

Model Evaluation

David Choi, Darrell Sonntag, and James Warila MOVES Review Work Group March 1, 2017

Agenda

- Background on MOVES model evaluation
- Context of current MOVES evaluation
- MOVES2014a comparisons to
 - Inspection/Maintenance (I/M) & remote sensing data (RSD)
 - Tunnel studies
- Summary

MOVES Evaluation

- Why?
 - A key recommendation in the National Research Council's review of EPA's mobile source modeling program¹
 - A key element of EPA's quality assurance guidance for developing models²
 - A critical component of EPA's development and upkeep of MOVES
- Objectives
 - To assess model performance in accurately estimating current emission inventories and forecasting emission trends
 - To identify areas in clear need of improvement
 - To guide future work and research needs

MOVES Evaluation (cont'd)

• Priorities

- Major sources of emissions (e.g., light-duty gasoline, heavy-duty diesel)
- Areas where significant independent data/studies available
- Assessment
 - If systematic bias is observed across multiple data sources, it is indicative of model underperformance
 - If the model predictions are generally within the variability of independent measurements, it gives confidence that the model is predicting real-world emissions reasonably well
- Improper means of evaluation
 - Comparisons against measurements based only on a few vehicles
 - Not sufficiently customizing MOVES inputs to account for the measurement conditions (i.e., fleet composition, vehicle activity)

Types of Evaluation

Emission rates

- Using dynamometer, RSD, and PEMS measurements
 - Large samples with best chance to capture rare high emitters
 - Known operating conditions (i.e., pre-conditioned IM240 drive cycle)
- Comparing MOVES predictions to such measurements is the most controlled comparison
 - Activity and fleet variables such as vehicle mix and vehicle age are known for a given study
 - Eliminates sources of significant variability inherent in comparisons to ambient monitor data, and even in tunnel and roadside measurements

Types of Evaluation (cont'd)

- "Localized composite" emissions
 - Using composite emission measurements from tunnel or roadside emission monitors where
 - Vehicle emissions are predominant
 - Vehicle activity and fleet mix can be accounted for to some degree
 - Provides a snapshot of overall model performance, for the narrow operating conditions represented at the specific location
- Regional air quality
 - Evaluation of air quality model results (CMAQ) vs. air quality monitor data
- "Macro-scale" fuel consumption
 - Comparison of "bottom-up" fuel consumption to "top-down" fuel tax data

History

- EPA's evaluation work on MOVES began with MOVES2004, focused on fuel consumption
- For MOVES2010a, we evaluated model performance using several methods and found that:
 - Emission rate comparisons against multiple data showed no systematic bias for both light-duty and heavy-duty vehicles
 - Tunnel comparisons showed
 - MOVES predictions were higher than the observed for LD, but MOVES compared well for HD
 - MOVES trends over time are consistent with observations

Evaluation Type	Analysis		
Emission Rates	Light-Duty Atlanta RSD CRC E-23 Chicago RSD Chicago I/M Dyno Kansas City Study Dyno NCSU PEMS (NC State)	Heavy-Duty CRC E-55 Dyno HD in-use compliance Houston drayage	
Localized Composite	Caldecott Tunnel - range analysis Van Nuys Tunnel (Fujita, et. al) Borman Expressway		
Fuel	FHWA Fuel Sales 2000-2007		

Current Context

- Several recent studies^{3,4} have shown differences between air quality model estimates and monitored values for nitrogen oxides suggesting AQ models appear to overestimate NOx
- Staff across EPA are investigating various aspects of the issue

MOVES is just <u>one</u> complex part of the modeling system:

NOx Evaluation Efforts for MOVES2014a

- Focus on light-duty gasoline passenger cars and trucks
 - Most evidence⁵ suggests that MOVES under-predicts NOx for HD diesel
- Focus on running exhaust emissions
 - Due to lack of significant sources of independent data for start emissions
 - Running exhaust emissions contribute over 80% of NOx emissions from onroad gasoline and diesel

Comparison to Denver I/M Data

- GOAL: compare MOVES <u>BASE RATES</u> to external data
 - Taken from input database
 - No modifications or adjustments (humidity, I/M compliance, etc.)
- SCOPE: running emissions for
 - Light-duty cars and trucks
 - Tier 2 vehicles (in MY 2010-2016)
 - Bins 8, 5, 4, 3, 2
 - Tier 1 cars (in MY 1996-2000)
- **BASIS:** NO_X emissions on IM240 cycle
 - Denver I/M: measurements
 - Using random sample
 - CY 2008-2015
 - MOVES2014a: simulate IM240 using modal rates
 - Average by age

Denver I/M Data (cont'd)

- Light-duty cars
 - Tier 2 (Bin 5 and equivalent) meeting 70 mg/mi NOx FTP standard
- Distribution spans over 3 orders of magnitude

Preliminary Results for Tier 2 Cars: MOVES2014a Rates vs. Denver I/M

Tier 2 Passenger Cars

MOVES: Simulated IM240 by age, for MY 2010-2016

Denver:

Mean IM240 by age, for "Bin-5"

(70 mg/mi NOx FTP std)

MOVES rates appear lower than corresponding I/M results.

Preliminary Results for Tier 1 Cars: MOVES2014a Rates vs. Denver I/M

Tier 1 Passenger Cars

MOVES: Simulated IM240 by age, for MY 1996-2000

Denver: Mean IM240 by age, for Tier 1 (600 mg/mi NOx

(600 mg/mi NOx FTP std)

MOVES rates appear higher than corresponding I/M results.

Limitations & Areas for More Work

• Sample sizes (for each age level)

- T1: 10 370 vehicles
- T2: 240 2,460 vehicles
- Larger samples probably give a more representative comparison

• Fuel properties

- Data collected over 8 years
- Fuels changing over time

• Temperature

- Don't expect effect for hot-running operation
- Altitude (adjust if appropriate)
- Potential positive bias due to "clean screen"
 - Vehicles screened by remote sensing
 - "Clean" vehicles exempted from inspection

Comparisons to Remote Sensing Data

- University of Denver collected a series of remote sensing data, funded by Coordinating Research Council
 - Measurement sites in Arizona, California, Colorado, Illinois, Maryland, Nebraska, Nevada, Pennsylvania, Texas, Oklahoma, Utah, and Washington
 - Typically collected at on-ramps during weekdays
- Remote sensing measured the ratios of CO, HC, NO*, to CO2 in the exhaust and reported the percent concentrations of pollutants
- RSD databases include
 - Measurement conditions (i.e., speed, acceleration, temperature, and humidity)
 - Vehicle information (i.e., Vehicle Identification Number (VIN))
 - Flags for invalid measurements

- Current analysis includes RSD data that were collected over multiple years at the same location
 - Phoenix, AZ, Denver, CO, Chicago, IL, and Tulsa, OK
 - In calendar years 1999 to 2007 and 2013 to 2015
 - Total number of measurements: ~400,000

RSD Sites	Number of Measurements (light-duty cars and trucks combined)	
Phoenix, AZ	95,266	
Chicago, IL	107,007	
Denver, CO	127,518	
Tulsa, OK	64,658	

- MOVES project scale used to simulate the measurement conditions, as much as possible
- County inputs include:

Input	Time & Location-Specific	MOVES Default
Operating Mode Distribution	Х	
Age Distribution	Х	
Fuel Properties		X*
Meteorology	Х	
Inspection/Maintenance		Х

*With the exception of sulfur, MOVES defaults were used for all fuel properties.

 Pollutants – nitric oxide (NO) and total energy consumption

Project Scale vs. MOVES National Scale

- MOVES national scale runs using the default inputs result in significantly higher emissions than the project scale runs
 - MOVES can show clear over-prediction when not properly modeled
- Highlights the importance of modelling the measurement conditions as much as possible using the project scale when evaluating MOVES

Sample Results – Comparisons to RSD

- Showing illustrative results
 - Only light-duty passenger cars
 - For select calendar years
- Comparisons for light-duty trucks similar to passenger cars
- RSD sites differ in age distributions, operating mode distributions, presence of I/M programs, altitude, etc.

Sample Results: MOVES2014a vs. RSD for CY2013-2015

Sample Results: MOVES2014a vs. RSD for CY2005

- MOVES2014a lower or within the variability of the data for Tier 2 vehicles
- MOVES2014a higher than RSD for Tier 1 vehicles

Next Steps – Comparisons to RSD

- Analyze other available RSD datasets
- Understand variations between RSD sites and calendar years
- Evaluate fuel consumption in MOVES
 - Since comparisons made in fuel-based emission rates

Tunnel Comparisons

- Caldecott Tunnel
 - 1 km long tunnel in Oakland, California
 - 4% uphill grade (eastbound)
 - 3 separate two-lane traffic bores
 - Bore 2 is limited to light-duty vehicles (switches direction with flow of commuter traffic)
- UC-Berkeley derived fleetaverage emission rates from their most recent campaign (2010)^{6,7}
 - Measured pollution concentrations: 4-6 pm, 8 weekdays, July 2010

Picture from Dallmann et al. 2013⁷

MOVES2014a Comparison to Caldecott Tunnel

- MOVES default runs
 - Run at National-scale
- MOVES project-scale used to model the tunnel conditions
 - Created inputs from measurements conditions, e.g.
 - 4% grade
 - CA standards
 - Section 177/LEV inputs for CA standards on 1994+ vehicles
 - Lower, midpoint, and upper bound for uncertain inputs
 - Age distributions
 - Driving cycles
 - Fuel sulfur levels

Tunnel Comparison - Preliminary Results

Tunnel Comparisons - Observations and Limitations

- Observations
 - Key sources of uncertainty for project-level runs
 - For NOx g/kg-fuel: age distributions, LEV inputs
 - For NOx grams: age distributions, LEV inputs, driving cycles
 - In the case of Caldecott Tunnel, using national defaults produced substantially higher emission rates than using project-level inputs
- Limitations
 - Caldecott tunnel gasoline measurements have tended to be lower than other remote sensing studies^{8,9}
 - MOVES data is not based on CA vehicles or fuels, e.g.
 - Section 177/LEV inputs do not account for differences in CA and National vehicle program for pre-1994 vehicles

Summary

- When doing comparisons to RSD and tunnel measurements, it is important to properly model the measurement conditions
- We will be continuing and refining our comparison of MOVES2014a to I/M, RSD, and tunnel measurements
- Additional work exploring other aspects of the air quality modeling system is also ongoing

Acknowledgements

- Gary Bishop and Don Stedman at University of Denver
- Coordinating Research Council (E-23, E-106)
- Colorado Department of Public Health and Environment (CDPHE)
- Eastern Research Group (ERG)
- Timothy Dallmann, Brian McDonald and Robert Harley from University of California-Berkeley

References

- 1. National Research Council. *Modeling Mobile Source Emissions*. National Academy Press, 2000
- 2. US EPA. Guidance for Quality Assurance Project Plans for Modeling. EPA/240/R-02/007, December 2002.
- 3. Anderson, D. C., C. P. Loughner, G. Diskin, A. Weinheimer, T. P. Canty, R. J. Salawitch, H. M. Worden, A. Fried, T. Mikoviny, A. Wisthaler and R. R. Dickerson (2014). Measured and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US. Atmospheric Environment, 96 (0), 78-87. DOI: 10.1016/j.atmosenv.2014.07.004.
- 4. Travis, K. R., D. J. Jacob, J. A. Fisher, P. S. Kim, E. A. Marais, L. Zhu, K. Yu, C. C. Miller, R. M. Yantosca, M. P. Sulprizio, A. M. Thompson, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, R. C. Cohen, J. L. Laugher, J. E. Dibb, S. R. Hall, K. Ullmann, G. M. Wolfe, I. B. Pollack, J. Peischl, J. A. Neuman and X. Zhou (2016). NOx emissions, isoprene oxidation pathways, vertical mixing, and implications for surface ozone in the Southeast United States. Atmos. Chem. Phys. Discuss., 2016, 1-32. DOI: 10.5194/acp-2016-110.
- 5. McDonald, B. C., S. McKeen, R. Ahmadov, S.-W. Kim, G. Frost and M. Trainer (2015). Modeling Ozone in the Eastern United States Using a Fuel-Based Mobile Source Emissions Inventory. AGU Fall Meeting 2015. San Francisco.
- 6. Dallmann, T. R., S. J. DeMartini, T. W. Kirchstetter, S. C. Herndon, T. B. Onasch, E. C. Wood and R. A. Harley (2012). On-Road Measurement of Gas and Particle Phase Pollutant Emission Factors for Individual Heavy-Duty Diesel Trucks. *Environ Sci Technol,* 46 (15), 8511-8518. DOI: 10.1021/es301936c.
- 7. Dallmann, T. R., T. W. Kirchstetter, S. J. DeMartini and R. A. Harley (2013). Quantifying On-Road Emissions from Gasoline-Powered Motor Vehicles: Accounting for the Presence of Medium- and Heavy-Duty Diesel Trucks. *Environ Sci Technol*, 47 (23), 13873-13881. DOI: 10.1021/es402875u.
- 8. Ban-Weiss, G. A., J. P. McLaughlin, R. A. Harley, M. M. Lunden, T. W. Kirchstetter, A. J. Kean, A. W. Strawa, E. D. Stevenson and G. R. Kendall (2008). Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles. Atmos Environ, 42 (2), 220-232.
- 9. Tao, I., L. Bastien and R. Harley (2016). A Fuel-Based Evaluation of EMFAC 2014 Motor Vehicle Emission Inventory Model Predictions. May 2016.