enclosed space floor length, Ls (cm) 1000 ENTER Exposure duration, ED (yrs) 25	Stratum A soil water-filed porosity, θ_w^A (cm ³ /cm ³) 0.216 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency, EF (days/yr) 250	Stratum A soil organic carbon fraction, f _c ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 304.8 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 Used to calci	Stratum B SCS soil type Lookup Soil Parameters Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	Stratum B soil dry bulk density, ρ_b^{B} (g/cm ³) 1.5 ENTER Indoor air exchange rate, ER (1/h) 0.25	Stratum B soil total porosity, n ^B (unitless)	Stratum B soil water-filled porosity, θ_w^B (cm ³ /cm ³) ENTER Average vapor flow rate into bldg OR ave blank to calcu Q _{sol} (L/m)	Stratum B soli organic carbon fraction, fc ^B (unitless) 0.002	Stratum C SCS soil type Lookop Soil Parameters	soli dry bulk density, p ^c (g/cm ³)	orratum C soil total porosity, n ^c (unitless)	sil water-filled porosity, θ _w ^c (cm ³ /cm ³)	soli organic carbon fraction, f _{oc} ^C (unitless)

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
7 20E-02	8 20E-06	1 84E-02	25	8 288	394 40	620.20	1 55E±02	2 00E+02	2.6E-07	4 0E-02	
1.20L-02	0.202-00	1.042-02	25	0,200	334.40	020.20	1.552+02	2.002+02	2.02-07	4.0L-02	

END

INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^c (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	_
7.88E+08	1	0.265	ERROR	ERROR	0.284	1.48E-09	0.844	1.25E-09	4,000	1.21E+04	2.12E+04	
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Stratum A effective diffusion coefficient,	Stratum B effective diffusion coefficient,	Stratum C effective diffusion coefficient,	Total overall effective diffusion coefficient,	Diffusion path length,	Convection path length,
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ _{TS}	D ^c " _A	D ^{en} B	D ^c " _C	D ^{en} T	L _d	L _p
(cm²)	(unitless)	(cm)	(cal/mol)	(atm-m°/mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm²/s)	(cm²/s)	(cm²/s)	(cm)	(cm)
1.00E+06	4.00E-04	15	9,543	8.30E-03	3.56E-01	1.76E-04	3.74E-03	0.00E+00	0.00E+00	3.74E-03	1	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
3.10E-01	8.05E+06	0.10	1.26E+00	3.74E-03	4.00E+02	3.01E+05	NA	NA	2.97E+03	1.80E-03	2.32E+08	YES
Finite source indoor attenuation coefficient, <a> (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³) 1.37E+02	Finite source bldg. conc., C _{building} (μg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³) 1.37E+02	Unit risk factor, URF (μg/m ³) ⁻¹ 2.6E-07	Reference conc., RfC (mg/m ³) 4.0E-02	-]						
END]					-						

SL-ADV	CALCULATE RISK	K-BASED SOIL CO	NCENTRATION (ent	er "X" in "YES" box)											
		YES]											
Reset to Defaults	CALCULATE INCF	REMENTAL RISKS	OR FROM ACTUAL SO	IL CONCENTRATION (enter "X" in "YES"	box and initial soil c	onc. below)								
		YES	×	1											
	ENTED	ENTED		1											
	ENTER	Initial													
	Chemical CAS No.	soil conc.,													
	(numbers only, no dashes)	С _R (µg/kg)			Chemical										
	79016	5 28E+03	-	Т	ichloroothylon	<u>_</u>	-								
	10010	0.202.100	J		ICHIOIOEUTyleh	5	1								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER L _t (cell G28)	ENTER Soil		ENTER					
¥		below grade	5 4 4 4	grade to bottom		Thickness	Thickness	stratum A		User-defined					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type		soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)		(cm ²)					
	11	15	15	152.4	15	0	0	SIC	1 1						
MODE	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Stratum A SCS	soil dry	soil total	soil water-filled	soil organic	Stratum B SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,
	Parameters	рь (g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	рь (g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	рь (g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SIC	1.38	0.481	0.216	0.002		15	0.43		0.002		15	0.43		0.002
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER						
MORE	Enclosed		Enclosed	Enclosed					Average vapor						
•	space floor	Soil-bidg. pressure	floor	space floor	space	Floor-wall seam crack	Indoor air exchange		flow rate into bldg. OR						
	thickness,	differential,	length,	width,	height,	width,	rate,	Lei	ave blank to calcul	ate					
	L-crack		LR	VVD	I B	vv	LIN		Soil						
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)						
	(cm) 15	(g/cm-s ²)	(cm)	(cm)	(cm) 304.8	(cm) 0.1	(1/h) 0.25	=]	(L/m)						
	(cm) 15 ENTER	(g/cm-s ²) 40 ENTER	(cm) 1000 ENTER	(cm) 1000	(cm) 304.8	(cm) 0.1 ENTER	(1/h) 0.25	=]	(L/m)						
	(cm) 15 ENTER Averaging	(g/cm-s ²) 40 ENTER Averaging	(cm) 1000 ENTER	(cm) 1000 ENTER	(cm) 304.8 ENTER Target	(cm) 0.1 ENTER Target hazard	(1/h) 0.25	=]	(L/m)						
	(cm) 15 ENTER Averaging time for carcinogens,	(g/cm-s ²) 40 ENTER Averaging time for noncarcinogens,	(cm) 1000 ENTER Exposure duration,	(cm) 1000 ENTER Exposure frequency,	(cm) 304.8 ENTER Target risk for carcinogens,	(cm) 0.1 ENTER Target hazard quotient for noncarcinogens,	(1/h) 0.25	-	(L/m)						
	(cm) 15 ENTER Averaging time for carcinogens, AT _C (yrs)	(g/cm-s ²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	(cm) 1000 ENTER Exposure duration, ED (yrs)	(cm) 1000 ENTER Exposure frequency, EF (days/yr)	(cm) 304.8 ENTER Target risk for carcinogens, TR (unitless)	(cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	(1/h) 0.25	-	(L/m)						
	(cm) 15 ENTER Averaging time for carcinogens, AT _c (yrs) 70	(g/cm-s ²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) 25	(cm) 1000 ENTER Exposure duration, ED (yrs) 25	(cm) 1000 ENTER Exposure frequency, EF (days/yr) 250	(cm) 304.8 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06	(cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	(1/h) 0.25	=	(L/m)						
	(cm) 15 ENTER Averaging time for carcinogens, AT _c (yrs) 70	(g/cm·s²) 40 ENTER Averaging time for noncarcinogens, AT _{nc} (yrs) 25	(cm) 1000 ENTER Exposure duration, ED (yrs) 25	(cm) 1000 ENTER Exposure frequency, EF (days/yr) 250	(cm) 304.8 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 Used to calc	(cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ (unitless) 1 ulate risk-based	(1/h) 0.25	-	(L/m)						

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
7.00E.02	0.105.06	1.02E.02	25	7 605	260.26	E44.20	1.665.02	1 475+02	4 1E 06	2.0E.02	
7.90E-02	9.10E-00	1.03E-02	23	7,505	300.30	544.20	1.00E+02	1.47 E+03	4.1E-00	2.0E-03	L

END

INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
7.88E+08	1	0.265	ERROR	ERROR	0.284	1.48E-09	0.844	1.25E-09	4,000	5.28E+03	2.12E+04	
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Stratum A effective diffusion coefficient,	Stratum B effective diffusion coefficient,	Stratum C effective diffusion coefficient,	Total overall effective diffusion coefficient,	Diffusion path length,	Convection path length,
(om^2)		∠ _{crack}		(otm m ³ /mol)		μ_{TS}	D_A	D_B	$D_{\rm C}$	D_{T}		L _p
	(unitiess)	(CIII)	(cal/mol)	(aun-m /mor)	(unitiess)	(g/cm-s)	(011 /5)	(CIII /S)	(01175)	(011 /5)	(cm)	(cm)
1.00E+06	4.00E-04	15	8,544	5.05E-03	2.17E-01	1.76E-04	4.10E-03	0.00E+00	0.00E+00	4.10E-03	1	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
3.32E-01	2.16E+06	0.10	1.26E+00	4.10E-03	4.00E+02	9.83E+04	NA	NA	3.26E+03	1.21E-03	3.77E+08	YES
Finite source indoor attenuation coefficient, <a> (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (μg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	- -						
			0.002701	4.12-00	2.02-03	4						
END												