Test Material: Pyriofenone

MRID: 49256126

VALIDATION OF A RESIDUE ANALYTICAL METHOD FOR THE Title:

DETERMINATION OF IKF-309 IN AGRICULTURAL SOIL

MRID: 49256127

INDEPENDENT LABORATORY VALIDATION (ILV) OF THE

RESIDUE ANALYTICAL METHOD FOR DETECTION OF IKF-309

IN SOIL (RCC STUDY #B18843)

EPA PC Code: 028828

OCSPP Guideline: 850.6100

For CDM Smith

Title:

Zymme Dinai **Signature: Primary Reviewer:** Lynne Binari

Date: 11/3/14

Secondary Reviewer: Lisa Muto **Signature:**

Date: 11/3/14

QC/QA Manager: Joan Gaidos Signature:

Date: 11/3/14

Analytical method for pyriofenone (IKF-309) in soil

Reports: ECM: EPA MRID No.: 49256126. Wolf, S. 2007. VALIDATION OF A

RESIDUE ANALYTICAL METHOD FOR THE DETERMINATION OF IKF-309 IN AGRICULTURAL SOIL. RCC Study No.: B18843. Report prepared by RCC Ltd., Itingen, Switzerland, sponsored by ISHIHARA

SANGYO KAISHA, LTD., Osaka, Japan, and submitted by ISK

BIOSCIENCES CORPORATION, Concord, Ohio; 87 pages, plus three front

pages 1A-1C. Final report issued July 6, 2007.

ILV: EPA MRID No. 49256127. Ferguson, L.-J. 2011. INDEPENDENT LABORATORY VALIDATION (ILV) OF THE RESIDUE ANALYTICAL

METHOD FOR DETECTION OF IKF-309 IN SOIL (RCC STUDY

#B18843). Ricerca Study No.: 027336 and Document No.: 027336-1 (p. 1). ISKBC Document No.: IB-2011-JLW-022-01. Report prepared by Ricerca Biosciences, LLC, Concord, Ohio, sponsored by ISHIHARA SANGYO KAISHA, LTD., Osaka, Japan, and submitted by ISK BIOSCIENCES CORPORATION, Concord, Ohio; 154 pages, plus three front pages 1A-1C.

Final report issued July 21, 2011.

Document No.: MRIDs 49256126 & 49256127

Guideline: 850.6100

EC SANCO/3029/99 rev. 4 & SANCO/825/00 rev. 7 (p. 11 of MRID

49256126)

OPPTS 860.1340, OPPTS 850.7100, & EC SANCO/825/00 rev. 8 (p. 6 of

MRID 49256127)

Statements: ECM: The study was conducted in compliance with Swiss Ordinance [RS

813.112.1] Good Laboratory Practice (GLP) standards, which are compatible with USEPA GLP standards (pp. 1C, 3 of MRID 49256126). Signed and dated No Data Confidentiality, GLP, and Quality Assurance statements were provided (pp. 1B-1C, 2-4). A statement of the authenticity of the study report

was included as part of the Quality Assurance Statement (p. 4).

ILV: The study was conducted in compliance with USEPA GLP standards (p. 3 of MRID 49256127). Signed and dated No Data Confidentiality, GLP, and Quality Assurance statement were provided (pp. 1B-1C, 2-4). An

Authenticity Certification statement was not provided.

Classification: This analytical method is classified as "**supplement**". No performance data

(ECM or ILV) at 10x LOQ were provided. For the ECM, sufficient performance data at the LOQ were not provided for three of the four soil matrices. The determinations of the LOQ and LOD were not based on

scientifically acceptable procedures.

PC Code: 028828

Reviewer: Faruque Khan **Signature:**

Senior Fate Scientist **Date:** December 5, 2014

Executive Summary

This analytical method, RCC Study #B18843, is designed for the quantitative determination of pyriofenone (IKF-309) in soil using HPLC/MS/MS. The method is quantitative for pyriofenone at the stated LOQ of 0.001 mg/kg. The LOQ is several orders of magnitude less than the lowest toxicological level of concern in soil. The independent laboratory validated the method for analysis of pyriofenone in sandy loam soil after one trial. No major modifications were made by the independent laboratory. The sponsor failed to provide a soil matrix of the most difficult analytical sample condition for use in the ILV. No performance data (ECM or ILV) at 10x LOQ were provided. For the ECM, sufficient performance data at the LOQ were not provided for three of the four soil matrices.

Table 1. Analytical Method Summary

Analyte(s)	MR	ID						Limit of
by Pesticide	Environmental Chemistry Method		EPA Review	Matrix ¹	Method Date (dd/mm/yyyy)	Registrant	Analysis	Quantitation (LOQ)
Pyriofenone (IKF-309)	49256126	49256127		Soil	06/07/2007	ISK Biosciences Corporation	HPLC/MS/MS	0.001 mg/kg

¹ For the ECM, clay loam (organic carbon 1.90%, United Kingdom), silt loam (organic carbon 1.66%, France), loam (organic carbon 1.06%, Italy), and sand (organic carbon 0.59%, Germany) soils were used. For the ILV, a sandy loam soil (organic carbon 1.45%, North Dakota) was used.

I. Principle of the Method

Soil (10.0 g dry wt.) was extracted once with acetonitrile:water:hydrochloric acid (800:200:5, v:v:v; final extract volume 40 mL, volume added dependent on soil wet wt.) by shaking (laboratory shaker, ca. 150 rpm) for ca. 30 minutes (pp. 23-24 of MRID 49256126). Soil and extract were separated by centrifugation (3,000 rpm, 10 minutes). An aliquot (4 mL, equivalent to 1.0 g dry wt. soil) of the extract was diluted with ELGA purified water (20 mL), then loaded under vacuum onto a Waters Oasis HLB VAC (60 mg) solid phase extraction (SPE) cartridge pre-conditioned with methanol and ELGA water. The loaded cartridge was dried under vacuum for a few seconds. Residues were eluted with acetonitrile (5 mL). The eluate was brought to volume (10 mL) with ELGA water, mixed, and an aliquot filtered (0.45 µm PTFE) for LC/MS/MS analysis. Samples fortified at 300x LOQ were diluted 1:19 with acetonitrile:ELGA water (1:1, v:v) for analysis.

Samples were analyzed for pyriofenone (IKF-309) by HPLC (GL Sciences Inertsil ODS-3, 2.1 mm x 50 mm, 3 µm column) using a mobile phase of (A) water:acetonitrile:formic acid (95:5:0.1, v:v:v) and (B) acetonitrile:water:formic acid (95:5:0.1, v:v:v) [percent A:B (v:v) at 0.0 min. 50:50, 2.0-2.5 min. 0:100, 2.6-4.0 min. 50:50] with MS/MS-ESI (AB/MDS Sciex API 4000 triple quadrupole MS, electrospray ionization, positive ion mode) detection and multiple reaction monitoring (MRM; pp. 24-25 of MRID 49256126). Injection volume was 10 µL. Pyriofenone was identified using two ion transitions; one for quantitation (Q) and one for confirmation (C). Ion transitions monitored were as follows: m/z 366.0 \rightarrow 184.3 (Q) and m/z 366.0 \rightarrow 209.3 (C). Pyriofenone retention time was ca. 2.3 minutes.

The ILV performed the method as written with minor method modifications (pp. 12-14, 16 of MRID 49256127). The syringe filtration (0.45 μ m PTFE) step was removed from the method. Pyriofenone retention time was 3.9 minutes, due to a differing HPLC system void volume, therefore the HPLC run time was extended from 4.0 minutes to 4.5 minutes.

The LOQ for pyriofenone in soil was the same in the ECM and ILV at 0.001 mg/kg (ppm, p. 27 of MRID 49256126; p. 6 of MRID 49256127). In the ECM, the LOD was set at 0.05 ng/mL (equivalent to 0.0005 mg/kg). Although not specified, the ILV appeared to have also set the LOD at 0.05 ng/mL (Appendix B, pp. 27-28, 38-39 of MRID 49256127).

II. Recovery Findings

ECM (MRID 49256126): Mean recoveries and relative standard deviations (RSDs) were within guidelines (mean 70-120%; RSD \leq 20%) for analysis of pyriofenone (IKF-309) at fortification levels of 0.001 mg/kg (LOQ) and 0.300 mg/kg (300x LOQ) in clay loam soil (United Kingdom, n = 5 per fortification level), silt loam soil (France, n = 3 per level), loam soil (Italy, n = 3 per level), and sand soil (Germany, n = 3 per level; pp. 12-15). Recoveries from fortification at 10x LOQ (0.01 mg/kg) were not reported. Pyriofenone was identified and quantified using two ion transitions; quantitation ion and confirmation ion recovery results were comparable. The soil matrices were characterized (pp. 18-19).

ILV (MRID 49256127): Mean recoveries and relative standard deviations (RSDs) were within guidelines (mean 70-120%; RSD ≤20%) for analysis of pyriofenone in sandy loam soil (North Dakota) at fortification levels of 0.001 mg/kg (LOQ) and 0.1 mg/kg (100x LOQ; pp. 16-17). Recoveries from fortification at 10x LOQ (0.01 mg/kg) were not reported. Pyriofenone was identified and quantified using two ion transitions; quantitation ion and confirmation ion recovery results were comparable. The method was validated for pyriofenone in the sandy loam soil at both fortification levels after one trial, with minor method modifications (p. 16). The soil matrix was characterized (p. 11).

Table 2. Initial Validation Method Recoveries for Pyriofenone (IKF-309) in Soil

Matrix ¹	Fortification Level (mg/kg)		Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)						
	\ 8 8/	Quantitation (primary) ion										
	0.001 (LOQ)	5	93-105	99	5	5						
Clay loam soil	0.300	5	102-110	106	4	4						
(OC 1.90%, United Kingdom)			(Confirmation ion								
Kiliguoiii)	0.001 (LOQ)	5	82-104	94	9	10						
	0.300	5	102-109	106	3	3						
			Quan	titation (primary)	ion							
	0.001 (LOQ)	3	96-98	97	1	1						
Silt loam soil	0.300	3	76-109	95	17	18						
(OC 1.66%, France)			(Confirmation ion								
	0.001 (LOQ)	3	97-109	102	6	6						
	0.300	3	75-105	92	15	17						
			Quan	titation (primary)	ion							
	0.001 (LOQ)	3	96-103	100	4	4						
Loam soil	0.300	3	89-99	95	5	5						
(OC 1.06%, Italy)			(Confirmation ion								
	0.001 (LOQ)	3	91-104	98	7	7						
	0.300	3	90-101	96	6	6						
	Quantitation (primary) ion											
	0.001 (LOQ)	3	87-98	94	6	7						
Sand soil	0.300	3	97-101	100	2	2						
(OC 0.59%, Germany)				Confirmation ion		·						
	0.001 (LOQ)	3	75-92	86	10	11						
	0.300	3	97-103	99	3	3						

Data (uncorrected recovery results) were obtained from Tables 1-16, pp. 35-42 of MRID 49256126 and DER Attachment 2 (standard deviations).

Table 3. Independent Validation Method Recoveries for Pyriofenone (IKF-309) in Soil

Matrix ¹	Fortification Level (mg/kg)		Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)
			Quant	titation (primary)	ion	
	0.001 (LOQ)	5	93.2-95.1	94.3	0.8	0.8
Sandy loam soil (OC 1.45% ² , North	0.1	5	76.2-95.9	87.8	7.8	8.9
Dakota)			C	Confirmation ion		
Dakota)	0.001 (LOQ)	5	82.6-92.1	88.0	4.6	5.2
	0.1	5	76.2-95.9	86.8	7.3	8.4

Data (uncorrected recovery results) were obtained from pp. 16-17 of MRID 49256127 and DER Attachment 2 (standard deviations).

¹ Matrix characterizations were provided (pp. 18-19 of MRID 49256126). Soil classifications are USDA. OC = organic carbon.

¹ Matrix characterization was provided (p. 11 of MRID 49256127). Soil classification is USDA.

² Calculated as organic carbon (%) = organic matter (%) \div 1.72.

III. Method Characteristics

In the ECM and ILV, the LOQ for pyriofenone in soil was 0.001 mg/kg (p. 27 of MRID 49256126; p. 6 of MRID 49256127). The ECM defined the LOQ as the lowest fortification level with mean recoveries of 70-110% and RSD \leq 20%, and matrix control samples \leq 30%. In the ECM, the LOD was estimated at 0.0005 mg/kg (0.5 µg/kg) from the lowest calibration standard of 0.05 ng/mL, with no justification (p. 27 of MRID 49256126). Although not specified, the ILV appeared to have also set the LOD at 0.05 ng/mL (Appendix B, pp. 27-28, 38-39 of MRID 49256127).

Table 4. Method Characteristics for Pyriofenone (IKF-309) in Soil

		Pyriofenone
Limit of Quantitation (LOQ)		0.001 mg/kg
Limit of Detection (LOD) ¹		0.05 ng/mL (equivalent to 0.0005 mg/kg)
Linearity (1/y weighting,	ECM:	Q ion: $r^2 = 0.9982-0.9995$ C ion: $r^2 = 0.9981-0.9991$
calibration curve r ² and concentration range) ²	ILV:	Q ion: $r^2 = 0.9986$ C ion: $r^2 = 0.9994$
	Range:	0.05-5.0 ng/mL
Repeatable		Yes
Reproducible		Yes, however, the sponsor failed to provide a soil matrix of the most difficult analytical sample condition for use in the ILV.
Specific		Yes

Data were obtained from pp. 13, 27 of MRID 49256126; p. 6 of MRID 49256127.

IV. Method Deficiencies and Reviewer's Comments

- 1. The sponsor failed to provide a soil matrix of the most difficult analytical sample condition for use in the ILV. The soil matrix was provided by the sponsor with the justification that a high organic matter soil constituted a more difficult matrix for analysis (Appendix E, p. 60 of MRID 49256127). However, the organic carbon content of the North Dakota sandy loam soil was 1.45% (calculated as 2.5% organic matter ÷ 1.72), as compared to the 1.90% organic carbon content of the clay loam (United Kingdom) soil, the soil with the highest organic carbon content in the ECM validation (pp. 18-19 of MRID 49256126; p. 11 of MRID 49256127).
- 2. No performance data (ECM or ILV) at 10x LOQ were provided.
- 3. For the ECM, sufficient performance data (n = 3) at both fortification levels, LOQ and 300x LOQ, were not provided for the silt loam (France), loam (Italy), and sand (Germany) soils (pp. 12-13 of MRID 49256126).
- 4. The determination of the LOQ and LOD were not based on scientifically acceptable procedures as defined in 40 CFR Part 136, Appendix B. The LOQ for pyriofenone in soil

¹ LOD was not specified in ILV, but appeared to have been set at 0.05 ng/mL (Appendix B, pp. 27-28, 38-39 of MRID 49256127).

² Linearity of the provided ECM and ILV calibration curves was verified by the reviewer (DER Attachment 2). ILV r² values are reviewer-generated from reported r values of 0.9993 (Q ion) and 0.9997 (C ion; Appendix B, pp. 27, 38 of MRID 9256127).

was the same in the ECM and ILV at 0.001 mg/kg (p. 27 of MRID 49256126; p. 6 of MRID 49256127). The ECM defined the LOQ as the lowest fortification level with mean recoveries of 70-110% and RSD \leq 20%, and matrix control samples \leq 30%. In the ECM, the LOD was estimated at 0.0005 mg/kg (0.5 µg/kg) from the lowest calibration standard of 0.05 ng/mL, with no justification (p. 27 of MRID 49256126). The LOD was not specified in the ILV but appeared to have also set at 0.05 ng/mL (Appendix B, pp. 27-28, 38-39 of MRID 49256127).

Detection limits should not be based on the arbitrarily selected lowest concentration in the spiked samples. Additionally, the lowest toxicological level of concern in soil was not reported. An LOQ above toxicological levels of concern results in an unacceptable method classification.

- 5. For the ILV, chromatograms of reagent blank samples were not provided. In matrix blank control samples, interferences with peak areas were <50% at the LOD (Appendix B, pp. 28, 35, 39, 46 of MRID 49256127).
- 6. For the ILV, the syringe filtration (0.45 μm PTFE) step was removed from the method due to pyriofenone losses [15-33% for 0.001 mg/kg fortified samples and 12-22% for 0.1 mg/kg fortified samples using quantitation ion (*m/z* 184.3) analysis, p. 17 of MRID 49256127]. The sponsor approved the method modification (Appendix D, p. 52 of MRID 49256127). Removal of the filtration step may only be necessary when procedural recoveries are not quantitative.
- 7. It was reported for the ILV that analysis of a sample set (reagent blank, two matrix control samples and ten validation samples) required a total of 12 hours; one-working day (8 hours) for sample preparation, plus *ca.* 4 hours of LC/MS/MS analysis of samples with calibration standard injections (p. 17 of MRID 49256127).

V. References

- U.S. Environmental Protection Agency. 2012. Ecological Effects Test Guidelines, OCSPP 850.6100, Environmental Chemistry Methods and Associated Independent Laboratory Validation. Office of Chemical Safety and Pollution Prevention, Washington, DC. EPA 712-C-001.
- 40 CFR Part 136. Appendix B. Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11, pp. 317-319.

Attachment 1: Chemical Names and Structures

Pyriofenone (IKF-309)

IUPAC Name: (5-Chloro-2-methoxy-4-methyl-3-pyridyl)(2,3,4-trimethoxy-6-

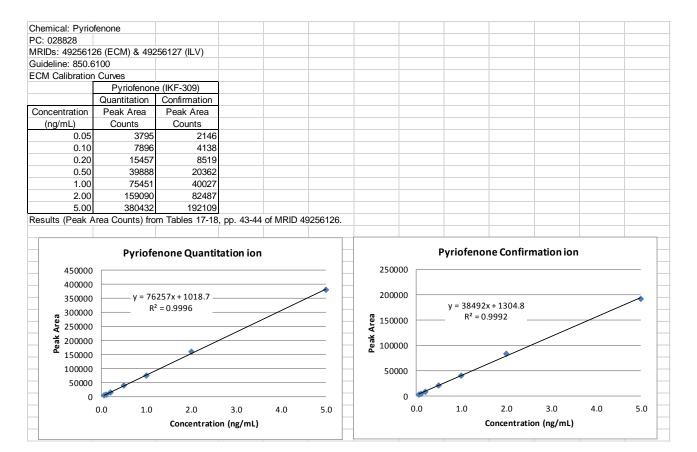
methylphenyl)ketone

CAS Name: (5-Chloro-2-methoxy-4-methyl-3-pyridinyl)(2,3,4-trimethoxy-6-

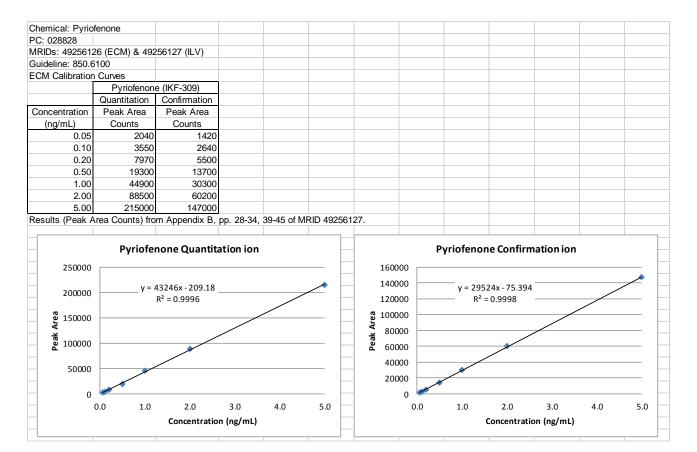
methylphenyl)methanone

CAS Number: 688046-61-9 SMILES String: Not found

IN-D5803


IUPAC Name: CAS Name:

CAS Number:


SMILES String:

Attachment 2: Calculations

Chemical Pyriofenone	vriofenone												-								F						ŀ	P
Olicinos.	2	Ī											t	+		T	İ	İ	t		ł		İ	İ		t	+	1
PC: 028828																					1							l
MRIDs: 492£	MRIDs: 49256126 (ECM) & 49256127 (ILV)	8 4925	127 (IL)	S																								al
Guideline: 850.6100	50.6100																											LIL
ECM Validat	ECM Validation for Determination of Pyriofenone (IKF-309) in Soil	mination	of Pyrio	fenone	(IKF-30	9) in Sc	Ē													_								
	Clay	V Loam	Clay Loam (OC 1.90%, United Kingdom)	اN, Uni	ed King	(mopt			Silt Lo	Silt Loam (OC 1.66%, France)	1.66%,	France)				Loan	1 (OC 1.	Loam (OC 1.06%, Italy)	ly)				Sand ((OC 0.59	Sand (OC 0.59%, Germany	nany)		16
Fortified	Recovery	Mean	SD1	RSD ²				Recovery	Mean	SD1	RSD ²			Re	Recovery	Mean	SD1	RSD^2			Re	Recovery	Mean	SD1	RSD ²			711
(mg a.i./kg)		(%)	(%)	(%)	Мах	Min	=	(%)	(%)	(%)	(%)	Мах	Ä	= _		(%)	(%)	(%)	Max	Min	п	_	(%)	(%)	(%)	Max	Min	
												đ	antitatio	3€ z/m uc	Quantitation m/z 366.0 > 184.3	4.3												<u></u>
0.001	105							86							96							87						•
POO	103							26							103							86						ان
	86							96							102							86						ılc
	93																											u
	94	99	5	5	105	93	5		97	1	1	86	96	3		100	4	4	103	96	3		94	9	7	98	87	m
0.300	103							109							88							101						lli
	110							9/							66							97						IU
	110							101							96							101						11;
	105																											•
	102	106	4	4	110	102	5		95	17	18	109	26	3		95	5	5	66	89	3		100	2	2	101	97	3
												ပိ	Confirmation m/z	on m/z 3.	366.0 > 209.	9.3												
0.001								26							91							22						
pool	104							109							66							92						
	91							100							104							91						
	88																											
	82	94	6	10	104	82	5		102	9	9	109	97	3		98	7	7	104	91	3		86	10	11	92	75	3
0.300								105							06							86						
	105							75							101							97						
	109							96							96							103						
	106																											
	102	106	3	3	109	102	5		92	15	17	105	75	3		96	9	9	101	90	3		66	3	3	103	97	3
Results from	Results from Table 1, p. 35; Table 3, p. 36; Table 5, p. 37; Table 7, p. 38; Table	35; Tabl	e 3, p. 36	5; Table	5, p. 3	7; Table	³ 7, p. ∶	38; Table 9,	p. 39; T	able 11,	p. 40; ¹	Table 13	, p. 41;	Table 15,	9, p. 39, Table 11, p. 40; Table 13, p. 41; Table 15, p. 42 of MRID 49256126. Soil classifications are USDA (pp. 18-19 of MRID 49256126)	MRID 45	256126.	Soil cla	ssificati	ons are	USDA	(pp. 18-19	Of MRID	3 49256	126).			
Means and s	Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2)	ations c	alculated	d using	Microsc	oft progr	am fun	ctions =AV	'ERAGE	(A1:A2)	and =S	TDEV(A	1:A2).															
1 SD = Star	1 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.	on; dete	rmined u	ising the	e "unbia	sed" or	"n-1" n	nethod.																				
2 RSD = Re	2 RSD = Relative Standard Deviation; calculated as (SD/mean) x 100	ard Devis	ation; cal	culated	as (SE	/mean)	× 100						-	-					-	-	-					-	-	

Chamical: D:	riofonono											
Chemical: Py PC: 028828	/noienone											
	C400 (FON	1) 0 4005	0407 (11									
MRIDs: 4925		1) & 4925	6127 (IL	V)								
Guideline: 85												
ILV for Deteri		_										
	Sa	andy Loar	_ `		orth Da	akota)						
Fortified	Recovery	Mean	SD ¹	RSD ²								
(mg a.i./kg)	(%)	(%)	(%)	(%)	Max	Min	n =					
		Quantit	tation m	z 366.0	> 184.	3						
0.001	94.0											
LOQ	94.9											
	93.2											
	95.1											
	94.2	94.3	0.8	0.8	95.1	93.2	5					
0.1	92.6											
	95.9											
	90.4											
	76.2											
	83.9	_	7.8	8.9	95.9	76.2	5					
				/z 366.0								
0.001	82.6		iacion in	2 000.0	- 200.	Ĭ						
LOQ	90.4											
LOQ	91.4											
	92.1											
	83.5	88.0	4.6	5.2	92.1	82.6	5					
0.1	89.7	00.0	4.0	5.2	32.1	02.0						
0.1	95.9											
	88.1											
	76.2											
	83.9	_	7.3	8.4	05.0	76.2						
Dogulto franc							5	(n 11 of N	4DID 4005	24.07\		
Results from											FC407)	
OC = organic												4.40\
Means and s									VERAGE(A	A1:A2) and	=9 IDEV(A	1:A2).
1 SD = Star												
2 RSD = Re	lative Stand	dard Devia	ation; ca	Iculated	as (SE)/mean	x 100					

